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A B S T R A C T 

In this era of exoplanet characterization with JWST , the need for a fast implementation of classical forward models to understand 

the chemical and physical processes in exoplanet atmospheres is more important than ever. Notably, the time-dependent ordinary 

differential equations to be solved by chemical kinetics codes are very time-consuming to compute. In this study, we focus on 

the implementation of neural networks to replace mathematical frameworks in one-dimensional chemical kinetics codes. Using 

the gravity gradient, temperature-pressure profiles, initial mixing ratios, and stellar flux of a sample of hot-Jupiter’s atmospheres 
as free parameters, the neural network is built to predict the mixing ratio outputs in steady state. The architecture of the network 

is composed of individual autoencoders for each input variable to reduce the input dimensionality, which is then used as the 
input training data for an LSTM-like neural network. Results show that the autoencoders for the mixing ratios, stellar spectra, 
and pressure gradients are exceedingly successful in encoding and decoding the data. Our results show that in 90 per cent of the 
cases, the fully trained model is able to predict the evolved mixing ratios of the species in the hot-Jupiter atmosphere simulations. 
The fully trained model is ∼10 

3 times faster than the simulations done with the forward, chemical kinetics model while making 

accurate predictions. 
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1

T
o
a
1
i  

b
m
a  

W  

d
a
p
c
d
b
S  

2  

t  

R  

o
t  

e

�

d
t

 

e
r  

s
t  

w
a
2  

2  

o
d
p  

t
a
n
t
c
b  

a
a

 

s  

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/1/643/7197449 by U
niversiteit Leiden - LU

M
C

 user on 21 February 2024
 I N T RO D U C T I O N  

here are two methods commonly used for calculating the abundance 
f different species in an atmosphere: thermochemical equilibrium 

nd chemical kinetics (Bahn & Zukoski 1960 ; Zeleznik & Gordon 
960 ). Thermochemical equilibrium calculations treat each species 
ndependently and do not require an e xtensiv e list of reactions
etween different species. Consequently, this method is fast for esti- 
ating the abundance of different species in an exoplanet atmosphere 

nd has been widely used in the community (e.g. Stock et al. 2018a ;
oitke et al. 2018 ). Ho we v er, the atmospheres of e xoplanets are

ynamic environments. Both physical and chemical processes can 
lter the compositions and thermal structures of the atmosphere. In 
articular, atmospheric processes like photochemistry, mixing and 
ondensation of different species can affect atmospheric abundances, 
eviating the concentrations observed from what would be found 
y chemical equilibrium calculations (Cooper & Showman 2006 ; 
wain, Vasisht & Tinetti 2008 ; Moses et al. 2011 ; Baxter et al.
021; Kawashima & Min 2021 ; Roudier et al. 2021 ). F or e xample,
he recent detection of SO 2 (Ahrer et al. 2022 ; Alderson et al. 2022 ;
ustamkulov et al. 2022 ; Feinstein et al. 2023 ) and the determination
f this species as direct evidence of photochemical processes shaping 
he atmosphere of WASP 39b (Tsai et al. 2022 ), suggest that certain
xoplanet atmospheres are in disequilibrium, and we need chemical 
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isequilibrium models using chemical kinetics to correctly interpret 
he observations. 

Chemical kinetics codes consider the effects that lead to a non-
quilibrium state in the atmosphere. These codes incorporate a wide 
ange of atmospheric processes, such as the radiation from the host
tar that can drive the dissociation of molecules or photochemistry, 
he mixing of species at different pressures due to the planet’s
inds, or the diffusion of species, and calculate the one-dimensional 

bundances of species in exoplanetary atmospheres (e.g. Moses et al. 
011 ; Venot et al. 2012 ; Miguel & Kaltenegger 2014 ; Tsai et al.
017 ; Hobbs et al. 2019 ). Ho we ver, to calculate the abundance
f different species using chemical kinetics, a system of coupled 
ifferential equations involving all the species must be solved, and 
rior knowledge of reaction rates and a reaction list is necessary
o estimate the production and loss of each species. Therefore, 
s more species and reactions are incorporated into the chemical 
etworks, the complexity of these simulations increases, and so does 
he computational cost these simulations require. The result is that 
hemical kinetics codes have long computational times, and cannot 
e used by more detailed calculations (e.g. circulation models) or as
 fast way of interpreting observations (by retrieval codes), which 
re usually subject to simplifications. 

For the past few decades, the use of machine learning techniques,
pecifically neural networkss (NNs), has become more pre v alent in
esearch fields outside of computer science. Within astronomy, NNs 
ave been used for applications like image processing (Dattilo et al.
019 ), adaptive optics (Landman et al. 2021 ), exoplanet detection
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Shallue & Vanderburg 2018 ), exoplanetary atmospheric retrie v al
Cobb et al. 2019 ), chemical modelling (Holdship et al. 2021 ),
nd more traditional machine learning techniques have been used
or applications like exoplanetary atmospheric retrie v al (Nixon &

adhusudhan 2020 ) and chemistry modelling of protoplanetary
iscs (Smirno v-Pinchuko v et al. 2022 ). Trained NNs are fast to use,
o a NN trained to accurately reproduce the outcomes of chemical
inetics codes could greatly reduce computational times. Such a NN
ould simulate a large amount of atmospheric conditions in a short
eriod of time, which is for example useful for atmospheric retrie v als
rom observational constraints. It could also be incorporated into a
ultidimensional atmospheric simulation that connects a multitude

f individual one-dimensional simulations by the implementation of
tmospheric mixing and other global processes. 

