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ABSTRACT
Large-scale cosmological galaxy formation simulations typically prevent gas in the interstellar medium (ISM) from cooling
below ≈ 104 K. This has been motivated by the inability to resolve the Jeans mass in molecular gas (≪ 105 M⊙) which would
result in undesired artificial clumping. We show that the classical Jeans criteria derived for Newtonian gravity are not applicable
in the simulated ISM if the spacing of resolution elements representing the dense ISM is below the gravitational force softening
length and gravity is therefore softened and not Newtonian. We re-derive the Jeans criteria for softened gravity in Lagrangian
codes and use them to analyse gravitational instabilities at and below the hydrodynamical resolution limit for simulations with
adaptive and constant gravitational softening lengths. In addition, we define criteria for which a numerical runaway collapse
of dense gas clumps can occur caused by over-smoothing of the hydrodynamical properties relative to the gravitational force
resolution. This effect is illustrated using simulations of isolated disk galaxies with the smoothed particle hydrodynamics code
Swift. We also demonstrate how to avoid the formation of artificial clumps in gas and stars by adjusting the gravitational and
hydrodynamical force resolutions.
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1 INTRODUCTION

Numerical simulations of cosmological structure formation are an
invaluable tool to test theories of galaxy formation, galaxy evolu-
tion and cosmology. These simulations have become increasingly
complex in the last decades - from pure N-body simulations (e.g.
Springel et al. 2005b) to simulations that model the gas and stars
in and around galaxies in great detail (e.g. Horizon-AGN: Dubois
et al. 2014, Illustris: Vogelsberger et al. 2014, eagle: Schaye et al.
2015, IllustrisTNG: Pillepich et al. 2018a, Simba: Davé et al. 2019,
FIREbox: Feldmann et al. 2023, see also the review from Crain &
van de Voort 2023). Gravity is a key ingredient in the Universe on a
wide range of scales, from the formation of individual stars to cos-
mological structure formation, and modelling gravity adequately is
critical for a multitude of simulations.
An important approach to validate numerical methods is compar-

ing the gravitational collapse of various objects in simulations to
analytical expectations. For gaseous, self-gravitating structures the
analytical framework for stability conditions is largely based on Jeans
(1902). His analysis of the stability of spherical nebulae to “vibra-
tions” led to various derivations of “Jeans lengths” which generally
refer to a critical length scale abovewhich a spherical, self-gravitating
gas cloud of a given density and temperature collapses under its own
gravity. This scale can be derived by (i) solving the linearized fluid
equations and defining a wavenumber 𝑘J as the limiting wavenumber

★ E-mail: sylvia.ploeckinger@univie.ac.at

between oscillatory solutions (𝑘 > 𝑘J, short wavelengths) and expo-
nentially growing solutions (𝑘 < 𝑘J, long wavelengths); (ii) defining
the Jeans length as the size of the gas cloud above which the free-fall
time is smaller than the sound crossing time; or (iii) comparing the
gravitational potential energy𝑊 to the internal energy𝑈 of a spher-
ical gas cloud. Perturbations can grow for scales where 𝑊 +𝑈 < 0
(for derivations and discussion see e.g. Binney & Tremaine 2008).
Each of these derivations leads to a length scale 𝜆J above which
density perturbations (or: gas clouds) of size 𝑟, sound speed 𝑐s, and
(unperturbed) density 𝜌 are gravitationally unstable:

𝜆J = 𝐴

(
𝑐2

s
𝐺𝜌

)1/2

, (1)

where 𝐺 is the gravitational constant and 𝐴 is a dimensionless pre-
factor of order unity which depends on the exact derivation. Because
the assumptions of perfect spherical symmetry and initial zero veloc-
ity are rarely fulfilled in real world applications, the Jeans criterion
is an approximation and the pre-factors of order unity may vary.
Unlike in Eulerian (i.e. grid-based) codes, in Lagrangian (i.e.

particle-based) codes, resolution elements can have arbitrarily small
separations. If the resolution elements represent an underlying
smooth density distribution, gravity is softened below a given
length scale in order to avoid close 2-body interactions. A classi-
cal prescription for softened gravity is the Plummer (1911) potential
𝜙P = −𝐺𝑀 (𝑟2 + 𝜖2)−1/2 for a point mass, 𝑀 , and the gravitational
softening length, 𝜖 . The optimal choice of 𝜖 is already non-trivial
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for a collisionless N-body system (e.g. Merritt 1996; Romeo 1998;
Athanassoula et al. 2000; Dehnen 2001; Power et al. 2003; Rodi-
onov & Sotnikova 2005; Romeo et al. 2008; Ludlow et al. 2019b)
and is further complicated in hydrodynamical simulations (e.g. Price
& Monaghan 2007; Ludlow et al. 2020). The softening length, 𝜖 ,
is a measure for the gravitational force resolution of a simulation,
because gravity is non-Newtonian (i.e. softened) for 𝑟 ≲ 𝜖 .
A common technique to solve the equations of motions for a col-

lisional fluid is Smoothed Particle Hydrodynamics (SPH, originally
from Lucy 1977; Gingold &Monaghan 1977 but see e.g. Price 2012;
Hopkins 2013; Hu et al. 2014; Beck et al. 2016; Borrow et al. 2022
for modern examples) where gas properties, such as the gas density
and energy, are smoothed over a kernel which consist of multiple
particles, so-called neighbours. The softening length is related to the
gravitational force resolution while the kernel size, with the smooth-
ing length, ℎ, as the characteristic length scale, is related to the
hydrodynamical force resolution.
The smoothing length, ℎ, generally decreases with increasing gas

density, ℎ ∝ 𝜌−1/3, for a density-independent number of neighbours
per kernel. Depending on the code, the gravitational and hydro-
dynamical force resolutions can be coupled and 𝜖 ∝ ℎ (”adaptive
softening") or 𝜖 can be set to a constant value for all densities.
Adaptive softening is implemented e.g. in the SPH codes Gadget4
(Springel et al. 2021), Phantom (Price et al. 2018), and the SPH and
meshless finite mass / volume code Gizmo (Hopkins 2015). Their
adaptive softening lengths are defined such that they are tied to the
kernel length (≈ ℎ, the smoothing length of gas particles) or cell size
and the hydrodynamic force resolution equals the gravitational force
resolution.
A constant parameter to define the Plummer-equivalent softening

length, 𝜖 , in SPH is used for example in the eagle (Schaye et al.
2015, code: Gadget3, based on Springel 2005), the Astrid (Bird
et al. 2022, code: Mp-Gadget, Feng et al. 2018) and the Flamingo
(Schaye et al. 2023, code: Swift Schaller et al. 2016, 2018, 2023)
simulations.
In the moving mesh code Arepo (Weinberger et al. 2020), the

softening length is adaptive and follows 𝜖Arepo = 𝑓h (3𝑉/(4𝜋))1/3,
where 𝑓h is an input parameter which defines the softening length
relative to the cell radius, and 𝑉 is the volume of the Voronoi cell.
In the IllustrisTNG project (Weinberger et al. 2017; Pillepich et al.
2018a), which usesArepo, the softening length, 𝜖 is set to aminimum
value 𝜖min much larger than their minimum cell size (TNG50: 𝜖min =

72 pc, minimum cell size: 6.5 pc, Pillepich et al. 2019), an example
for a combination of adaptive (for low densities) and constant (𝜖 =

𝜖min, for high densities) softening lengths. In grid-based codes, such
as Ramses (Teyssier 2002), gas resolution elements cannot have
separations smaller than the minimum cell size and an additional
gravitational softening parameter is unnecessary.
Whether gravitational instabilities are modelled correctly (i.e. fol-

low the Jeans conditions for gravitational instabilities) has been stud-
iedmostly for adaptive softening. Bate&Burkert (1997) have defined
resolution criteria based on the Jeans length for SPH codes. Their
main test case is the isothermal collapse of a one solar mass gas
cloud with solid body rotation and they follow both its collapse and
fragmentation. Bate & Burkert (1997) advocate using an adaptive
softening length equal to the kernel smoothing length (𝜖 = ℎ) and
ensuring that both resolution parameters can get small enough to
resolve the smallest Jeans mass cloud (𝑀J = 4𝜋𝜆3

J 𝜌/3) in the simu-
lation by 2𝑁neigh particles (later reduced to 1.5𝑁neigh by Bate et al.
2003), where 𝑁neigh is the number of neighbours in the SPH kernel.
If these conditions are not fulfilled, the collapse or lack thereof of
self-gravitating structures is determined by the resolution parameters

