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a b s t r a c t

The increasingly large amount of cosmological data coming from ground-based and space-borne
telescopes requires highly efficient and fast enough data analysis techniques to maximise the scientific
exploitation. In this work, we explore the capabilities of supervised machine learning algorithms to
learn the properties of the large-scale structure of the Universe, aiming at constraining the matter
density parameter, Ωm. We implement a new Artificial Neural Network for a regression data analysis,
and train it on a large set of galaxy two-point correlation functions in standard cosmologies with
different values of Ωm. The training set is constructed from log-normal mock catalogues which
reproduce the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. The presented
statistical method requires no specific analytical model to construct the likelihood function, and runs
with negligible computational cost, after training. We test this new Artificial Neural Network on real
BOSS data, finding Ωm = 0.309 ± 0.008, which is consistent with standard analysis results.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the biggest challenges of modern cosmology is to
ccurately estimate the standard cosmological model param-
ters and, possibly, to discriminate among alternative cosmo-
ogical frameworks. Fast and accurate statistical methods are
equired to maximise the scientific exploitation of the cosmolog-
cal probes of the large-scale structure of the Universe. During
he last decades, increasingly large surveys have been conducted
oth with ground-based and space-borne telescopes, and a huge
mount of data is expected from next-generation projects, like
.g. Euclid (Laureijs et al., 2011; Blanchard et al., 2020) and the
era C. Rubin Observatory (LSST Dark Energy Science Collabora-
ion, 2012). This scenario, in which the amount of available data
s expected to keep growing with exponential rate, suggests that
achine learning techniques shall play a key role in cosmological
ata analysis, due to the fact that their reliability and precision
trongly depend on the quantity and variety of inputs they are
iven.
According to the standard cosmological scenario, the evolution

f density perturbations started from an almost Gaussian distri-
ution, primarily described by its variance. In configuration space,

∗ Corresponding author.
E-mail address: veronesi@strw.leidenuniv.nl (N. Veronesi).
ttps://doi.org/10.1016/j.ascom.2023.100692
213-1337/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
the variance of the field is the two-point correlation function
(2PCF), which is a function of the magnitude of the comoving
distance between objects, r . At large enough scales, the matter
distribution can still be approximated as Gaussian, and thus the
2PCF contains most of the information of the density field.

The 2PCF and its analogous in Fourier space, the power spec-
trum, have been the focus of several cosmological analyses of
observed catalogues of extra-galactic sources (see e.g. Totsuji
and Kihara, 1969; Peebles, 1974; Hawkins et al., 2003; Parkinson
et al., 2012; Bel et al., 2014; Alam et al., 2016; Pezzotta et al.,
2017; Mohammad et al., 2018; Gil-Marín et al., 2020; Marulli
et al., 2021, and references therein). The standard way to infer
constraints on cosmological parameters from the measured 2PCF
is by comparison with a physically motivated model through
an analytical likelihood function. The latter should account for
all possible observational effects, including both statistical and
systematic uncertainties. In this work, we investigate an alter-
native data analysis method, based on a supervised machine
learning technique, which does not require a customised like-
lihood function to model the 2PCF. Specifically, the 2PCF shape
will be modelled with an Artificial Neural Network (NN), trained
on a sufficiently large set of measurements from mock data sets
generated at different cosmologies.

Supervised machine learning methods can be considered as

a complementary approach to standard data analysis techniques

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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or the investigation of the large-scale structure of the Universe.
here are two main issues in applying machine learning algo-
ithms in this context. Firstly, the simulated galaxy maps used to
rain the NNs have to be sufficiently accurate at all scales of inter-
st, including all the relevant observational effects characterising
he surveys to be analysed. Indeed, the NN outputs rely only on
he examples provided for the training phase, and not according to
ny specific instructions (Samuel, 1959; Goodfellow et al., 2016).
he accuracy of the output depends on the level of reliability of
he training set, while the precision increases when the amount
f training data set increases. Moreover, significant computational
esources are required to construct the mock data sets in a high
nough number of test cosmologies.
On the other hand, both the construction of the mock data

