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Split extensions and KK-equivalences

for quantum projective spaces

Francesca Arici and Sophie Emma Zegers

(Communicated by Siegfried Echterhoff)

Abstract. We study the noncommutative topology of the C∗-algebras C(CPn

q
) of the quan-

tum projective spaces within the framework of Kasparov’s bivariant K-theory. In partic-
ular, we construct an explicit KK-equivalence with the commutative algebra Cn+1. Our
construction relies on showing that the extension of C∗-algebras relating two quantum pro-
jective spaces of successive dimensions admits a splitting, which we can describe explicitly
using graph algebra techniques.

1. Introduction

Gelfand duality, which lies at the base of noncommutative geometry, es-
tablishes an equivalence of categories between commutative C∗-algebras and
locally compact Hausdorff spaces. For this reason, when studying general non-
commutative C∗-algebras, even though there is no longer an underlying space,
one often thinks of them as algebras of continuous functions on a non-existing
virtual space.

This approach is particularly effective when working with so-called quantum
deformations of spaces: many classical topological spaces have q-deformed
analogs, obtained from quantum groups and their homogeneous spaces.

The C∗-algebra of the quantum (2n+1)-sphere by Vaksman and Soibelman
[25], denoted C(S2n+1

q ), is perhaps one of the most studied noncommutative
spaces within this class. It is constructed as a quantum homogeneous space for
the special unitary group and can also be proven to be isomorphic to a universal
C∗-algebra in (n+ 1) generators subject to a set of commutation relations. In
those relations, a parameter q ∈ (0,1) plays a central role, making the resulting
C∗-algebra noncommutative. When writing C(S2n+1

q ) for the C∗-algebra of

the quantum sphere, one often thinks of S2n+1
q as a virtual space. In the limit

q = 1, the resulting C∗-algebra C(S2n+1
1 ) is commutative and isomorphic to

the C∗-algebra C(S2n+1) of continuous functions on the (2n+ 1)-sphere.
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Like their classical counterparts, the odd quantum spheres are endowed with
a canonical U(1)-action, allowing one to define, in total analogy with the com-
mutative setting, the quantum complex projective space C(CPn

q ) as the fixed
point algebra for that action. In [13], Hong and Szymański showed that both
C(S2n+1

q ) and C(CPn
q ) are graph C∗-algebras. Through the graph-algebraic

picture, one can obtain useful information about the structure of those C∗-
algebra, including topological invariants, by only considering properties of the
underlying graph. In particular, using graph C∗-algebra techniques, the K-
theory groups of C(CPn

q ) can be found to agree with the ones of their classical
counterparts:

K0(C(CPn
q ))

∼= Z
n+1, K1(C(CPn

q ))
∼= {0}.

In [13], Hong and Szymański further show that, for n≥ 1, the algebras of two
projective spaces of successive dimension fit into an extension of C∗-algebras
of the form

(1) 0 → K → C(CPn
q ) → C(CPn−1

q ) → 0,

with the convention that C(CPn−1
q ) ≃ C. It is worth stressing that the exact

sequence for n = 1,
0 → K → C(CP 1

q ) → C → 0,

is known to split, which implies that the algebra C(CP 1
q ) is isomorphic to the

minimal unitization of the compacts. Note also that one can also compute the
K-theory groups of quantum projective spaces inductively, using the above
exact sequence (1).

In the present work, we bring the analysis of the topological invariants of
quantum projective spaces further and study these algebras within the frame-
work of Kasparov’s bivariant K-theory [17]. In particular, we construct an
explicit KK-equivalence between the algebras C(CPn

q ) and Cn+1.
The fact that the two algebras are KK-equivalent follows from the work

[19], where Neshveyev and Tuset study quantum homogeneous spaces Gq/Kq.
Those are q-deformations of the homogeneous space G/K for G a compact
simply connect semisimple Lie group with arbitrary closed Poisson–Lie sub-
group, with deformation parameter q ∈ (0, 1]. In particular, Neshveyev and
Tuset prove that q 7→ C(Gq/Kq) is a continuous field of C∗-algebras and that
all the C∗-algebras in the fiber are canonically KK-equivalent and hence
KK-equivalent to the commutative algebra C(G1/K1) ∼= C(G/K). The de-
sired KK-equivalence for C(CPn

q ) follows by considering Gq = SUq(n+ 1) and
Kq = Uq(n).

Another way to deduce KK-equivalence is by looking at the K-theory
groups of the C∗-algebra C(CPn

q ) and of its commutative counterparts. Since
those are isomorphic, such a KK-equivalence follows provided C(CPn

q ) is con-
tained in the class of C∗-algebras that satisfy the Universal Coefficient Theo-
rem (UCT) of Rosenberg and Schochet. Indeed, by [23, Cor. 7.5] (compare
[5, Cor. 23.10.2]), two C∗-algebras in the UCT class are KK-equivalent if and
only if they have isomorphic K-theory groups.

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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To see that the algebra C(CPn
q ) is in the UCT class, one observes that

the UCT class is closed under extensions and contains the algebra of compact
operators and the complex numbers. Hence, by the family of extensions (1)
and induction on n, it follows that C(CPn

q ) is in the UCT class for all n.
Our strategy for obtaining an explicit KK-equivalence between C(CPn

q )

and Cn+1 consists of proving that (1) splits. For any split exact sequence,
one obtains a KK-class implementing the desired KK-equivalence through
the so-called splitting homomorphism (see, for instance, [5, Ex. 19.9.1]).

The existence of a splitting is, once more, a direct consequence of the Uni-
versal Coefficient Theorem [23]. Knowing that a splitting exists is however not
enough for practical applications, and in general, constructing such a split-
ting explicitly is a nontrivial task. When considering C(CPn

q ) as a graph
C∗-algebra, the structure of the graph makes it easier to unravel the form of
such a splitting. To our knowledge, such a splitting has not been described in
the literature before.

The structure of the paper is as follows. In Section 2, we recall definitions
and results on graph C∗-algebras, focusing on K-theory and ideal structure,
which we then specialize to quantum projective spaces in Section 3. Section 4
contains the construction of a splitting for the extension (1). We then recall
how one obtains explicit KK-equivalences from split extensions in Section 5
and then proceed to the proof of our KK-equivalence result in Section 6.
Finally, in Section 7, we relate the classes in KK(C, C(CPn

q )) obtained from
the splitting to classes of projections in C(CPn

q ) which generate K0(C(CPn
q )).

2. Preliminaries on graph algebras

2.1. Graph C
∗-algebras. We start out by recalling the definition of the C∗-

algebra associated to a directed graph [11], together with results about its
K-theory and ideal structure.

A directed graph E = (E0,E1, r, s) consists of a countable set E0 of vertices,
a countable set E1 of edges and two maps r, s : E1 → E0 called the range map
and the source map, respectively. For an edge e ∈ E1 from v to w, we have
s(e) = v and r(e) = w. A path α in a graph is a finite sequence α = e1e2 · · · en
of edges satisfying r(ei) = s(ei+1) for i = 1, . . . , n − 1. We denote by E∗ all
paths of finite length in the graph E.

A vertex v ∈ E0 is called regular if the set s−1(v) := {e ∈ E1 | s(e) = v} is
finite and nonempty. A vertex v is called a sink if it emits no edges i.e. s−1(v)
is empty. A graph E is row-finite if every vertex in E0 is either regular or
a sink.

Definition 2.2. Let E = (E0, E1, r, s) be a directed graph. The graph C∗-
algebra C∗(E) is the universal C∗-algebra generated by families of projections
{Pv | v ∈ E0} and partial isometries {Se | e ∈ E1} satisfying, for all v, w ∈ E0

and e, f ∈ E1, the relations
(i) PvPw = 0 for v 6= w;
(ii) S∗

eSf = 0 for e 6= f ;

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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(iii) S∗
eSe = Pr(e);

(iv) SeS
∗
e ≤ Ps(e);

(v) Pv =
∑

s(e)=v SeS
∗
e for every v ∈ E0 regular.

