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Abstract: We develop extreme data compression for use in Bayesian model comparison
via the MOPED algorithm, as well as more general score compression. We find that Bayes
Factors from data compressed with the MOPED algorithm are identical to those from
their uncompressed datasets when the models are linear and the errors Gaussian. In other
nonlinear cases, whether nested or not, we find negligible differences in the Bayes Factors,
and show this explicitly for the Pantheon-SH0ES supernova dataset. We also investigate
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1 Introduction

Astronomical datasets can be very large, with galaxy catalogues and weak lensing surveys
having up to hundreds of millions of objects [e.g., 1–3], and Planck microwave background
data [4] containing billions of time-ordered data. Extracting scientific knowledge from
such large datasets almost inevitably requires some form of data compression, typically
into summary statistics such as point estimates of two-point summaries, either correlation
functions or power spectra. Compression without loss of information is generally possible since
the datasets are noisy and correlated, and furthermore the information may be captured by a
small number of summary statistics, depending on the statistical properties of the underlying
data. However, even with compression to two-point summaries, the number of statistics can
still be large: for example, cosmic shear surveys such as proposed for the Euclid mission [5]
may generate ∼ 104 two-point statistics, and this can present problems for likelihood-based
scientific analysis if the covariance of the summaries needs to be simulated, or indeed if
their distributions are not known [6]. Both of these considerations motivate the use of more
radical data compression techniques. This can also be highly beneficial when the resultant
summaries are coupled with techniques such as simulation-based inference (SBI, also known
as likelihood-free inference), which is undergoing rapid development thanks in part to novel
machine learning techniques [e.g., 7–11]. Typically, the most extreme compression possible
without losing information is to reduce the dataset down from its original size to the number
of model parameters to be inferred. Such extreme compression can have a number of benefits,
in terms of speed of analysis, in reducing the number of simulations required to determine
the sampling distribution of the statistics [6], and in making SBI feasible [12, 13], whilst still
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allowing for new models to be considered [14]. Heavens et al. [15] derived the optimal data
compression algorithm MOPED, for gaussian-distributed data whose mean signal depends on
the parameters, showing that extreme data compression can preserve the Fisher matrix, so the
compression is, in this sense, lossless. Techniques, based on Karhünen-Loève compression [16]
also exist for data whose covariance depends on the parameters, but not the mean, in contrast
to MOPED, which applies when the mean depends on the parameters, but not the covariance.
However, the former situation does not lead to lossless extreme compression, nor does it
generalise neatly to multiple parameters. MOPED, whether in its original Gram-Schmidt
orthogonal form, or in the simpler non-orthogonalised version (which we use in this paper)
is a special case of using the score function (the gradient of the likelihood with respect to
the model parameters) to compress the data, as shown by [17]. Alternative approaches to
extreme data compression include information-maximising neural networks (IMNNs) to find
maximally-informative summaries, as introduced by [7], and which have in certain cases been
shown to be lossless at Fisher level [9]. Typically, the neural network-based methods operate
on the fields themselves [e.g. 9–11], whereas the MOPED and score compressions operate
on some intermediate, physics-based summaries [e.g. 6, 10, 12, 18].

The main motivation for this paper is to determine whether the qualities of optimal
extreme data compression which apply to parameter inference also extend to Bayesian
Evidence and Bayes Factors, i.e., to model comparison. The answer to this question is yes,
provided that the extreme data compression is performed in each of the models separately,
and the compressed data then combined, such that the combined compressed dataset is by
construction optimal in all models. This applies to both nested and non-nested models.

With this key result, committed Bayesians may stop reading, but we also take the
opportunity to investigate the sampling distribution of the Bayesian Evidence and the related
Bayes Factor, to look at their use as frequentist statistics under extreme compression. The
motivation for this comes from a suggestion [19] that data compression may help in reducing
the sampling variability in the Bayesian Evidence. The answer is that it does, but the
sampling variance of the Bayes Factor, which is a ratio of evidences and the relevant quantity
for model comparison, remains virtually unchanged. To rephrase this same point, one can use
extreme MOPED data compression as effectively as the full dataset for model comparison as
well as parameter inference. Since model comparison is typically a computationally expensive
exercise, extreme data compression, which often results in faster likelihood evaluation, can
be very valuable.