In this study, we investigate the feasibility of machine learning
echniques for speeding up a one-dimensional chemical kinetics
ode. To this end, we perform calculations on a fiducial giant planet
s an example to sho w ho w this technique can be used to bring
he best of these two worlds: the detailed information of chemical
inetics calculations and the speed of NNs techniques. In the next
ection, we explain in more detail how we obtain the data set and the
pecifics of the architectures used. The results of our networks are
resented in the following section (Section 3 ), which are discussed
fterwards in Section 4 . Finally, we summarize and conclude our
ndings in Section 5 . 

 M E T H O D S  

.1 Chemical kinetics 

hemical kinetics is the most realistic way of calculating abundances
nd is necessary, particularly at low temperatures ( T < 2000 K) and
ressures ( P < 10–100 bars), where time-scales of processes such as
ixing in the atmosphere are shorter than chemical equilibrium and

ominate the chemistry and abundances in the atmosphere. 
We make use of the one-dimensional chemical kinetics code

ULCAN (Tsai et al. 2017 , 2021 ) to create a large data set on
he atmospheres of gaseous exoplanets. The code is validated for
ot-Jupiter atmospheres from 500 to 2500 K. VULCAN calculates a
et of mass differential equations: 

∂ n i 

∂ t 
= P i − L i − ∂ � i 

∂ z 
, (1) 

here n i is the number density of the species i , t is the time, P i 

nd L i are the production and loss rates of the i -th species, and � i 

ts transport flux that includes the effects of dynamics caused by
onvection and turbulence in the atmosphere. For a more complete
eri v ation of this equation from the general diffusion equation, we
efer the reader to Hu, Seager & Bains ( 2012 ). VULCAN starts
rom initial atmospheric abundances calculated using the chemical
quilibrium chemistry code FastChem (Stock et al. 2018b ), although
e note that the final disequilibrium abundances are not affected by

he choice of initial values adopted by Tsai et al. ( 2017 ), and further
v olves these ab undances by solving a set of Eulerian continuity
quations that includes various physical processes (e.g. vertical
ixing and photochemistry). To solve these partial differential

quations, VULCAN numerically transforms them into a set of
tiff ordinary differential equations (ODEs). These ODEs are solved
sing the Rosenbrock method, which is described in detail in the
ppendix of Tsai et al. ( 2017 ). In this study, we make use of machine
earning techniques to solve these equations and hence speed up the
rocess. 
NRAS 524, 643–655 (2023) 
.2 Building the data set 

.2.1 Parameter space 

o construct the data set, we vary the following parameters: 

(i) Planet mass, M [ M J ]: within the range [0.5, 20] M J . 
(ii) Orbit radius, r [au]: within the range [0.01, 0.5] au. 
(iii) Stellar radius, R � [ R �]: within the range [1, 1.5] R �. 

Other parameters such as surface gravity, irradiation temperature,
nd stellar ef fecti ve temperature are deri ved from these free param-
ters. 

(i) Planet radius [ R Jup ]: This is derived from the planet mass using
he relation from Chen & Kipping ( 2017 ), shown in equation ( 2 ),
here R is the planet radius and M is the planet mass: 

R 

R ⊕
= 17 . 78 

(
M 

M ⊕

)−0 . 044 

. (2) 

We note that our aim is to present the results for a simple general
ase, and the mass–radius relation we use is suitable for this purpose.
o we ver, we must emphasize that the relation between mass and

adius for giant exoplanets is not unique and depends on various
actors, such as the mass of metals, core mass, irradiation received
y the planet, and their effect on the inflation of radius. All of these
actors can impact the evolution path of giant planets and their final
adius, leading to a dispersion in the mass–radius relation. 

(i) Temperatur e-pr essur e pr ofile : As our aim is to demonstrate
he use of NNs for calculating non-equilibrium chemical abundances
n a general case, we have utilized an analytical, non-inverted
emperature–pressure profile from Heng, Mendon c ¸a & Lee ( 2014 ).

hile these analytical profiles are simplistic, they are widely used
n the literature to explore general cases and are suitable for our
urposes. Ho we ver, for calculating the chemistry of a real planet,
ore detailed calculations that take into account the opacities of

ifferent species and their abundances in the atmosphere should be
ncluded. The assumptions for this calculation are T int = 120 K,
L = 0.1, κS = 0.02, βS = 1, and βL = 1, based on the default values

ncluded in the VULCAN code Tsai et al. ( 2017 ). The pressure
rofile is constructed within the range [10 −2 , 10 9 ] dyne cm 

−2 . This
alculation is an important step, as it determines whether the set of
arameters is valid for the data set. If any part of the temperature
rofile falls outside of the range [500, 2500] K, the temperature range
or which VULCAN is validated, the example is rejected from the
ata set. 
(ii) Stellar flux : The stellar spectra used for the data set have two

ources: the Measurements of the Ultraviolet Spectra Characteristics
f Low-mass Exoplanetary Systems (MUSCLES) collaboration
France et al. 2016 ; Loyd et al. 2016 ; Youngblood et al. 2016 ) and the
HOENIX Stellar and Planetary Atmosphere Code (Baron, Chen &
auschildt 2010 ). The MUSCLES data base contains observations

rom M- and K-dwarf exoplanet host stars in the optical, UV, and
-ray regime, and is used for stars with an ef fecti ve temperature

ower than 6000 K. For effective temperatures of 6000 K and above,
tellar spectra are generated by the PHOENIX model. Flux values
elow 10 −14 erg nm 

−1 cm 

−2 s −1 are cut-off. 

The remaining parameters of the VULCAN configuration files are
ept constant throughout the data set. Eddy and molecular diffusion
re both taken into account as fixed parameters. For the eddy diffusion
onstant, we use a constant of K zz = 10 10 cm 

2 s −1 . The molecular
iffusion constant is taken for a hydrogen-dominated gas as described
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n Banks & Kockarts ( 1973 ). As a standard chemical network, we
ake use of VULCAN’s reduced default N–C–H–O network that 

ncludes photochemistry. We assume solar elemental abundances for 
he hot-Jupiters, and we make use of 150 pressure levels for the
eight layers. The output of VULCAN is sav ed ev ery 10 steps. In
otal, 13291 valid configurations are generated within the parameter 
pace. 

