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A B S T R A C T 

We investigate the chaotic behaviour of the S-star cluster in the Galactic Centre using precise N -body calculations, free 
from round-off or discretization errors. Our findings reveal that chaos among the Galactic Centre S-stars arises from close 
encounters, particularly among pairs and near the massive central body. These encounters induce perturbations, causing sudden 

changes in the orbital energies of the interacting stars. Consequently, neighbouring solutions experience roughly exponential 
growth in separation. We propose a theory of ‘punctuated chaos’ that describes the S-star cluster’s chaotic behaviour. This 
phenomenon results from nearly linear growth in the separation between neighbouring orbits after repeated finite perturbations. 
Each participating star’s orbit experiences discrete, abrupt changes in energy due to the perturbations. The cumulative effect 
of these events is further amplified by the steady drift in orbital phase. In the Galactic Centre, perturbations originate from 

coincidental encounters occurring within a distance of � 100 au between at least two stars (in some cases, three stars). Our 
model satisfactorily explains the observed exponential growth in the 27 S-stars cluster. We determine that the S-star system has 
a Lyapunov time-scale of approximately 462 ± 74 yr. For the coming millennium, chaos in the S-star cluster will be driven 

mainly by a few of the closest orbiting stars: S2, S5, S6, S8, S9, S14, S18, S31, S21, S24, S27, S29, and S38. 

Key words: chaos – software: simulations – stars: black holes – stars: kinematics and dynamics. 
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 I N T RO D U C T I O N  

ewton’s laws of motion lead to chaos. This chaotic behaviour is
ften quantified by measuring the growth in time of the separation, δ,
etween two neighbouring solutions, i.e. by solving the equations of 
otion of the multibody system twice, once with and once without a

mall change in the initial conditions. If the evolution of δ is roughly
xponential, but δ is still small by the end of the calculations, we call
he evolution chaotic. 

Chaotic behaviour can be quantified using the Lyapunov time- 
cale, which (in a more rigorous treatment) is the reciprocal of the
aximum positiv e Lyapuno v e xponent. The Lyapuno v time-scale 

as been measured for only a limited number of multibody systems,
ecause these measurements are e xpensiv e in terms of computer time. 
t is not even clear that a specific system, within the uncertainty of
ts initial conditions, leads to a unique Lyapunov time-scale, because 
he available parameter space may have an irregular structure with 
table and chaotic regions (Hayes 2008 ). 

In the Solar system, chaos is mainly driven by resonant overlap 
Chirikov 1979 ; Wisdom 1980 ; Tamayo et al. 2021 ; Mogavero &
askar 2022 ; Rath, Hadden & Lithwick 2022 ), which has some re-
emblance with resonant relaxation in the galactic centre (Sridhar & 

ouma 2016 ), or even with violent relaxation (Kandrup, Vass & 

ideris 2003 ). Previous studies, however, found that repeated weak 
 E-mail: spz@strw .leidenuniv .nl 
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catterings among minor bodies also form a major driver for changes
n the orbital parameters, for example in studies on the orbit of
ercury (Laskar & Gastineau 2009 ), but also in Halley’s comet

Boekholt et al. 2016 ) to be chaotic on a time-scale of less than
000 yr, as it interacts with Venus and Jupiter. In numerical studies
f planet–planet scattering experiments in hypothetical multiplanet 
ystems chaotic behaviour is also recognized to be driven by 
ncounters rather than resonant o v erlap (Chatterjee et al. 2008 ;
uri ́c & Tremaine 2008 ). This e vent-dri ven chaotic behaviour does
ot comply with Chirikov’s resonant overlap paradigm. 
This finding hints towards an ev ent-driv en process, where res-

nances are not required, but where chaos is driven by close
ncounters. We informally refer to such behaviour as ‘punctuated 
haos’. A similar chaotic behaviour was found in stellar clusters 
Goodman, Heggie & Hut 1993 ), where mutual interactions between 
tars seemed to drive chaos in the system. A system consisting of
any eccentric and inclined orbits behaves differently from a flat 

ystem with non-crossing orbits and a dominant central body. The 
-star cluster in the Galactic Centre (Ghez et al. 2008 ; Gillessen et al.
009 ) may be a good example where resonant overlap does not form
he major driver for chaos. 

Understanding chaos in self-gravitating systems is important for 
nderstanding a wide variety of astronomical phenomena, including 
he sources of gra vitational wa v es, e xtreme mass ratio inspirals, and
he probability that a minor body hits the planet Earth. Our picture of
unctuated chaos is also important for other Hamiltonian systems, 
uch as the multibody pendulum (Hoo v er & Griswold Hoo v er 2017 ),
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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nd it may be responsible for a slow down of chaotic behaviour in
ritical fluctuations (Das & Green 2019 ). 

In our analysis of the S-stars, we will neglect low-mass stars,
nobserved compact objects, and other interstellar material (planets,
steroids, dust, and gas). The low-mass components are expected to
e copious and important, but we limit ourselves to study chaos in
n idealized system of black hole with S-stars. Chaos in the studied
dealized system then probably only provides an upper limit to the
ctual Lyapunov time-scale. 