Note that the distinction between the sampling distribution of the Bayesian Evidence and
of the Bayes Factor is important, especially since it is tempting to conclude — erroneously —
that the sampling distribution of the Bayesian Evidence is sufficiently wide to compromise its
usefulness in model selection, but this ignores the fact that much of the variation is common
to both models (the data are the same), and cancels out when the ratio of Bayesian Evidence
is computed, leaving the Bayes Factor as an effective discriminant, as we show in this paper.

The layout of the paper is as follows. In section 2 we review the MOPED data compres-
sion algorithm, and show how it works effectively for model comparison as well as parameter
inference, and consider more general score compression. In section 3.1 we explore the frequen-
tist properties of Bayes Factors, showing that the sampling distribution of the Bayes Factor
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is unaltered whether the full or compressed data are used. In section 3.2 we apply MOPED
compression to the Pantheon+SH0ES dataset [20]) and show that both the cosmological
parameters and the Bayes Factor can be determined from just 3 numbers (the MOPED
coefficients), as precisely as from the original 1590 supernovae. We conclude in section 4.

2 Extreme data compression: Bayesian Evidence with MOPED

2.1 Bayesian Evidence and Bayes Factors for the uncompressed dataset

Let us first consider gaussian-distributed data, with fixed covariance matrix and arbitrary
dependence of the mean on the parameters. Data compression with MOPED [15] allows
extreme compression to p summary statistics, where p is the number of model parameters,
whatever the length of the original data vector. Although the resulting MOPED coefficients
are not strictly sufficient statistics except in the case of linear models, they can preserve
the entire Fisher matrix, so the likelihood surface near the peak is no broader than when
using the full, uncompressed dataset. As a result, the extreme compression can be used for
parameter inference without increasing errors, and has been used in many contexts, such as
star formation histories of SDSS galaxies [e.g. 21–24], the cosmic microwave background [e.g.
25–27], galaxy power spectrum and bispectrum [e.g. 28, 29], gravitational waves [30], weak
lensing [e.g. 12, 31], combined probes [e.g. 32, 33], planetary transits [34], and extended to
parameter-dependent covariance matrices [6] and mis-specified models [14]. In this section,
we explore how MOPED and related score compression can be used in a new context: model
comparison. To begin we review the derivation of the unorthogonalised version of MOPED,
following not the original analysis [15], but rather the derivation in [17].

We consider a model with parameters θ = {θ1, . . . , θp}, data x ∈ Rn (where n ≫ p)
generated from a gaussian sampling distribution with covariance matrix C ∈ Rn×n independent
of θ and expectation value of the data µ(θ). The sampling distribution for the uncompressed
dataset is therefore

p(x|θ) = 1√
|2πC|

exp
[
−1

2(x − µ)T C−1(x − µ)
]

. (2.1)

Letting X ≡ x − µ∗, where µ∗ is the expectation value of the data at some fiducial set
of parameters θ∗, the posterior is

p(θ|x) ∝ 1√
|2πC|

exp
[
−1

2(X − µ̃)T C−1(X − µ̃)
]

π(θ) (2.2)

for a prior density π(θ). Here

µ̃(θ) ≡ µ(θ) − µ∗, (2.3)

and a linear Taylor expansion around the fiducial point gives

µ̃ ≃ µ,αθ̃α where θ̃ ≡ θ − θ∗. (2.4)

The comma indicates ∂/∂θα and the summation convention is used. Hence to this order,

p(θ|x) ∝ 1√
|2πC|

exp
(

−1
2XT C−1X

)
exp

(
µ̃T C−1X − 1

2 µ̃T C−1µ̃

)
π(θ). (2.5)
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We see that the only coupling of the data x to the parameters is through the µ̃T C−1X

term, and only via the p MOPED coefficients

Yα ≡ µT
,αC−1X ≡ bT

α(x − µ∗), α = 1 . . . p, (2.6)

and we identify the p (unorthogonalised) MOPED weight vectors [15])

bT
α ≡ µT

,αC−1. (2.7)

The posterior may then be written

p(θ|x) ∝ 1√
|2πC|

exp
(

−1
2XT C−1X

)
exp

[
(bT

αX)θ̃α − 1
2(bT

αCbβ)θ̃αθ̃β

]
π(θ̃), (2.8)

or in matrix form

p(θ|x) ∝ 1√
|2πC|

exp
(

−1
2XT C−1X

)
exp

(
Y T θ̃ − 1

2 θ̃
T Λθ̃

)
π(θ̃), (2.9)

where Y is a vector of only p elements, consisting of the MOPED coefficients:

Y = BT X = BT (x − µ∗), (2.10)

and BT ∈ Rp×n is made up of p rows of MOPED vectors bT
α , defined by equation (2.7).