(collapse / fragmentation artificially induced for 𝜖 < ℎ and artificially
inhibited for 𝜖 > ℎ) and not by the physical conditions.
Hubber et al. (2006) introduced the “Jeans test”, a numerical test

of a plane-wave perturbation within a homogeneous medium, and
found that if the resolution criterion from Bate & Burkert (1997) is
violated, the collapse of marginally unstable modes is suppressed but
artificial fragmentation does not occur in SPH for their setup with
an adaptive softening length 𝜖 = ℎ, confirming the analytical results
from Whitworth (1998). Yamamoto et al. (2021) repeated the Jeans
test with various hydrodynamic schemes within the Gizmo code
(meshless finite mass, meshless finite volume, density-based SPH,
and pressure-based SPH, seeHopkins 2015 for details). They confirm
the findings of Hubber et al. (2006) for SPH and extend them to other
meshless methods, all for adaptive softening with 𝜖 = ℎ. They found
that for none of the hydrodynamic solvers artificial fragmentation is
induced, for all solvers the collapse is slowed down if the resolution
is lower than required by Bate & Burkert (1997), and the collapse is
slowed down more for the meshless methods compared to the SPH
methods.
Large-scale simulations of cosmological volumes cannot follow

the collapse of individual gas clouds within the interstellar medium
(ISM) down to the formation of individual stars and doing so will
remain computationally too expensive for the foreseeable future.
Utilizing appropriate subgrid prescriptions for star formation and
stellar feedback nevertheless allows for realistic galaxy populations
(see e.g. the review from Vogelsberger et al. 2020). As an example,
the eagle simulation project (Schaye et al. 2015) used an SPH code
and a constant gravitational softening length for all baryon particles
of 𝜖 = 700 pc for their (100 Mpc)3 simulation with an initial baryon
particlemass of 1.81×106 M⊙ . Thismarginally fulfills the Jeansmass
criterion set by Bate &Burkert (1997) (but not their recommendation
to set 𝜖 = ℎ) for the warm neutral medium (WNM) with a typical
Jeans mass of a few times 107 M⊙ but would violate it drastically
for the cold gas phase with typical Jeans masses below 104 M⊙ .
An effective pressure floor, sometimes referred to as a polytropic
equation of state (EOS), 𝑃eff ∝ 𝑛

𝛾eff
H for gas with a density of 𝑛H >

0.1 cm−3 formally solves this issue. For an effective polytropic index
of 𝛾eff = 4/3, the Jeans mass is constant for gas that is limited by
the effective pressure floor (see the discussion in Schaye & Dalla
Vecchia 2008). In eagle the normalization for the effective pressure,
𝑃eff , is chosen to be at an effective temperature 𝑇eff = 8000 K for
𝑛H = 0.1 cm−3. These are typical conditions for the WNM and since
the Jeans mass is (marginally) resolved for the WNM, it remains
resolved for arbitrarily high densities at their effective pressure.
Therefore, if it is too computationally expensive to resolve the

“real” Jeans mass, the “numerical” Jeans mass can be artificially
increased. A polytropic EOS was already used for this purpose in the
simulations by Bate & Burkert (1997). Richings & Schaye (2016)
studied the effect of various pressure floor normalisations in simula-
tions of a dwarf galaxy with a particle mass of 750 M⊙ and showed
that the lowest mass gaseous clumps that formed in their galaxy disks
are less compact and less gravitationally bound with a higher artifi-
cial pressure floor. An artificially increased Jeans mass in the form
of a polytropic EOS, a pressure or entropy floor, or the Springel &
Hernquist (2003) subgrid model1 is implemented in almost2 all sim-
ulations of cosmologically representative volumes that reach 𝑧 = 0.
The resolution of the gaseous component in a simulation is con-

1 Hydrodynamically, the Springel & Hernquist (2003) model acts as a poly-
tropic EOS with a density-dependent 𝛾eff , see their figure 1.
2 One recent exception is the FIREbox project (Feldmann et al. 2023).

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stad3935/7492291 by Jacob H

eeren user on 01 February 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T
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Table 1. Overview of equations for Newtonian gravity, a Plummer softened gravitational potential, and a Wendland C2 softened potential.

Newtonian (no softening)

Potential 𝜑N (𝑟) = −𝐺𝑀𝑟−1

Acceleration |𝑎N (𝑟) | = 𝐺𝑀𝑟−2

Free-fall time 𝑡ff,N =
(

3𝜋
32𝐺𝜌

)1/2
= 4.4 Myr

(
𝑛H

100 cm−3

)−1/2

Jeans length 𝜆J,N =
(

3𝜋𝛾𝑋H𝑘B𝑇
32𝐺𝑚2

H𝑛H

)1/2
= 1.5 pc

(
𝑇

10 K

)1/2 (
𝑛H

100 cm−3

)−1/2

Jeans mass 𝑀J,N = 4𝜋𝜌
3 𝜆3

J,N = 46 M⊙
(

𝑇
10 K

)3/2 (
𝑛H

100 cm−3

)−1/2

Plummer softening with softening scale 𝜖 = 𝜖Plummer

Potential 𝜑P (𝑟 , 𝜖 ) = −𝐺𝑀

(
𝑟2 + 𝜖 2

)−1/2

Acceleration |𝑎P (𝑟 , 𝜖 ) | = 𝐺𝑀𝑟

(
𝑟2 + 𝜖 2

)−3/2

Free-fall time 𝑡ff,P,fit = 𝑡ff,N

(
1 + 22/3 (

𝜖
𝑅

)2
)3/4

Jeans length 𝜆J,P,fit = 𝜆J,N

(
1 + 1.42

(
𝜖

𝜆J,N

)3/2
)2/5

Jeans mass 𝑀J,P,fit = 𝑀J,N

(
1 + 1.42

(
𝜖

𝜆J,N

)3/2
)6/5

Wendland C2 / Swift softening with softening scale 𝐻 = 3𝜖 = 𝜖Plummer and 𝑢 = 𝑟/𝐻

Potential 𝜑W (𝑟 < 𝐻, 𝐻) = −𝐺𝑀𝐻−1𝑊 (𝑢)
with𝑊 (𝑢) =

(
−3𝑢7 + 15𝑢6 − 28𝑢5 + 21𝑢4 − 7𝑢2 + 3

)
𝜑W (𝑟 ≥ 𝐻) = −𝐺𝑀𝑟−1

Acceleration |𝑎W (𝑟 < 𝐻, 𝐻) | = 𝐺𝑀𝑟𝐻−3𝑉 (𝑢)
with 𝑉 (𝑢) = −𝑊′ (𝑢)/𝑢 =

(
21𝑢5 − 90𝑢4 + 140𝑢3 − 84𝑢2 + 14

)
|𝑎W (𝑟 ≥ 𝐻) | = 𝐺𝑀𝑟−2

Free-fall time 𝑡ff,W,fit = 𝑡ff,N

(
1 + 1

7

(
𝐻
𝑅

)3
)1/2

= 𝑡ff,N
(
1 + 27

7
(
𝜖
𝑅

)3
)1/2

Jeans length 𝜆J,W,fit = 𝜆J,N

(
1 + 0.27

(
𝐻

𝜆J,N

)2
)3/10

= 𝜆J,N

(
1 + 2.43

(
𝜖

𝜆J,N

)2
)3/10

Jeans mass 𝑀J,W,fit = 𝑀J,N

(
1 + 0.27

(
𝐻

𝜆J,N

)2
)9/10

= 𝑀J,N

(
1 + 2.43

(
𝜖

𝜆J,N

)2
)9/10

sequently not only defined by one mass and two spatial (gravity and
hydrodynamic) resolutions per particle type (i.e. dark matter, gas,
and stars) but also affected by a polytropic EOS. For example, a
simulation with a theoretically infinite mass and spatial resolution
would still not capture the dynamics of the cold gas phase correctly
in the presence of a polytropic EOS. An obvious step forward is
to remove any artificial pressure floor and allow for a multi-phase
ISM (i.e. hot ionized, warm ionized / neutral, cold neutral, as well as
molecular gas) to form. Based on the Jeans mass arguments above,
this would only be possible for simulations with a baryon mass res-
olution of≪ 104 M⊙ . We argue here that the Newtonian Jeans mass
does not need to be resolved to avoid numerical clumping and given
the success of modern cosmological simulations in reproducing gen-
eral galaxy properties, it can be questioned how important it really is
- in the context of the objectives of large-scale simulations - to model
the collapse of individual gas clouds within the ISM correctly.

The aim of this work is to define criteria that help to avoid artificial
fragmentation and collapse for simulations with both adaptive and
constant values for the gravitational force softening in Lagrangian
codes. This is particularly relevant for simulations that model the
multi-phase ISM without an artificial effective pressure floor.

This paper is organized as follows. In section 2 we introduce the
“softened” Jeans criteria (softened Jeans length and softened Jeans
mass) and explain why they are more appropriate for describing the

conditions of gravitational instabilities in a simulation with softened
gravity than the physical Jeans criteria that assume Newtonian grav-
ity. We discuss in section 3 for which densities and temperatures
gravitational instabilities are modelled physically correctly, or are
numerically induced or suppressed, for both constant and adaptive
softening. This section includes an independent criterion on the min-
imum smoothing length, ℎmin for which a too large value can lead to
a numerical runaway collapse (section 3.1). The impact of different
choices for the force resolution parameters 𝜖 and ℎmin is illustrated
using simulations of isolated disk galaxies with the modern hydro-
dynamics code Swift3 (Schaller et al. 2018, 2023) in section 4.
The implications for (cosmological) galaxy formation simulations
are discussed in section 5 and we summarize the results in section 6.
In the literature, the terms “smoothing” and “softening” are each

sometimes used for either the hydrodynamical or gravitational force
calculations involving a “smoothing” / “softening” kernel. Through-
out this work we strictly use “smoothing” when referring to the
calculation of hydrodynamical quantities and “softening” for calcu-
lations of gravitational forces. We use log as log10 throughout this
work.