 C H AO S  A S  A N  E V E N T-D R I V E N  PROCESS  

.1 The Lyapunov time-scale 

onsider a Keplerian two-body system, e.g. a star with a planet
r supermassive black hole with a star. The difference between
wo neighbouring solutions, started with slightly different initial
onditions, grows approximately linearly with time. The orbital
hases of the two solutions gradually diverge, until their separation
has grown to the size of the orbits. 
In a three-body system consisting of a binary and a third body, the

inary orbits are repeatedly perturbed by the third body. The effect
f these events on two neighbouring binary orbits depends on their
eparation δ, and can cause the two solutions to diverge more quickly
han in a two-body system. A sequence of perturbations, each with
 subsequent period of linear divergence until the next perturbation,
an then drive exponential divergence between two initially almost
dentical systems (Section 2.2 ). The degree of chaos, measured
n terms of the Lyapunov time-scale, can then be derived by the
requency and strength of perturbations in the system (Section 4.1 ). 

In direct N -body calculations we can quantify chaos by measuring
he Lyapunov time-scale. Instead of a measure over the system’s
ntire lifetime, which would be the setting for a rigorous treatment,
 measure o v er a finite time interval is more practical in our case.
e therefore define the growth factor G δ( t ) following from an initial

eparation δ(0) after some time t . The evolution of the separation
s then described as an exponential function of time δ( t ) = δ(0) e λt ,
here λ is the Lyapunov exponent. The growth factor can then be
ritten as G δ ≡ δ( t )/ δ(0) = e λt , and λ = log ( G δ)/ t , or in terms of the
yapunov time-scale, t λ = 1/ λ = t /log ( G δ). 

.2 Punctuated chaos 

ased on the e vent-dri ven process described above, we derive
pproximate expressions for the Lyapunov time-scale. We start again
y considering a particle in a Kepler orbit around a much more
assive body. With an initial semimajor axis a 0 and total mass m , the

nitial orbital frequency ω 0 = 

√ 

Gm/a 3 0 . Let a neighbouring solution
e separated by an infinitesimal displacement δx 0 at time t = 0. This
isplacement leads to a small difference in the semimajor axis of the
ame order, i.e. δa 0 ∼ δx 0 . The resulting difference in frequency is 

ω 0 ∼ δx 0 

√ 

Gm/a 5 0 . (1) 

he separation of the two motions along the orbit grows with time t
 0 according to 

x( t) ∼ δx 0 + δω 0 a 0 t = δx 0 (1 + ω 0 t) . (2) 

he growth of the initial displacement is linear with time from t 0 to
 , but such that δa remains constant as the growth is along the orbit,
.e. the growth is in the orbital phase rather than in energy (or angular

omentum). 
NRAS 526, 5791–5799 (2023) 
Now suppose that an instantaneous perturbation acts on the motion
t time t 1 , causing the velocity of the Kepler motion to receive a slight
ick. 
There is a resulting change in energy, and therefore a change in

emimajor axis � a 1 . But since the perturbation will depend on the
osition of the body, the difference in semimajor axis between the
wo motions, δa , will also change, by an amount that we call δa 1 . We
uppose for the sake of argument that δa 1 ∼ δx 1 , i.e. the difference
n position at the time of the event. (In Section 4.1 , we give a specific
xample in which it is easy to see that δa 1 ∝ δx 1 .) The new difference
n semimajor axis implies a difference in orbital frequency δω 1 ∼
a 1 ω 1 / a 1 at time t 1 . Thus for t > t 1 the displacement varies as 

x ∼ δx 1 + ω 1 ( t − t 1 ) δa 1 

∼ δx 1 (1 + ω 1 ( t − t 1 )) . (3) 

If a second perturbation occurs at time t 2 > t 1 , we can see from
quations ( 2 ) and ( 3 ) that the displacement is 

x 2 ∼ δx 0 (1 + ω 0 t 1 )(1 + ω 1 ( t 2 − t 1 )) . (4) 

f these perturbations recur at roughly comparable intervals � t , and
f ω does not change by a large factor, it can be seen that the
isplacement at some large time t will be 

x( t) ∼ δx 0 (1 + ω�t) t/�t . (5) 

hus the linear growth of equation ( 2 ) transforms into exponential
rowth. The corresponding Lyapunov exponent is O ( ω) if ω� t � 1;
t is of order the reciprocal of the crossing time. The case ω� t � 1 is
lso of interest and leads to a smaller estimate of order ln ( ω� t )/ � t . 

Though we here considered perturbed Keplerian motion with one
ominant body, which is rele v ant to our discussion of the S-stars
n Sections 3 and 4 , the conclusions are valid more widely. As an
xample, we consider resonant three-body scattering events, which
an be viewed as a prolonged sequence of perturbations of the Kepler
otion. So long as the three particles remain democratic (i.e. at

omparable distances) and are of comparable mass, the perturbations
n any of the three two-body motions will be of order unity and
ccur at intervals of order the crossing time, t cr . Therefore, as in
he abo v e discussion, the Lyapuno v e xponent will be of order 1/ t cr .
umerical examples of Dejonghe & Hut ( 1986 ) indeed show that the

eparation of neighbouring solutions grows roughly exponentially
ntil dissolution of the resonance (in the sense of a democratic three-
ody behaviour). On the other hand, if the evolution of a triple system
s dominated by protracted excursions of the third body, of order T �
 cr , then the estimate will decrease to one of order 1/ T (following the
esult for the case ω� t � 1, and neglecting a logarithm). Usually, the
volution is a mix of prolonged excursions interspersed with periods
f frequent interplay (Szebehely 1971 ), and the Lyapunov exponent
will be 1/ T � λ < 1/ t cr , where T is the duration of the longest

xcursion. The lifetime of the Pythagorean problem, for example,
s about 16 t cr (Aarseth 2003 , their p. 238), and the growth of the
eparation of neighbouring solutions in this time is about 8.5 dex
Dejonghe & Hut 1986 ). Thus T � 16 t cr and λ � 1.2/ t cr , and the
nite-time Lyapunov exponent lies in the range 1/ T � λ � 1/ t cr . 
The result of the model (that the Lyapuno v e xponent λ is of order