ets and the NN training and validation have to be done only
nce. After that, the NN can produce outputs with negligible com-
utational cost, and can exploit all physical scales on which the
ock data sets are reliable, that is possibly beyond the domain in
hich an analytic likelihood is available. These represent the key
dvantages of this novel, complementary data analysis technique.
Machine learning based methods should provide an effective

ool in cosmological investigations based on increasingly large
mounts of cosmological data from extra-galactic surveys (e.g.
ole et al., 2005; Parkinson et al., 2012; Anderson et al., 2014;
ern et al., 2017; Ntampaka et al., 2019; Ishida, 2019; Hassan
t al., 2020; Villaescusa-Navarro, 2021). In fact, these techniques
ave already been exploited for the analysis of the large-scale
tructure of the Universe (see e.g. Aragon-Calvo, 2019; Tsizh
t al., 2020). In some cases, machine learning models have been
rained and tested on simulated mock catalogues to obtain as
utput the cosmological parameters those simulations had been
onstructed with (e.g. Ravanbakhsh et al., 2016; Pan et al., 2020).
hese works demonstrated that the machine learning approach is
owerful enough to infer tight constraints on cosmological model
arameters, when the training set is the distribution of matter in
three-dimensional grid.
The method we are presenting in this work is different in this

espect, as our input training set consists of 2PCF measurements
stimated from mock galaxy catalogues. The rationale of this
hoice is to help the network to efficiently learn the mapping
etween the cosmological model and the corresponding galaxy
atalogue by exploiting the information compression provided by
he second-order statistics of the density field. The goal of this
ork is to implement, train, validate and test a new NN of this
ind, and to investigate its capability in providing constraints on
he matter density parameter, Ωm, from real galaxy clustering
ata sets.
The construction of proper training samples would require

unning N-body or hydrodynamic simulations in a sufficiently
arge set of cosmological scenarios. As already noted, this task
emands substantial computational resources and a dedicated
ork, which is beyond the scope of the current analysis. A forth-
oming paper will be dedicated to this fundamental task. Here
nstead we rely on log-normal mock catalogues, which can re-
roduce the monopole of the redshift-space 2PCF of real galaxy
atalogues with reasonable accuracy and in a minimal amount of
ime. This will allow us to test our NN on training data sets with
he desired format, in order to be ready for forthcoming analyses
ith more reliable data sets. Moreover, future developments of
he presented method will involve estimating a higher number
f cosmological parameters at the same time. The implemented
N is provided through a public Google Colab notebook.1
The paper is organised as follows. In Section 2 we give a

eneral overview of the data analysis method we present in this

1 The notebook is available at: Colab.
2

work. In Section 3 we describe in detail the characteristics of the
catalogues used to train, validate and test the NN. The specifics
on the NN itself, together with its results on the test set of mock
catalogues are described in Section 4. The application to the BOSS
galaxy catalogue and the results this leads to are presented in
Section 5. In Section 6 we draw our conclusions and discuss
about possible future improvements. Finally, Appendix provides
details on the algorithms used to construct the log-normal mock
catalogues.

2. The data analysis method

The data analysis method considered in this work exploits
a supervised machine learning approach. Our general goal is
to extract cosmological constraints from extra-galactic redshift
surveys with properly trained NNs. As a first application of this
method, we focus the current analysis on the 2PCF of BOSS
galaxies, which is exploited to extract constraints on Ωm.

The method consists of a few steps. Firstly, a fast enough
process to construct the data sets with which train, validate and
test the NN is needed. In this work we train the NN with a set of
2PCF mock measurements obtained from log-normal catalogues.
The construction of these input data sets is described in detail in
Section 3. Specifically, we create several sets of mock BOSS-like
catalogues assuming as values for the cosmological parameters
the ones inferred from the Planck Cosmic Microwave Background
observations, except for Ωm, that assumes different values in
ifferent mock catalogues, and ΩΛ that has been changed every
ime in order to have Ωtot = Ωm+ΩΛ +Ωrad = 1, where ΩΛ and

Ωrad are the dark energy and the radiation density parameters,
respectively. Specifically, we fix the main parameters of the
Λ-cold dark matter (ΛCDM) model to the following values:
Ωb h2

= 0.02237, Ωc h2
= 0.1200, 100ΘMC = 1.04092,

τ = 0.0544, ln(1010 As) = 3.044, and ns = 0.9649 (Aghanim
et al., 2018, Table 2, TT,TE+lowE+lensing). Here h indicates one
hundredth of the Hubble constant, H0.