3 Swift is publicly available at: www.swiftsim.com
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2 SOFTENED JEANS CRITERIA FOR A CONSTANT
SOFTENING LENGTH

In galaxy formation simulations, mass distributions are discretized
by resolution elements such as particles, static grid cells, or mov-
ing mesh cells. In order to reduce the artificial 2-body scattering
from individual particles that represent a continuous distribution,
the gravitational forces are softened for close interactions at a dis-
tance 𝑟 smaller than the softening length 𝜖 in Lagrangian codes. The
Newtonian gravitational acceleration, 𝑎N ∝ 𝑟−2 is replaced by the
softened gravitational acceleration, for example 𝑎P ∝ 𝑟 (𝑟2 + 𝜖2)−3/2

for a Plummer (1911) potential (see Table 1 for an overview). In the
limit of large separations, 𝑟 ≫ 𝜖 , the softened acceleration equals
the Newtonian acceleration (𝑎P → 𝑎N ∝ 𝑟−2) but for 𝑟 ≪ 𝜖 , the
softened acceleration approaches 𝑎P ∝ 𝑟 and therefore diverges from
the Newtonian gravity as 𝑟 → 0.
In simulations with a particle mass of𝑚B ≳ 105 M⊙ , gravitational

instabilities for densities typical for the cold neutral and molecular
gas phases in the ISM are unresolved (examples will be shown and
discussed in section 3 and in particular in Fig. 4) and the classi-
cal (Newtonian) Jeans criteria provide an inaccurate estimate of the
conditions for gravitational instability.
We re-derive the classical Jeans criteria in order to obtain a better

description of gravitational instabilities that occur in numerical sim-
ulations with softened gravity4. We show the derivation for two dif-
ferent softened gravitational potentials: the classical Plummer (1911)
potential as well as the modern Wendland (1995) C2 potential (as
implemented in Swift) in appendix A. We do not repeat the deriva-
tions for other potential shapes, such as the cubic spline kernel (as
e.g. used in Gadget4, Springel et al. 2021) but the difference be-
tween the different softening potentials is negligible compared to the
difference between Newtonian and softened Jeans criteria.
Table 1 summarizes the equations for free-fall times, Jeans lengths

and Jeans masses for Newtonian and softened (Plummer and Wend-
land C2) gravity. The free-fall time in softened gravity (here:
𝑡ff,s = 𝑡ff,W,fit from equation A34)

𝑡ff,s = 𝑡ff,N

(
1 + 27

7

( 𝜖
𝑅

)3
)1/2

(2)

is longer than the free-fall time in Newtonian gravity for an object of
radius 𝑅 and is proportional to

𝑡ff,s ∝ 𝑡ff,N
( 𝜖
𝑅

)3/2
(3)

for 𝜖 ≫ 𝑅. As example, doubling the softening length therefore slows
down the gravitational free-fall in the simulations by a factor of 2.8
for constant initial 𝑅.
Fig. 1 shows an overview of the Jeans masses from equa-

tions (A14), (A22), and (A37) for the Newtonian (top panel), Plum-
mer softened (solid line, bottom panel), and the Wendland C2 soft-
ened (dotted line, bottom panel) potential, respectively, for a Plum-
mer equivalent softening length of 𝜖 = 100 pc. At densities above
(or at temperatures below) the dashed red line in the bottom panel,
the Newtonian Jeans length is smaller than the softening length 𝜖 ,
and the softened Jeans masses (bottom panel) exceed the Newtonian
Jeans mass (top panel). This means that the limit between growing

4 For the derivation of the softened Jeans criteria we assume that the hydro-
dynamic forces are calculated accurately. The impact of unresolved hydrody-
namic forces on numerical instabilities is discussed in detail in section 3.

Figure 1. The contours show the Jeans mass in units of log 𝑀J [M⊙ ] for a
Newtonian gravitational potential (top panel), a Plummer softened (bottom
panel, solid lines) and a Wendland C2 softened (bottom panel, dotted lines)
potential. The red dashed line in the bottom panel indicates where the New-
tonian Jeans mass equals the Plummer softening scale 𝜖 (here: 𝜖 = 100 pc).

and decaying density perturbations is described by the softened Jeans
mass (length) rather than the Newtonian Jeans mass (length). In ad-
dition to the different fragmentation scale, the gravitational collapse
follows the longer softened free-fall time, rather than the Newtonian
free-fall time.
The difference between the Plummer (solid lines) and the Wend-

land C2 (dotted lines) softened potentials is small considering the
approximate nature of the Jeans criterion. In contrast, the softened
Jeans mass can be several orders of magnitude larger than the New-
tonian Jeans mass for gas densities and temperatures that are typical
for the cold ISM. For example, at a gas temperature of a few tens
of K and a gas density of 100 cm−3, the Newtonian Jeans mass is
𝑀J,N ≈ 100 M⊙ while the softened Jeans masses for 𝜖 = 100 pc
is 𝑀J,s ≈ 105 M⊙ (and for 𝜖 = 1000 pc, 𝑀J,s ≈ 107 M⊙) for both
𝑀J,s = 𝑀J,P,fit (Plummer) and 𝑀J,s = 𝑀J,W,fit (Wendland C2).
Throughout this work we consider for simplicity only thermal

pressure as a stabilizing force against gravitational collapse in the
derivation of the Newtonian Jeans length and mass. For applications
where (unresolved) turbulent pressure or magnetic pressure is impor-
tant, their contributions can be added to the Newtonian Jeans criteria
by substituting the sound crossing time in equation (A1) with a more
general form of a signal crossing time, 𝑡sig, that can also include a
turbulent or a magnetic component (see Nobels et al. 2023 for an
example of using the turbulent velocity dispersion, 𝜎turb, and the ve-
locity dispersion of ions, 𝜎Alfven, as additional terms, when deriving
the Jeans length). The softened Jeans mass and length are defined
relative to the Newtonian Jeans mass and length. For example,

𝜆J,s = 𝜆J,N

(
1 + 2.43

(
𝜖

𝜆J,N

)2
)3/10

(4)

𝑀J,s = 𝑀J,N

(
1 + 2.43

(
𝜖

𝜆J,N

)2
)9/10

(5)

(6)
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Resolution criteria to avoid artificial clumping 5

Figure 2. Random distributions of particles (particle mass 𝑚B = 105 M⊙) in 3D that represent input densities from log 𝑛H [cm−3 ] = 2 (leftmost panels) to
log 𝑛H [cm−3 ] = 6 (rightmost panels). The density at the centre of each distribution is calculated with a Wendland C2 kernel and a smoothing length which is
the maximum of ℎcorrect (red solid circle) and ℎmin (blue dashed circle) and indicated in the top right of each panel (𝑛H,SPH). In the top panels the dense gas
clump (black circles) consists of 100 particles (≈ number of neighbours in the kernel) and the bottom panels represent a more homogeneous medium without
clumping on scales below ℎmin. If the particles clump on scales below ℎmin, then the density that the SPH solver calculates is too low (see top right panel) but if
the gas distribution is smooth on scales smaller than ℎmin, then the SPH density estimate is still accurate, even if ℎcorrect ≪ ℎmin (see bottom right panel).

for theWendland C2 kernel (Table 1). The definitions of the softened
Jeans mass and length in Table 1 are therefore unaffected by these
additional components.
The softened Jeans masses derived in appendix A and listed in

Table 1 differ from the Newtonian Jeans mass whenever the parti-
cle separations are below the softening length. This might be most
prominent in simulations with a (large) constant value for 𝜖 but is
also applicable for simulations with adaptive softening when 𝜖 is
limited by a minimum value 𝜖min.

3 NUMERICAL INSTABILITIES RELATED TO LIMITED
RESOLUTION

In large-scale simulations, for example of cosmological volumes,
gas can reach gas densities and temperatures that are not formally
resolved. Either because gravity or hydrodynamic forces are soft-
ened or smoothed on scales larger than the Jeans length or because
realistic fragmentation masses are not resolved by enough resolution
elements. This is often acceptable, for example if the averaged prop-
erties of the ISM within a galaxy are more of interest than correctly
following the collapse of individual gas clouds, especially if the col-
lapse of molecular clouds is approximated by subgrid prescriptions,
e.g. for star formation. For code stability it is typically preferable to
numerically suppress the collapse of gas clouds than to numerically
induce collapse because the latter can lead to prohibitively small
timesteps, and artificial clumps in the stellar distribution.
In this section we discuss two distinct instabilities that can occur

in Lagrangian simulations and how they depend on the gravitational
softening length (i.e. the gravitational force resolution), the hydrody-
namic smoothing length (i.e. the hydrodynamical force resolution)
and themass resolution. In subsection 3.1we identify the problematic
behaviour of SPH-like simulation codes when the hydrodynamical
smoothing length ℎ is limited by a too large minimum value, ℎmin.
The resulting instability is caused by an underestimate of the gas den-
sity and leads to artificial clumps of closely spaced particles. Setting

ℎmin to a very small non-zero value resolves this issue and we cannot
identify any disadvantages of letting ℎmin → 0 (to be discussed in
detail in section 4).
In subsection 3.2 we analyse gravitational instabilities in simula-

tions with either constant or adaptive softening lengths at and below
the hydrodynamical resolution limit, i.e. the size of an individual
smoothing kernel.

