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Abstract

Dynamical chaos is a fundamental manifestation of gravity in astrophysical, many-
body systems. The spectrum of Lyapunov exponents quantifies the associated expo-
nential response to small perturbations. Analytical derivations of these exponents are
critical for understanding the stability and predictability of observed systems. This
essay presents a new model for chaos in systems with eccentric and crossing orbits.
Here, exponential divergence is not a continuous process but rather the cumulative
effect of an ever-increasing linear response driven by discrete events at regular inter-
vals, i.e., punctuated chaos. We show that long-lived systems with punctuated chaos
can magnify Planck length perturbations to astronomical scales within their lifetime,
rendering them fundamentally indeterministic.
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Measuring chaos in self-gravitating N-body systems

Newton’s gravitational N-body problem [10] is commonly adopted as a model for the dy-

namical evolution of astrophysical systems in the weak gravity regime. Applications include

the orbital evolution of comets, exoplanets, dense stellar systems, galaxies, and even cos-

mological structures. Finding analytical solutions for systems with N > 2 is challenging

due to chaos, as pointed out by Poincaré [11, 12]. Over the last few decades, since the

advent of the computer, progress has been made from a computational perspective with

the development of increasingly fast and accurate N-body algorithms. However, exponential

magnification of numerical errors seems unavoidable for chaotic N-body systems, resulting in

the calculated trajectory completely diverging from the sought-after mathematical solution

to Newton’s equations [9, 13]. It is an article of faith that such “approximate” solutions are

nevertheless valid statistically by conserving globally conserved quantities, such as energy

and angular momentum [8]. The statistical mechanics reasoning here is that the numerical

N-body system is ergodic, i.e., it explores the available phase space volume completely and

in an unbiased manner [14]. The reliability of N-body simulations remains a fundamental

unsolved problem [4]. Progress is made by pursuing a better understanding of the growth

of small perturbations in chaotic N-body systems. If these perturbations are numerical ar-

tifacts, we aim to determine the validity of the ergodic assumption [13, 5] and construct

potential new and improved N-body algorithms [6]. On the other hand, if the perturbations

are of a physical nature, then the growth rate of perturbations informs us on the stability

and predictability of astrophysical systems [5, 1, 17, 15]. For all of these various reasons,

being able to resolve and accurately measure the growth of small perturbations is essential.

To study chaos in N-body systems, we developed the most accurate and precise N-body

code to date, called Brutus [4]. We achieve this feature by solving Newton’s equations of

motion by brute force. Firstly, we implement the Bulirsch-Stoer integration method, which

consists of an iterative integration scheme with extrapolation to zero step size. Secondly, we

replace the conventional double-precision arithmetic with an arbitrary-precision arithmetic
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software library. The latter allows us to define the number of decimal places to represent a

number, only limited by the computer’s memory. Using Brutus we control the discretisation

and round-off errors and systematically reduce their magnitude to the point of numerical

convergence. We define the converged solution as a numerical solution for which the first

specified number of decimal places have converged, and assume that these decimal places

are then the same as in the mathematical solution [14]. Hence, the main novelty of our

experimental approach is that we can study dynamical chaos with converged solutions to the

N-body problem [4, 2, 14, 5, 1]. Numerically converged solutions are crucial for distinguishing

between physical chaos and numerical noise.

Various methods can be found in the literature for measuring the growth rates of small

perturbations. These are typically expressed in terms of Lyapunov exponents or time scales.

One method is to integrate Newton’s equations of motion and the corresponding variational

equations. However, if the solution is not converged, this variational method measures the

Lyapunov exponents of an “approximate” solution, which thus relies on the validity of the

ergodic assumption. Alternatively, we consider the difference between a solution using the

initial conditions of interest and another which uses slightly altered initial conditions. We

integrate these neighboring trajectories up to convergence using Brutus [4]. This results in a

converged solution for the perturbation growth and the associated measures of the Lyapunov

exponent, provided that the difference between the two solutions remains small.

The origin of chaos and its associated exponential sensitivity depends on the configuration

of the N-body system. For planetary systems, in which orbits are typically non-overlapping

(circular and planar), chaos is mostly driven by an overlap of orbital resonances. This

does not apply to many other astrophysical systems, which consist of overlapping (eccentric

and inclined) orbits. In these cases, chaos is thought to be driven by many random close

encounters, somewhat resembling a violent game of pool. A dense stellar system consisting

of millions of equal-mass bodies is indeed found to be chaotic with a Lyapunov time scale

of only a fraction of its dynamical time [7, 17]. We aim to use Brutus to measure the
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Figure 1: Measuring the exponential sensitivity of three different astrophysical systems.
We plot the time evolution of an initially small perturbation to the system. Time is nor-
malised by the Lyapunov time. For the black hole triple system, we observe that an initial
quantum fluctuation is magnified exponentially to astronomical scales. Such fundamentally
indeterministic systems are a common feature of chaotic astrophysical populations [3].

exponential sensitivity of chaotic N-body systems accurately and to correlate it with the

orbital dynamics.