The implemented NN performs a regression analysis, that is it
can assume every value within the range the algorithm has been
trained for, that in our case is 0.24 < Ωm < 0.38. In particular,
the algorithm takes as input a 2PCF monopole measurement, and
provides as output a Gaussian probability distribution on Ωm,
from which we can extract the mean and standard deviation
(see Section 3.4 and Appendix). Specifically, the data sets used
for training, validating and testing the NN consist of different
sets of 2PCF monopole measures, labelled by the value of Ωm
assumed to construct the mock catalogues these measures have
been obtained from, and assumed also during the measure itself.

After the training and validation phases, we test the NN with a
set of input data sets constructed with random values of Ωm, that
is, different values from the ones considered in the training and
validation sets. The structure of the NN, the characteristics of the
different sets of data it has been fed with, and how the training
process of the NN has been led are described in Section 4.

Finally, once the NN has proven to perform correctly on a
test set of 2PCF measures from the BOSS log-normal mock cat-
alogues, we exploit it on the real 2PCF of the BOSS catalogue.
To measure the latter sample statistic, a cosmological model has
to be assumed, which leads to geometric distortions when the
assumed cosmology is different to the true one. To test the impact
of these distortions on our final outcomes, we repeat the analysis
measuring the BOSS 2PCF assuming different values of Ωm. We
find that our NN provides in output statistically consistent results
independently of the assumed cosmology. The results of this
analysis are described in detail in Section 5.

We provide below a summary of the main steps of the data
analysis method investigated in this work:

https://colab.research.google.com/drive/1zVxY9G5N9SNbsdjNHztVNpEhcTa6DBfu?usp=sharing
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1. Assume a cosmological model. In the current analysis, we as-
sume a value of Ωm, and fix all the other main parameters
of the ΛCDM cosmological model to the Planck values. A
more extended analysis is planned for a forthcoming work.

2. Measure the 2PCF of the real catalogue to be analysed and use
it to estimate the large-scale galaxy bias. This is required to
construct mock galaxy catalogues with the same clustering
amplitude of the real data. Here we estimate the bias from
the redshift-space monopole of the 2PCF at large scales (see
Section 3.3).

3. Construct a sufficiently large set of mock catalogues. In this
work we consider log-normal mock catalogues, that can
be obtained with fast enough algorithms. The measured
2PCFs of these catalogues will be used for the training, the
validation and the test of the NN.

4. Repeat all the above steps assuming different cosmological
models. Different cosmological models, characterised by
different values of Ωm, are assumed to create different
classes of mock catalogues and measure the 2PCF of BOSS
galaxies.

5. Train and validate the NN.
6. Test the NN. This has to be done with data sets constructed

considering cosmological models not used for the training
and validation, to check whether the model can make
reliable predictions also on previously unseen examples.

7. Exploit the trained NN on real 2PCF measurements. This is
done feeding the trained machine learning model with the
several measures of the 2PCF of the real catalogue, obtained
assuming different cosmological models. The reason for
this is to check whether the output of the NN is affected
by geometric distortions.

3. Creation of the data set

3.1. The BOSS data set

The mock catalogues used for the training, validation and
test of our NN are constructed to reproduce the clustering of
the BOSS galaxies. BOSS is part of the Sloan Digital Sky Survey
(SDSS), which is an imaging and spectroscopic redshift survey
that used a 2.5 m modified Ritchey–Chrétien altitude-azimuth
optical telescope located at the Apache Point Observatory in New
Mexico (Gunn et al., 2006). The data we have worked on are
from the Data Release 12 (DR12), that is the final data release
of the third phase of the survey (SDSS-III) (Alam et al., 2015). The
observations were performed from fall 2009 to spring 2014, with
a 1000-fibre spectrograph at a resolution R ≈ 2000. The wave-
length range goes from 360 nm to 1000 nm, and the coverage of
the survey is 9329 square degrees.