Conditions (iii)–(v) are known as the Cuntz–Krieger relations. Note that rela-
tion (iv) is equivalent to Ps(e)SeS

∗
e = SeS

∗
e ; see [21, Chap. 5].

By universality, we can define a circle action γ : T→ Aut(C∗(E)), called the
gauge action, for which

γz(Pv) = Pv and γz(Se) = zSe

for all v ∈ E0, e ∈ E1 and z ∈ T.

2.2.1. K-theory. The K-theory of graph C∗-algebras has over the time been
described under various assumptions on the graph: first for Cuntz–Krieger
algebras in [20], then in the case of row-finite graphs [22]. We present here the
description of the K-theory groups for a general graph E from [10].

Let VE ⊆ E0 denote the collection of all the regular vertices. Let ZVE and
ZE0 be the free abelian groups on free generators VE and E0, respectively. We
define a map KE : ZVE → ZE0 as follows:

(2) KE(v) =
( ∑

e∈E1: s(e)=v

r(e)
)

− v.

Then [10, Thm. 3.1] (see also [24, Prop. 2]) yields

(3) K0(C
∗(E)) ∼= coker(KE), K1(C

∗(E)) ∼= ker(KE).

If E is a row-finite graph with no sinks, the above corresponds to taking the
cokernel and the kernel of AT

E − 1, where AE is the adjacency matrix of the
graph; see [22, Thm. 3.2].

2.2.2. Gauge-invariant ideals. The ideal structure of a graph C∗-algebra can
also be read off from the underlying graph. We shall now describe the gauge-
invariant ideals of C∗(E) which arise from hereditary and saturated subsets.
A subset H ⊆ E0 is called hereditary if the following condition is satisfied: if
v ∈ H and w ∈ E0 is such that there exists a path from v to w, then w ∈ H .
A subset S ⊆ E0 is called saturated if the following condition is satisfied: if w
is a regular vertex in E0 and, for each e ∈ E1, for which s(e) = w, we have
r(e) ∈ S, then w ∈ S. In other words, if all the outgoing edges from w end
inside S, then w is also in S.

It was shown in [4] that gauge-invariant ideals of the C∗-algebra correspond
to hereditary and saturated subsets of the vertex set. Let ΣE denote the
collection of all hereditary and saturated subset H ⊆ E0. For each H ∈ ΣE ,
we obtain a gauge-invariant ideal: the ideal generated by {Pv | v ∈ H}. We
denote this ideal by IH . Given a row-finite graph E, [4, Thm. 4.1] establishes
a one-to-one correspondence between ΣE and the gauge-invariant ideals of
C∗(E). The correspondence is given by the following maps:

H 7→ IH , J 7→ {v ∈ E0 | Pv ∈ J},

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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for H ∈ ΣE and J a gauge-invariant ideal. A word of caution is needed here: if
some of the vertices in the graph emit infinitely many edges, not every gauge-
invariant ideal need take the form IH for an H ∈ ΣE . This phenomenon is
thoroughly described in [3, Thm. 3.6], where the authors also provide a com-
plete description of all gauge-invariant ideals of an infinite graph.

Moreover, if E is row-finite and H ∈ ΣE , then the quotient C∗-algebra
C∗(E)/IH is a graph algebra, isomorphic to C∗(F ), where F is the directed
graph defined by setting

F 0 = E0 \H, F 1 := {e ∈ E1 | r(e) /∈ H}

and with range and source maps obtained from the ones from the graph E (see
[4, Thm. 4.1]).

For graph C∗-algebras that are not row-finite, like the quantum complex
projective spaces, one needs the more advanced description of the quotient
C∗(E)/IH as a graph C∗-algebra from [3]. Let H ∈ ΣE and define

Hfin
∞ := {v ∈ E0 \H | |s−1(v)| = ∞ and 0 < |s−1(v) ∩ r−1(E0 \H)| < ∞}.

Let E/H be the directed graph for which

(E/H)0 = (E0 \H) ∪ {β(v) | v ∈ Hfin
∞ },

(E/H)1 = r−1(E0 \H) ∪ {β(e) | e ∈ E1, r(e) ∈ Hfin
∞ },

where the symbols β(v) and β(e) denote the vertices and edges which have
been added to the graph F from before. Note that all β(v) will be sinks. The
range and the source maps are extended from E by setting s(β(e)) = s(e) and
r(β(e)) = β(r(e)). If E is row-finite, then Hfin

∞ = ∅, and we get F = E/H , as
above. By [3, Cor. 3.5], we have that C∗(E)/IH is isomorphic to C∗(E/H).

This has the important consequence that, for any H ∈ ΣE , one gets a short
exact sequence of C∗-algebras

0 → IH → C∗(E) → C∗(E/H) → 0.

As we will describe in the next section, exactness of the sequence (1) follows
from considerations of this kind.

3. Quantum complex projective spaces

We will now introduce our main object of study, namely the C∗-algebras of
quantum projective spaces, and describe their K-theory and ideal structure.

For q ∈ (0, 1), the quantum (2n + 1)-sphere C(S2n+1
q ) of Vaksman and

Soibelman [25] is defined as universal C∗-algebra generated by z0, z1, . . . , zn
subject to the following relations:

zizj = q−1zjzi for i < j, ziz
∗
j = q−1z∗j zi for i 6= j,

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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z∗i zi = ziz
∗
i + (1 − q2)

n∑

j=i+1

zjz
∗
j for i = 0, . . . , n,

n∑

j=0

zjz
∗
j = 1.

The complex projective space C(CPn
q ) is obtained as the fixed point algebra

under the circle action on C(S2n+1
q ) given on generators by zi 7→wzi, w ∈U(1),

and extended by universality. The fixed point algebra is generated by elements
pij := z∗i zj for i, j = 0, 1, . . . , n, which satisfy commutation relations that can
be obtained from those of the quantum sphere C(S2n+1

q ):

pijpkl = qsign(k−i)+sign(j−l)pklpij if i 6= l, j 6= k, N,

pijpjk = qsign(j−i)+sign(j−k)+1pjkpij − (1 − q2)
∑

l>j

pilplk if i 6= k, N

pijpji = q2 sign(j−i)pjipij

+ (1− q2)
(∑

l>i

q2 sign(j−i)pjlplj −
∑

l>j

pilpli

)

if i 6= j,

with sign(0) := 0. The elements pij are the matrix entries of an (n+1)× (n+1)
projection P = (pij) and satisfy

∑n
j=0 pijpjk = pik and p∗ij = pji.

3.1. Quantum sphere and complex projective spaces as graph C
∗-

algebras. In this subsection, we will recall the main results from [13] and
describe how odd quantum spheres and projective spaces can be studied within
the framework of graph C∗-algebras. Let L2n+1 be the directed graph with
n+ 1 vertices, denoted {v1, v2, . . . , vn+1}, and for each i ≤ j, a single edge eij
from vi to vj .

As an example, if n = 3, the graph L7 will be as follows:

v1 v2 v3 v4e12 e23

e13

e11 e22 e33 e44

It follows from [13, Thm. 4.4] that C(S2n+1
q ) is isomorphic to the graph C∗-

algebra C∗(L2n+1).
Under the isomorphism of C(S2n+1

q ) and C∗(L2n+1), the U(1)-action on

C(S2n+1
q ) defining C(CPn

q ) becomes

Seij 7→ wSeij , Pvi 7→ Pvi , w ∈ U(1),

which is precisely the gauge action γ on the graph C∗-algebra C∗(L2n+1).
In order to realize C(CPn

q ) as a graph C∗-algebra, consider the directed
graph Fn with vertices {w1, . . . , wn+1} and infinitely many edges from wi to
wj if i < j for i, j = 1, . . . , n+ 1.