In matrix form,

BT = ΦT C−1, (2.11)

where ΦT ∈ Rp×n is a matrix with rows given by µT
,α. The symmetric matrix Λ ∈ Rp×p is

Λ = BT CB = ΦT C−1Φ. (2.12)

Note that Heavens et al. [15] applied a Gram-Schmidt orthogonalisation to the MOPED
vectors, to decorrelate the elements of Y , but the information content is the same if this is not
applied, and we omit it as it simplifies the analysis. We have also subtracted µ∗ from x for
convenience, and to ensure that a Taylor expansion to linear order is accurate, following [6].

To normalise the posterior, p(θ|x, M) = p(x|θ, M)π(θ)/p(x|M), we need the Bayesian
Evidence Z(x) = p(x|M), where we have added explicitly the dependence on the choice
of model, M . The Evidence is

p(x|M) = 1√
|2πC|

exp
(

−1
2XT C−1X

)∫
exp

(
Y T θ̃ − 1

2 θ̃
T Λθ̃

)
π(θ̃) dθ̃. (2.13)

We see that the data-only prefactor cancels in the normalized posterior:

p(θ|x, M) =
exp

(
Y T θ̃ − 1

2 θ̃
T Λθ̃

)
π(θ̃|M)∫

exp
(
Y T θ̃ − 1

2 θ̃
T Λθ̃

)
π(θ̃|M) dθ̃

. (2.14)

From this it is apparent that, to the extent that the linear expansion is applicable, we may
compute the posterior from the MOPED coefficients alone, without considering x in full —
we only need Y. This is a very powerful feature of MOPED compression.

Note that for a Gaussian prior density, π(θ̃|M) = N (0, Σ) the integrals may be evaluated
analytically (see also [13, 35, 36]) giving

Z(X) = 1√
|2πC||ΣΛ + Ip|

exp
(

−1
2XT C−1X

)
exp

[1
2Y T

(
Λ + Σ−1

)−1
Y

]
. (2.15)

– 4 –
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2.1.1 Demonstration that the Bayes Factor depends only on MOPED
coefficients

Before we derive the general expression for the Bayes Factor in the next section, we motivate
our approach by demonstrating that, for nested models, the Bayes Factor from the full dataset
depends only on the set of MOPED coefficients defined in the extended model, to linear order
in expansion. The posterior odds between models M0 and M1 are

p(M0|x)
p(M1|x) = π(M0)p(x|M0)

π(M1)p(x|M1) = B01(x) ≡ Z0(x)
Z1(x) (2.16)

where B01 is the Bayes Factor, and the last equality applies if we assume equal prior model
probabilities, π(M0) = π(M1). We have defined Zi ≡ p(x|Mi).

Model M0, with q free parameters, is said to be ‘nested’ in model M1, with p > q

parameters, if the first q parameters of Model 1 are common to Model 0, and there is a choice
of value for the additional parameters in Model 1 such that the latter reverts to Model 0. In
this setting, we choose a fiducial parameter set within the prior support of Model 0 (and,
therefore, a fortiori in Model 1); in this case, µ∗ is common to both models, and X is the
same in both. in this case, the prefactor in the Evidence (equation (2.13)), cancels out in
the Bayes Factor, for any choice of prior densities π(θ̃i|Mi)

B01(x) ≡ Z0(x)
Z1(x) =

∫
exp

(
Y T θ̃0 − 1

2 θ̃
T
0 Λ0θ̃0

)
π(θ̃0|M0) dθ̃0∫

exp
(
Y T θ̃1 − 1

2 θ̃
T
1 Λ1θ̃1

)
π(θ̃1|M1) dθ̃1

. (2.17)

Note that for the simpler model the extra parameters are set at θ̃ = 0, which we accommodate
by defining Λ0 as the top q × q block of Λ1.