.2.2 Formatting 

n order to limit the computation times when training the network, 
he input–output pairs do not contain all of the information supplied 
y VULCAN. 
For the inputs, a selection of six properties is made. These 

roperties are extracted from VULCAN before time integration 
tarts, so they can be interpreted as the initial conditions of the
imulation. The six properties are: 

(i) Initial mixing ratios : the initial mixing ratios of the species in
he simulation. These mixing ratios are calculated by VULCAN using 
astChem (Stock et al. 2018b ). The shape of the array containing the
ixing ratios is (69, 150), as the mixing ratios are defined for 69

pecies for 150 height layers each. 
(ii) Temperatur e pr ofile : the temperature profile as calculated by 

he analytical expression from Heng et al. ( 2014 ). The temperature
s defined for every height layer, so it has a shape of (150). 

(iii) Pr essur e pr ofile : the pressure profile that is calculated as part
f the temperature profile calculation. It is of the same shape, (150).
(iv) Gravitational profile : the gravitational acceleration per 

eight layer. It has the shape (150). 
(v) Stellar flux component : one of the two components that make 

p the stellar spectrum contains the flux values. This is generated 
rom either the MUSCLES data base and/or the PHOENIX model 
nd interpolated to a shape of (2500). 

(vi) Stellar wavelength component : the second component of 
he stellar spectrum contains the wavelengths corresponding to the 
ux values. It has the same shape, (2500). 

For the outputs, we make use of the time-dependent mixing ratios.
Because not every simulation takes the same amount of time to 

onverge to a solution, the number of saved abundances differs per 
ULCAN simulations. To include the information contained in the 

volution of the abundances through time, 10 sets of abundances, 
ncluding the steady-state abundances, are saved in each output. This 
et of abundances is evenly spaced through time, so the simulation 
ime between abundances will vary for different VULCAN simula- 
ion runs. Before the abundances are sav ed, the y are conv erted to
ixing ratios. The shape of the outputs is (10, 69, 150). 

.2.3 Data standardization 

he inputs and outputs of the various components differ by several 
rders in magnitude. To ensure that the NN trained on the data
et is not biased to wards higher-v alued parameters, the data has
o be standardized. First, the distributions of the properties are 
tandardized according to equation ( 3 ): 

 s = 

log 10 ( p) − μ

σ
, (3) 

ith 

= 

1 

n 

n ∑ 

i= 0 

log 10 ( p i ) , (4) 
nd 

= 

√ √ √ √ 

1 

n 

n ∑ 

i= 0 

( log 10 ( p i ) − μ) 2 , (5) 

here p is the property to be scaled, n is the size of the data set, and
 s is the standardized property. After standardization, the properties 
re normalized in the range [0, 1]: 

 s ,n = 

p s − min ( p s ) 

max ( p s ) − min ( p s ) 
, (6) 

here p s, n is the final normalized property. 
Once the input properties are normalized, the output mixing ratios 

re normalized with the same scaling parameters as were used for
he input mixing ratios. When the trained NN is presented with an
nput for which to predict the mixing ratios, it only has information
bout the scaling parameters of the inputs. To be able to unnormalize
he outputs, they need to be scaled with the same scaling parameters.

.3 Model ar chitectur e 

.3.1 Autoencoder structure 

he input of each configuration within the data set consists of roughly
5 800 values. To speed up the training process and complexity of
he NN, we make use of an autoencoder (AE) for reducing the
imensionality of the examples in the data set. In previous studies,
his approach has been shown to be an ef fecti ve way to reduce
imensionality within chemical kinetics (e.g. Grassi et al. 2022 ). An
E consists of two collaborating NNs: an encoder and a decoder .
he task of the encoder is to reduce the dimensionality of the input
ata by extracting characterizing features from the example and 
ncoding them in a lower dimensionality representation called the 
atent r epr esentation . The task of the decoder is to take the latent
epresentation and use it to reconstruct the original input data with
s little loss of information as possible. The encoder and decoder are
rained simultaneously, and no restraints are placed on the way the AE
ses its latent space , apart from the size of the latent representations.
As discussed in Section 2.2.2 , the inputs of the model consist of

ix properties. Because these properties do not share the same shape,
e cannot encode and decode them using a single AE. Instead, we

onstruct six unique AE, one for each property of the model inputs.
ig. 1 shows an o v erview of the process of encoding the initial
onditions. The decoding process is not shown but is symmetrical to
he encoding process. 

Each encoder conceals a specific property into a corresponding 
atent representation. To get the latent presentation of the entire input
xample, l i , the property latent representations { l MR , l F , l W 

, l T , l P ,
 G } are concatenated. When decoding the latent representation of 
he input, the latent vector l i is split back into the different property
atent representations, and given to that property’s decoder. Every 
ncoder–decoder pair is trained separately. 

The hyperparameters of each AE are optimized by trial and error.
 summary of each set of hyperparameters is shown in Table 1 . 

.3.1.1 Mixing ratios autoencoder The mixing ratios are the largest 
ontributor to the size of the model inputs. Compressing each of
he species’ mixing ratios efficiently reduces the size of the input
atent representation, l i , by a substantial amount. Because of the
imited size of the training data set, a compromise has to be made
o successfully train this AE. Rather than concurrently encoding all 
9 species for each example, each species is encoded individually. 
MNRAS 524, 643–655 (2023) 
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M

Figure 1. The different properties and their corresponding encoders that together encode the input data. The decoding process is symmetrical to this encoding 
process, where every property has a corresponding property decoder. 