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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As an example, if n = 3, the graph F3 will be as follows:

w1 w2 w3 w4(∞) (∞) (∞)

(∞) (∞)

(∞)

Then, as stated in [13], we have

C(CPn
q )

∼= C∗(L2n+1)
γ ∼= C∗(Fn).

The proof essentially relies on considering all the paths α and β in the graph
L2n+1 such that SαS

∗
β is invariant under the gauge action γ.

3.1.1. Representations of C(S2n+1
q ) and C(CPn

q ). An irreducible representa-

tion of the Vaksman–Soibelman C(S2n+1
q ) is obtained in [18, Sec. 5.4] as fol-

lows:

(4) ψ : C(S2n+1
q ) → B(l2(Nn)),

given on the generators by

ψ(z0)ζ(k1, . . . , kn) =
√

1− q2(k1+1)ζ(k1 + 1, . . . , kn),

ψ(zj)ζ(k1, . . . , kn) = qk1+···+kj

√

1− q2(kj+1+1)

ζ(k1, . . . , kj , kj+1 + 1, kj+2, . . . , kn),

ψ(zn)ζ(k1, . . . , kn) = qk1+···+knζ(k1, . . . , kn)

for j = 1, . . . , n and k1, . . . , kn ∈ N.

Remark 3.2. The representation ψ is obtained from the representation ψ2n+1
1

from [18] by replacing q with q−1, renaming the generators xi by z∗n−i+1 for i=
1, . . . , n+ 1 and in the end change the basis such that ki is replaced by kn−i+1.

From the representation ψ, we can obtain the faithful representation

π : C(S2n+1
q ) → B(l2(Nn × Z)),

as defined in [13, Lem. 4.1], given on the generators by

π(z0)ζ(k1, . . . , kn,m) =
√

1− q2(k1+1)ζ(k1 + 1, . . . , kn,m),

π(zj)ζ(k1, . . . , kn,m) = qk1+···+kj

√

1− q2(kj+1+1)

ζ(k1, . . . , kj , kj+1 + 1, kj+2, . . . , kn,m),

π(zn)ζ(k1, . . . , kn,m) = qk1+···+knζ(k1, . . . , kn,m+ 1)

for j = 1, . . . , n, k1, . . . , kn ∈ N and m ∈ Z.
A faithful representation of the corresponding graph C∗-algebra C∗(L2n+1)

is given in [14] by

ρ : C∗(L2n+1) → B(l2(Nn × Z))

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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such that

(5)

ρ(Pvn+1)ξ(k1, . . . , kn,m) = δk1,0 · · · δkn,0ξ(k1, . . . , kn,m),

ρ(Pvj )ξ(k1, . . . , kn,m) = δk1,0 · · · δkj ,0(1− δkj+1,0)ξ(k1, . . . , kn,m),

ρ(Sen+1,n+1)ξ(k1, . . . , kn,m) = δk1,0 · · · δkn,0ξ(k1, . . . , kn,m+ 1),

ρ(Sej,n+1)ξ(k1, . . . , kn,m) = δk1,0 · · · δkn,0

ξ(k1, . . . , kj , kj+1 + 1, kj+2, . . . , kn,m),

ρ(Si,j)ξ(k1, . . . , kn,m) = δk1,0 · · · δkj ,0(1− δkj+1,0)

ξ(k1, . . . , ki, ki+1 + 1, ki+2, . . . , kn,m)

for j = 1, . . . , n, i= 1, . . . , j, m ∈ Z and k1, . . . , kn ∈ N. Here δ is the Kronecker
symbol.

When working with the isomorphism C(S2n+1
q ) ∼= C∗(L2n+1), the following

result will become useful.

Proposition 3.3 ([14, Rem. 4.5]). The map ρ−1 ◦ π implements an isomor-
phism between C(S2n+1

q ) and C∗(L2n+1).

In [13], Hong and Szymański provide and explicit form of the isomorphism.
We then obtain faithful representations of C(CPn

q ) and C∗(Fn) by restrict-
ing the representations π and ρ, respectively. Later, in Section 7, we will show
how these two representations relate to each other and use this fact to con-
struct a different basis of generators for the K-theory of quantum projective
spaces.

3.4. Ideal structure and extensions. We will now exploit the description of
the ideal structure of a graph C∗-algebra in terms of hereditary and saturated
subsets presented in Subsection 2.2.2 to obtain the C∗-algebra extension (1).

In Fn, we consider the hereditary and saturated subset H := {wn+1}. In this
case, Hfin

∞ =∅ since wn+1 is a sink. Then C∗(Fn)/IH ∼= C∗(Fn/{wn+1}) which
is C∗(Fn−1). The ideal I{wn+1} is isomorphic to K. Indeed, by [3, Lem. 3.2],
we have

I{wn+1} = span{sαs
∗
β | α, β ∈ E∗, r(α) = r(β) = wn+1}.

It can be shown that {fα,β := sαs
∗
β | α, β ∈ E∗, r(α) = r(β) = wn+1} forms

a set of matrix units I{wn+1}. Hence I{wn+1}
∼=K(l2({α ∈ E∗ | r(α) = wn+1})).

We then obtain a short exact sequence

(6) 0 −→ K −→
jn

C(CPn
q ) −→

qn
C(CPn−1

q ) −→ 0.

In Section 4, we will prove that the exact sequence is split exact. This
is a crucial step in our construction of an explicit KK-equivalence between
C(CPn

q ) and Cn+1.

3.5. K-theory and K-homology of quantum projective spaces. As
mentioned in the introduction, the K-theory groups for the C∗-algebras of
quantum projective spaces C(CPn

q ) are given by

K0(C(CPn
q ))

∼= Z
n+1, K1(C(CPn

q ))
∼= {0}.

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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This fact can be proved by viewing the C∗-algebra C(CPn
q ) as the graph C∗-

algebra C∗(Fn). Since VFn
=∅, using (3) and (2), we obtainKFn

: {0}→Zn+1,
which has cokernel Zn+1 and the kernel is 0.

The dual result for theK-homology of quantum projective spaces is obtained
similarly and leads to

K0(C(CPn
q )) ≃ Z

n+1, K1(C(CPn
q )) ≃ {0}.

Remark 3.6. One should compare those results with their analogs in the
commutative case, where one also has a KK-equivalence between the algebras
C(CPn) and Cn+1. Let CPn−1 and CPn denote the complex projective space
of Cn and Cn+1, respectively. Since CPn−1 is a closed subspace of the compact
topological space CPn, the corresponding C∗-algebras of continuous functions
fit into an extension of the form

0 → C0(C
n) → C(CPn) → C(CPn−1) → 0,

which induces a corresponding six-term exact sequence in K-theory general-
izing the relative K-theory exact sequence in topological K-theory; see [16,
Cor. II.3.23]. It follows that the K-groups of all C(CPn) can be computed in-
ductively, obtaining that they are equal to those of Cn+1. A crucial step in the
computation is the observation that, by Bott periodicity, Ki(C0(C

n)) ≃Ki(C)
for i = 0, 1. Here again, the KK-equivalence follows from the fact that all
commutative C∗-algebras are in the UCT class.

As described in the introduction, C(CPn
q ) is in the UCT class, and hence

C(CPn
q ) is KK-equivalent to Cn+1. Remark 3.6 then implies that it is also

KK-equivalent to its commutative counterpart C(CPn).

4. A splitting for the defining extension
of quantum projective spaces

In this section, we construct a splitting of the exact sequence (6) from which
we obtain an explicit KK-equivalence between C(CPn

q ) and C(CPn−1
q ) ⊕ K.