The catalogue from BOSS DR12, used in this work, contains
the positions in observed coordinates (RA, Dec and redshift) of
1 198 004 galaxies up to redshift z = 0.8.

Both the data and the random catalogues are created consid-
ering the survey footprint, veto masks and systematics of the sur-
vey, as e.g. fibre collisions and redshift failures. The method used
to construct the random catalogue from the BOSS spectroscopic
observations is detailed in Reid et al. (2016).

3.2. Two-point correlation function estimation

We estimate the 2PCF monopole of the BOSS and mock galaxy
catalogues with the Landy and Szalay (1993) estimator:

ξ (s) = 1 +
NRR DD(s)

− 2
NRR DR(s)

, (1)

NDD RR(s) NDR RR(s)

3

where DD(s), RR(s) and DR(s) are the number of galaxy–galaxy,
andom–random and galaxy–random pairs, within given comov-
ng separation bins (i.e. in s ± ∆s), respectively, while NDD =

D(ND − 1)/2, NRR = NR(NR − 1)/2 and NDR = NDNR are the
corresponding total number of galaxy–galaxy, random–random
and galaxy–random pairs, being ND and NR the number of objects
in the real and random catalogues. The random catalogue is con-
structed with the same angular and redshift selection functions
of the BOSS catalogue, but with a number of objects that is ten
times bigger than the observed one, to minimise the impact of
Poisson errors in random pair counts.

3.3. Galaxy bias

As introduced in the previous Sections, we train our NN to
learn the mapping between the 2PCF monopole shape, ξ , and
the matter density parameter, Ωm. Thus, we construct log-normal
mock catalogues assuming different values of Ωm. A detailed
description of the algorithm used to construct these log-normal
mocks is provided in the next Section 3.4.

Firstly, we need to estimate the bias of the objects in the
sample, b. We consider a linear bias model, whose bias value is
estimated from the data. Specifically, when a new set of mock
catalogues (characterised by Ωm = Ωm,i) is constructed, a new
linear galaxy bias has to be estimated. The galaxy bias is assessed
by modelling the 2PCF of BOSS galaxies in the scale range 30 <
s [h−1 Mpc] < 50, where s is used here, instead of r , to indicate
separations in redshift space. We consider a Gaussian likelihood
function, assuming a Poissonian covariance matrix which is suf-
ficiently accurate for the purposes of this work. We model the
shape of the redshift-space 2PCF at large scale as follows (Kaiser,
1987):

ξgal(s) =

[
(bσ8)2 +

2
3
f σ8 +

1
5
(f σ8)2

]
1
σ 2
8

ξm(r) , (2)

here the matter 2PCF, ξm(r), is obtained by Fourier transform-
ng the matter power spectrum modelled with the Code for
nisotropies in the Microwave Background (CAMB) (Lewis et al.,
000). The product between the linear growth rate and the mat-
er power spectrum normalisation parameter, f σ8, is set by the
osmological model assumed during the measuring of the 2PCF
nd the construction of the theoretical model. The values of all
edshift-dependent parameters have been calculated using the
ean redshift of the data catalogue, z = 0.481.
We assume a uniform prior for bσ8 between 0 and 2.7. The

osterior has been sampled with a Markov Chain Monte Carlo
lgorithm with 10 000 steps and a burn-in period of 100 steps.
he linear bias, b, is then derived by dividing the posterior me-
ian by σ8. The latter is estimated from the matter power spec-
rum computed assuming Planck cosmology. We note that this
ethod implies that only the shape of the 2PCF is actually used

o constrain Ωm.

.4. Mock galaxy catalogues

As described in Section 2, the data sets used for the training,
alidation and test of the NN implemented in this work consist
f 2PCF mock measurements estimated from log-normal galaxy
atalogues. Log-normal mock catalogues are generally used to
reate the data set necessary for the covariance matrix estimate,
n particular in anisotropic clustering analyses (see e.g. Lippich
t al., 2019). In fact, this technique allows us to construct density
ields and, thus, galaxy catalogues with the required characteris-
ics in an extremely fast way, especially if compared to N-body
imulations, though the latter are more reliable at higher-order
tatistics and in the fully nonlinear regime.
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To construct the log-normal mock catalogues, we adopted the
ame strategy followed by Beutler et al. (2011). We provide here
brief explanation of the method, while a more detailed descrip-
ion is given in Appendix. As already commented in Section 1,
og-normal catalogues do not provide the optimal training sets
or this machine learning method, but are used here only to test
he algorithms with input data with the desired format.