/ t cr for comparable masses without lengthy excursions) is consistent
ith the results in Goodman et al. ( 1993 ), who considered the general
 -body problem. This is a rather independent confirmation, as their
odel was also based on assuming that the separation between

eighbouring solutions grows as a result of two-body encounters
see Table 1 ), but otherwise did not follow the same approach as
urs. 
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Table 1. Moments of close encounters between two of the S-stars ( T , 
second column) and the black hole. The third column gives the distance 
( D , rounded to au) from the closest of the two stars to the black hole. The 
subsequent column gives the mutual distance between the two S-stars 
( r ij ), followed by the mutual distance ( r ij ) as fraction of the sum of the 
S-star’s Hill radii. The last column gives the relativ e v elocity (rounded 
to 10 km s −1 ) between the two encountering stars (in km s −1 ). Each of 
these events can also be identified in the growth of the semimajor axis of 
the two identified stars (see also Fig. 4 ). This data can be used directly in 
the small routine to calculate the phase-space distance evolution of the 
S-stars using our presented theory on punctuated chaos (see Appendix 
A). Note that in the big event at T = 2876 yr, also stars S9 and S14 
participate (see Fig. 7 ). 

T Participating stars D r ij r ij / r H V ij 

(yr) (au) (au) (km s −1 ) 

12.5 S38, S24 842 48.7 5.2 5060 
407.8 S24, S38 952 43.3 4.6 4650 
807.3 S29, S21 373 49.5 6.5 6030 
1571.8 S38, S2 287 32.6 8.1 5580 
1649.7 S2, S18 516 42.2 6.7 3350 
1665.7 S2, S38 282 38.0 7.0 5580 
2023.8 S5, S14 780 55.8 11.9 4800 
2745.9 S2, S31 448 52.1 15.8 6170 
2875.7 S6, S21 635 13.5 1.5 3900 
3972.0 S5, S9 488 56.5 6.5 3660 
4875.7 S8, S27 720 54.0 6.0 3520 
6878.3 S2, S18 512 30.4 4.0 3210 
7007.0 S2, S18 479 50.5 6.7 5420 
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Figure 1. Projection of the S-stars’ orbits in the y –x plane. These orbits are 
integrated for 10 000 yr from 2001 January 1 to 12 001 yr. Even the widest 
orbits (star S83 has an orbital period of ∼1700 yr) are o v erplotted sev eral 
times. The orbits look Keplerian, but when we zoom in on any orbital segment, 
the fine structure of the chaotic orbital evolution becomes visible (see Fig. 2 ). 
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 APPLICATION  O F  PUNCTUATED  C H AO S  

e now study punctuated chaos in an actual astrophysical system, 
amely the S-star cluster in the Galactic Centre. All stars affect 
ach other and we therefore stretch the assumptions of extreme mass
atio, the approximation of only two orbiting particles, and the three- 
imensional nature of the problem. 
Our analysis starts by acquiring converged solutions for the 

ynamical evolution of the S-stars. Acquiring a converged solution is 
mportant because round-off and discretization errors grow exponen- 
ially, rendering a non-converged solution inappropriate for studying 
haos. We acquire converged solutions to the N -body problem 

y integrating Newton’s equations of motion. The dynamics near 
upermassive black holes is best described with general relativity 
ather than by Newtonian dynamics. Still we perform our simulations 
sing a Newtonian approximation and ignore the theory of general 
elativity. We consider this appropriate because the highest speed 
n our simulations (the star S2 at pericentre) does not exceed about

0.017 times the speed of light. At these relatively low speeds, the
ystem behaves like a Newtonian system, at least within our brief
imulation time of 10 4 yr (Portegies Zwart et al. 2022 ). In addition,
ur model for punctuated chaos was derived for Newtonian systems. 
n the presence of the black hole, in future it will be worth exploring
he effect of general relativity on the chaotic behaviour of the S-star
luster. 

The results presented here are acquired using converged solutions. 
hese result from a procedure in which the length of the mantissa,
ontrolling precision, and the accuracy of the integrator are improved 
t each iteration step, as is explained in Portegies Zwart & Boekholt
 2018 ). Such converged solutions can be achieved using BRUTUS . In
RUTUS , we control round-off by extending the numerical precision, 
nd accuracy by reducing the tolerance in the Bulirsch–Stoer integra- 
or (Bulirsch & Stoer 1964 ). By repeating the same calculation with
igher precision and better accuracy, we eventually reach a solution 
or which the results remain identical to a pre-determined number of
ecimal places; we call this the converged solution. 