By induction, and up to Morita equivalence, this will allow us to obtain the
desired KK-equivalence between C(CPn

q ) and Cn+1.
As mentioned in the introduction, the existence of such a splitting is a direct

consequence of the Universal Coefficient Theorem [23]. While this observation
is certainly well-known to the experts, we restate it here for the sake of com-
pleteness.

Lemma 4.1. Let A be a separable C∗-algebra in the UCT-class, with K0(A)
free abelian and vanishing K1(A). Let m ≥ 1, and denote by K the algebra of
compact operators. Then any extension of A by K⊕m splits.

Proof. Extensions of the form 0 → K⊕m → E → A → 0 are classified by the
Kasparov group KK1(A,K⊕m) ≃ KK1(A,K)⊕m, which we can describe in
terms of the K-groups of A thanks to the UCT and the Morita equivalence
between K and C.

Münster Journal of Mathematics Vol. 16 (2023), 1–24
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Since K0(A) is a free abelian group, the group Ext1Z(K0(A), Z) vanishes,
yielding

KK1(A,K
m) ≃ HomZ(K1(A),Z)

⊕m ⊕HomZ(K0(A), {0})
⊕m ≃ {0},

by virtue of our assumption on K1(A). It follows that there are no nontrivial
extension of the form above, that is, all such extensions must necessarily split.

�

As a consequence, all the defining extensions for quantum projective spaces
split. This is also true for a class of weighted projective spaces satisfying
a suitable assumption on the weight vector, like those studied in [7, 1], but
we shall postpone the treatment of that case to later work, as the question
regarding which graphs underlie such algebras has not been settled yet. It
is worth noting that an explicit KK-equivalence in the one-dimensional case,
that is, for quantum teardrops, can be found in [2].

We shall now describe our splitting explicitly in the graph algebra picture.
Since we have to consider two complex projective spaces at once, we will denote
vertices and edges of their graphs with different letters.

Fn

w1 w2 wn wn+1

(∞) fm
12

(∞) fm
n(n+1)

(∞) fm
1n

(∞) fm
2(n+1)

(∞)

fm
1(n+1)

Figure 1. The graph Fn such that C(CPn

q )∼=C
∗(Fn). The symbol

(∞) indicates that there are infinitely many edges between the
vertices.

We label the vertices of Fn with w and the edges with f , like in Figure 1,
while for the graph Fn−1, we chose the label vi for i = 1, . . . , n for the vertices
and emij for 1≤ i < j ≤ n, m∈N for the edges. Then C(CPn−1

q ) is isomorphic to
the universal C∗-algebra C∗(Fn−1), generated by projections Pvi , i = 1, . . . , n,
and partial isometries Semij

for 1 ≤ i < j ≤ n, m ∈ N, subject to the relations

PviPvj = 0, i 6= j,(7)

S∗
emij

Semkl
= 0, (i, j) 6= (k, l),(8)

S∗
emik

Semik
= Pvk , k = 2, . . . , n, i = 1, . . . , k − 1,(9)

Semki
S∗
emki

≤ Pvk , k = 1, . . . , n− 1, i = k + 1, . . . , n.(10)

Similarly, C(CPn
q ) is isomorphic to the universal C∗-algebra C∗(Fn), generated

by projections Pwi
, i = 1, . . . , n + 1, and partial isometries Sfm

ij
, 1 ≤ i < j,
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j = 2, . . . , n+ 1, m ∈ N, subject to the relations

Pwi
Pwj

= 0, i 6= j,

S∗
fm
ij
Sfm

kl
= 0, (i, j) 6= (k, l),

S∗
fm
ik
Sfm

ik
= Pwk

, k = 2, . . . , n+ 1, i = 1, . . . , k − 1,

Sfm
ki
S∗
fm
ki

≤ Pwk
, k = 1, . . . , n, i = k + 1, . . . , n+ 1.

Let us now look at the exact sequence in (6), which we know to be split
exact by virtue of Lemma 4.1. In this setting, and following the convention
described above, the quotient map qn is given by

Pwn+1 7→ 0,

Pwi
7→ Pvi , 1 ≤ i ≤ n,

Sfm
i,n+1

7→ 0, 1 ≤ i ≤ n,

Sfm
i,j

7→ Semi,j
, 1 ≤ i < j ≤ n.

Theorem 4.2. The map sn : C(CPn−1
q ) → C(CPn

q ) defined on generators by

Pvi 7→ Pwi
, i = 1, 2, . . . , n− 1,

Pvn 7→ Pwn
+ Pwn+1 ,

Semij
7→ Sfm

ij
, j 6= n,

Semi,n
7→ Sfm

i,n
+ Sfm

i,n+1
, i = 1, . . . , n− 1,

is a splitting for the short exact sequence in (6).

Proof. To prove that sn is a ∗-homomorphism we will show that its target
elements satisfy the graph algebra relations (7)–(10). It will then follow by
universality that sn is a ∗-homomorphism.

First we clearly have that Pvi are all mapped to mutually orthogonal pro-
jections, that the unit of C∗(Fn−1) is mapped to the unit of C∗(Fn) and that
relation (8) is satisfied. It is also clear that the partial isometries Semij

are all
mapped to partial isometries in C∗(Fn) when j 6= n. When j = n, we have
that Sfm

i,n
+ Sfm

i,n+1
is indeed a partial isometry since

(Sfm
i,n

+ Sfm
i,n+1

)(Sfm
i,n

+ Sfm
i,n+1

)∗(Sfm
i,n

+ Sfm
i,n+1

)

= (Sfm
i,n

+ Sfm
i,n+1

)(S∗
fm
i,n

Sfm
i,n

+ S∗
fm
i,n+1

Sfm
i,n+1

)

= (Sfm
i,n

+ Sfm
i,n+1

)(Pwn
+ Pwn+1)

= (Sfm
i,n

Pwn
+ Sfm

i,n+1
Pwn+1)(Pwn

+ Pwn+1)

= (Sfm
i,n

+ Sfm
i,n+1

).

Relation (9) is clearly satisfied for all Sfm
ij

with j 6= n. For j = n, we have

S∗
emin

Semin
7→ (Sfm

i,n
+ Sfm

i,n+1
)∗(Sfm

i,n
+ Sfm

i,n+1
) = Pwn

+ Pwn+1 7→Pvn ,

and relation (9) is then satisfied in this case.
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Relation (10) is also clearly obtained for all Sfm
ij

with j 6= n. For j = n, we
have

Pwi
7→Pvi ≥ Semin

S∗
emin

7→ (Sfm
i,n

+ Sfm
i,n+1

)(Sfm
i,n

+ Sfm
i,n+1

)∗.

Hence we have to show

Bi := (Sfm
i,n

+ Sfm
i,n+1

)(Sfm
i,n

+ Sfm
i,n+1

)∗ ≤ Pwi
,

which is equivalent to proving that Pwi
Bi = Bi. We have

Pwi
Bi = Pwi

(Sfm
i,n

S∗
fm
i,n

Sfm
i,n

+ Sfm
i,n+1

S∗
fm
i,n+1

Sfm
i,n+1

)(Sfm
i,n

+ Sfm
i,n+1

)∗ = Bi

since

Pwi
Sfm

i,n
S∗
fm
i,n

= Sfm
i,n

S∗
fm
i,n

and Pwi
Sfm

i,n+1
S∗
fm
i,n+1

= Sfm
i,n+1

S∗
fm
i,n+1

.

It follows from an easy computation that qn ◦ sn is the identity on the
generators of C∗(Fn−1) and therefore qn ◦ sn = idC∗(Fn−1). �

To summarize our result, for every n ≥ 1, we have a split exact sequence

0 K C(CPn
q ) C(CPn−1

q ) 0.
jn qn

sn

Remark 4.3. In the rest of this work, especially in Section 6, we will mostly
be working with the graph C∗-algebra picture. We choose to identify C(CPn

q )
with C∗(Fn) and use the former notation.