Just like the posterior for the parameters, the Bayes Factor for the full dataset depends on
the data only via Y . This motivates adopting MOPED compression for model comparison in
the general case, with the potential for a large acceleration of what can be a computationally
expensive task for some applications. We develop this in the next section.

It is worth pointing out that the requirements on the accuracy of the Taylor expansion are
more stringent for model comparison than for parameter inference, since we are evaluating an
integral over the whole parameter space, well beyond the region where the posterior density
is appreciable. For some applications this could limit the accuracy of the approach, but for
typical cosmological posteriors, their unimodal and relatively simple structure means that
the MOPED-derived posteriors are often very close to those obtained from the full dataset,
even far from the posterior peak. This is apparent even in the first (astrophysical) example,
presented in [15], where the posterior contours are similar between MOPED and full data set
at values smaller than the peak by a factor e100, even though this is not guaranteed by the
method — the compression does far better than one has any right to expect. We therefore
compress the data only once for each model, each at a single fiducial parameter set, and we
illustrate later in a cosmological supernova study that the Bayes Factor computation from
the compressed data still agrees with the full dataset within sampling errors.

– 5 –
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2.2 Bayesian Evidence and Bayes Factor with MOPED compression for
non-nested models

We now develop the formalism for using MOPED extreme data compression for computing
Bayes Factors for non-nested models, with the nested case requiring only a minimal adjustment.
In order for the Bayes Factor to give the correct Bayesian posterior odds ratio (for equal model
priors), the data entering in each of the Bayesian Evidence calculations have to be the same, or
else the p(data) denominator in Bayes theorem will not cancel in the ratio. Since the MOPED
vectors defined within each model are optimal for parameter inference in their respective
models, we construct a compressed dataset from the union of the MOPED coefficients from
both (or, more generally, all) models. In this way the augmented compressed dataset will
be optimal for parameter inference in both models, since we will not lose information by
adding additional data beyond what is required. Of course we must take care to include
correctly the correlations between all the compressed data. We thus compare the analysis
with the full dataset with the data compressed to

Y T =
(

Y T
0

Y T
1

)
=
(

BT
0 (x − µ∗0)

BT
1 (x − µ∗1)

)
∈ Rp+q, (2.18)

where µ∗0 and µ∗1 are fiducial means in the two models. In the nested case, these would
be chosen to be equal, and since Y 0 is already contained in Y 1, it is discarded, with Y 1
alone being retained. Here we assume non-nested models when both Y 0 and Y 1 are present,
and specialize to the nested case later.

The Bayesian Evidence for each model, Zi(Y ) is obtained by very similar arguments
to the preceding analysis. For Gaussian data x ∼ N (µ, C), Y ∼ N (Ȳ , Λ) is also Gaussian-
distributed, with mean

Ȳ (θ̃) =
(

BT
0 (µ − µ∗0)

BT
1 (µ − µ∗1)

)
, (2.19)

and covariance Λ = ΦT C−1Φ ∈ R(p+q)×(p+q), where in block form Φ = (Φ0, Φ1). The Bayesian
Evidence for model i is then

Zi(Y ) = 1√
|2πΛ|

∫
exp

[
−1

2
(
Y − Ȳ

)T
Λ−1

(
Y − Ȳ

)]
π(θ̃i|Mi) dθ̃i. (2.20)

With a Taylor expansion for µ as before (equation (2.4)), Ȳ = BT Φθ̃ ≡ Λθ̃, we find

Zi(Y ) = 1√
|2πΛ|

exp
[
−1

2(Y − Ȳ ∗i)T Λ−1(Y − Ȳ ∗i)
]

×
∫

exp
[
(Y − Ȳ ∗i)T Λ−1Aiθ̃i − 1

2 θ̃
T
i AT

i Λ−1Aiθ̃i

]
π(θ̃i|Mi)dθ̃i, (2.21)

where Ai ≡ ΦT C−1Φi and

Ȳ ∗i =
(

BT
0 (µ∗i − µ∗0)

BT
1 (µ∗i − µ∗1)

)
, (2.22)

which will have zeros in one or other block depending on whether i = 0 or 1.