We apply our novel Brutus method to obtain converged solutions to three different N-

body problems. We consider: 1) Halley’s Comet and its interaction with the Sun and planets

[2], 2) the population of S-stars in our Galactic center, which closely orbit the supermassive

black hole [16], and 3) chaotic triple systems consisting of supermassive black holes [5]. Each

of these configurations is chaotic and consists of crossing orbits. In Fig. 1, we plot the

magnitude of a small initial variation and its detailed growth in time. First, we note that

initial values for perturbations are typically set to the uncertainty of the observations, which

range from meters to thousands of kilometers for Solar System bodies. We adopted this
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approach for the case of Halley’s Comet. This system exponentially magnifies this initial

uncertainty to the size of the system itself within a mere 10-20 Lyapunov time scales, after

which the difference between the two solutions is no longer small. In such a case an improved

measure of the Lyapunov exponent can be obtained if we reduce the initial magnitude of the

perturbation, allowing us to measure the time-averaged exponential growth rate over many

more Lyapunov time scales (if necessary). This approach was adopted for the triple system

of supermassive black holes illustrated in Fig. 1. In doing so, we discovered solutions where

an initial perturbation of order of the Planck length (and smaller) is exponentially magnified

to astronomical scales over 100+ Lyapunov time scales, at which point the interaction among

the black holes is still ongoing. This example has profound implications on the role of chaos

as it directly connects Heisenberg’s quantum uncertainty principle with the evolution of self-

gravitating systems on astronomical scales [15]. Three bodies are sufficient to introduce an

arrow of time [5]

A closer inspection of the results in Fig. 1 reveals that, on average, a well-defined slope

exists, at least until the variation becomes too large, as in the Halley example. The time-

averaged Lyapunov exponent is thus a well-defined characteristic of a chaotic N-body system.

Superposed, however, there are stochastic fluctuations and jumps. As we discuss later, in

connection with Fig. 2, a recurring feature in the curve is a sudden strong jump followed by a

gradual flattening consistent with linear growth. The overall growth can then be interpreted

as the accumulation of successive periods of linear response driven by events that occur at

discrete moments. This leads to the idea of a “punctuated chaos” as opposed to a smooth

continuous exponential growth [16]

Theory of Punctuated Chaos

The above observations inspired us to develop a new theoretical model for chaos in self-

gravitating N-body systems. This model captures the punctuated growth of perturbations
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and relates the moments of abrupt change in the growth to events occurring in the N-body

system. By relating the detailed orbital dynamics to the punctuated growth of perturbations,

we ultimately obtain a theoretical expression for the time-averaged Lyapunov exponent.

The derivation of the model of punctuated chaos starts by considering the case of a body

in a Kepler orbit around a much more massive body (as is the case for Halley’s Comet and the

S-stars). With an initial semi-major axis a0 and total mass m, the initial orbital frequency

ω0 =
√

Gm/a30. Let a neighboring solution be separated by an infinitesimal displacement

δx0 at some time t = 0. This displacement has components along and transverse to the

orbit. The displacement leads to a small difference in the semi-major axis of the same order,

i.e., δa0 ∼ δx0. The resulting difference in frequency is

δω0 ∼ δx0

√
Gm/a5. (1)

The displacement along the orbit grows with time t > 0 according to

δx(t) ∼ δx0 + δω0a0t = δx0(1 + ω0t). (2)

The growth of the initial displacement is linear with time from t0 to t, but such that δa

remains constant as the growth is along the orbit, i.e., the growth is in orbital phase rather

than in energy and angular momentum.

Now suppose that an instantaneous perturbation acts on the motion at time t1, causing

the velocity of the Kepler motion to receive a slight kick. We suppose that the variation in

semi-major axis is again of order the spatial variation, i.e. δa1 ∼ δx1, and this leads to a

difference in orbital frequency δω1 ∼ δa1ω1/a1 at time t1. Thus for t > t1 the displacement

varies as

δx ∼ δx1 + ω1(t− t1)δa1 ∼ δx1(1 + ω1(t− t1)). (3)

If a second kick occurs at time t2 > t1, we can see from Eqs. (2) and (3) that the displacement
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is

δx2 ∼ δx0(1 + ω0t1)(1 + ω1(t2 − t1)). (4)

If these perturbations recur at roughly comparable intervals ∆t, and if ω does not change

by a large factor, it can be seen that the displacement at some large time t will be

δx(t) ∼ δx0(1 + ω∆t)t/∆t. (5)

The linear growth of Eq. (2) transforms into exponential growth! The corresponding Lya-

punov exponent is O(ω) if ω∆t <∼ 1; it is of order the reciprocal of the dynamical time (also

called “crossing time”). The case ω∆t >∼ 1 is also of interest and leads to a smaller estimate

of order ln(ω∆t)/∆t. Hence, the time-averaged Lyapunov exponent is determined by the

frequency of events. Furthermore, though we have ignored this issue so far, it is also affected

by their magnitude.