5. KK-equivalences for split exact sequences

We will now recall how any split extension of C∗-algebras gives a KK-equiv-
alence between the algebra in the middle and the C∗-algebraic direct sum of
the other two. This relies on the following result, which in [5] is stated as an
exercise.

Theorem 5.1 ([5, Ex. 19.9.1]). For any split exact sequence of graded separable
C∗-algebras

0 J E B 0,
j

q

s

the element [j]⊕ [s] ∈ KK(J ⊕B,E) is a KK-equivalence.

An explicit inverse to the class [j] ⊕ [s] ∈ KK(J ⊕ B, E) is also provided
in [5], through a construction known as the splitting homomorphism. We
will illustrate this result using Cuntz’s quasi-homomorphism picture of KK-
theory [8], in which all the involved C∗-algebras are assumed to be trivial
graded and σ-unital. Our main references are the article [12] and the mono-
graph [15].
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5.2. KKh-theory. For the sake of simplicity, we will further assume all C∗-
algebras to be separable.

Definition 5.3 ([15, Def. 4.1.1]). A KKh(A, B)-cycle is a pair (φ+, φ−) of
∗-homomorphisms from A to M(K ⊗B) such that

φ+(a)− φ−(a) ∈ K ⊗B

for all a ∈ A. The set of KKh(A,B)-cycles will be denoted by F(A,B).

Note that a pair of ∗-homomorphisms (φ+, φ−) satisfying the condition
above is also called a quasi-homomorphism from A to B.

Let φ : A → B be a ∗-homomorphism, and consider the ∗-homomorphism

eB : B → K⊗B, eB(b) = e⊗ b,

where e is a minimal projection in K. Then the pair (eB ◦φ,0) is aKKh(A,B)-
cycle.

Homotopy of KKh-cycles can be defined in a similar way to homotopy of
Kasparov modules, see [15, Def. 4.1.2], in a manner that is compatible with
homotopy of ∗-homomorphisms. Then KKh(A,B) is defined as the homotopy
classes of KKh(A, B)-cycles. Likewise, one can endow KKh(A, B) with the
structure of an abelian group, as described in [15, Prop. 4.1.5].

In [12], Higson proved that the KKh(A,B) group is isomorphic to the origi-
nal Kasparov group KK0(A,B), whenever A and B are considered as trivially
graded C∗algebras (see also [15, Thm. 4.1.8]).

The KK-groups are functorial. In the KKh-picture, this is realized as
follows. Let f : A → B be a ∗-homomorphism. For any C∗-algebra C, we
define a group homomorphism as follows:

f∗ : KKh(B,C) → KKh(A,C), f∗[φ+, φ−] = [φ+ ◦ f, φ− ◦ f ]

with (φ+, φ−) ∈ F(B,C).
Functoriality in the other direction requires some little extra care. Let

g : K ⊗ A → K ⊗ B be a quasi-unital ∗-homomorphism. Since g is a quasi-
unital ∗-homomorphism, there exists by [15, Cor. 1.1.15] a strictly continuous
extension g : M(K ⊗A) → M(K ⊗B).

Let {ui} be an approximate unit for K ⊗ A. Identify M(K ⊗ B) with
LK⊗B(K ⊗B). Then, for each m ∈ M(K ⊗A),

g(m) : K ⊗A → K⊗B

is given by

g(m)(a) = lim
i
g(uim)(a) = lim

i
g(mui)(a)

for all a ∈ K ⊗B. For any C∗-algebra C, a group homomorphism can now be
defined as follows (cp. [15, Lem. 4.1.11]):

g∗ : KKh(C,A) → KKh(C,B), g∗[φ+, φ−] = [g ◦ φ+, g ◦ φ−]

with (φ+, φ−) ∈ F(C, A). Note that if g : A → B is a ∗-homomorphism, then
we can still construct g∗ by considering idK ⊗ g : K ⊗A → K⊗B.
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Last but not least, there is a bilinear pairing, known as the Kasparov prod-
uct,

⊗ : KKh(A,B)×KKh(B,C) → KKh(A,C),

satisfying the conditions of [15, Thm. 4.2.1]. The pullback and pushforward
maps f∗ and g∗ are realized by taking the left and right Kasparov product
with the KKh-class induced by the *-homomorphism f and g, respectively. In
formulas,

f∗ := [f ]⊗B − : KKh(B,C) → KKh(A,C),

g∗ := −⊗A [g] : KKh(A,B) → KKh(A,C).

We recall that two separable C∗-algebras A and B are KK-equivalent if
there exist an element x ∈KK(A,B) and y ∈KK(B,A) such that x⊗B y= 1A
and y ⊗A x = 1B.

5.4. The splitting homomorphism. Let us consider a split exact sequence
of C∗-algebras

0 J E B 0.
j

q

s

We will now recall how to construct an inverse to the class

[j]⊕ [s] ∈ KKh(J ⊕B,E).

First of all, consider the ∗-homomorphism eE defined as in (5.2). Denote
by rJ the canonical map given by

rJ : M(K ⊗ E) → M(K⊗ J), rJ (T )(x) := (idK ⊗ j−1)(T (idK ⊗ j)(x))

for all x ∈ K⊗ J , T ∈M(K⊗E), where j−1 is the inverse when we restrict to
the image of j; see [15, Ex. 1.1.9]. The map satisfies

(idK ⊗ j)(rJ (m)x) = m(idK ⊗ j)(x)

for all m ∈ M(K ⊗ E) and x ∈ K ⊗ J .
Denote by [π] ∈ KKh(E,J) the class of the quasi-homomorphism (1, s ◦ q),

which we rewrite as [π] := [(rJ ◦ eE , rJ ◦ eE ◦ s ◦ q)] (see also [12, Lem. 2.13]).
Then we have

j∗([π]) + s∗ ◦ q∗(1E) = 1E,

(j∗ + s∗)([π] + q∗(1B)) = 1J + 1B = 1J⊕B.

By [5, Prop. 18.7.2.], we conclude that [j] ⊕ [s] ∈ KKh(J ⊕ B, E) is a KK-
equivalence with inverse [π]⊕ [q] ∈ KKh(E, J ⊕B).

6. An explicit KK-equivalence between C(CPn
q ) and Cn+1

We will now apply Theorem 5.1 to construct an explicit KK-equivalence
between C(CPn

q ) and Cn+1 up to Morita equivalence. Our construction will be
a special case of a construction that holds for special—but sufficiently general—
families of extensions of C∗-algebras.
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6.1. An inductive procedure to construct KK-equivalences from a

family of splittings. We start out by considering a family An of separable
C∗-algebras, with A0 satisfying the assumptions in Lemma 4.1, together with
extensions

(11) 0 −→ Kmn
jn
−→ An −→

qn
An−1 −→ 0

for n ≥ 1. Note that not only does the sequence for n = 1 split, but we also
obtain by induction that all extensions (11) for n ≥ 2 satisfy the assumptions
of Lemma 4.1 and likewise split, i.e., we have maps sn : An−1 → An with
qn ◦ sn = idAn−1 .

As a consequence, we have KKh-classes

[jn] ∈ KKh(K
mn , An), [qn] ∈ KKh(An, An−1), [sn] ∈ KKh(An−1, An),

[πn] = [(1, sn ◦ qn)] ∈ KKh(An,K
mn).

It follows by Theorem 5.1 that [jn]⊕ [sn]∈KKh(K
mn ⊕An−1,An) is aKK-

equivalence with inverse [πn]⊕ [qn] ∈ KKh(An,K ⊕ An−1). More concretely,
for n = 1, we have

[j1]⊗A1 [π1] = 1Km1 , [s1]⊗A1 [q1] = 1A0 ,

[π1]⊗Km1 [j1] + [q1]⊗C [s1] = 1A1 ,

and for n ≥ 2,

(12)
[jn]⊗An

[πn] = 1Kmn , [sn]⊗An
[qn] = 1An−1 ,

[πn]⊗Kmn [jn] + [qn]⊗An−1 [sn] = 1An
.