– 6 –
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2.2.1 Nested models with MOPED compression

There is a significant simplification for nested models, where we dispense with the top blocks
of Y and ΦT , and take µ∗0 = µ∗1. As a consequence Ȳ ∗i = 0. Ai can be replaced by Λ
(which reduces to Λ1), since it always comes in combination with θ̃i, and we extend the
θ̃0 vector to include zeros from the extended parameter space. With these simplifications,
the Evidence becomes

Zi(Y ) = 1√
|2πΛ|

exp
(

−1
2Y T Λ−1Y

)∫
exp

(
Y T θ̃i − 1

2 θ̃
T
i Λθ̃i

)
π(θ̃i|Mi)dθ̃i. (2.23)

This is very similar to the Evidence computed from the full data set (equation (2.13)), but
with a different data-dependent prefactor to the integral.

When we set the prior on the extended model parameters to Dirac delta functions in
Model 0, Λ effectively becomes Λ0, and when we cancel the common prefactors, we recover
equation (2.17), and find that the Bayes Factor for the MOPED compressed data for nested
models is exactly the same as the Bayes Factor for the original dataset. In other words, to
the extent that a linear Taylor expansion is accurate, no information is lost in performing
Bayesian model comparison using MOPED coefficients rather than the full dataset.

2.2.2 Gaussian prior

With a gaussian prior on the parameters, the Bayesian Evidence (equation (2.21)) for the
different models (nested or otherwise) reduces, after application of the Woodbury formula
and the matrix determinant lemma, to a very simple expression

Zi(Y ) = 1√
|2πQi|

exp
[
−1

2(Y − Ȳ ∗i)T Q−1
i (Y − Ȳ ∗i)

]
(2.24)

where
Qi = Λ + AT

i ΣiAi. (2.25)

2.3 Score compression

We can generalise the result further to arbitrary likelihood functions, using the score com-
pression of Alsing & Wandelt [17], of which MOPED is a special case. Here they expand
the log likelihood as

L = L∗ + θ̃
T ∇L∗ − 1

2 θ̃
T

J∗θ̃ (2.26)

where J ≡ −∇∇T L, and ∗ indicates that quantities are evaluated at the fiducial parameters.
L∗ depends on the data, but we see again that the L∗ (which is a source of variability

in the Bayesian Evidence) cancels in the Bayes Factor if the models are nested and θ∗ lies
in the domain of both M0 and M1. The only coupling between data and parameters at
linear order is through the score function

t ≡ ∇L∗. (2.27)

J is strictly constant in the Gaussian case if C is independent of θ, and is given by the
Fisher matrix

⟨J⟩ = F = ∇µT C∇T µ. (2.28)

– 7 –
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If C is parameter-dependent, the expression is complicated, and couples data and parameters
(see [17], equation (15)), and replacing J by F would be an approximation, but possibly
a good one.

We see that the preceding arguments hold in this case as well, that for nested models, the
L∗ term cancels out in both the posterior and also the Bayes Factor, if the fiducial parameters
are common to both (all) models. As a result, general score compression, using the trick
of concatenating the scores from all models considered, can effectively be used for model
comparison, with the additional approximation (2.28).

3 Example applications

3.1 Distribution of Bayes Factors

Bayesians may wish to turn away now, as we consider the frequentist properties of Bayesian
Evidence and Bayes Factors, as investigated by Jenkins & Peacock [37] and Joachimi et
al. [19]. These papers note that the Bayesian Evidence and the Bayes Factor are noisy
statistics, and consider their sampling variability and its impact on the outcome of model
comparison. Note that we remain of the Bayesian view that the Bayes Factor can indicate
a preference for one model over another, but not falsify models in absolute terms, and we
are not seeking frequentist methods to do this, which typically rely on tail probabilities of
p(data|M) as opposed to posterior model probabilities, p(M |data), cf. [38–40].