Table 1. Hyperparameters for the property AEs. Each AE has an encoder 
and decoder NN. These are MLPs, consisting of seven fully connected layers 
with hyperbolic tangent acti v ation functions. 

Model Hidden size Latent size Optimizer Learning rate Batch size Epochs 

MRAE 256 30 Adam 10 −5 32 200 
PAE 256 2 Adam 10 −6 4 100 
TAE 256 30 Adam 10 −5 4 100 
GAE 256 30 Adam 10 −5 4 100 
FAE 1024 256 Adam 10 −5 4 200 
WAE 1024 2 Adam 10 −7 4 200 
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s a result, the training data set expands by a factor of 69 while
isre garding an y potential correlations in species abundances during
he encoding procedure. 

Fig. 2 shows the application of such an AE: for a given input,
ach of the 69 species’ mixing ratios is encoded into corresponding
atent vectors { l 1 , l 2 , l 3 , . . . , l 69 } . The concatenation of these 69 latent
ectors then makes up the latent representation of the mixing ratios,
 MR . 

All encoders and decoders are multilayer perceptron (MLP) NNs.
or the mixing ratio autoencoder (MRAE), the encoder and decoder
oth consist of seven fully connected layers, followed by hyperbolic
angent acti v ation functions. The encoder input layer has a size of
50 and the output layer has a size of 30. The hidden layers have a
ize of 256. Adversely, the decoder has an input layer size of 30 and
n output layer size of 150. The compression factor of the MRAE is
herefore 150/30 = 5. 

To train the MRAE, the data set is split into a train data set
70 per cent), a validation data set (20 per cent), and a test data
et (10 per cent). To increase the size of the data set, the MRAE is
rained on a shuffled set 1 of the mixing ratios of both the inputs and
he output of the chemical kinetics simulations. The performance of
he AE is measured using the loss function in equation ( 7 ): 

 = 

1 

N 

N ∑ 

i= 1 

(
p i − a i 

a i 

)2 

. (7) 

here L is the loss, N is the number of elements in the ac-
ual/predicted vector, and p i and a i are the i -th elements of the
NRAS 524, 643–655 (2023) 

 Using a random sampler function within the PYTORCH package. 

T  

l  

4

redicted and actual v ectors, respectiv ely. The MRAE is optimized
sing the Adam optimizer (Kingma & Ba 2014 ), with a learning rate
f 10 −5 . A batch size of 32 is used, and the model is trained for 200
pochs. These hyperparameters can also be found in Table 1 . 

.3.1.2 Atmospheric profile autoencoders The temperature, pres-
ure, and gravity profiles all have the same shape of (150), so their
E can use the same architecture. Moreo v er, the atmospheric profiles

hare their shape with the mixing ratios of individual species (i.e.
he height layers in the atmosphere). Therefore, a very similar NN
tructure to that of the MRAE is used for the atmospheric profile
E. The encoder input layer shape, the decoder output layer shape,

nd the hidden layer shapes are taken directly from the MRAE
or all atmospheric profile AE. An important parameter to tune
or each atmospheric profile AE separately is the size of the latent
epresentations. 

The pressure profile is set logarithmically for all examples
n the data set. By taking the logarithm of the pressures, the
pacing becomes linear, log ( P i ) − log ( P i + 1 ). Theoretically, we
hen only need two values to fully describe the pressure profile:
he pressure at the first and last height layers. To encode these
alues, no AE is needed. One could take this one step further,
nd provide input parameters like mass and radius, from which
he pressure and gravity profiles are dependent, directly to the
ore model as inputs. While this more specialized approach is
uitable for these input parameters, it is not generalizable to other
nput parameters. To keep the model architecture more general
nd adaptable to different input parameters, an AE is used none
he less. The size of the pressure profile autoencoder (PAE) latent
epresentations is set to 2. This corresponds to a compression factor
f 150/2 = 75. 
The temperature and gravity profiles are not linear. For both the

emperature autoencoder (TAE) and gravity autoencoder (GAE),
 latent representation size of 30 is used. This corresponds to
 compression factor of 150/30 = 5, the same as for the 
RAE. 
All profile AEs are e v aluated using the loss function previously

efined in equation ( 7 ) and are optimized using the Adam optimizer.
he TAE and GAE use a learning rate of 10 −5 , and the PAE uses a

earning rate of 10 −6 . All profile AEs are trained with a batch size of
, for 100 epochs (see also Table 1 ). 
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Figure 2. A more detailed sketch of the architecture of the mixing ratio AE. MR i denotes the mixing ratio of a certain species, i , for all height layers, and l i 
denotes the encoded mixing ratios for species i . 
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the latent representations of the VULCAN inputs l i and outputs l o . 
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.3.1.3 Stellar spectrum autoencoders After the mixing ratios, the 
tellar spectrum components contribute predominantly to the input 
ata size. The stellar spectrum is comprised of a flux and a
avelength component. These components share the same shape, 

o one NN structure can be used for both AEs. The structure
f the encoder and decoder is similar to that of the MRAE: a
-layer, fully connected MLP with hyperbolic tangent acti v ation 
unctions after each layer. The encoder input layer and decoder 
utput layer have a size of 2500, and the hidden layers have a size of
024. 
Similarly to the PAE, the wavelength bins are spaced logarith- 
ically. Again only two values are needed to fully describe the 
avelength range. The latent representation size for the wavelength 

utoencoder (WAE) is therefore also 2. The compression factor for 
his network is 2500/2 = 1250. The flux autoencoder (FAE) has a
atent representation size of 256, which gives it a compression factor 
f 2500/256 ≈ 10. 
Both AEs are e v aluated using the loss function from equation ( 7 ).

hey are optimized using the Adam optimizer, the WAE with a 
earning rate of 10 −7 , and the FAE with a learning rate of 10 −5 . They
re both trained for 200 epochs with batches of four examples (see
lso Table 1 ). 

