Seeing the trees through the forest: early results from the SOFIA/EXES mid-IR high spectral resolution library Montiel, E.; Dittmann, J.; Nickerson, S.; Boogert, A.; Cernicharo, J.; de Pater, I.; ...; Vacca, W. ## Citation Montiel, E., Dittmann, J., Nickerson, S., Boogert, A., Cernicharo, J., De Pater, I., ... Vacca, W. (2023). Seeing the trees through the forest: early results from the SOFIA/EXES mid-IR high spectral resolution library. *Bulletin Of The American Astronomical Society*, 106.17. Retrieved from https://hdl.handle.net/1887/3719238 Version: Publisher's Version License: <u>Creative Commons CC BY 4.0 license</u> Downloaded from: <u>https://hdl.handle.net/1887/3719238</u> **Note:** To cite this publication please use the final published version (if applicable). Seeing the Trees through the Forest: Early Results from the SOFIA/EXES Mid-IR High Spectral Resolution Library Edward Montiel¹ Jason Dittmann² Sarah Nickerson³ Abraham Boogert⁴ Jose Cernicharo⁵ Imke de Pater⁶ Drake Deming⁷ Curtis DeWitt¹ José Pablo Fonfría⁸ Guido Fuchs⁹ Steven Goldman¹ Karl Gordon¹⁰ Graham Harper¹¹ Kathleen Kraemer¹² Laura Kreidberg¹³ Patrick Morris¹⁴ Conor Nixon¹⁵ Glenn Orton¹⁶ Naseem Rangwala³ Maisie Rashman¹ Matthew Richter¹⁷ Ravi Sankrit¹⁰ Gregory Sloan¹⁰ Archana Soam¹⁸ Clara Sousa-Silva¹⁹ Alexander Tielens²⁰ William Vacca¹ Published on: Jan 31, 2023 URL: https://baas.aas.org/pub/2023n2i106p17 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) ¹SOFIA-USRA, ²University of Florida, Gainesville, ³NASA Ames Research Center, ⁴University of Hawaii, ⁵CSIC IEM, ⁶University of California, Berkeley, ⁷University of Maryland, College Park, ⁸Astrobiology Center (CAB), CSIC-INTA, ⁹University of Kassel, ¹⁰Space Telescope Science Institute, ¹¹University of Colorado, Boulder, ¹²Boston College, ¹³Max Planck Institute for Astronomy, ¹⁴Caltech, ¹⁵NASA GSFC, ¹⁶Jet Propulsion Laboratory, ¹⁷University of California- Davis, ¹⁸Indian Institute of Astrophysics, II Block, ¹⁹Bard College, ²⁰Leiden Observatory We proposed the creation of a high spectral resolution ($R \ge 50,000$) library of classical, MIR-bright sources covering ~ 5.23 to 28.3 micron with SOFIA/EXES. This proposal was awarded 100+ hours with 18.1 hours scheduled for 3 sources in May 2022. The observations were successfully carried out and the sources included: the archetypal Carbon star IRC +10216, and the hot cores NGC 7538 IRS 1 & AFGL 2136. The full suite of settings was observed for IRC +10216 with $R \sim 70,000$ and S/N (on the continuum) $\ge 1,000$. The coverage for the hot cores begins at 13.5 micron and for NGC 7538 IRS 1 continues all the way to 28.3 micron. Archival EXES observations are used to supplement the 5 to 8 micron region and all observations are at R = 50,000. Thousands of molecular transitions are contained within these spectra and we present some of our early findings. The data are publicly available in the SOFIA Science Archive at IRSA under Program ID 75 0106.