To the committed Bayesian, the sampling distribution is not relevant, since the Bayesian
view is that there is one set of data on which the inference is based, and it does not matter
what other realisations of the data might have yielded. Nevertheless, Z is a statistic, and its
sampling distribution could be of some interest. There is a contribution to the variability of
Z from the data-only prefactor in equation (2.13) in the gaussian case (and we come to a
similar conclusion in the more general score compression case: see section 2.3). The log of
the prefactor is distributed as a χ2 distribution with n degrees of freedom with a variance
of 2n. However, this main source of variability (the prefactor) cancels in nested models
when the Bayes Factor is computed, so the quantity on which model comparison depends
is not subject to this source of large variability.

This behaviour is apparent in figure B.1 of [19], where the Bayes Factor is very stable
even though Z0 and Z1 are highly variable, which would invite the naïve interpretation
that the sampling variance of the Evidence may hinder model comparison. However, even
if the sampling distribution of ln Z0 and ln Z1 is large in comparison with ln B01(X), the
Bayes Factor favours one model consistently, because Z0 and Z1 are not independent, as
they use the same data realisation.

We illustrate the behaviour of a non-nested case with the following toy non-linear models:

• M0 : x = E sin(Ft); θ0 = (E, F )

• M1 : x = at2 + bt; θ1 = (a, b)

where t has 20 values uniformly spaced between 0 and π (an example is shown in figure 1).
The data are generated with E = 2.5 and F = 1.0, and the fiducial values are E∗ = 3.0,

F∗ = 1.2, a∗ = −1.5, b∗ = 4.7). The distribution of Bayesian Evidence values for each model
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Figure 1. Example dataset, with noisy data drawn from the mean curve of Model 0. Parameters for
Model 1 are arbitrary.

Figure 2. The distribution of Bayesian Evidence for 50000 noise realisations of non-nested toy models
M0 and M1 with details given in the text, obtained from the full dataset. The normalisation of the y

axis is arbitrary.

from 4×104 realisations is shown in figure 2 for the full dataset, and from MOPED-compressed
data in figure 3. Notice that the considerable sample variance exceeds the difference of the
mean Evidence values. As suggested by [19], the width of the sampling distribution of the
compressed data Evidence is reduced compared to the full dataset.

Figure 4 shows that, although the Evidence values differ markedly for the full and
compressed datasets, the Bayes Factors are almost identical, with deviations being due to
the linear Taylor expansion not being perfect in the nonlinear case.

Our conclusion from this study is that MOPED compression reduces the variance of the
sampling distribution of the Bayesian Evidence, so it would appear advantageous to use such
a data compression. However, the Evidence values from an individual noise realisation are
highly correlated, as they are based on the same data, and the log of the Bayes Factor has
a much smaller variance than the variance of the individual ln Z values. We find that the
uncompressed data give the same Bayes Factor as the MOPED compressed data (inasmuch
as the neglect of higher-order derivatives of µ is valid). As a result MOPED compression
can be used for accurate model comparison, with in some cases a large increase in speed of

– 9 –
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Figure 3. As figure 2, but for a compressed dataset consisting of the four MOPED coefficients, two
from each model.

Figure 4. Comparison of Bayes Factor sampling distribution for the nonlinear, non-nested toy models
M0 and M1 with details given in the text, from the full dataset and the MOPED-compressed dataset.
The distributions overlay almost perfectly.

computation. We also note that with a single full likelihood evaluation and one compressed
likelihood evaluation at the fiducial parameters, the full dataset Evidence can be computed,
if it were ever needed, from the compressed Evidence:

Z(X) =
√

|2πΛ|√
|2πC|

exp(−1
2XT C−1X)

exp(−1
2Y T Λ−1Y )

Z(Y ).

3.2 Cosmological example — the Pantheon+SH0ES dataset

In this section, we re-analyse the Pantheon+SH0ES data presented in [20]. This consists of
1701 supernovae, with Cepheid calibration. We use the distance moduli from the catalogue1

(with a fiducial SNIa magnitude determined from SH0ES 2021 Cepheid host distances), and
the supplied covariance matrix, including systematics, to define a simple gaussian likelihood
function for 1590 supernovae with z > 0.01. While not nearly as sophisticated as a Bayesian
hierarchical model [e.g. 41], this simplified setup serves to demonstrate parameter inference

1https://github.com/PantheonPlusSH0ES.