.3.2 Core network 

s mentioned before, the outputs are also large in dimensionality. 
ecause the outputs contain mixing ratios for all species, for 10-time 

teps (Section 2.2 ), they can be encoded using the MRAE. Fig. 3
ho ws ho w the AE would encode both the inputs and the last time
tep of the outputs to their latent representations l i and l o , respectively.
ote that even though the AE is shown twice in this figure, the same
E is used to encode both the inputs and the outputs. In the middle
f the figure, connecting the two latent spaces, a second NN called
he core network is located. 

The function of the core network is to learn a mapping between
he latent representations of the inputs and the evolved outputs. 
he design of the core netw ork tak es advantage of some of the
haracteristics of VULCAN. From Section 2.1, we know that 
ULCAN solves ODEs for specific atmospheric configurations over 
 simulated period of time. To impart this sense of time in the core
N, a Long–Short Term Memory (LSTM) is used as the base of
he design. The LSTM was chosen for its pro v en performance in
umerous applications, from stellar variability (e.g. Jamal & Bloom 

020 ) to Core-collapse supernovae search (e.g. Iess et al. 2023 ) and
olar radio spectrum classification (e.g. Xu et al. 2019 ), as well as
he ease of implementation. The LSTM has known shortcomings 
ike the vanishing gradient problem and long training times when 
ealing with long sequences. Ho we ver, with the short sequence
ength used with our model (i.e. 10 time-steps), these shortcomings 
re not considered problematic for this proof of concept. 

The input of the core network is not sequential in nature. With some
hanges, we can use the LSTM in a ‘one-to-many’ configuration. In
his configuration, the initial output of the LSTM h 0 is given to an

LP. This MLP produces a vector with the same shape as the initial
nput x 0 , which can be interpreted as the ‘evolved’ input x 1 . This
volved input is fed back into the LSTM to produce h 1 , from which
he MLP produces x 2 , and so forth. This can be repeated for an
rbitrary number of steps. 

The design of the core network is visualized in Fig. 4 . We interpret
he latent representation of the inputs l i as the initial value x 0 . The
STM and MLP configuration produces nine intermediary ‘evolved’ 

atent representations { x 1 , . . . , x 9 } before arriving at the final evolved
MNRAS 524, 643–655 (2023) 
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Figure 4. The design of the core network. It consists of a one-to-many LSTM + MLP configuration that is run for 10 steps. 
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atent representation x 10 . We interpret this latent representation as the
rediction of the latent representation of the evolved output l o . 

.3.2.1 Training When the core model predicts a sequence of 10
atent representations, it is essentially traversing the latent space. We
an guide the network to learn to traverse the latent space similarly to
o w VULCAN simulations e volve by using the sequence of outputs
aved in the data set (Section 2.2 ). We do this in two ways: first,
e construct a loss function that not only depends on the accuracy
f the prediction of the latent representation of the final output l o ,
ut also on the accuracy of the intermittent latent representation 
redictions: 

 = 

10 ∑ 

t= 1 

( 

1 

N 

N ∑ 

i= 1 

(
p t,i − a t,i 

)2 

) 

, (8) 

here L is the loss, N is the number of elements in the ac-
ual/predicted vector, p t, i is the i -th element of the latent represen-
ation prediction vector at time step t , and a t, i is the i -th element
f the latent representation vector of the output at time step t .
ith this notation, a 10 = l o . By training a network with this loss

unction, we force the core network to evolve the latent mixing
atios similarly to ho w VULCAN e volves mixing ratios. It should be
oted that the latent representation of the inputs l i is larger than the
atent representation of the outputs l o , as it contains more properties
han just mixing ratios. The predicted latent representations xt are
herefore also larger than l o . To account for this, we only look at the
lements corresponding to the encoded mixing ratios in l i when
omparing the predicted latent representations x t and the output
ixing ratios a t / l o . 
To further incentivize the core network to adhere to VULCAN’s

volution patterns, we can intercept the predicted latent representa-
ions x t before they get fed back into the LSTM, and replace them with
he latent representation of the actual output of the corresponding
ime step. This way, the core network is al w ays learning from
atent representations that follow VULCAN’s evolution, even if the
etwork is predicting poorly. This is only done during the training
f the network when the true VULCAN outputs are known. During
alidation and testing, the predicted latent representations x t are not
ltered. 

The core model LSTM has a hidden and cell size of 4096. The
LP has only two layers: an input layer of size 4096, and an output
NRAS 524, 643–655 (2023) 
ayer of the same size as the latent representation of the inputs l i ,
ollowed by a hyperbolic tangent function. It is optimized with the
dam optimizer, with a learning rate of 10 −4 and a batch size of 8.

t is trained for 100 epochs. 

.3.3 Deployment 

hen the trained model is deployed on the validation and test data
et, the first step is encoding the inputs into their latent representation
 i using the encoder part of the AE (top left section in Fig. 3 ). The
ore network then predicts the latent representation of the evolved
ULCAN output l o by traversing the latent space in 10 steps (centre

ection in Fig. 3 ). The prediction of the latent representation of
he VULCAN output is then decoded by the decoder part of the
E to obtain the predicted mixing ratios (bottom right section in 
ig. 3 ). 

 RESULTS  

.1 Autoencoders 

.1.1 Mixing ratio autoencoder 

he top row of Fig. 5 shows the reconstructed mixing ratio values
gainst their actual values (left plot) for all examples from the test
ata set. For the entire range of mixing ratios, the majority of the
econstructions lie within an order of magnitude of the diagonal line
hat marks perfect reconstructions, with an R -squared value of R 

2 =
.9997. 
The right plot of the top row of Fig. 5 shows the reconstruction

rror of the mixing ratios in logarithmic space. This scale is chosen
ecause the AEs are trained in log space (Section 2.2 ). The solid
ine shows the median and the dashed lines show the 5th and 95th
ercentiles. From the right figure, we can see that 90 per cent of
he reconstructions have an error between −0.39 and 0.40 orders of

agnitude. 