3.1 Numerical instability caused by imposing a minimum
hydrodynamical smoothing length

We have shown that depending on the gravitational softening scale,
the softened Jeans mass can be orders of magnitude larger than
the Newtonian Jeans mass and increases with density at constant
temperature for 𝜆J,N < 𝜖 (Fig. 1). Gas clumps would therefore be
increasingly stabilised against gravitational collapse as their density
gets larger. However, this assumes that the hydrodynamic forces are
modelled accurately. For simulations with a minimum smoothing
length, ℎmin ≠ 0, the hydrodynamic forces can be over-smoothed
for high gas densities and we explain below how this can cause a
numerical runaway collapse.
In this section, the smoothing length, ℎ, and its lower limit, ℎmin,

are defined as in the hydrodynamics solver Sphenix (Borrow et al.
2022), implemented in the Swift code5. In Swift, the smoothing
length is based on the kernel standard deviation as in Dehnen & Aly
(2012) and is calculated as

ℎ = 𝜂res

(
𝑋H𝑚B
𝑚H𝑛H

)1/3

= 38.3 pc
(

𝑚B
105 M⊙

)1/3 (
𝑛H

100 cm−3

)−1/3
(7)

5 We discuss in section 3.2 how this can be adapted to other simulations
codes by defining a general smoothing length scale, 𝑙smooth.
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6 S. Ploeckinger et al.

where 𝜂res is a constant related to the number of neighbours in the
kernel, 𝑋H is the hydrogen mass fraction, 𝑚B the baryon particle
mass, 𝑚H the hydrogen particle mass, 𝑛H and the hydrogen number
density. We use the typical values 𝜂res = 1.2348 (this corresponds to
58 neighbours with a Wendland C2 kernel) and 𝑋H = 0.74.
The minimum smoothing length in Swift is set by the dimen-

sionless parameter ℎmin,ratio which is defined as the ratio between
the kernel support, ℎ𝛾k, and the length scale above which gravity
is Newtonian, 𝐻 = 3𝜖 . For the Wendland C2 kernel 𝛾k = 1.936492
(Dehnen&Aly 2012) and theminimumsmoothing length is therefore
ℎmin = 1.55 𝜖 ℎmin,ratio. The density above which the hydrodynamic
forces are over-smoothed is

𝑛H,hmin =
𝑋H
𝑚H

𝜂3
res

(
𝑚B

ℎ3
min

)
= 5.6 cm−3

(
𝑚B

105 M⊙

) (
ℎmin

100 pc

)−3
. (8)

Note that the critical density 𝑛H,hmin can remain constant for simula-
tions with different mass resolutions 𝑚B if ℎmin is adjusted accord-
ingly.
The softened Jeans criteria derived in appendix A are therefore

only valid for 𝑛H ≤ 𝑛H,hmin. For higher densities the hydrody-
namic forces can become inaccurate due to over-smoothing and
this inaccuracy depends on the density contrast within ℎmin. The
top panels of Fig. 2 demonstrate this for an extreme case with one
clump of dense gas (represented by 100 resolution elements: circles
in Fig. 2). The 3D particle positions are random but restricted to a
volume that corresponds to a set input density 𝑛H which increases
from log 𝑛H [cm−3] = 2 (leftmost panel) to log 𝑛H [cm−3] = 6
(rightmost panel). The red solid circle represents the smoothing
length for this gas density and particle mass (equation 7) and the
blue dashed circle represents the minimum smoothing length which
is set to ℎmin = 15.5 pc (corresponding to e.g. 𝜖 = 100 pc and
ℎmin,ratio = 0.1) in this example.
Each panel in Fig. 2 lists the input density as well as the density

𝑛H,SPH that the SPH solver calculates at the centre of each box using
a Wendland C2 kernel. If ℎ becomes smaller than ℎmin and the gas
is clumpy on scales smaller than ℎmin, then the estimated density
(and pressure) is increasingly underestimated. This can lead to a run-
away collapse if the underestimated pressure does not balance the
(softened) gravitational forces. The artificial, unresolved collapse is
difficult to spot in the gas properties because the SPH gas density
does not correctly represent the particle distribution, but it can lead
to the formation of clusters of stellar particles that are denser than
expected based on the resolution of the simulation and the gas den-
sities. The bottom panels of Fig. 2 show a similar situation, but here
the dense gas is homogeneous on scales below ℎmin, in which case
the output densities 𝑛H,SPH remain accurate, even for ℎ ≪ ℎmin (see
also figure 1 in Borrow et al. 2021 for an illustration).
To avoid a potential run-away collapse, which is desirable for both

numerical and physical reasons, we can define a problematic region
in the density-temperature phase-space based on the conditions dis-
cussed above:

i ℎ < ℎmin (or: 𝑛H > 𝑛H,hmin)
ii fragmentation on scales below ℎmin

For an estimate of the clumping that is expected in the simulation, we
use the softened Jeans length and (ii) then translates to 𝜆J,s < ℎmin.
Assuming that ℎmin < 𝜖 (to avoid inducing numerical collapse,

Figure 3. Lines indicate the borders of the runaway collapse zone (see text)
for various combinations of the baryon particle mass 𝑚B, the gravitational
softening length 𝜖 , and the minimum smoothing length ℎmin. At densities
above the indicated limits (both the vertical and the inclined part), the SPH
density estimate may be incorrect and a runaway collapse can occur. Each
panel varies one resolution parameter (top: 𝑚B, middle: 𝜖 , bottom: ℎmin)
while keeping the remaining two constant at the fiducial parameters of the
eagle (100 Mpc)3 simulation (black solid line, see labels). The thick grey
line represents the effective temperature used in eagle for gas with densities
> 0.1 cm−3.

see e.g. Bate & Burkert 1997), the condition 𝜆J,s < ℎmin falls into
the softened part of the phase-space where 𝐻 ≡ 3𝜖 ≫ 𝜆J,N and we
therefore approximate the softened Jeansmass (here for theWendland
C2 kernel, equation A36) with 𝜆J,s ≈ 0.270.3 𝜆0.4

J,N 𝐻0.6 and the
conditions (i) and (ii) for a potential run-away collapse correspond
to the following regions in the phase-space diagram as

𝑛H > 5.6 cm−3
(

𝑚B
105 M⊙

) (
ℎmin

100 pc

)−3
, (9)

𝑇 < 27 K
(
ℎmin

100 pc

)5 (
𝜖

700 pc

)−3 (
𝑛H

100 cm−3

)
. (10)
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Resolution criteria to avoid artificial clumping 7

This “runaway collapse zone” is indicated in Fig. 3 for various
combinations of the particle mass𝑚B, Plummer equivalent softening
length 𝜖 , and theminimum smoothing length ℎmin. The default values
(thick, black lines) with log𝑚B [M⊙] = 6.3, 𝜖 = 700 pc, and ℎmin =

108.5 pc (i.e. ℎmin,ratio = 0.1) are those from the eagle (100 Mpc)3

simulation and two of these parameters are constant in each panel
while the third parameter is varied (top panel: 𝑚B, middle panel: 𝜖 ,
bottom panel: ℎmin).
Each zone is limited through a combination of a vertical line,

condition (i): 𝑛H = 𝑛H,hmin (equation 9) and a line of log𝑇 ∝ log 𝑛H,
i.e. for a constant softened Jeans length of 𝜆J,s = ℎmin (condition ii,
equation 10). Densities with higher values than the indicated lines are
reported incorrectly by the SPH kernel density estimator if the gas is
clumpy on scales below ℎmin and can lead to a runaway collapse.
Varying the baryon particle mass 𝑚B at constant 𝜖 and ℎmin,ratio

(Fig. 3, top panel) only changes 𝑛H,hmin but condition (ii) remains un-
affected. A better mass resolution is even slightly counter-productive
in resolving higher densities because 𝑛H,hmin ∝ 𝑚B for constant ℎmin
(equation 8). Similarly, reducing the gravitational softening length
decreases the softened Jeans length and the runaway collapse zone
includes higher temperatures (middle panel of Fig. 3). Decreasing
the minimum smoothing length at constant 𝑚B and constant 𝜖 on the
other hand pushes the runaway collapse zone to significantly higher
densities (from 102 cm−3 to > 106 cm−3 when reducing ℎmin by a
factor of 10, bottom panel of Fig. 3).
If the highest (expected) density in a simulation is 𝑛sim,max, the

minimumsmoothing length should be set so that ℎ(𝑛sim,max) ≥ ℎmin.
With ℎ from equation (7), this means that the minimum smoothing
length should follow

ℎmin < 8.3 pc
(

𝑚B
105 M⊙

)1/3 (
𝑛sim,max

104 cm−3

)−1/3
, (11)

for a criterion based only on the vertical lines in Fig. 3. As we will
discuss in section 5, we cannot identify any benefit for larger values
for ℎmin and therefore recommend to use a very small but non-zero6

value for ℎmin that generously fulfills the conservative criterion from
equation (11).
Equation 11 does not depend on 𝜖 and applies to both simulations

with adaptive and constant softening lengths.

3.1.1 Examples from the literature

The runaway collapse zone is indicated in Fig. 4 for three simulation
projects that use the same code (a modified version of gadget3,
Springel 2005) but span more than 2 orders of magnitude in mass
resolution with baryon particle masses of 𝑚B = 1.81 × 106 M⊙
(eagle),𝑚B = 2.26×105 M⊙ (eagle-high-res), and𝑚B = 104 M⊙
(apostle).
The resolution parameters (see Table 2) used in both eagle flag-

ship runs (eagle, eagle-high-res, Schaye et al. 2015) and the high-
est resolution zoom-in simulations from the apostle simulation suite
(Fattahi et al. 2016; Sawala et al. 2016) violate the condition from
equation (11) for densities of 𝑛sim,max ≳ 100 cm−3. However, for
these simulations, the numerically induced runaway collapse was

6 A non-zero value for 𝑙smooth,min ensures that the simulation does not break
down in the highly unlikely, but not impossible, case of a vanishing smoothing
length for individual particles.

Table 2. Values for the gas particle mass (𝑚B), the gravitational force soften-
ing length (𝜖 ), and the minimum hydrodynamical smoothing length (ℎmin)
for a few simulations with constant softening from the literature and an alter-
native set of resolution parameter proposed in this work as shown in Fig. 4.