The algorithm used in this work to generate these mock cata-
ogues for the machine learning training process takes as input
ne data catalogue and one corresponding random catalogue.
hese are used to define a grid with the same geometric structure
f the data catalogue and a visibility mask function which is
onstructed from the pixel density of the random catalogue. A
osmological model has to be assumed to compute the object
omoving distances from the observed redshifts and to model the
atter power spectrum. The latter is used to estimate the galaxy
ower spectrum, which is the logarithm of the variance of the
og-normal random field.

The density field is then sampled from this random field.
pecifically, once the algorithm has associated to all the grid cells
heir density value, we can extract from each of them a certain
umber of points that depend on the density of the catalogue and
n the visibility function. These points represent the galaxies of
he output mock catalogue.

Once the mocks are created, the same cosmological model
s assumed also to measure the 2PCF. We repeated the same
rocess for all the test values of Ωm. That is, for each Ωm we

created a set of log-normal mock catalogues and measured the
2PCF. This is different with respect to standard analyses, where a
cosmology is assumed only once for the clustering measurements,
and geometric distortions are included in the likelihood.

As an illustrative example, Fig. 1 shows different measures of
the 2PCF obtained in the scale range 8 < s [h−1 Mpc] < 50, in 30
logarithmic bins of s, and assuming the lowest and the highest
values of Ωm that have been considered in this work, that are
Ωm = 0.24 and Ωm = 0.38. The black and red dots show the
measures obtained from the corresponding two sets of 50 log-
normal mock galaxy catalogues, while the dashed lines are the
theoretical 2PCF models assumed to construct them. As expected,
the average 2PCFs of the two sets of log-normal catalogues are
fully consistent with the corresponding theoretical predictions.
Indeed, a mock log-normal catalogue characterised by Ωm = Ωm,i
provides a training example for the NN describing how galaxies
would be distributed if Ωm,i was the true value. Finally, the blue
and green squares show the 2PCFs of the real BOSS catalogue
obtained by assuming Ωm = 0.24 and Ωm = 0.38, respectively,
when converting galaxy redshifts into comoving coordinates. The
differences in the latter two measures are caused by geometric
distortions. As can be seen, neither of these two data sets are
consistent with the corresponding 2PCF theoretical models, that
is both Ωm = 0.24 and Ωm = 0.38 appear to be bad guesses
for the real value of Ωm. As we will show in Section 5, the NN
presented in this work is not significantly affected by geometric
distortions.

4. The artificial neural network

4.1. Architecture

Regression machine learning models take as input a set of
variables that can assume every value and provide as output
a continuous value. In our case, the input data set is a 2PCF
measure, while the output is the predicted Gaussian probability
distribution of Ωm. Specifically, the regression model we are
about to describe has been trained with 2PCF measures in the
scale range 8 − 50 h−1 Mpc, in 30 logarithmic scale bins.

The architecture of the implemented NN is schematically rep-
resented in Fig. 2. It consists of the following layers:
 p

4

Fig. 1. Different measures of the 2PCF monopole. The dots represent the
measures obtained from 50 log-normal mock catalogues constructed with Ωm =

.24 (black dots) and Ωm = 0.38 (red dots). The black and red dashed lines show
he corresponding theoretical 2PCF models. The blue and green squares show
he real BOSS 2PCFs measured assuming the same cosmologies of the mock
atalogues, that is Ωm = 0.24 and Ωm = 0.38, respectively, when converting
edshifts into comoving coordinates.