.1.2 Flux autoencoder 

he middle row of Fig. 5 (left) shows the reconstructed flux values
gainst their actual value. All reconstructed flux values are within
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Figure 5. The reconstructed against the actual input values (left column) and the reconstruction error in log space (right column) for the mixing ratios (top 
row), stellar flux (middle row), and the wavelengths (bottom row). The diagonal dashed line in the reconstructed versus actual mixing ratios plot shows the 
performance of a perfectly reconstructing model. Here, the colour represents the number of examples within each bin. In the reconstruction error figure, the solid 
line shows the median value, and the dashed lines show the 5th and 95th percentiles. The R 

2 values of each reconstruction plot are shown in the left column. 
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.5 order magnitude of the graph diagonal. At fluxes with values
round 10 6 erg nm 

−1 cm 

−2 s −1 , the FAE is slightly underpredicting
he actual flux values. 

From the reconstruction error plot (right), we can see that
0 per cent of the reconstructions have an error between −0.024
nd 0.031 orders of magnitude. In this figure, we see a distinct
nderprediction of a small number of examples, which are the high
ux values we see being underpredicted. 

.1.3 Wavelength autoencoder 

he bottom row of Fig. 5 (left) shows the reconstructed wavelength
alues against their actual value. All reconstructed wavelength values
re close to the actual v alues, de viating less than ∼10 nm from the
raph diagonal. We can see that for wavelengths with values around
50 nm, the FAE has a tendency to underpredict. 
From the reconstruction error of the wavelength values plot

right), we can see that 90 per cent of the reconstructions have an
rror between −0.001 and 0.001 orders of magnitude. The slight
nderprediction of higher wavelength values is also visible in this
gure. 

.1.4 Pr essur e profile autoencoder 

he top row of Fig. 6 (left) shows the reconstructed pressure values
gainst their actual value. All reconstructed pressure values are well
ithin 0.1 order magnitude of the graph diagonal. 
From the reconstruction error plot of the pressure values (right),

e can see that 90 per cent of the reconstructions have an error
etween −0.0003 and 0.0003 orders of magnitude. This figure also
hows a very minor underprediction of some pressure values, which
orrespond to pressure values of ∼10 3 bar. 

.1.5 Temperature profile autoencoder 

he middle row of Fig. 6 (left) shows the reconstructed temperature
alues against their actual value for samples from the test data set. It
s immediately obvious that this AE cannot accurately reconstruct the
emperature profiles. A fraction of temperatures in the range ∼750 K
 T < ∼1400 K are reconstructed close to the graph diagonal, but

he TAE is largely o v erpredicting temperatures below ∼750 K and
nderpredicting temperatures abo v e ∼750 K. 
The histogram of reconstruction errors of the temperature values

right) shows under- and o v erprediction. 90 per cent of the recon-
tructions have an error between 15.8 and 754.97 K. Most predictions
utside this range are underpredictions. 

.1.6 Gravity profile autoencoder 

he GAE shows similar behaviour to the TAE. The bottom row
f Fig. 6 (left) shows the reconstructed gravity values against their
ctual value, for samples from the test data set. Gravity values below
4000 cm s −2 are underpredicted by the AE, while values abo v e
4000 cm s −2 are underpredicted. Only values around ∼4000 cm s −2 

re predicted accurately by the GAE. In the reconstruction errors
lot of the GAE of Fig. 6 (right), we can see that gravity values
re consistently being o v er- and underpredicted. 90 per cent of the
econstructions have an error between 197.46 and 4939.6 cm s −2 .

ost predictions outside this range are o v erpredictions. 
NRAS 524, 643–655 (2023) 
.2 Core network 

ecause the TAE and GAE do not accurately reconstruct the
emperature and gravity profiles, these profiles were not encoded
or the final model. Instead, they were put directly in the latent
epresentations of the inputs. This way, no information contained in
hese profiles is lost. 

The left plot in Fig. 7 shows the mixing ratios predicted by the
rained NN model against the actual mixing ratios for the test data
et. The histogram shows that most of the model predictions lie
ithin ∼1 order magnitude of the diagonal of the graph. A notable

xception are the predictions for the few mixing ratios with values
ower than ∼10 −44 , for which the model o v erpredicts. These species
an be neglected since they are not abundant enough to play a big
ole in the chemistry or to show features in the observable spectra. 

Fig. 7 (right) shows the mixing ratio prediction error of the NN
odel in log-space. The solid line shows the median and the dashed

ines show the 5th and 95th percentiles. From the figure, we can
ee that 90 per cent of the model predictions have an error between
0.66 and 0.65 orders magnitude. Outside of this range, the model

oes not show a clear tendency to either over- or underpredict. 
Fig. 8 shows selected examples (best, typical, and worst cases) of

redictions by the NN compared with the output of the VULCAN
odel for a selection of seven species. The best case (top panel)

hows a prediction that is almost indistinguishable from the actual
ixing ratios. The examples in the typical case (middle panel) and
orst case (lower panel) show larger prediction errors. In the typical

ase, CO 2 , CO, and HCN have the largest prediction errors in the
ower atmosphere, though still negligible. The worst case shows the
argest prediction errors, with H having prediction errors of up to
lmost 1 order of magnitude in the upper atmosphere. Notable is that
his case has very strong photochemistry in the upper atmosphere as
t’s positioned nearby its host star. 