Simulation 𝑚B [M⊙ ] 𝜖 [pc] ℎmin [pc] Reference

eagle 1.81 × 106 700 108.50 (1)
eagle-high-res 2.26 × 105 350 54.25 (1)
apostle-L1 1.00 × 104 135 20.77 (2,3)
Alternative ≈ 105 to 106 200 2.00 -

(1) Schaye et al. (2015); (2) Fattahi et al. (2016); (3) Sawala et al. (2016)

avoided because gas with densities above 0.1 cm−3 follows a poly-
tropic equation of state where the effective temperature7 is

𝑇eff ≈ 8000 K
(

𝑛H
0.1 cm−3

)𝛾eff−1
(12)

with the polytropic index 𝛾eff = 4/3. This effective temperature is
indicated for reference as thick grey line in Figs. 3 and 4 and is
identical for eagle and apostle.
The apostle zoom-in simulations have a particle mass of 𝑚B =

104 M⊙ but the runaway collapse zone is barely affected by the higher
mass resolution, compared to e.g. eagle. The effective temperature
floor was therefore necessary for their values for ℎmin, despite the
low particle mass.
The softened Jeans mass, as derived in appendix A for aWendland

C2 kernel and for the eagle and eagle-high-res softening param-
eters, is overlaid as contours in units of log 𝑀J,s [M⊙] in Fig. 4.
Artificial fragmentation that is caused by not resolving the Jeans
mass with enough resolution elements (as in Bate & Burkert 1997)
would not be expected as the softened Jeans mass increases with
density (at a constant temperature) as soon as gravity is no longer
Newtonian. While we argue that numerical runaway collapse would
occur in these simulations without an effective temperature floor, the
reason for this is not related to the Newtonian Jeans mass but to the
adoption of a too large minimum smoothing length as discussed in
section 3.1 and therefore not very sensitive to the particle mass.
The bottom panel of Fig. 4 illustrates an alternative set of reso-

lution parameters for any mass resolution between those of eagle
and apostle-L1 (the dependence on 𝑚B is very weak, see top panel
of Fig. 3). A Plummer equivalent softening of 𝜖 = 200 pc is small
enough to model gravitational instabilities correctly in the WNM but
still large enough for a minimum softened Jeans mass of≈ 106 M⊙ in
all neutral phases of the ISM. Counter-intuitively, a smaller softening
length would decrease the softened Jeans mass in the cold neutral
medium (CNM) and molecular clouds (MCs), which means that the
softened Jeans mass would be resolved by fewer particles in these
phases.With a minimum smoothing length of ℎmin = 2 pc (instead of
54.25 pc in eagle-high-res), the runaway collapse zone only covers
𝑛H > 108 cm−3 and the molecular phase can be directly modelled
without suffering from the numerical issues described above. Simula-
tions of isolated galaxies at comparable mass resolutions and without
an entropy floor are shown below in section 4.
Future simulations that include a multi-phase ISM need to care-

fully select the combination of mass (baryon particle mass), gravity

7 The polytropic equation of state is in practice implemented as an entropy
or internal energy floor. The exact effective temperature therefore depends on
the mean particle mass, 𝜇, but this is irrelevant here as we show 𝑇eff only for
reference.
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8 S. Ploeckinger et al.

Figure 4. Overview of the density-temperature phase-space for the eagle,
eagle-high-res, and apostle-L1 resolution parameters, as well as for an
alternative set (from top to bottom, see also Table 2). The contours indicate
the softened Jeans mass in units of log 𝑀J,s [M⊙ ]. The red shaded region at
high densities is the runaway collapse zone and SPH-estimated gas densities
within this zonemay be underestimated (see section 3.1). The grey thick line is
the effective temperature floor used in eagle, eagle-high-res, and Apostle-
L1. Typical densities and temperatures for the warm neutral medium, the
cold neutral medium and molecular clouds (from low to high densities) are
indicated with black patches for reference. An alternative set of parameters is
shown in the bottom panel: for a mass resolution of order 105 to 106 M⊙ , a
softening scale of 200 pc and aminimumsmoothing length of 2 pc (ℎmin,ratio =

0.006) push the runaway collapse zone to densities ≳ 108 cm−3). All phases
in the ISM can therefore be modelled without triggering a numerical runaway
collapse.

(softening scale), and hydrodynamic resolutions (minimum smooth-
ing length) to avoid unwanted numerical artefacts.

3.2 Gravitational instabilities at and below the resolution limits

In subsection 3.1 we defined a numerical instability that is caused
by an incorrect density estimate if the smoothing length is limited
by a constant minimum value. In this subsection, we focus on the
formation of gas clumps through gravitational fragmentation and
collapse, considering both codes with adaptive and constant constant
values for the gravitational softening length.
For a code-independent discussion of the conditions under which

gravitational instabilities develop in simulations, we define the code-
agnostic length scales 𝑙soft, over which gravitational forces are soft-
ened, and 𝑙smooth (with a minimum of 𝑙smooth,min), over which the
hydrodynamical forces are smoothed. We explain briefly how they
connect to the smoothing lengths ℎ and the softening lengths 𝜖 in
some codes as examples:
We use the kernel support as measure of 𝑙smooth. In Swift, ℎ is

defined following Dehnen & Aly (2012) and based on the kernel
standard deviation which is directly related to the numerical resolu-
tion of sound waves (equation 7). For the Wendland C2 kernel and
the Swift definition of ℎ, 𝑙smooth = 𝛾k ℎ = 1.936492 ℎ. In practice,
the definition of the smoothing length varies for each code. The SPH
code Gadget4 (Springel et al. 2021) defines ℎ as the finite support
of the kernel and therefore 𝑙smooth would be equal to ℎGadget4.
The softening length is typically given as the Plummer-equivalent

softening length, 𝜖 . Depending on the softening potential, the gravi-
tational force is exactly Newtonian for particle separations of ≥ 2.8𝜖
(cubic spline kernel as in Gadget4, Springel et al. 2021) or ≥ 3𝜖
(Wendland C2 kernel as in Swift). Because the transition to soft-
ened gravity is very gradual, the deviations from Newtonian gravity
are only significant for separations ≲ 1 − 1.5𝜖 (see e.g. figure 1 in
Springel et al. 2021). We therefore use 𝑙soft = 1.5𝜖 as an estimate for
the softening length scale.
For the following discussion, using a different measure for either

𝑙soft or 𝑙smooth would shift the lines slightly but does not change the
general interpretation of the individual zones in temperature-density
space. After concluding in section 3.1 that the minimum smoothing
length should be very small to avoid a runaway collapse, we as-
sume in this subsection 𝑙smooth,min → 0, if not explicitly mentioned
otherwise.

3.2.1 Gravitational instabilities at the hydro resolution limit 𝑙smooth

Gravitational instabilities cannot be modelled accurately in the simu-
lation if the Newtonian Jeans length, 𝜆J,N, is smaller than the size of
an individual smoothing kernel, 𝑙smooth. The hydrodynamical forces
are inaccurate on scales below 𝑙smooth and fragmentation on scales
of 𝜆J,N < 𝑙smooth is unresolved. For the Newtonian Jeans length, the
condition 𝜆J,N = 𝑙smooth depends on the gas density and tempera-
ture as well as on the particle mass, 𝑚B (𝑙smooth ∝ 𝑚

1/3
B 𝑛

−1/3
H ), but

it does not depend on the gravitational softening length, 𝑙soft. The
condition 𝜆J,N = 𝑙smooth therefore applies in the same way for sim-
ulations with constant and adaptive softening lengths. In each case,
gravitational instabilities are only resolved (i.e. modelled accurately)
for 𝜆J,N > 𝑙smooth.
For gravitational instabilities at the hydrodynamic resolution limit,

𝑙smooth, differences between the formation and further evolution of
gravitational instabilities emerge that depend on the assumed gravita-
tional softening lengths. In this subsection we discuss the formation
of gravitational instabilities at the hydrodynamical resolutions limit,
𝑙smooth, for simulations with constant and adaptive softening lengths.
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Resolution criteria to avoid artificial clumping 9

Figure 5. Gravitational stability at the hydrodynamical resolution limit, 𝑙smooth, for simulations with a constant softening length 𝑙soft. Perturbations at length
scale, 𝑙smooth, are expected to grow in Newtonian gravity for 𝜆J,N < 𝑙smooth (“gravitationally unstable in nature”) and to decay for 𝜆J,N > 𝑙smooth (“gravitationally
stable in nature”), separated by the thick dashed line with a slope of 1/3 (𝑇 ∝ 𝑛

1/3
H ) in each panel for 𝑙smooth,min = 0. Here, the gas density, 𝑛H, refers to the

SPH-estimated density. In simulations with softened gravity, such perturbations are expected to grow for 𝜆J,s < 𝑙smooth (“gravitationally unstable in sim”) and to
decay for 𝜆J,s > 𝑙smooth (“gravitationally stable in sim”), separated by the solid line which diverges from the dashed line and follows a slope of -2/3 (𝑇 ∝ 𝑛

−2/3
H )

at high densities. The left panel shows the boundary 𝜆J,s = 𝑙smooth for 𝑚B = 105 M⊙ and a constant softening length 𝑙soft = 100 pc (thick solid line). In the
middle panel the solid lines represent 𝜆J,s = 𝑙smooth for different values for 𝑙soft (see contour labels) and 𝑚B = 105 M⊙ . The right panel shows the dependence
of both 𝜆J,N = 𝑙smooth (thick green lines) and 𝜆J,s = 𝑙smooth (thin black lines) on the particle mass 𝑚B for 𝑙soft = 100 pc and 𝑚B = 105/8 , 105, and 105 × 8 M⊙
(dotted, dashed, dash-dotted lines, respectively). Typical densities and temperatures for the WNM, CNM, and MCs are indicated with dark patches, as in Fig. 4.