.1 Measuring chaos in the S-star cluster 

e consider a realization of the S-star cluster, consisting of 27 early-
ype stars that orbit the supermassive black hole in the Galactic
entre. We adopted the orbital parameters of the 27 S-stars reported

n Gillessen et al. ( 2009 , their table 7). The numbering of these stars
s not simply S1–S27, because we only use those stars for which an
rbit is determined. 
The initial conditions are generated using the AMUSE (Pelu- 

essy et al. 2013 ; Portegies Zwart et al. 2013 ) routine gener-
te Sstar cluster.py from Portegies Zwart & McMillan 
 2018 ). This routine adopts the cited orbital elements for the S-
tars, and solves Kepler’s equation to acquire Cartesian coordinates 
nd velocities of the S-stars. We assume each S-star to have a
ass of 20 M �, and adopt the central massive black hole mass

f 4.154 × 10 6 M � (Gravity Collaboration 2019 ). We integrate 
his system for 10 000 yr until the solution converges using BRUTUS

Boekholt & Portegies Zwart 2015 ). 
In Fig. 1 , we present the converged solution of the projected orbits

f the S-stars integrated over 10 000 yr. This solution was obtained
sing a word length L w = 128 bits, and a tolerance in the Bulirsch–
toer integrator of ε = 10 −24 leading to a total final phase-space
rror less than 1/10 7 , and a relative energy error in the integration of
 E / E � 10 −15 . Each calculation took about 20 h on the single core
f a Xeon W-11855M processor. For L w = 116 bits precision and
 tolerance of ε = 10 −21 the solution is converged to four decimal
laces, which would have sufficed for this study. Regular double 
MNRAS 526, 5791–5799 (2023) 
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M

Figure 2. Magnification of a small section of the orbit of four S-stars o v er 
10 000 yr of evolution. The orbit-to-orbit variation is small, and not noticeable 
in Fig. 1 , but in this magnification the effect of chaos is visible in the non- 
o v erlapping orbits. 
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Figure 3. Evolution of the phase-space distance (equation 6 ) for the S- 
stars as a function of time (black). Here we adopted the phase-space 
difference between two solutions (the canonical initial conditions and the 
initial conditions with a displacement of star S5 by 10 −10 in x ); both are 
calculated using ε = 10 −24 ( L w = 128 bits). Overplotted (in orange) is a 
filtered version of the data using a Butterworth ( 1930 ) low-bandpass filter of 
order 1. The dotted line gives a least-squares fit to the simulation data and 
indicates a Lyapunov time-scale of t λ � 450 yr (red, as indicated). 

Figure 4. Growth of the root-mean-square difference in the semimajor axes, 
δa (equation 7 ), between the two solutions. The events are identified with the 
vertical red dashes. The colour changes are introduced when the events lead 
to a growth in δa . Two ne gativ e ev ents are also identified, one around 667 yr 
and one at 3914 yr. The largest event occurs around 2876 yr. 
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recision, ho we v er, would hav e been insufficiently precise and would
ot have led to the required accuracy. 
Although the orbits in Fig. 1 appear to follow a Keplerian orbit

icely, in Fig. 2 we show that this is not the case. Here we show a
etail of the orbits of several stars from Fig. 1 . Each orbital revolution
s indicated with a thin line. The lines do not fully o v erlap, indicating
hat their orbits change with time. 

After having established a converged simulation for the S-stars
see Fig. 1 ), we introduce a relative shift by translating the Cartesian
 coordinate of star S5 by 10 −10 . This amounts to moving the initial
osition of S5 by ∼15 m in the x direction. 
Instead of the separation in position space for each individual

-star, as illustrated in Fig. 1 , we can also present the more usual
otal phase-space distance as a function of time, which we define as
Dejonghe & Hut 1986 ) 

ln ( δ) = 

1 

2 
ln 

( 

n ∑ 

i= 0 

∣∣r i, 1 − r i, 0 
∣∣2 + 

∣∣v i, 1 − v i, 0 
∣∣2 

) 

. (6) 

ere 0 and 1 refer to the original and shifted solution, respectively. In
ig. 3 , we present the evolution of the phase-space distance between

he two solutions. The o v erplotted dotted line (in red) corresponds to
 Lyapunov time-scale of t λ � 450 yr. 

In Fig. 4 , we present the evolution of the root-mean-square
ifference in the semimajor axes between the two solutions for the
-stars. Here we define 

2 
a = 

1 

n 

n ∑ 

i= 0 

| a i, 0 − a i, 1 | 2 . (7) 

The events are visible at discrete times followed by a constant
ifference δa . In Fig. 3 , a particularly strong event is visible in
he phase-space distance evolution around t = 2876 yr. According
o punctuated chaos the orbital separation changes abruptly during
 vents. We identify se veral with the colours and the vertical dashed
ines (see Fig. 4 ). We automatically recognize these events in the
imulation data using the PELT algorithm (Killick, Fearnhead &
ckley 2012 ), using the piecewise constant model. Both free pa-
NRAS 526, 5791–5799 (2023) 
ameters in the PELT algorithms (the controls the minimum distance
etween change points and the grid of possible change points) were
et to unity. 

To further investigate which stars are involved, we apply the PELT

lgorithm to individual stars. Three examples are presented in Fig. 5 .
ere the colours are meant to guide the eye and indicate the events

lready identified on the full set of 27 stars in Fig. 4 . The vertical
ed-dashed lines are the events as identified using the PELT algorithm
or each individual star. 