To compare the computational efficiency of VULCAN and the NN
odel, the computational time to calculate or predict every example

n the full data set was recorded. The results are presented in Table 2 .
t should be noted that the VULCAN simulations were run on similar,
ut older hardware than the NN model. The median computational
imes show a ∼7.5 · 10 3 × decrease in computational time for the NN

odel. The longest computational time required by the NN model
till shows a ∼10 3 × decrease in computational time compared to
he fastest VULCAN simulation. 

 DI SCUSSI ON  

n this study, we successfully used AEs to extract most of the char-
cterizing input features and encode them into latent representations
or the mixing ratios, stellar flux, wavelengths, and pressure profiles.

ithin these four groups, the largest prediction errors stem from
he MRAE due to the high variability in input values, as opposed
o the other input sources. We included the initial and evolved
ixing ratios of 69 species o v er 150 height layers. Additionally,

he mixing ratio profiles among species differed significantly from
ne another (e.g. CH 4 and CO in Fig. 8 ). This made the complexity of
xtracting and encoding the fundamental input features, highest for
his particular AE. In opposition, the variety in the flux from stellar
pectra was much less. We obtained the stellar spectra from either
he MUSCLES data base or generated them using the PHOENIX

odel. The spectra from these different sources were quite distinct
rom each other in the EUV (0.5–200 nm). The PHOENIX models
ssume the spectra to follow blackbodies, while, in reality, M- and
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Figure 6. The reconstructed against the actual input values (left column), and the reconstruction error in log space (right column) for the pressure profile (top 
row), temperature profile (middle row), and the gravity profile (bottom row). Note that the reconstruction errors plot of the temperature and gravity values is 
calculated in linear space. 
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Figure 7. The LSTM predicted mixing ratios plotted against the actual mixing ratios (left) and the LSTM mixing ratio prediction error in log space (right). The 
dashed diagonal line in the left plot shows the performance of a perfectly predicting model, and the colour of each bin represents the number of predictions. The 
solid line in the right plot shows the median value, and the dashed lines show the 5th and 95th percentiles. 
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2 Note that vertical mixing is taken into account in every simulation, but is 
kept constant throughout the data set. 
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-stars have shown to be highly active in the EUV (Reiners & Basri
 2008 )), as was observed by the MUSCLES collaboration. None the
ess, the spectra within each method seemed largely similar, which
ade it more straightforward for the FAE to learn how to accurately

econstruct them. For both the PAE and the WAE, the profiles were
inearly spaced in logarithmic space, which made it easy for the
Es to learn how to encode these parameters. It is remarkable,
o we ver, that the WAE was not able to perfectly reproduce the
 avelengths. A solution w ould be to make use of a handcrafted

lgorithm that encodes merely the first and last elements in the array.
t is recommended to make use of such an algorithm for future use.
inally, the temperature and gravity profile AEs were not successful
t encoding and reconstructing their inputs. Both AEs produced the
ame solutions for each input example. The limited data set size and
arge variations in the temperature and gravity example cases could
xplain the AEs to be prone to errors. Future studies could focus
n improving these specific AEs by performing root cause analysis.
o we ver, a more specialized approach to encoding the pressure and
ravity profiles would be to provide hyperparameters, such as the
lanet mass and radius, directly to the core model. Such an approach
egates the need to train AEs for these input parameters. 
The prediction of the core network, LSTM, is within one order

f magnitude for the majority ( > 90 per cent) of the predictions.
hese errors are comparable to the discrepancies between different
hemical kinetic codes (Venot et al. 2012 ). Ho we v er, the accurac y of
redictions of different examples varies. This inconsistency can arise
ue to some bias within the data set. Example cases similar to the
est-case scenario (see Fig. 8 ) were more pre v alent in the data set,
ausing the core network to produce better predictions of this type
f hot-Jupiters. Additionally, by plotting the loss of each validation
ase against input parameters (see Fig. 9 ), it becomes apparent that
ome specific system parameters perform better than others. From
ig. 9 , we see that planets with smaller orbit radii seem to have
orse predictions. One explanation could be that these planets endure
ore irradiation from their host star, ensuring photochemistry is the

ominant process in the upper atmosphere. The abrupt and severe
hanges in abundances for some species due to photodissociation
n the upper atmosphere could be difficult for the core network to
NRAS 524, 643–655 (2023) 
earn from with a limited data set as provided in this study. Also
oteworthy is the correlation between the planetary mass and the
erformance of the core network. Higher-mass planets tend to have
ower losses as compared to lower-mass planets. Future work could
ocus on improving the prediction losses of the chemistry profiles
or lower-mass planets and planets that orbit their host star close in. 

We also showed that the trained model consistently o v erpredicts
ixing ratios that have a value lower than 10 −44 . This can again

e explained by the lack of examples that have such lower values.
pecies with mixing ratios this low are small contributors to the
tmospheric composition nevertheless and are not expected to affect
orward models. 

Finally, we want to note that the hyperparameters used in this study
ave been found by trial and error and have not been proven to be the
ost optimal values. Future studies could focus on a hyperparameter

earch for each individual AE and core network to find the most
ptimal parameters. 
Due to all mentioned caveats, there is room for impro v ement in

uture work. Here, we detail some of the aspects that are out of
he scope of this paper, but we will be looking into them in future
ublications. Evidently, a larger size of the data set, with which the
etwork is trained, is expected to improve the results significantly.
n order to train a NN to be more generalized and less biased, a more
iv erse and e xtensiv e data set should be created. Free parameters that
an be taken into account, which were not explored in this study, are
ariables such as the eddy diffusion coefficient, 2 condensation, and
omposition of the atmosphere (e.g. varying metallicity and the C/O
atio). 