Figure 6. Gravitational stability at the hydrodynamical resolution limit, max(𝑙smooth, 𝑙smooth,min) , for simulations with an adaptive softening length, 𝑙soft. Line
styles as in the left panel of Fig. 5 but for an adaptive softening length, 𝑙soft. In the left panel, the minimum value for the gravitational softening length equals the
minimum value for the smoothing length. Here, the slope of both lines (dashed line: 𝜆J,N = max(𝑙smooth, 𝑙smooth,min), solid line: 𝜆J,s = max(𝑙smooth, 𝑙smooth,min))
changes when 𝑙smooth is limited by 𝑙smooth,min. In the right panel, the softening length is adaptive down to a minimum value 𝑙soft,min, for which the softening
length is effectively constant. In this panel, the slope of the solid line, 𝜆J,s = max(𝑙smooth, 𝑙smooth,min), changes for densities above which the softening length,
𝑙soft, is limited by a minimum value, 𝑙soft,min. Values for 𝑚B, 𝑙soft,min, and 𝑙smooth,min were selected to represent FIREbox (left panel) and TNG50 (right panel,
see text for details). As in Fig. 5, the gas density, 𝑛H, refers to the SPH-estimated density. Typical densities and temperatures for the WNM, CNM, and MCs are
indicated with dark patches, as in Fig. 4.
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10 S. Ploeckinger et al.

3.2.1.1 Constant softening length: In nature (or in simulations
with𝑚B → 0, 𝑙soft → 0, and 𝑙smooth,min → 0), density perturbations
with a length scale of 𝑙smooth grow if 𝜆J,N < 𝑙smooth, and decay until
they reach a new equilibrium for 𝜆J,N > 𝑙smooth. The border8 (i.e.
case 𝜆J,N = 𝑙smooth) is indicated as a thick dashed line in all panels
in Fig. 5. As discussed above, gravitational instabilities are only
modelled accurately (i.e. are resolved) if 𝜆J,N > 𝑙smooth (unshaded
area).
For softened gravity with a constant softening length (left and right

panel: 𝑙soft = 100 pc, middle panel: various values for 𝑙soft, see the
labels), the solid lines (𝜆J,s = 𝑙smooth) separate perturbations with
length scales 𝑙smooth that are gravitationally (un)stable in softened
gravity, i.e. in the simulation. Densities and temperatures for which
gas is gravitationally stable in nature for perturbations at the resolu-
tion limit 𝑙smooth are also gravitationally stable in simulations with
softened gravity (white area in the left panel of Fig. 5 for a simulation
with 𝑚B = 105 M⊙ , 𝑙soft = 100 pc, and 𝑙smooth,min → 0 pc).
Gas with densities and temperatures within the shaded areas

(𝜆J,N < 𝑙smooth), is gravitationally unstable for perturbations at the
size of a smoothing kernel in Newtonian gravity. In softened gravity,
gravitational instabilities in part of this area are suppressed at scales
of 𝑙smooth because the softened Jeans length exceeds the kernel size
(𝜆J,s > 𝑙smooth) and therefore perturbations on scales of 𝑙smooth
decay. The middle panel shows that the boundary 𝜆J,s = 𝑙smooth de-
pends on the value for the constant softening length, 𝑙soft. The right
panel shows that increasing (dash-dotted lines) or decreasing (dot-
ted lines) the particle mass by a factor of 8 from the fiducial value
of 𝑚B = 105 M⊙ (dashed lines), affects both the thick green lines
for 𝜆J,N = 𝑙smooth as well as the thin black lines for the condition
𝜆J,s = 𝑙smooth, because 𝑙smooth ∝ 𝑚

1/3
B (right panel of Fig. 5 for

𝑙soft = 100 pc).

3.2.1.2 Adaptive softening length: For adaptive softening, typ-
ically 𝑙soft = 𝑙smooth and therefore 𝜆J,s ≈ 𝜆J,N. The instability
criteria for perturbations at the resolution limit, i.e. at the kernel
size 𝑙smooth, therefore follow the instability criteria for Newtonian
gravity. The left panel of Fig. 6 (linestyles as in Fig. 5) illustrates
this for parameters representative for the FIREbox (Feldmann et al.
2023) simulation project with 𝑚B = 6 × 104 M⊙ . Their adaptive
softening length is equal to the average gas particle separation
(𝑙soft = 1.5𝜖 (𝑚B/𝜌)1/3, for gas density 𝜌), down to a minimum
value of 𝑙soft,min = 𝑙smooth,min = 2.25 pc (𝜖min = 1.5 pc). Density
perturbations of length-scale 𝑙smooth therefore follow the Newtonian
Jeans criteria. The small offset between the dashed and solid lines is
from the order of unity prefactors related to the kernel shapes and
exact definitions of 𝑙smooth and 𝑙soft. For simplicity we use the same
kernel shapes and pre-factors as in Fig. 5.
The slope change of the 𝜆J,N = 𝑙smooth (dashed) and 𝜆J,s =

𝑙smooth (solid) lines is caused by the minimum smoothing length
𝑙smooth,min. The critical density 𝑛H,hmin above which densities are
over-smoothed, and hence 𝑛H,SPH < 𝑛H, is ≈ 2 × 106 cm−3 (equa-
tion 8 for 𝑚B = 6× 104 M⊙ and ℎmin ≈ 1.2 pc). The small values for
𝑙smooth,min and 𝑙soft,min therefore prevent the instability described in
section 3.1 for densities below ≈ 2 × 106 cm−3.
In the IllustrisTNG project (Pillepich et al. 2018b; Nelson et al.

8 The condition 𝜆J,N = 𝑙smooth can also be interpreted as the condition that
the Jeans mass, 𝑀J,N = 4𝜋𝜆3

J,N𝜌/3, is equal to the mass in the kernel
𝑁neigh𝑚B ≈ 𝑙3smooth𝜌 (with a constant pre-factor of order unity). However,
the number of neighbours, 𝑁neigh, is not well defined and we therefore use
the better defined condition 𝜆J,N = 𝑙smooth instead.

2018) which uses the moving mesh code Arepo (Weinberger et al.
2020), the softening length is related to the adaptive sizes of the
gaseous cells but here the minimum softening length (TNG50:
𝑙soft,min = 1.5𝜖gas,min = 108 pc, TNG100: 𝑙soft,min = 1.5𝜖gas,min =

285 pc, TNG300: 𝑙soft,min = 1.5𝜖gas,min = 555 pc, see table 1 in
Pillepich et al. 2019) differs from the minimum smoothing length
(the minimum cell size in TNG50 is reported as 6.5 pc, Pillepich
et al. 2019).
Gravitational instabilities in gas cells for which the gravitational

softening is limited by a minimum value (𝜖 = 𝜖gas,min) follow the
softened Jeans criteria outlined in section 2. The right panel of Fig. 6
shows the 𝜆J,N = 𝑙smooth (dashed) and 𝜆J,s = 𝑙smooth (solid) lines
for values representative for TNG50: 𝑚B = 8.5× 104 M⊙ , 𝑙soft,min =

108 pc and an assumed negligible value for 𝑙smooth,min.
Comparing the right panel of Fig. 6 with the left panel of Fig. 5, we

see that gravitational instabilities on scales < 𝑙soft,min in simulations
with adaptive softening lengths effectively behave as in simulations
with constant softening lengths.

3.2.2 Gravitational instabilities below the hydro resolution limit
𝑙smooth

Density perturbations grow in nature on length-scales smaller than
𝑙smooth in gas with temperatures and densities for which 𝜆J,N <

𝑙smooth (shaded regions in Figs. 5 and 6). The gravitational collapse
of these perturbations within an individual smoothing kernel is not
resolved and therefore not expected to be modelled accurately with
any simulation method.
We can see from Figs. 5 and 6 that a large fraction of the neu-

tral ISM in simulations might form sub-kernel instabilities (𝜆J,s <

𝑙smooth, dark shaded regions). While the resulting clumpy particle
configurations within a kernel might have a limited effect on the
simulation because the cooling rates, star formation rates and other
density- or pressure-dependent sub-grid models use the smoother
SPH estimates, we briefly discuss the differences in the treatment of
sub-kernel perturbations between codes with constant and adaptive
softening lengths.