To determine the trigger of an event, we inspect the orbital dynamics around the times

when an event is detected. We focus on the S-star configuration, and in Fig. 2, we zoom in

on the perturbation growth around a single event occurring just before t = 3000 years. We

observe that the magnitude of the variation in energy is abruptly magnified, in accordance

with a punctuated event. The superposed shorter-term oscillations are due to the eccentricity

of the orbit. The same figure correlates the event with a close encounter between stars S6 and

S21. These two stars exchange orbital energy causing S6 to abruptly shrink its orbit, while

S21 expands its orbit proportionally. This example illustrates the underlying mechanism

where events are generally triggered by strong few-body interactions.

In order to estimate the effect of a close encounter on the perturbation growth, we will

reduce the problem to a 3-body system consisting of a black hole (mass M , particle 0) and

two S-stars (mass m, particles 1,2). Let ri be the position vector of star i relative to the
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Figure 2: A demonstration of punctuated chaos. Two stars called S6 and S21 engage in
a very brief but strong encounter. This results in an approximately instantaneous energy
exchange. Their orbital elements, such as semi-major axis (right column) change in a step-
like manner. The magnitude of the variation (left column) displays the characteristic linear
growth driven by the close encounter, here plotted logarithmically. The cumulative effect of
multiple such events results in net exponential growth.
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black hole, and focus on star 1. Its equation of motion is

r̈1 = −G(M +m)r1
r31

− Gm(r1 − r2)

r312
− Gmr2

r32
(6)

with obvious notation ri, r12. The first term on the right is the acceleration of star 1 relative

to the black hole, the second term is the direct perturbation by particle 2, and the third

term is the indirect perturbation, caused by the acceleration of the black hole by particle 2.

After inspecting the magnitudes of each of these components, we find that the perturbation

on the motion of particle 1 is dominated by the second term on the right of Eq. (6), i.e. the

direct perturbation due to the gravitational attraction of star 2.

We now consider the growth of a perturbation in the single S-star’s orbit which we have

hitherto labeled as star 1, and suppose that it has a succession of close encounters with

other stars (in “events”) at some interval ∆t. Let δx denote the variation in some quantity

x, such as energy or position, between two neighbouring solutions. Specifically, let δE0 be

the variation in specific energy E ≡ |v2/2 − GM/r| at a time just before an event, where

v is the speed, and let δr0 be the variation in position at the same time. (Henceforth the

subscripts denote an index of events in a sequence of events.)

Then we have

δE1 = δE0 + δ∆E, (7)

where δE1 is the variation just before the next event, which will be the same as the value

just after the first event; and ∆E is the change in E at that first event. Now we estimate

this as

∆E = v.∆v ∼
√
GM/r

Gm

dV
, (8)

where d is the distance of the closest approach in the encounter, and V is the relative speed

of the two stars in the encounter. (This estimate is made by taking ∆v to be the maximum

perturbation Gm/d2 multiplied by the time scale of the encounter, d/V .) We use the same
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estimate
√
GM/r for V as for v, so that

∆E ∼ Gm/d, (9)

Its variation can be estimated as

δ(∆E) ∼ Gm

d2
δr0, (10)

and so Eq. (7) becomes

δE1 = δE0 +
Gm

d2
δr0. (11)

After this event the variation in the orbital frequency will be δω1, and so

δr1 ∼ δr0 + δω1a∆t, (12)

where a is the semi-major axis. Since ω2a3 = GM and E ∼ GM/a, we can re-express this

as

δr1 ∼ δr0 +
δE1∆t√

GM
a

. (13)

By Eq. (11), this in turn becomes

δr1 ∼ δr0 +

(
δE0 +

Gm
d2

δr0
)
∆t√

GM
a

. (14)

Equations (11) and (14) are explicit estimates which allow us to map the effect of an en-

counter on δE and δr. It has matrix

A =

 1 Gm
d2

∆t/
√

GM/a 1 + Gm
d2

∆t/
√

GM/a

 . (15)

The largest eigenvalue of this matrix gives the factor by which the variation, in either E or
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r, is multiplied as a result of an event.

The analysis above focused on the direct perturbation between two stars, i.e. a close

encounter. This encounter triggered the event, which led to punctuation in the exponential

sensitivity of the entire N-body system. The mechanism which propagates the effect of a

few-body encounter to the rest of the N-body system is the indirect perturbation described

by the third term on the right in Eq. (6). It can be shown that the response of a star not

involved in the event follows the same Lyapunov exponent as the stars involved [16]. The

time-averaged Lyapunov exponent is thus shared among all bodies through the mediation of

the central black hole, and therefore becomes a fundamental property of the N-body system

as a whole.

To conclude, in this essay we motivated the importance of pursuing a better under-

standing of the growth of perturbations in self-gravitating N-body systems. To this end,

we developed the unique N-body code Brutus, which allows us to study chaos with con-

verged solutions. Accurate measurements of chaos in various astrophysical systems led to

the development of a new theory of chaos: “punctuated chaos”. Here, exponential diver-

gence is the net result of a discrete set of events, i.e. strong few-body encounters, which each

trigger a linear response. If the lifetime of a chaotic N-body interaction exceeds 100+ Lya-

punov time scales, we demonstrated that punctuated chaos can connect the fundamentally

uncertain quantum world to the dynamical evolution of self-gravitating N-body systems on

astronomical scales.
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