We are now ready to announce and prove our KK-equivalence result. First
note that if we let I1 := [j1]⊕ [s1] and Π1 := [π1]⊕ [q1], then

I1 ⊗A1 Π1 = 1Km1⊕A0 Π1 ⊗Km1⊕A0 I1 = 1A1 ,

which follows directly from Theorem 5.1.

Theorem 6.2. Consider a family of C∗-algebras An, n ≥ 0, with extensions

(13) 0 −→ Kmn
jn
−→ An −→

qn
An−1 −→ 0.

Assume further that A0 is separable and in the UCT-class, with K0(A) free
abelian and vanishing K1(A). Then, for every n ≥ 1, the extension (13) splits,
with splittings sn : An−1 → An.

Moreover, let Sn :=
∑n

j=1 mn, and define KK-classes

Πn := [πn]⊕ ([qn]⊗An−1 [πn−1])⊕ ([qn−1 ◦ qn]⊗An−2 [πn−2])⊕ · · ·

⊕ ([q2 ◦ · · · ◦ qn−1 ◦ qn]⊗A1 [π1])⊕ [q1 ◦ q2 ◦ · · · ◦ qn],

In := [jn]⊕ [sn ◦ jn−1]⊕ [sn ◦ sn−1 ◦ jn−2]⊕ · · ·

⊕ [sn ◦ sn−1 ◦ · · · ◦ s2 ◦ j1]⊕ [sn ◦ sn−1 ◦ · · · ◦ s1].

Then Πn ∈ KKh(An,K
Sn ⊕ A0) implements a KK-equivalence with inverse

In ∈ KKh(K
Sn ⊕A0, An).
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Proof. The proof follows by induction on n. For n= 2, we obtain the following
by (12):

I2 ⊗A2 Π2 = [j2]⊗A2 [π2] + [s2 ◦ j1]⊗A2 ([q2]⊗A1 [π1]) + [s2 ◦ s1]⊗A2 [q1 ◦ q2]

= 1Km2 + [j1]⊗A1 ([s2]⊗A2 [q2])⊗A1 [π1] + [q1 ◦ q2 ◦ s2 ◦ s1]

= 1Km2 + [j1]⊗A1 1A1 ⊗A1 [π1] + [q1 ◦ idA1 ◦ s1]

= 1Km2 + 1Km1 + 1A0 = 1KS2⊕A0
.

When taking the product in the other direction, we obtain

Π2 ⊗Km1+m2⊕A0
I2

= [π2]⊗Km2 [j2] + ([q2]⊗A1 [π1])⊗Km2 [s2 ◦ j1] + [q1 ◦ q2]⊗A0 [s2 ◦ s1]

= [π2]⊗Km2 [j2] + ([q2]⊗A1 [π1])⊗Km1 ([j1]⊗A1 [s2])

+ ([q2]⊗A1 [q1])⊗A0 ([s1]⊗A1 [s2])

= [π2]⊗Km2 [j2] + [q2]⊗A1 ([π1]⊗Km1 [j1] + [q1]⊗A0 [s1])⊗A1 [s2]

= [π2]⊗Km2 [j2] + [q2]⊗A1 1A1 ⊗A1 [s2]

= [π2]⊗Km2 [j2] + [q2]⊗A1 [s2] = 1A2 .

Let us assume that the statement is true for n− 1, i.e.,

(14) In−1 ⊗An−1 Πn−1 = 1KSn−1⊕A0
, Πn−1 ⊗KSn−1⊕A0

In−1 = 1An−1.

Then we can rewrite

In ⊗An
Πn

= [jn]⊗An
[πn] + [sn ◦ jn−1]⊗An

([qn]⊗An−1 [πn−1])

+ [sn ◦ sn−1 ◦ jn−2]⊗An
([qn−1 ◦ qn]⊗An−2 [πn−2]) + · · ·

+ [sn ◦ sn−1 ◦ · · · ◦ s2 ◦ j1]⊗An
([q2 ◦ · · · ◦ qn−1 ◦ qn]⊗A1 [π1])

+ [sn ◦ sn−1 ◦ · · · ◦ s1]⊗An
[q1 ◦ q2 ◦ · · · ◦ qn]

= [jn]⊗An
[πn] + [jn−1]⊗An−1 ([sn]⊗An

[qn])⊗An−1 [πn−1]

+ [jn−2]⊗An−2 ([sn ◦ sn−1]⊗An
[qn−1 ◦ qn])⊗An−2 [πn−2] + · · ·

+ [j1]⊗A1 ([sn ◦ sn−1 ◦ · · · ◦ s2]⊗An
[q2 ◦ · · · ◦ qn−1 ◦ qn])⊗A1 [π1]

+ [sn ◦ sn−1 ◦ · · · ◦ s1]⊗An
[q1 ◦ q2 ◦ · · · ◦ qn]

=

n∑

m=1

[jm]⊗Am
[πm] + 1A0 = 1KSn⊕A0

.

On the other hand, by the induction hypothesis in (14), we have

Πn ⊗KSn⊕A0
In

= [πn]⊗Kmn [jn] + ([qn]⊗An−1 [πn−1])⊗Kmn−1 [sn ◦ jn−1]

+ ([qn−1 ◦ qn]⊗An−2 [πn−2])⊗Kmn−2 [sn ◦ sn−1 ◦ jn−2] + · · ·

+ ([q2 ◦ · · · ◦ qn−1 ◦ qn]⊗A1 [π1])⊗Km1 [sn ◦ sn−1 ◦ · · · ◦ s2 ◦ j1]

+ [q1 ◦ q2 ◦ · · · ◦ qn]⊗A0 [sn ◦ sn−1 ◦ · · · ◦ s1]
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= [πn]⊗Kmn [jn] + [qn]⊗An−1

+
(
[πn−1]⊗Kmn−1 [jn−1]

+ ([qn−1]⊗An−2 [πn−2])⊗Kmn−2 [sn−1 ◦ jn−2] + · · ·

+ ([q2 ◦ · · · ◦ qn−1]⊗A1 [π1])⊗Km1 [sn−1 ◦ · · · ◦ s2 ◦ j1]
)

⊗An−1 [sn]

= [πn]⊗Kmn [jn] + [qn]⊗An−1 (Πn−1 ⊗KSn−1⊕A0
In−1)⊗An−1 [sn]

= [πn]⊗Kmn [jn] + [qn]⊗An−1 [sn] = 1An
.

Then A and KSn ⊕ A0 are KK-equivalent by the KK-equivalence Πn with
inverse In. �

Remark 6.3. Note that, for A0 = C, we are in the setting of the quantum
weighted projective spaces studied by Brzeziński and Szymański (see their
defining extensions in [7, Prop. 3.2]), of which our spaces are obviously a special
case.

6.4. The KK-equivalence. We can now apply Theorem 6.2 to our setting
to obtain the desired result. For n ≥ 2, we define

Πn := [πn]⊕ ([qn]⊗C(CPn−1
q ) [πn−1])

⊕ ([qn−1 ◦ qn]⊗C(CPn−2
q ) [πn−2])⊕ · · ·

⊕ ([q2 ◦ · · · ◦ qn−1 ◦ qn]⊗C(CP 1
q )

[π1])

⊕ [q1 ◦ q2 ◦ · · · ◦ qn],

In := [jn]⊕ [sn ◦ jn−1]

⊕ [sn ◦ sn−1 ◦ jn−2]⊕ · · ·

⊕ [sn ◦ sn−1 ◦ · · · ◦ s2 ◦ j1]

⊕ [sn ◦ sn−1 ◦ · · · ◦ s1].