– 10 –

https://github.com/PantheonPlusSH0ES


J
C
A
P
1
1
(
2
0
2
3
)
0
4
8

and Bayesian Evidence comparisons for the full and MOPED-compressed datasets. The
two models being compared are:

• a flat universe, parameterised by θ0 = (Ωm, h);

• a curved universe, which allows ΩΛ to vary away from 1 − Ωm, with parameters
θ1 = (Ωm, h, ΩΛ),

where h is the Hubble-Lemaître constant in units of 100 km s−1 Mpc−1 and Ωm is the matter
density parameter, and ΩΛ the vacuum energy density parameter. Priors on all varying
parameters are taken to be uniform over the range [0, 1]. We choose a fiducial model with
Ωm = 0.3, h = 0.7 and ΩΛ = 0.7. The compression concatenates the MOPED coefficients
from both models, but since they are nested, this is identical to using the MOPED coefficients
from the extended, 3-parameter model, yielding

Y = (1304.68, 23857.17, −1341.94). (3.1)

All the cosmological information about Ωm, h and ΩΛ is contained in just these three numbers.
The covariance matrix of these coefficients is

Cov(Y ) =

 3120.0 35028.9 −2632.9
35028.9 668580.5 −36364.1
−2632.9 −36364.1 2559.2

 . (3.2)

We use the nested sampling code dynesty2 [42] with 5000 live points, and no linear ap-
proximation is made for the parameter dependence of the mean distance modulus in the
likelihood function. We find virtually identical posteriors for full and compressed data, shown
in figure 5. The natural log of the Bayesian Evidence for the full dataset is 838.88 ± 0.035
for the flat model, and 837.96 ± 0.037 for the extended model. For the MOPED-compressed
data, the log Bayesian Evidence values are −22.35 and −23.29, with the same errors. Hence
the Bayes Factor are

−0.92 ± 0.05; Full dataset (from 1590 numbers)
−0.94 ± 0.05; MOPED compression (from 3 numbers), (3.3)

with in both cases the flat model being slightly favoured by the data. The error is an
estimate from the values of about 0.036 for each, since we do not know the extent to which
the errors are correlated.

Figure 5 and the Bayes Factors of eq. (3.3) show the strength of MOPED for both
parameter inference and now for model comparison as well. The latter, along with the
sampling distributions of the Bayes Factor in the compressed case (figure 4) are the main
new results of this paper.

2DOI:10.5281/zenodo.3348367.
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Figure 5. Marginal posteriors for cosmological parameters (Ωm, h, ΩΛ), using the full dataset of
size 1590 (red) and only the three MOPED-compressed coefficients (blue). The posteriors are almost
identical, resulting in a purple shade in the 1D marginals.

4 Discussion and conclusions

In this paper we have shown how the extreme data compression algorithm MOPED [15] can be
used to compute Bayes Factors with essentially no loss of accuracy, thus extending its power
from parameter inference to now include model comparison. The key to this is to perform
MOPED compression in all the model spaces, and to concatenate the MOPED coefficients
into a slightly larger compressed data space, of dimension equal to the sum of the number of
parameters if the models are not nested. This is still an extreme compression, if the number of
data far exceed the number of parameters, which is typically the case with cosmological survey
data. In the nested case the MOPED coefficients come from the more complex model. Many
of the advantages extend to other forms of score compression when MOPED is not applicable.

The computation of Bayes Factors is generally expensive, requiring integrals over the
parameter space or sophisticated nested sampling techniques, so where MOPED leads to
much faster likelihood evaluations from the massively reduced dataset, the process may
be significantly accelerated.

Finally, we have investigated the sampling distribution of the Bayesian Evidence and
of Bayes Factors, for uncompressed and MOPED compressed data. We found that while
extreme data compression reduces the variance of the Evidence for each individual model,
as previously claimed, the sampling distribution for the Bayes Factor remains unaffected by
extreme compression of linear models, and virtually identical for nonlinear models. Thus
treating the Bayes Factor as a frequentist statistic, it is just as effective to compute it from
the compressed dataset as the full set. In a cosmological application, we have shown that,
assuming a simple gaussian data model for the Pantheon+SH0ES dataset [20], the Bayes
Factor for the flat vs non-flat model can be computed from only 3 compressed numbers,
rather than the full dataset of 1590 supernovae, with no loss of accuracy.
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