• Input layer that feeds the 30 values of the measured 2PCF
to the model;

• Dense layer2 with 2 units. Every unit of this layer performs
the following linear operation on the input elements:

y =

∑
i

wi · xi + b , (3)

where y is the output of the unit, xi is the ith element of the
input, wi is its corresponding weight, and b is the intercept
of the linear operation. No nonlinear activation function has
been used in this layer. This choice has been proven to be
convenient a posteriori, providing excellent performance of
the NN during the test phase (see Section 4.3). We thus
decided not to introduce any activation function to keep the
architecture of the regression model as simple as possible;

• Distribution layer that uses the two outputs of the dense
layer as mean and standard deviation to parameterise a
Gaussian distribution, which is given as output.

This architecture has been chosen because it is the simplest
ne we tested which is able to provide accurate cosmological
onstraints. Deeper models have been tried out, but no significant
ifferences were spotted in the output predictions.

.2. Training and validation

The training and validation sets are constructed separately,
nd consist of 2 000 and 800 examples, respectively. Regression
achine learning models work better if the range of possible
utputs is well represented in the training and validation sets.
e construct mock catalogues with 40 different values of Ωm: 29

rom Ωm = 0.24 to Ωm = 0.38 with ∆Ωm = 0.005 and 11 from
m = 0.2825 to Ωm = 0.3325, also separated by ∆Ωm = 0.005.

The latter are added to improve the density of inputs in the region
that had proven to be the one where the predictions were more
likely, during the first attempts of the NN training. The training
and validation sets consist of 50 and 20 2PCF measures for each

2 A layer is called dense if all its units are connected to all the units of the
revious layer.
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Fig. 2. Schematic representation of the regression model considered in this
work. The input layer is represented by blue dots, the hidden dense layer by
green dots, and the output layer by the orange dot.

value of Ωm, respectively. All the mock catalogues used for the
training and validation have the same dimension of the BOSS
2PCF measures.

The loss function used for the training process is the following:

J = −

N∑
i=1

log
[

1
√
2πσi

exp−
(li − µi)2

2σ 2
i

]
, (4)

here N is the number of examples, li is the label correspondent
o the ith 2PCF used for the training or the validation (i.e. the true
alue of Ωm that has been used to create the ith mock catalogue
nd to measure its 2PCF), while σi and µi are the standard
eviation and the mean of the Normal probability distribution
unction that is given as output for the same ith 2PCF example.

During the training process, we apply the Adam optimisa-
ion (see Kingma and Ba, 2014, for a detailed description of its
unctioning and parameters) with the following three different
teps:

• 750 epochs with η = 0.002 ,
• 150 epochs with η = 0.001 ,
• 100 epochs with η = 0.0005 ,

here η indicates the learning rate. During the three steps, the
alues of the other two parameters of this optimisation algorithm
re kept fixed to β1 = 0.9 and β2 = 0.999, and the training
et was not divided into batches. Variations in the parameters
f the optimisation have been performed and did not lead to
ignificantly different outputs.
Gradually reducing the learning rate during the training helps

he model to find the correct global minimum of the loss function
Ntampaka et al., 2019). The first epochs, having a higher learning
ate, lead the model towards the area surrounding the global
inimum, while the last ones, having a lower learning rate, and

herefore being able to take smaller and more precise steps in
he parameter space, have the task to lead the model towards
he bottom of that minimum. In this model, minimising the loss
unction means both to drive the mean values of the output
aussian distributions towards the values of the labels (i.e. the
5

Fig. 3. Values of Ωm and related uncertainties predicted by our NN, compared
with the best-fit linear model (dashed line). The best-fit slope is 0.995± 0.014,
hile the best-fit normalisation is 0.001 ± 0.005. The error bars in this plot

represent the standard deviations of the distributions for Ωm obtained as output
of the NN.

values of Ωm corresponding to the inputs), and to reduce as much
as possible the standard deviation of those distributions.

During the training process, the interval of the labels, that is
0.24 ≤ Ωm ≤ 0.38, has been mapped into [0, 1] through the
following linear operation:

L =
l − 0.24
0.14

, (5)

where l is the original label and L is the one that belongs to the
[0, 1] interval. Once the mean, µL, and the standard deviation, σL,
f the predictions are obtained in output, we convert them back
o match the original interval of the labels. The standard deviation
s then computed as follows:

dµL

dσL
=

dµl

dσl
, (6)

where σ is the standard deviation of µ, so that the uncertainty
on µ is given by 0.14 σL.