In Table 1 , we present the times at which events were detected,
hich stars are associated with these events, and at what distance

rom the black hole (in terms of au and in distance with respect to
he sum of the stars’ Hill radii). The stars S2 and S18 are frequent
articipants, and they form the main drivers of chaos. We also present
n Table 1 the values for r ij , and r ij / r H . The former is defined as the
istance between the two stars i and j nearest to the black hole at
he moment of closest approach to the black hole. The latter gives
he relative distance in terms of the radius of the Hill sphere of the
wo participating stars (second column). The last column gives the
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Figure 5. Evolution of the difference in semimajor axis between the two 
converged solutions, for individual stars. From top to bottom, we show the 
results for stars S6, S27, and S66, respectively. The vertical colour bars are 
identical to those in Fig. 4 . The vertical red dashed lines indicate the locations 
where the PELT algorithm identifies the change in a as events for the individual 
stars. The big event at t = 2876 yr is visible in S6 and S66, but for S27 the 
event is less pronounced. A slightly earlier event, at 2771 yr (this event is not 
listed in Table 1 , but prominent in the right-hand panel in Fig. 8 for S21), is 
quite pronounced in S27, though. (It is to the left of the blue bar, whereas for 
S6 the event happens to the right-hand side of the blue bar.) 

r  
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T  

Figure 6. Normalized evolution of the phase-space distance (equation 6 ) for 
the S-stars as a function of time (grey) with in black the filtered version of 
the data (see also Fig. 3 ). Overplotted is the result of punctuated chaos with 
13 close encounters (listed in Table 1 ) within r ij � 60 au between two of the 
S-stars i and j at a distance D � 1000 au from the black hole (red). The green 
curve shows the result of ignoring all events, when the separation of the two 
orbits is driven by the initial displacement of star S5 by 15 m in the positive 
x -direction (cf. equation 2 ). 
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elativ e v elocity between the two S-stars at the moment of closest
utual approach. 
In Fig. 6 , we present the results of applying the theory of

unctuated chaos to the evolution of the S-star cluster o v er 10 000 yr.
ere we o v erplotted the actual data and the filtered curve, as in Fig. 3 .
he red curve results from measuring the time and magnitude of the
vents in semimajor axis (see Fig. 4 and Table 1 ), which are then
pplied directly to our model for punctuated chaos (see Section 2.2 ).

In Appendix A, we present the algorithm based on equation ( 6 )
hat is used to draw the red curve in Fig. 6 . The events (moments of
lose encounter and the mutual distance between the two S-stars at
eribothron) are measured in the N -body simulations, and presented 
n Table 1 . Note that several punctuated events listed in Table 1 are
ot directly related to the jumps in the semimajor axis presented
n Fig. 4 (see also equation 7 ). For individual stars these jumps are
isible, but they tend to be obscured by the ensemble averaging. Each
f the events listed in Table 1 , however, do relate to a jump in the
emimajor axis in the S-stars associated with the close encounter. 
hese jumps are visible in the evolution of the semimajor axis for

ndividual S-stars; as examples, we present this evolution for S6, S27,
nd S66 in Fig. 5 , which also show the early (13, 408, and 807 yr)
nd late (7007 yr) jumps listed in Table 1 (red dashed lines). 

The comparison between the theory and the simulations is striking. 
lthough the red curve in Fig. 6 does not perfectly match the filtered

urve (black), it is astonishingly similar. A slight deviation where 
he red curve overshoots the black curve, around t = 7007 yr, seem
o be caused by several close encounters between S2 and S18. In
ur model, we anticipate on standalone encounters, and the effect of
ultiple encounters in short succession between the same stars can 

lso cause the evolution of δ to decay. 

.2 The big event at 2876 years 

he largest event happens around t = 2876 yr after the start of the
imulations. 

In Fig. 7 , we present the distance of the nearest star to the black
ole (blue), and the distance between this star and its next-nearest
tellar neighbour (orange), around the moment of the big event at
 = 2876 yr. Along the top we identify the stars involved in their
lose proximity. It starts at t = 2870 yr with S2 being the closest to
he black hole, and S14 being closest to S2. At t � 2872 yr star S6
akes o v er the closest position to S2 from S14. At t � 2873 yr star
6 becomes the closest star to the black hole, and at t � 2874 yr star
21 becomes the closest neighbour of star S6, until a little before t =
MNRAS 526, 5791–5799 (2023) 
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Figure 7. Closest distance between stars as a function of time from t = 

2870 to 2880 yr. The blue curv e giv es the distance from the black hole 
to the nearest star (identified in blue at the top). The orange curve gives the 
separation between this nearest neighbour and the next-nearest star (identified 
at the top row on orange). The vertical dotted lines indicate when the nearest 
neighbour changes (blue) or the next-nearest neighbour (orange). The closest 
distance between S6 and S21 is reached at ∼2876 yr at a mutual distance of 
∼13.5 au within 635 au of the supermassive black hole. 
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876 yr star S6 and S21 have their mutual close encounter with each
ther and with the black hole. 
In Fig. 8 , we present for the stars S6 and S21 the evolution of δr 

left-hand panels), i.e. the spatial separation between the two orbits,
he semimajor axis (middle panels), and the difference in orbital
requency (right-hand panels) around the moment of the big event
t t = 2876 yr. In the evolution of the spatial separation (left-hand
anel) the consequences of the event are visible. The main driver of
his evolution is the almost instantaneous change in orbital energy
middle panel, expressed here in semimajor axis) and the separation
n orbital frequency (right-hand panel). 