3.2.2.1 Constant softening length: Gas with 𝜆J,s < 𝑙smooth is ex-
pected to be gravitationally unstable when exposed to fluctuations
on length scales between 𝜆J,s and 𝑙smooth. In the derivation of the
softened Jeans length, 𝜆J,s, we assume an accurate gas density and
pressure estimate. If the gas pressure is underestimated, gravitational
instabilities may form from perturbations on length scales below
𝜆J,s. Therefore, the softened Jeans criteria serve as an upper limit
to the expected instabilities in the simulation because the hydrody-
namic forces might be underestimated due to the smoothing over
the full kernel (an extreme case is discussed in subsection 3.1). If
𝑙smooth < 𝑙soft, the gravitational forces are softened on larger scales
than a smoothing kernel and further gravitational collapse and frag-
mentation within a kernel is suppressed. On the other hand, 𝑙soft can
be (much) smaller than the size of a smoothing kernel, for a constant
value of 𝑙soft. In this case, dense particle configurations with sizes
possibly even smaller than 𝜆J,N can form because the density and
pressure estimates of sub-kernel clumps can be inaccurate.
Fig. 7 shows an overview of the behaviour of dense particle config-

urations within a smoothing kernel. Gas that is gravitationally unsta-
ble at the scale of an individual smoothing kernel (𝜆J,s < 𝑙smooth, as
in Fig. 5) is further split into densities for which further fragmentation
to even smaller scales is suppressed (𝑙soft > 𝑙smooth) or potentially
induced (𝑙soft < 𝑙smooth), with the boundary, 𝑙soft = 𝑙smooth, indi-
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Figure 7. As Fig. 5 but focusing on densities and temperatures for which gravitation instabilities on sub-kernel scales are expected (𝜆J,s < 𝑙smooth). Left panel:
The dotted vertical line indicates the boundary 𝑙soft = 𝑙smooth for 𝑚B = 105 M⊙ and a constant softening length of 𝑙soft = 100 pc. If 𝑙soft < 𝑙smooth gas clumps
within a smoothing kernel can fragment further, but this process is suppressed at higher densities where 𝑙soft > 𝑙smooth (see text for details). In the right panel
all lines are repeated for different values of 𝑙soft (see contour labels). As in Fig. 5, the gas density, 𝑛H, refers to the SPH-estimated density. Typical densities and
temperatures for the WNM, CNM, and MCs are indicated with dark patches, as in Fig. 4.

cated as vertical, dotted lines (left panel: 𝑙soft = 100 pc, right panel:
various values for 𝑙soft, see contour labels).
We conclude that for a constant softening length, gas in simula-

tions with 𝜆J,s < 𝑙smooth and 𝑙soft < 𝑙smooth (purple areas in Fig. 7)
might be affected by sub-kernel clumping. For example: within a
kernel of 100 particles, a subset of 10 particles has particle separa-
tions that are smaller than average for this kernel and hence smaller
than the smoothing length, 𝑙smooth. In contrast to simulations with
adaptive softening, the constant value for 𝑙soft can be smaller than
the particle separation of these 10 particles. The gravitational forces
between this subset of particles are therefore Newtonian, while the
pressure is smoothed over the full kernel with 100 particles. An ini-
tial perturbation within the kernel may grow artificially or at a rate
that is artificially high until 𝑙smooth = 𝑙soft (vertical lines in Fig. 7).
For higher gas densities (i.e. 𝑙smooth < 𝑙soft), the further collapse is
suppressed. The detailed impact of sub-kernel clumping on galaxy
properties in large-scale simulations is beyond the scope of this work.
If sub-kernel clumping (“subk") is undesired in simulations with

constant softening, the conditions 𝜆J,s < 𝑙smooth and 𝑙soft < 𝑙smooth
(purple areas in Fig. 7) should not cover regions in density-
temperature space that are populated by many gas particles in the
simulation. If we want to confine the area in density temperature
space for which 𝑙soft < 𝑙smooth to densities below 𝑛max,subk, this
condition translates into a minimum constant softening length

𝑙min,subk = 1.5𝜖min,subk > 1.5
𝛾k𝜂res

1.5

(
𝑋H𝑚B

𝑚H𝑛max,subk

)1/3
or

𝑙min,subk = 1.5𝜖min,subk > 160 pc
(
𝑛max,subk

10 cm−3

)−1/3 (
𝑚B

105 M⊙

)1/3

(13)

for the smoothing length and softening length definition as above.
Unlike in simulations with adaptive softening, unresolved gravita-

tional instabilities are not suppressed by design in simulations with
constant softening lengths. Fulfilling equation (13) avoids potentially
undesired, sub-kernel gravitational instabilities in large parts of the

cold ISM, but at the expense of suppressing physical instabilities at
the kernel scale, 𝑙smooth (see middle panel of Fig. 5).
We focus in this work on simulations with 𝑚B ≳ 105 M⊙ but

the analysis presented here is relevant for simulations of any mass
resolution. In Appendix B (Fig. B1), the right panel of Fig. 7 is
repeated for simulations with a particle mass of 𝑚B = 4 M⊙ , for
which a constant softening length of at least 𝜖 = 2 pc is needed to
avoid sub-kernel clumping.

3.2.2.2 Adaptive softening length: In simulationswith an adaptive
softening length and 𝑙soft ≥ 𝑙smooth any further fragmentation within
a smoothing kernel is generally suppressed because gravitational
forces are softened on scales larger than or equal to the smoothing
kernel. Physical gravitational instabilities on scales 𝜆J,N < 𝑙smooth
are therefore artificially suppressed.
In order to avoid the runaway collapse described in section 3.1,

the minimum smoothing length, 𝑙smooth,min, needs to be small (see
equation 11). In simulations, such as FIREbox, where 𝑙soft,min =

𝑙smooth,min, the minimum softening length needs to have the same
small value as the minimum smoothing length.

4 GALAXY SIMULATIONS

In section 3.2, we used the smoothing and softening lengths 𝑙smooth
and 𝑙soft for a code independent discussion on the individual zones.
In this section we use simulations of isolated galaxies with the public
Swift code9 (Schaller et al. 2016, 2018, 2023, www.swiftsim.com).
The resolution parameters set by the user are 𝜖 and ℎmin which relate
to 𝑙soft = 1.5𝜖 and 𝑙smooth,min = 1.94ℎmin, respectively (see text in
section 3.2 for details). We will demonstrate the numerical issues
that can occur for different choices of 𝜖 and ℎmin, focusing on sim-
ulations of isolated galaxies with a constant softening length. The

9 The simulations use version 0.9.0 and in particular revision v0.9.0-1182-
g423e9dd8.
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12 S. Ploeckinger et al.

Figure 8. Illustration of the runaway collapse described in section 3.1. Temperature-density histograms at time 𝑡 = 1 Gyr for 3 simulations (columns 1 to 3)
with identical initial conditions. The densities (x-axis) in the top row are the SPH gas density estimates, 𝑛H,SPH, as used in the simulations and stored in the
snapshots, while the bottom row shows the re-calculated densities for ℎmin → 0, based on the same particle positions. The colour of the temperature-density
histograms is proportional to the log of gas mass per pixel and the minimum and maximum values for the colour maps are constant across all plots. From left to
right the minimum smoothing length, ℎmin, decreases from 77.5 pc (ℎmin,ratio = 0.2; first column) and ℎmin = 24.5 pc (second column) to ℎmin = 7.75 pc (third
column). The red shaded area is the runaway collapse zone as defined in section 3.1 and each panel includes a number for the total mass of particles within this
zone as log 𝑀zoneC [M⊙ ] if 𝑀zoneC > 0. For reference, the black lines indicate where the softened Jeans mass is resolved by 1 (dotted), 10 (dashed), and 100
(solid) particles. The panels in the rightmost column show the cumulative mass fraction for particles above a given gas density 𝑛H. The solid lines in the top
panel show the density distributions for the phase-space diagrams in the top row and the dashed lines in the bottom panel for the density distribution from the
bottom row (dashed lines are repeated for reference in the top panel). The short vertical dotted lines at the top of the figures in the rightmost row indicate the
densities 𝑛H,hmin (equation 8) above which the smoothing length is limited by ℎmin.

individual simulations are based on the “IsolatedGalaxy-feedback”
example in Swift and use the modern and open source SPH scheme
SPHENIX (Borrow et al. 2022), implemented as the default hydrody-
namic solver in Swift. Gravity is softenedwith aWendlandC2 kernel
and a constant softening length, defined as the Plummer equivalent
softening length, 𝜖 .

The initial conditions were created with MakeNewDisk which is
based on the code used in Springel et al. (2005a) but modified to
use the exact definition of the analytic dark matter halo mass 𝑀200
(i.e. mass within 𝑅200, the radius within which the average density
is 200 times the critical density of the Universe) instead of the halo
mass integrated to infinity (see Nobels et al. 2023 for details). The
isolated galaxy initially has a gas mass of 1.644×1010 M⊙ with solar
metallicity (𝑍⊙ = 0.0134, Asplund et al. 2009) and an exponential
stellar disk with a radial scale length of 4.3 kpc and a mass of 3.836×
1010 M⊙ The initial disk gas fraction is 30 per cent and the gas
is initialized with a temperature of 104 K. The baryonic disk is in
equilibriumwith an analytic darkmatter halowith aHernquist (1990)
profile of 𝑀200 = 1.37 × 1012 M⊙ and a scale radius such that the
central density profile matches that of a Navarro et al. (1997) profile
with a concentration of 𝑐 = 9. The initial conditions are available
within the “IsolatedGalaxy” example in Swift.