4.3. Test

The test set consists of 5 different 2PCF measures obtained
from log-normal mock catalogues with 16 different randomly
generated values of Ωm. Therefore, we have a total of 80 mea-
sures. The Ωm predictions and uncertainties are estimated as the
mean and standard deviation of the Gaussian distributions ob-
tained in output (Matthies, 2007; Der Kiureghian and Ditlevsen,
2009; Kendall and Gal, 2017; Russell and Reale, 2019). Our model
is thus able to associate to every point of the input space an
uncertainty on the output that depends on the intrinsic scatter
of the 2PCF measures.

Fig. 3 shows the predictions on the test set, compared to the
true values of Ωm the mocks in the test were constructed with.
As can be seen, the implemented NN is able to provide reliable
predictions when fed with measures from mock catalogues char-
acterised by Ω values that were not used during the training
m
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Fig. 4. Machine learning predictions (black dots and bars) on Ωm from the
easured 2PCF of BOSS galaxies, as a function of the Ωm assumed in the
easurements. The predictions are compared to the Ωm constraints provided
y Alam et al. (2017), here represented by the green stripe.

nd validation phases. In fact, fitting this data set with a linear
odel:
pred
m = α · Ω true

m + β , (7)

e get α = 0.995 ± 0.014 and β = 0.001 ± 0.005, which are
onsistent with the slope and the intercept of the bisector of the
uadrant. Fig. 3 also shows that the estimates near the limits of
he training range at Ωm = 0.24 and 0.38 are not biased, as the
redictions on the test set, also for the most external examples,
re consistent with the bisector of the quadrant.

. Application to BOSS data

After training, validating and testing the NN, we can finally
pply it to the real 2PCF of the BOSS galaxy catalogue. To test
he impact of geometric distortions caused by the assumption of
particular cosmology during the measure, we apply the NN on
0 measures of the 2PCF of BOSS galaxies obtained with different
ssumptions on the value of Ωm when converting from observed
o comoving coordinates.

Fig. 4 shows the results of this analysis, compared with the Ωm
onstraints provided by Alam et al. (2017). The predictions of the
N have been fitted with a linear model:
pred
m = α · Ωass

m + β , (8)

here Ω
pred
m is the prediction of the regression model, while

ass
m is the value assumed to measure the 2PCF. The best fit-
alues of the parameters we get are α = −0.001 ± 0.025
nd β = 0.309 ± 0.008. In particular, the slope is consistent
ith zero, that is all the Ωm predictions are consistent, within
he uncertainties, independently of the value assumed in the
easurement. This demonstrates that the NN is indeed able to
ake robust predictions over observed data, without being biased
y geometric distortions.
Our final Ωm constraint is thus estimated from the best-fit

ormalisation, β , that is

m = 0.309 ± 0.008. (9)

This result is consistent with the one obtained by Alam et al.
2017), which is Ωm = 0.311 ± 0.006.

. Conclusions

In this work we investigated a supervised machine learning
ata analysis method aimed at constraining Ωm from observed
alaxy catalogues. Specifically, we implemented a regression NN
hat has been trained and validated with mock measurements

f the 2PCFs of BOSS galaxies. Such measures are used as a

6

onvenient summary statistics of the large-scale structure of the
niverse. The goal of this work was to infer cosmological con-
traints without relying on any analytic 2PCF model to construct
he likelihood function.

To train and validate our NN, we use 2 800 2PCF examples,
onstructed with 40 different values of Ωm, in 0.24 ≤ Ωm ≤

.38. The trained NN has been finally applied to the real 2PCF
onopole of the BOSS galaxy catalogue. We get Ωm = 0.309 ±