 DY NA MIC S  O F  PUNCTUATED  C H AO S  IN  T H E
-STARS  

he picture of punctuated chaos in Section 2.2 lacks any dynamical
haracterization of the ev ents. The y are simply circumstances that
hange the frequency of the orbital motion. Even at the close of
ection 3.1 , in the construction of Fig. 6 , the data on the changes

n frequency are simply read from a full numerical simulation. In
his section, we attempt to explain, in order of magnitude, how these
hanges arise, on the basis of few-body interactions. 

For the purposes of this discussion, let us reduce the problem to
 three-body system consisting of a black hole (mass M , particle 0)
nd two S-stars (mass m , particles 1, 2). Let r i be the position vector
f star i relative to the black hole, and focus on star 1. Its equation of
otion is 

r̈ 1 = −G ( M + m ) r 1 
r 3 1 

− Gm ( r 1 − r 2 ) 

r 3 12 

− Gm r 2 
r 3 2 

(8) 

ith obvious notation r i , r 12 . The first term on the right is the
cceleration of the motion of star 1 relative to the black hole, the
econd term is the direct perturbation by particle 2, and the third
erm is the indirect perturbation, caused by the acceleration of the
lack hole by particle 2. (If we were to write down the equation for
he case of N S-stars, the second and third terms on the right would
e replaced by sums from j = 2 to N , with the index 2 replaced by j .)
NRAS 526, 5791–5799 (2023) 
.1 Direct perturbations 

rom the previous section (especially Fig. 7 and Table 1 ), we know
mpirically that the major events are associated with a close approach
to a distance of order 10–50 au) between two stars (see Table 1 ),
t times where the distances to the black hole are larger by an order
f magnitude. If we label the stars in the encounter as 1 and 2
ignoring all other stars for the time being), then it is clear that the
erturbation on the motion of particle 1 is dominated by the second
erm on the right of equation ( 8 ), i.e. the direct perturbation, due to
he gravitational attraction of star 2. For the moment we also ignore
he third term, but return to it briefly in Section 4.2 . 

We now consider the growth of chaos in the single S-star that we
ave hitherto labelled as star 1, and suppose that it has a succession
f close encounters with other stars (in ‘events’) at some interval � t .
et δx denote the variation in some quantity x , such as energy or
osition, between two neighbouring solutions. Specifically, let δE 0 

e the variation in specific energy E ≡ | v 2 /2 − GM / r | at a time just
efore an event, where v is the speed, and let δr 0 be the variation in
osition at the same time. (Henceforth the subscripts denote an index
f events in a sequence of events.) 
Then we have 

E 1 = δE 0 + δ�E, (9) 

here δE 1 is the variation just before the next event, which will be
he same as the value just after the first event, and � E is the change
n E at that first event. Now we estimate this as 

E = v�v ∼
√ 

GM/r 
Gm 

V d 
, (10) 

here d is the distance of closest approach in the encounter, and V
s the relative speed of the two stars in the encounter. Both these
arameters are listed for the punctuations measured in the S-star
luster in Table 1 . (This estimate is made by taking �v to be the
aximum perturbation Gm / d 2 multiplied by the time-scale of the

ncounter, d / V .) We use the same estimate 
√ 

GM/r for V as for v,
o that 

E ∼ Gm/d. (11) 

ts variation can be estimated as 

( �E) ∼ Gm 

d 2 
δr 0 , (12) 

nd so equation ( 9 ) becomes 

E 1 ∼ δE 0 + 

Gm 

d 2 
δr 0 . (13) 

After this event the variation in the orbital frequency will be δω 1 ,
nd so 

r 1 ∼ δr 0 + δω 1 a�t, (14) 

here a is the semimajor axis, just as in the simplified model of
unctuated chaos described in Section 2.2 . Since ω 

2 a 3 = GM and E
GM / a (though strictly here, M should be replaced by M + m , but

e ignore the stellar mass compared with the black hole mass), we
an re-express this as 

r 1 ∼ δr 0 + δE 1 �t/ 
√ 

GM/a . (15) 

y equation ( 13 ), this in turn becomes 

r 1 ∼ δr 0 + 

(
δE 0 + 

Gm 

d 2 
δr 0 

)
�t/ 

√ 

GM/a . (16) 
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Figure 8. Illustration of an e vent dri ving the growth in separation between two solutions. We focus on the largest event at 2876 yr, which was triggered by 
a close encounter between stars S6 (top row) and S21 (bottom row). From the simulation data, we plot the separation in position space (left-hand column), 
semimajor axis of one of the two solutions (middle column), and the absolute value of the difference in orbital frequency between them (right-hand column). 
We estimate mean values of a and δω both before and after the event, which are sharply divided by the big event. Using these mean values, and the punctuated 
model for divergence from Section 2.2 , we derive the analytical models for the evolution of δr (left-hand column). Furthermore, the energy exchange between 
S6 and S21 is conserv ati ve (to within a per cent). Notice that the bottom-right figure for S21 shows both events: at 2771 and 2876 yr. 
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Equations ( 13 ) and ( 16 ) are explicit estimates that allow us to map
he effect of an encounter on δE and δr . It has matrix 

 = 

(
1 Gm / d 2 

�t/ 
√ 

GM/a 1 + ( Gm / d 2 ) �t/ 
√ 

GM/a 

)
. 

he larger eigenvalue of this matrix gives the factor by which the
ariation, in either E or r , is multiplied as a result of an event. 