Then Πn ∈ KKh(C(CPn
q ),K

n ⊕ C) is a KK-equivalence with inverse In ∈
KKh(K

n ⊕ C, C(CPn
q )).

Remark 6.5. Let [ℓ2(N0)] ∈KK(K,C) denote the class of the natural Morita
equivalence. Let ϕ : C → K(ℓ2(N0)) be the ∗-homomorphism given by the
choice of a rank-one projection, and denote by [ϕ] the corresponding class in
KK(C,K). Note that different choices of rank-one projection yield the same
class in KK-theory. The two classes are known to be inverse to each other.
This allows us to write an explicit KK-equivalence between C(CPn

q ) and Cn+1

by

[Πn]⊗Kn⊕C

(⊕

n

[ℓ2(N0)]⊕ [1C]
)

∈ KK(C(CPn
q ),C

n+1),

with inverse
(⊕

n

[ϕ]⊕ [1C]
)

⊗Kn⊕C [In] ∈ KK(Cn+1, C(CPn
q )).
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7. Splittings and projections

In this last section we relate the elements

[jn], [sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1] ∈ KK(K, C(CPn
q ))

from Theorem 6.2 to classes of projections in C(CPn
q ) which generate the group

K0(C(CPn
q )). To show that the projections are generators of the K-theory, we

apply the index pairing with the Fredholm modules defined in [9, Def. 1].
We shall first introduce some notation. Let A(CPn

q ) denote the dense ∗-

polynomial subalgebra of C(CPn
q ). For 0 ≤ i < k ≤ n, let ǫki be the array

ǫki := (

i times
︷ ︸︸ ︷

0, 0, . . . , 0,

k − i times
︷ ︸︸ ︷

1, 1, . . . , 1,

n − k times
︷ ︸︸ ︷

0, 0, . . . , 0),

and let m := (m1, . . . ,mn) ∈ Nn.
For 0 < k ≤ n, we define a subspace V n

k ⊆ ℓ2(Nn) as the linear span of basis
vectors |m1,m2, . . . ,mn〉 such that

0 ≤ m1 ≤ m2 ≤ · · · ≤ mk and mk+1 > mk+2 > · · · > mn ≥ 0.

Here, we let m0 := 0.
For any 0≤ k≤n, there exists an irreducible representation π

(n)
k :A(CPn

q )→

B(ℓ2(Nn) defined on the subspace V n
k as follows:

π
(n)
k (zi) |m〉 = qmi

√

1− q2(mi+1−mi+1) |m+ ǫki 〉 , 0 ≤ i < k,

π
(n)
k (zk) |m〉 = qmk |m〉 ,

π
(n)
k (zi) = 0, i > k ≥ 1.

The representation π
(n)
k is defined to be zero on the orthogonal complement

of V n
k . For k = 0, an irreducible representation π

(n)
0 is defined as follows:

π
(n)
0 (z0) |m〉 =

{

|m〉 , m1 > m2 > · · · > mn ≥ 0,

0 otherwise,

π
(n)
0 (zi) |m〉 = 0, i > 0.

Let
π
(n)
+ (a) :=

∑

0≤k≤n
k even

π
(n)
k (a) and π

(n)
− (a) :=

∑

0≤k≤n
k odd

π
(n)
k (a).

Then π
(n)

:= π
(n)
+ ⊕ π

(n)
− is a representation of A(CPn

q ) on

H(n) := ℓ2(Nn)⊕ ℓ2(Nn).

For each 0 ≤ t ≤ n,

µt = (A(CPn
q ),H(t), π

(t), γ(t), F(t))

becomes a 1-summable even Fredholm module with F(t) =
(
0 1
1 0

)
and γ(t) the

obvious grading operator.
The Fredholm modules µt, t = 0, . . . , n, are shown to be generators of the

K-homology group K0(CPn
q ) in [9, Prop. 5].
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Theorem 7.1. Let P0 = 1. Then there exists projections Pl, l = 1, . . . , n, in
C(CPn

q ) such that

π
(n)
k (Pl) = 0, k < l,

π
(n)
k (Pl) = the projection onto the subspace

spanned by {|0, . . . , 0,ml+1, . . . ,mn〉} ∩ V n
k , k ≥ l,

where the representation π
(n)
k and the subspace V n

k are as above (cp. [9]). The
classes of the projections Pl, l = 0, 1, . . . , n, form a basis K0(C(CPn

q )).

Proof. We first want to show existence of the projections; they are obtained
in a similar way to [6] as limits

q−2m
m∏

r=1

q2π
(n)
k (zlz

∗
l + zl+1z

∗
l+1 + · · ·+ znz

∗
n)− q2(r+1)

1− q2r
m→∞
−−−−→ πn

k (Pl),

where by m → ∞ we refer to norm convergence.
It is clear that if k < l, then π

(n)
k (zlz

∗
l + zl+1z

∗
l+1 + · · · + znz

∗
n) = 0. For

k ≥ l, we have

π
(n)
k (zlz

∗
l + zl+1z

∗
l+1 + · · ·+ znz

∗
n) |m1, . . . ,mn〉

=
(
qml(1− q2(ml+1−ml)) + · · ·

+ q2(mk−1)(1− q2(mk−mk−1)) + q2mk
)
|m1, . . . ,mn〉

= q2ml |m1, . . . ,mn〉

when |m1, . . . ,mn〉 ∈ V n
k , otherwise 0. Then

q−2m
m∏

r=1

q2π
(n)
k (zlz

∗
l + zl+1z

∗
l+1 + · · ·+ znz

∗
n)− q2(r+1)

1− q2r
|m1, . . . ,mn〉

= q−2m
m∏

r=1

q2(ml+1) − q2(r+1)

1− q2r
|m1, . . . ,mn〉

m→∞
−−−−→

{

|m1, . . . ,mn〉 , ml = 0 and |m1, . . . ,mn〉 ∈ V n
k ,

0 otherwise.

Since |m1, . . . ,mn〉 ∈ V n
k , we have 0 ≤ m1 ≤ m2 ≤ · · · ≤ mk, but since k ≥ l,

we have mi = 0 for i ≤ l, and we get the projections Pl, l = 1, 2, . . . , n.
This allows us to calculate the index pairing between the K-theory and the

K-homology. Each projection gives a class in the K-theory given by [Pl] =
[(C(CPn

q ), ψl, 0)] ∈ KK(C, C(CPn
q )), where ψl(1) = Pl. We now wish to pair

these with the classes [πt]∈KK(C(CPn
q ),C), t=0,1, . . . ,n, in [9]. The product

is given by

[Pl]⊗C(CPn
q ) [πt] = [(l2(Nt

0)+ ⊕ l2(Nt
0)−, π

(t) ◦ ψl, F, γ)].

If t < l, then π(t) ◦ ψl(1) = 0 since π
(t)
i (Pl) = 0, i ≤ t; hence the product is 0.

In the case where l < t, we obtain that [π(t) ◦ ψl(1), F ] = 0 by the following
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result:
∑

0≤k≤t
k even

π
(t)
k (Pl)−

∑

0≤k≤t
k odd

π
(t)
k (Pl) =

∑

l≤k≤t
k even

π
(t)
k (Pl)−

∑

l≤k≤t
k odd

π
(t)
k (Pl) = 0.

The above follows since, for every π
(t)
k , there are two other representation,

namely π
(t)
k−1 and π

(t)
k+1, defined on orthogonal subspaces which are also nonzero

on some part of V n
k . We then obtain a degenerate module; hence the product

is 0.
For l = t and l even, we have

[Pl]⊗C(CPn
q ) [πl] = [(l2(Nl

0)+ ⊕ l2(Nl
0)−, π

(l) ◦ ψl, F, γ)]

= [(π
(l)
l (Pl)l2(N

l
0)⊕ 0,MC, F, γ)]

= [(C, idC, 0)] = [1C].