.008, which is in good agreement with the value found by Alam
t al. (2017).
This work confirms that NNs can be powerful tools also for

osmological inference analyses, complementing the more stan-
ard analyses that make use of analytical likelihoods. One obvious
mprovement of the presented work would be to consider more
ccurate mock catalogues than the log-normal ones, for the train-
ng, validation and test phases. In particular, N-body or hydro-
ynamic simulations would be required to exploit higher-order
tatistics, as in particular the three-point correlation function, as
eatures to feed the model with. The higher the number of reliable
eatures is, the more accurate the predictions of the NN will
e. Furthermore, multi-labelled regression models can be used
o make predictions on multiple cosmological parameters at the
ame time. To do that, however, bigger data sets are required, in
rder to have a proper mapping of the input space, characterised
y the different values each label can have. The analysis presented
n this work should also be extended to larger scales, though in
his case more reliable mock catalogues are required not to in-
roduce biases in the training, in particular at the Baryon Acoustic
scillations scales. Finally, a similar analysis as the one performed
n this work could be done using the density map of the catalogue,
r directly the observed coordinates of the galaxies. This approach
ould be less affected by the adopted data compression methods
onsidered. On the other hand, it would have a significantly larger
omputational cost for the training, validation and test phases,
hich should be estimated with a dedicated feasibility study. All
he possible improvements described above will be investigated
n forthcoming papers.
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ppendix. Log-normal mock catalogues

In the following, we describe the algorithm used in this work
o construct log-normal mock catalogues. We followed the same
trategy as in Beutler et al. (2011, see their Appendix B). Let us
efine a random field in a given volume as a field whose value
t the position r⃗ is a random variable (Peebles, 1993; Xavier
t al., 2016). One example is the Gaussian random field, N(r⃗).

In this case the one-point probability density function (PDF) is
a Gaussian distribution, fully characterised by the mean, µ, and
the variance, σ 2. If n positions are considered, instead of just one,
the PDF is the multivariate Gaussian distribution:

fn(N⃗) =
1

(2π )n/2|M |
1/2 exp

⎡⎣−
1
2

∑
i,j

M−1
ij NiNj

⎤⎦ , (A.1)

here Ni = N(r⃗i), and M is the covariance matrix, the elements
f which are defined as follows:

ij = ⟨(Ni − µ)(Nj − µ)⟩. (A.2)

he PDF of the primordial matter density contrast at a specific
osition, δ(x), can be approximated as a Gaussian distribution,

with null mean and the correlation function as variance. The
same definitions can be used in Fourier space as well. In this
case the variance is the Fourier transform of the 2PCF, that is
the power spectrum, P(k). In more general cases, the Gaussian
andom field is only an approximation of the real random field
hat may present features, such as significant skewness and heavy
ails (Xavier et al., 2016).

Coles and Barrow (1987) showed how to construct
on-Gaussian fields through nonlinear transformations of a Gaus-
ian field. One example is the log-normal random field (Coles
nd Jones, 1991), which can be obtained through the following
ransformation:

(r⃗) = exp[N(r⃗)]. (A.3)

he log-normal transformation results in the following one-point
DF:

1(L) =
1

√
2πσ 2

exp
[
−

(log(L) − µ)2

2σ 2

]
dL
L

, (A.4)

here µ and σ 2 are the mean and the variance of the underlying
aussian field N , respectively.
The multivariate version for the log-normal random field is

efined as follows:

n(L⃗) =
1

(2π )n/2|M |
1/2 exp

⎡⎣−
1
2

∑
i,j

M−1
ij log(Li) log(Lj)

⎤⎦ n∏
i=1

1
Li

,

(A.5)

here M is the covariance matrix of the N-values.
To construct the log-normal mock catalogues used to train,

alidate and test our NN, we start from a power spectrum tem-
late, assuming a value for the bias. After creating a grid accord-
ng to this power spectrum, a Fourier transform is performed to
btain the 2PCF, which is used to calculate the function log[1 +

(r)]. We then revert to Fourier-space obtaining a modified power
spectrum, Pln(k), and assign to each point of the grid a value of
the Fourier amplitude, δ(k), sampled from a Normal distribution
hat has Pln(k) as standard deviation. A new Fourier transform is
erformed to obtain a density field δ(x) from which we sample
he galaxy distribution. In our calculations we used a grid size of
0Mpc h−1, while the minimum and the maximum values of k
re 0.0001 hMpc−1 and 100 hMpc−1, respectively.
7
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