To get a feel for the magnitude of this evolution, consider the
ix encounters in Table 1 that involve star S2. The mean distance
f closest approach in these is about 40 au, which we take for the
alue of d . Since the duration of the simulation is 10 000 yr, for the
ean time between these six events we adopt � t = 1700 yr. The

emimajor axis of S2 is a S2 � 1000 au, and we take m = 20 M � and
 = 4 × 10 6 M �, as we have done throughout. (These units imply

hat G = 4 n 2 ∼ 40.) Then the quantity 

m/d 2 �t/ 
√ 

GM/a ∼ 2 , (17) 

nd the larger eigenvalue λ � 4. Thus the variations increase by this
actor in 1700 yr, or by almost 4 dex in 10 4 yr. While this estimate
s only about half of the logarithmic growth seen in Figs 3 and 6 ,
t only includes half of the events listed in Table 1 . The remaining
v ents involv e stars other than S2, which is why they were omitted
rom this estimate, but we show in Section 4.2 how their influence
preads to all stars, S2 included. 

The foregoing argument can be criticized on several grounds, and 
he main one is that it still depends on the numerical integration, as it
raws on the distance of the observed two-body encounters. This may 
e estimated independently as follows. From the initial conditions 
f the integration we can estimate the central number density n of
he S-star cluster from the distance of the sixth nearest neighbour to
he black hole (H ́enon 1971 ), which is about 2000 au. Hence n �
 × 10 −10 . The median semimajor axis a is about 3000 au, and so we
ay estimate the typical speed v = 

√ 

GM/a as about 200 au yr −1 . It
ollows that a typical S-star i will experience one two-body encounter
ith another S-star j in 10 4 yr at a distance less than about r ij � 60 au.
ne or two will do so at still smaller distances, consistent with what

s seen in the numerical results. 

.2 The role of the indirect acceleration 

hile Section 4.1 makes a reasonable case for supposing that direct
ncounters between pairs of S-stars are a major driver of chaos in the
ystem, it is not clear how many stars are affected, as only a fraction
f all S-stars appear in Table 1 . Of course all stars are subject to
wo-body direct perturbations, but it might be thought that weak 
erturbations would drive chaos on a longer time-scale. We now 

onsider the effect of indirect perturbations, and will show that these
ffect all stars. Furthermore, they keep the growth of chaos in all
tars in lockstep. 

The indirect perturbation of star 2 in equation ( 8 ) is given by the
hird term on the right, and clearly depends on its distance r 2 from
he black hole. Thus we shall consider the pericentre passages of
tar 2 as the driver of this component of punctuated chaos. In one
uch event, whose duration is of order q / v 2 , where q is the pericentre
istance of star 2, the change in energy of star 1 may be estimated
s 

E ∼ v 1 Gm/ ( qv 2 ) . (18) 

uch as in Section 4.1 , we estimate v 2 ∼
√ 

GM/q , but for the first
tar we take v 1 ∼

√ 

GM/a , where a is the semimajor axis of star 1,
ince this star can be anywhere on its orbit when the event occurs.
hus 

E ∼ Gm/ 
√ 

aq , (19) 
MNRAS 526, 5791–5799 (2023) 
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Figure 9. The time evolution of the separation in position space ( δr ) for 
each individual body, including the central black hole. On average, each body 
diverges at the same exponential rate. Note, ho we ver, that these curves were 
calculated by comparing the data from the two runs with ε = 10 −21 and ε = 

10 −24 (rather than the perturbed and unperturbed solutions for ε = 10 −24 . 
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nd so the variation in this quantity is 

( �E) ∼ δq Gm/ 
√ 

aq 3 . (20) 

Now suppose that star 2 is one of those that is vigorously
ffected by direct interactions with other stars, and its variations
av e Lyapuno v e xponent λ. Then we can estimate that 

q ∼ δq 0 exp ( λt) , (21) 

here δq 0 is some constant. Next, substituting this estimate into
quation ( 20 ), and adding the effect of a succession of such events,
e readily see that the sum of the corresponding exponentials can be

stimated by the effect of the most recent event. Thus the variation
n the energy of star 1 at time t may be estimated as 

E ∼ δq 0 exp ( λt) Gm/ 
√ 

aq 3 . (22) 

hus we conclude that chaos in star 1 grows with the same Lyapunov
xponent as star 2, and this would be true even if star 1 were not
ubject to any direct perturbations. 

In Fig. 9 , we plot the time evolution of the separation in position
pace for each of the 27 S-stars, as well as for the central black hole.
e observe that, on average, all particles diverge exponentially and
ith roughly the same rate. By fitting linear slopes to each curve in

he figure, we measure an average individual Lyapunov time-scale
f 462 ± 74 yr. Fig. 9 shows that all stars, and also the central black
ole, diverge at the same rate on average. For the black hole the
mplitude is smaller than for the bulk of the S-stars by roughly the
atio of their masses, i.e. 2 × 10 5 . 

 C O N C L U S I O N S  

n order to explain short time-scale chaos in self-gravitating demo-
ratic dynamical systems, we outline the theory of punctuated
haos. The essence of punctuated chaos is that instantaneous close
ncounters, or events, driv e the e xponential growth due to ephemeral
erturbations, each of which is followed by a gradual drift in phase
pace. Our description of punctuated chaos delivers a qualitative and
uantitative description of chaos in self-gravitating systems. 
NRAS 526, 5791–5799 (2023) 
We test this description on converged direct N -body simulations
f self-gravitating systems under Newton’s equations of motion. We
onfirm the working of punctuated chaos on the chaotic orbits of the
-stars in orbit around the supermassive black hole in the Galactic
entre. The rather similar values of the mean orbital period of the
-stars and their Lyapunov time-scale then is no coincidence. 
It turns out that also comet Halley has a Lyapunov time-scale quite

omparable to its orbital period (Boekholt et al. 2016 ). In this case
he chaos is driven by interaction with Venus and Jupiter. We argue
hat the Lyapunov time-scale under punctuated chaos is proportional
o the mean interacting orbital period of the system, which for our
elected systems is of the order of a few 100 yr. 