Another approach to impro v e possibly the results is to change the
odel itself. The traditional AEs can be replaced with variational
Es , VAEs (Kingma & Welling 2013 ). These types of AEs are based
n Bayesian statistics. It is possible to regulate the latent space such
hat similar input e xamples hav e similar latent representations that
ie close to each other within the latent space. The core network
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Figure 8. The mixing ratios per height layer for the best (top), typical (middle), and the worst (bottom) case of the validation set. The planet parameters for 
each case are given at the top of the plot. The solid lines show the actual mixing ratios as calculated by VULCAN, and the dashed lines show the NN model 
predictions. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/1/643/7197449 by U
niversiteit Leiden - LU

M
C

 user on 21 February 2024
MNRAS 524, 643–655 (2023) 



654 J. L. A. M. Hendrix, A. J. Louca and Y. Miguel 

M

Table 2. Median, minimum, and maximum running times of VULCAN 

and the NN model for all configurations in the data set. VULCAN runs were 
performed on a single CPU core using an Intel(R) Xeon(R) CPU E5- 
4620 0 @ 2.20 GHz . The NN model was run on a single core using an 
Intel(R) Xeon(R) W-1250 CPU @ 3.30 GHz . 

Code Median Minimum Maximum 

VULCAN 5994.3 s 1236.7 s 102223.0 s 
NN model 0.77 s 0.73 s 0.93 s 

Pl
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Figure 9. The loss as a function of the semimajor axis of each validation 
case. The colour represents the planet mass in M J and the size of each scatter 
point represents the size of the host star which ranges between 1 and 1.5 M �. 
The loss is calculated by making use of equation ( 7 ). 
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ight then be able to learn how to traverse a regulated latent
pace and predict more accurately. The core network itself can be
mpro v ed by, for example, including more time steps within the
STM. Adding more time steps will ensure that the network predicts

he solutions in a more similar way as VULCAN integrates towards
he solution. A disadvantage of this is that the training time for the
etwork will increase. Lastly, the recurrent NN architecture could
e changed to a transformer design. Recently, the transformer NN
rchitecture, proposed by Vaswani et al. ( 2017 ), revolutionized the
eld of sequence transactions within machine learning. By using
 so-called attention mechanism, the transformer NN outperforms
ecurrent NNs in accuracy and efficiency. Because of the similarity
etween transformer and recurrent NN applications, the core model
ay perform better when changing to this new type of architecture.
o we ver, because transformers require tokenized inputs, the AEs
ill also have to be changed to produce the expected outputs.
he implementation of a transformer would therefore increase the
omplexity of the entire model and should be done carefully. 

A different direction in approach would be, for example, to use
nterpolation methods in the already existing data set. The limitation
f such methods is the ease of distribution. The size of the data set
sed in this study is 600 GB, as opposed to a size of 3GB for the
eights of the NN used in this study. 

 SUMMARY  A N D  C O N C L U S I O N S  

n this study, we investigated the ability of a NN to replace the time-
ependent ordinary differential equations in the chemical kinetics
ode VULCAN (Tsai et al. 2017 , 2021 ). The aim of this research was
o explore the LSTM architecture for solving ordinary differential
quations that include vertical mixing and photochemistry. We
NRAS 524, 643–655 (2023) 
rst created a data set that contains the inputs and outputs of
ULCAN simulations of hot-Jupiter atmospheres. We made use
f the planetary mass (0.5–20 M J ), the semimajor axis (0.01–0.5 au),
nd the stellar radius (1–1.5 R �) as free parameters. Other parameters
or the VULCAN configurations were derived either from analytical
elations or kept constant throughout the data set. The input of the
ata set comprises the initial mixing ratios, the stellar spectrum,
he temperature and pressure profiles, and the gravity profiles. Note
hat the NN trained in this study is limited to the chosen free
arameters and cannot be used for atmospheric models that include:
.g. condensation. The outputs of the data set contain the mixing
atios of the species in the atmosphere, taken from 10-time steps
including the steady state) during the VULCAN simulation. This
ata was used to train a NN that consists of two parts: the AE network
nd the core network. The AE was used to reduce the dimensionality
f the input and output data from the data set by encoding them into
ower dimensional latent r epr esentations . The AE network consisted
f six smaller AEs, designed and trained to encode and decode the
ixing ratios, flux, wavelengths, and temperature-, pressure-, and

ravity profiles to and from their respective latent representations.
he total input latent representation was the concatenation of these
ix smaller ones. The core network was designed to have an LSTM-
ased architecture, and it mapped between the latent representation of
he inputs to the encoded evolved output by traversing the latent space
n ten steps. During the training, the latent representations at these
en steps were compared to the ten sets of mixing ratios saved in the
utputs of the data set to ensure that the core network is evolving the
atent representation in a similar fashion as the VULCAN simulation
volves the mixing ratios. To summarize, we found that: 

(i) the mixing ratios, flux, wavelengths, and pressure profile AEs
ere able to efficiently encode and accurately reconstruct their

espective input properties 
(ii) the AEs were not able to encode and decode the temperature-

nd gravity profiles successfully. These AEs were, therefore, not
sed and instead, these profiles were put directly into the latent
epresentation of the inputs 

(iii) the fully trained model (i.e. including the core network) was
ble to predict the mixing ratios of the species with the errors in
he range [ −0.66, 0.65] orders magnitude for 90 per cent of the
ases. Due to imbalances in the data set, the model is biased to more
ccurately solve for some examples as compared to others 

(iv) the fully trained model is ∼10 3 times faster than the VULCAN
imulations 

Overall, this study has shown that machine learning is a suitable
pproach to accelerate chemical kinetics codes for modelling exo-
lanet atmospheres. 

ATA  AVAI LABI LI TY  

ll simulated data created in this study will be shared upon reason-
ble request to the corresponding author. The code and results are
ublicly available on github.com/JuliusHendrix/MRP. 
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