We get a similar result if l is odd. Hence it follows that [Pl]⊗C(CPn
q ) [πt] = [1C]

if l = t; otherwise, it is 0. Since the matrix with entries alt = [Pl]⊗C(CPn
q ) [πt]

is the identity matrix and is then invertible, we get that Pl, l = 0, 1, . . . , n,
generate the K-theory. �

Remark 7.2. We remark that the projections constructed here are very sim-
ilar in fashion to the faithful irreducible representations of quantum teardrop
presented in [6, Sec. 2]. Those were later used in [2, Sec. 7.4] to prove an
explicit KK-equivalence result.

Proposition 7.3. Let π : C(S2n+1
q ) → B(l2(Nn × Z)) be the faithful represen-

tation of the Vaksman–Soibelman sphere defined in (4) and ρ : C∗(L2n+1) →
B(l2(Nn ×Z)) the faithful graph algebra representation in (5). The projections
Pn−k−1 satisfy

(15) π(Pn−k−1) = ρ(Pwn−k
+ Pwn−k+1

+ Pwn−k+2
+ · · ·+ Pwn+1)

for k = 0, 1, . . . , n − 1. Moreover, up to Morita equivalence, they define the
same classes in KK-theory as [sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1]. More precisely,
if ϕ : C → K is the ∗-homomorphism from Remark 6.5, we have the following
equalities of classes in KK(C,CPn

q ):

(16)
[Pn] = [ϕ]⊗K [jn],

[Pn−k−1] = [ϕ]⊗K [sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1], k = 0, . . . , n− 1.

Proof. We start our proof by recalling our labeling convention on the graph
Fn underlying the algebra C(CPn

q ): vertices will be denoted by w, and edges
by f . We will do so independently of the dimension n of the space.

Let 0 ≤ k < n; we denote by I{wn−k} the 2-sided closed ideal generate by
the projection Pwn−k

. Then

jn−k−1 : I{wn−k} → C∗(Fn−k−1)
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and

sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1(Pwn−k
)

= sn ◦ sn−1 ◦ · · · ◦ sn−k−1(Pwn−k
+ Pwn−k+1

)

= sn ◦ sn−1 ◦ · · · ◦ sn−k−2(Pwn−k
+ Pwn−k+1

+ Pwn−k+2
)

= Pwn−k
+ Pwn−k+1

+ Pwn−k+2
+ · · ·+ Pwn+1 ∈ C(CPn

q ),

Any element in I{wn−k} takes the form SαS
∗
β , where α and β are finite paths

in Fn−k−1 such that r(α) = r(β) = wn−k by [3, Lem. 3.2].
By the structure of the graph and the splitting in (6), we have

sn−k(SαS
∗
β) = sn−k(Sα′Pwn−k

S∗
β′) = Sα′(wvn−k

+ Pwn−k+1
)S∗

β′ ,

where

α = α′fm1
i1,n−k, β = β′fm2

i2,n−k.

Then the image of I{wn−k} under sn−k consists of all SµS
∗
ν such that r(µ) =

r(ν) ∈ {wn−k, wn−k+1}, which is precisely the ideal generated by the sum
Pwn−k

+ Pwn−k+1
in C(CPn−k

q ) by [3, Lem. 3.2]. Continuing like this, we
obtain that the image of I{wn−k} under

sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1

is the ideal generated by

Pwn−k
+ Pwn−k+1

+ Pwn−k+2
+ · · ·+ Pwn+1

in C(CPn
q ).

Consider the projections Pl, l=0, . . . ,n, in the representation π ofC(S2n+1
q ),

restricted to C(CPn
q ). Then

q−2n
n∏

r=1

q2π(zlz
∗
l + zk+1z

∗
k+1 + · · ·+ znz

∗
n)− q2(r+1)

1− q2r
ξ(k1, . . . , kn,m)(17)

=
q2q2(k1+···+kl) − q2(r+1)

1− q2r
ξ(k1, . . . , kn,m)

=

{

ξ(k1, . . . , kn,m) if k1 + · · ·+ kl = 0,

0 otherwise.

Then π(Pl) is the projection onto the subspace spanned by

{ξ(0, . . . , 0, kl+1, . . . , kn,m) | ki ∈ N, m ∈ Z}.

Moreover, under the representation ρ of the graph C∗-algebra C∗(L2n+1),
which descends to C∗(Fn), we have

ρ
(
1− (Pw1 + Pw2 + · · ·+ Pwl

)
)
ξ(k1, . . . , kn,m)

=
(
1− ((1 − δk1,0) + δk1,0(1− δk2,0) + δk1,0δk2,0(1− δk3,0) + · · ·

+ δk1,0δk2,0 · · · δkk−1,0(1− δkl,0))
)
ξ(k1, . . . , kn,m)

= δk1,0δk2,0δkl,0ξ(k1, . . . , kn,m).
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Hence ρ(1− (Pw1 + Pw2 + · · ·+ Pwl
)) = π(Pl) and

ρ(Pwn−k
+ Pwn−k+1

+ · · ·+ Pwn+1) = ρ
(
1− (Pw1 + · · ·+ Pwn−k−1

)
)

= π(Pn−k−1).

Let ψ be the irreducible representation in (4). In order to prove (16) for Pn,
we note that ψ(Pn) is the projection onto the subspace spanned by the vector
ζ(0, . . . , 0), which follows by a calculation similar to the one in (17). Since

ψ ◦ π−1 ◦ ρ(Pwn+1) = ψ(Pn),

it follows that Pwn+1 ∈ C∗(Fn) is a rank-one projection by considering the

representation ψ ◦ π−1 ◦ ρ. We can set ϕ(1) = Pwn+1 since, as mentioned ear-
lier, the choice of rank-one projection does not affect the class in KK-theory.
Moreover, by (15), we have

ρ(jn ◦ ϕ(1)) = ρ(Pwn+1) = π(Pn).

Since [ϕ]⊗K [jn] = [(C(CPn
q ), jn ◦ ϕ, 0)] ∈ KK(C, C(CPn

q )), we obtain (16).
Similarly, we have that Pwn−k

is a rank-one projection in C∗(Fn−k−1).
Hence, for each k = 0, 1, . . . , n− 1, we can set ϕ(1) = Pwn−k

. Then

ρ
(
sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1 ◦ ϕ(1)

)

= ρ(Pwn−k
+ Pwn−k+1

+ Pwn−k+2
+ · · ·+ Pwn+1) = π(Pn−k−1)

by (15). Hence

[ϕ]⊗K [sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1]

= [sn ◦ sn−1 ◦ · · · ◦ sn−k ◦ jn−k−1 ◦ ϕ] = [Pn−k−1],

as desired. �

Note that it follows directly from the identification in (15) that Pl, l =
0,1, . . . , n, generates K0(C(CPn

q )), which was shown in Theorem 7.1 using the
index pairing with Fredholm modules.
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[24] W. Szymański, On semiprojectivity of C∗-algebras of directed graphs, Proc. Amer.
Math. Soc. 130 (2002), no. 5, 1391–1399. MR1879962

[25] L. Vaksman and Ya. Soibelman, The algebra of functions on the quantum group
SU(n+ 1) and odd-dimensional quantum spheres, Leningrad Math. J. 2 (1991), 1023–
1042.

Münster Journal of Mathematics Vol. 16 (2023), 1–24



24 Francesca Arici and Sophie Emma Zegers

Received January 18, 2022; accepted July 25, 2022

Francesca Arici
Mathematical Institute, Leiden University
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: f.arici@math.leidenuniv.nl

Sophie Emma Zegers
Faculty of Mathematics and Physics, Charles University
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