According to our arguments and findings (Section 4.2 ), major
odies are affected on a similar time-scale, but the amplitude δ scales
oughly with the ratio of the perturber to the perturbed mass, as one
ees for the black hole in Fig. 9 . 

For the 27 S-stars in the Galactic Centre, we derive a Lyapunov
ime-scale of 462 ± 74 yr. This is somewhat comparable to the mean
rbital period of the S-stars, or 〈 P orb 〉 = 269 ± 383 yr, consistent
ith the prediction from punctuated chaos. 
We also qualitatively compare the measured phase-space distance

volution with the theory of punctuated chaos (see Section 3.1 ,
specially Fig. 6 ). 

In the theory (Section 3 ), the number of interactions (events)
nd the strength of these interactions are free parameters. In the
omparison presented in Fig. 6 , the moment and strength of each
nteraction are measured through an N -body simulation. But we also
how (Section 4.1 ) that these parameters can be estimated in order of
agnitude without resort to an N -body simulation, but from estimates

f the density and kinematics of the inner S-stars. This procedure
llows us to directly compare the theory with the simulations, as
ell as to identify the events that drive the exponential growth. 
If the previous analysis holds, chaos manifests itself from re-

eated small perturbations that each induce a linear response in
he separation between neighbouring solutions of the system. The
omposition of these linear responses resembles an exponential
ehaviour and drives chaos in the system. The perturbation, initiated
y a close encounter between two (or more) stars, is subsequently
ommunicated to the rest of the system by the perturbed phase-space
haracteristics of the massive central body. In the case of the S-
tars this is the supermassive black hole, and it is the Sun for comet
alley and the rest of the Solar system. In this way the entire system

s subject to the same smallest Lyapunov time-scale. 
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ortegies Zwart 2015 ), MATPLOTLIB (Hunter 2007 ), and LINUX (see 
t tps://github.com/t orvalds/linux/releases/t ag/v4.1-rc8 ). 
Energy consumption of this calculation . The calculations using 

RUTUS are elaborate and took about 7 × 10 6 CPU seconds. Data pro-
essing and analysis require about one tenth, totalling about 3 months 
f dual CPU usage. Using the tool http:// green-algorithms.org/ and 
ortegies Zwart ( 2020 ), we calculated our energy consumption to be
bout 160 kWh. 

ATA  AVAILABILITY  

aw and reduced data and processing scripts are available at figshare 
OI: 10.6084/m9.figshare.13637672 
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PPENDI X  A :  C A L C U L AT I N G  T H E  

VO L U T I O N  O F  T H E  PHASE-SPAC E  DI STANCE  

e calculate the evolution of the phase-space distance, as presented 
n Fig. 6 (red curve), using the algorithms presented in the form
f a PYTHON script using the units module from the Astrophysical
ultipurpose Software Environment ( AMUSE ; Portegies Zwart & 

cMillan 2018 ) in the listing below. The events (time T and mutual
istance r ij between the two closest S-stars i and j near the black
ole) used to draw the curves are presented in Table 1 . These events
ere automatically detected by identifying the closest encounters 
etween at least two stars near the black hole. Here we included
nly those encounters with a mutual distance r ij � 60 au. We
ntroduce the constant k = 0.5 au that relates the effect of the
erturbation to the orbital deviation. Looping o v er time, we calculate
he new phase-space distance between the two solutions, given the 
erturbation introduced in the last close encounter (see equation 3 ).
e empirically determine ω 1 ∝ ( k / r ij ) 2 from the N -body simulations

y measuring r ij and fitting k based on the evolution of the growth of
he phase-space distance δ (see equation 6 ). The stated dependence 
n r ij here is justified by the d -dependence in equation ( 13 ). 
from amuse.lab import units 
def phase space distance 
T, rij, k = 4 | units.au): 

delta = [0] | units.m 
t = [0] | units.yr 
dd = [1] | units.m 
while t[-1] < T[-1]: 

d = dd[-1] ∗(1 + ((t[-1]-T[len(dd)- 
]).value in(units.yr)) ∗(k/rij[len(dd)- 
]) ∗∗2) 

if t[-1] > = T[len(dd)]: 
dd.append(d) 

t.append(t[-1] + dt) 
delta.append(d) 

return t, delta 
The input arrays, T and rij are determined from close encounters

etween the S-stars and the black hole, as explained in Section 3.1
nd present in Table 1 . Note that these encounters are not all the
ame as those identified using the PELT algorithm in Fig. 4 because
ome close encounters do not show up as prominently in the global
volution of the orbital separation (see equation 7 ), but they do appear
n the individual evolution of the semimajor axis of the S-stars. For
6, S21, and S66 these data are presented in Fig. 5 . In particular the
arlier encounters at 13 and 408 yr, and the late encounter at 9046 yr
o not appear from the analysis of the global change in semimajor
xis through the PELT algorithm, but they are visible as jumps in the
volution of the individual S-stars. 
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