We use the fiducial cooling tables from Ploeckinger & Schaye
(2020) which include the effects of self-shielding, dust, cosmic rays,
an interstellar radiation field and a UV background. In Appendix C2
we demonstrate that our conclusions remain unchanged if we instead
use cooling tables appropriate for a weaker and stronger radiation
field. No artificial pressure or entropy floor is included. A supernova
energy of 1051 erg per SN is injected stochastically as thermal energy,

followingDalla Vecchia&Schaye (2012), with a heating temperature
of 107.5 K. The high heating temperature of the stochastic feedback
model increases the efficiency of thermal feedback because the cool-
ing time of gas with 107.5 K is long and less energy is lost radiatively
lost compared to using many smaller thermal energy injections that
would heat up the gas to e.g. 105 K, the peak of the cooling curve
(see Dalla Vecchia & Schaye 2012 for a detailed discussion). We
inject the stellar feedback energy into the gas particle closest to the
star, which has been shown to further increase the efficiency of su-
pernova feedback, compared to selecting a random gas particle in
the star’s kernel (see “Min distance” model in Chaikin et al. 2022).
Additional simulations with 2 and 4 times higher supernova energies
are presented in Appendix C1.
Star formation is limited to densities of 𝑛H > 0.1 cm−3 and cold

gas (temperatures of𝑇 < 1000 K) and the star formation rate for each
gas particle with mass 𝑚gas is given by the Schmidt (1959) relation

¤𝑚★ =
𝑒sf
𝑡ff,N

𝑚gas (14)

= 7.2 × 10−5 M⊙ yr−1
( 𝑒sf

0.32%

) (
𝑛H

100 cm−3

)1/2 (
𝑚gas

105 M⊙

)
with the star formation efficiency 𝑒sf and theNewtonian free-fall time
𝑡ff,N (equation A10). A gas particle is converted into a star particle
stochastically. The simulations analysed in this work vary the resolu-
tion parameters: gravitational softening 𝜖 = [250, 500] pc, minimum
SPH smoothing length ℎmin = [7.75, 24.5, 77.5] pc (ℎmin,ratio =

[0.02, 0.063, 0.2] for 𝜖 = 250 pc), and baryon particle mass
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Figure 9. The distribution of gas (left) is represented as a (recalculated) density - temperature histogram (as in the bottom row of Fig. 8) and the distribution of stars (right) as a stellar mass surface density map for
simulations with various resolution and star formation efficiency parameters at 𝑡 = 1 Gyr. The central panel in each figure shows the results for the fiducial parameters 𝑚B = 105 M⊙ , 𝜖 = 250 pc, ℎmin = 77.5 pc
(ℎmin,ratio = 0.2), and 𝑒sf = 0.32 per cent and the panels in each corner vary one parameter while keeping the others constant: top right: 𝜖 is increased by a factor of 2, bottom right: 𝑚B is increased by a factor of
8, bottom left: ℎmin is decreased by a factor of 10, top left: 𝑒sf is increased by a factor of 3. The phase-space plots on the left hand side show the zones where the numerical instability as described in section 3.1
can form as red-shaded areas. The total gas mass in this zone is shown as log 𝑀zone [M⊙ ] in each panel, if 𝑀zone > 0. The right hand side consists of images of the stellar surface mass density within 𝑟 = 25 kpc
(excluding stars already present in the initial conditions). The clumps identified by the friends-of-friends algorithm are highlighted with circles (diamonds) if their mass is below (above) 108 M⊙ . Both colour maps
are logarithmic and span the same range across all simulations.
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14 S. Ploeckinger et al.

𝑚B = [105, 8 × 105] M⊙ ; as well as the star formation efficiency
𝑒sf = [0.32, 1] per cent in order to change the amount of high-density
gas in a controlled way.
All simulations run until 𝑡end = 1.2 Gyr. We use Swift to re-

calculate the gas densities based on the gas particle positions for
ℎmin → 0 by restarting the original simulations at 𝑡 = 1 Gyr for
one very small timestep (Δ𝑡max = 10 yr) with a very small minimum
smoothing length10 (ℎmin,ratio = 10−4). The snapshot file that is
produced after this timestep contains the correct (i.e. not limited by a
minimum smoothing length) gas densities based on the gas particle
positions.
Fig. 8 shows the difference between the original SPH densities (top

row) and the recalculated densities for ℎmin → 0 (bottom row) for 3
simulations (first three columns; all with 𝑚B = 105 M⊙ , 𝜖 = 250 pc,
𝑒sf = 0.32 per cent) with decreasing values for ℎmin (from left to
right). The runaway collapse described in section 3.1 is obvious in
the simulation with the largest value for ℎmin (1st column). The
distribution of recalculated, “real” densities (bottom row) extends to
much higher values than the densities used during the simulation (top
row) for many particles as they approach the runaway collapse zone
(red shaded area). For the simulation with the smallest value of ℎmin
(3rd column), the two density-temperature diagrams look identical.
The panels in the rightmost column show the cumulative mass

fraction of particles above density 𝑛H (x-axis) for the SPH densities
(solid lines, top panel) and the recalculated densities (dashed lines,
bottom panel; repeated for reference in the top panel). As the den-
sities exceed 𝑛H,hmin (equation 8; indicated as short vertical dotted
lines) the SPH densities and the recalculated densities diverge. In this
case, the formally lowest resolution simulation (ℎmin = 77.5 pc) has
much higher “real” (but unresolved) densities, up to 𝑛H > 106 cm−3,
than the formally highest resolution simulation (ℎmin = 7.75 pc). If
these dense clumps would appear through physical processes such as
instabilities in the galaxy disk, they would persist in the simulation
with better resolved hydrodynamic forces.We therefore conclude that
the very high densities seen in the particle distributions are indeed
artificial as outlined in section 3.1.
While the dense gas clumps form, they may become eligible to

star formation and if their densities are underestimated, their star
formation rates are underestimated as well ( ¤𝑚★ ∝ 𝑛

1/2
H , equation 14).

As result, the gas clumps in the runaway collapse zone turn into star
particles slower than expected from the value for the star formation
efficiency and the particle positions (i.e. “real densities").
After star particles form within dense gas clumps, stellar feedback

is modelled by injecting thermal energy. Dalla Vecchia & Schaye
(2012) derived a maximal gas density below which thermal feedback
is efficient, which for the simulations used in this work means that
thermal feedback is inefficient for densities above 𝑛fb ≈ 10 cm−3.
Their derivation assumes ℎ > ℎmin which is fulfilled at densities of
≈ 10 cm−3 in all simulations in this work. Comparing the values of
𝑛fb to the particle densities in Figs. 8 and 9 reveals that the artificially
dense gas clumps are unlikely to be destroyed by stellar feedback and
may thus result in artificially dense clusters of star particles.
In Fig. 9 we compare images of the stellar mass surface density of

five simulations and their respective gas distributions in temperature
- recalculated density phase-space (all at 𝑡 = 1 Gyr) The lines and
labels are as in Fig. 8. The central images for both gas and stars are
for the fiducial simulation with resolution parameters 𝑚B = 105 M⊙ ,

10 We use a non-zero value for ℎmin,ratio but the selected value is small
enough that the re-calculated smoothing lengths are larger than ℎmin for all
gas particles.

𝜖 = 250 pc, and ℎmin = 77.5 pc and a star formation efficiency of
𝑒sf = 0.32 per cent. The four simulations in each corner vary one
of these parameters at a time, keeping the other parameters at their
fiducial values (see labels).
Some stellarmass surface density images (right side of Fig. 9) show

dense star clumps. We identify the clump properties by running the
Swift friends-of-friends algorithm as a stand-alone routine on the
star particles within a snapshot output. We use a small linking length
of 25 pc and a minimum number of particles of 50 for simulations
with 𝑚B = 105 M⊙ and 18 for simulations with 𝑚B = 8 × 105 M⊙ .
The minimum clump mass is a factor of ≈ 2.9 times larger for
the low mass-resolution simulation compared to the simulation with
the fiducial particle mass. This is a compromise between choosing
the same number of particles and the same mass in a clump when
comparing simulations with different mass resolutions. Slightly dif-
ferent parameters in the clump finding algorithm might affect the
detailed analysis on the exact properties of the individual clumps but
the qualitative conclusions that we focus on are insensitive to these
choices. The positions of all clumps identified outside of the inner-
most 3 kpc are indicated by circles and the most massive clumps
(𝑀clump > 108 M⊙) are highlighted by diamonds.
The galaxy with the fiducial resolution parameters (centre)

has several stellar clumps due to the large amount of mass
(log 𝑀 (zoneC) [M⊙] = 9.37) within the runaway collapse zone
(zone C in section 3.2) in the gas phase. These clumps are mostly ar-
tificial as they largely disappear when increasing the hydrodynamic
force resolution (shown in Fig. 8 and when comparing centre and
lower left panels in Fig. 9) and therefore moving the runaway col-
lapse zone to higher gas densities.
The number of clumps aswell as their masses are not very sensitive

to the mass resolution (increase 𝑚B; lower right). On the other hand,
increasing the gravitational force softening length (increase 𝜖 ; upper
right) or increasing the star formation efficiency (increase 𝑒sf ; upper
left) both reduce the number of stellar clumps drastically by reducing
the amount of high-density gas and therefore the amount of gaswithin
the runaway collapse zone. Interestingly, their gas distributions look
very different11: while the simulation with the higher star formation
efficiency (𝑒sf = 1 per cent) has very little cold (< 1000 K) gas,
the galaxy with the larger softening length (𝜖 = 500 pc) has large
amounts of cold gas at densities just outside the runaway collapse
zone but its further collapse is delayed due to the larger softening
scale. A tail towards very high densities it still noticeable but in this
case it is limited to the central part of the galaxy and therefore does
not result in clumps throughout the galactic disk.
In contrast to the comparisons shown in Figs. 8 and 9 forwhich only

one parameter is varied at a time, we show in Fig. 10 an alternative
combination of values for 𝜖 and ℎmin. For a particle mass of 𝑚B =

105 M⊙ (first two columns in Fig. 10) the alternative parameter set
fulfills the conditions in equation (11) for ℎmin and equation (13) for
𝜖 . Note that these parameters are not necessarily the best choice for
every application but illustrate the impact of choosing values for 𝜖
and ℎmin that are informed by the conditions defined in sections 3.1
and 3.2.
Both simulations within each figure half in Fig. 10 use the same

number of particles (i.e. baryon particle mass, 𝑚B = 105 M⊙ ,
left two panels, and 𝑚B = 8 × 105 M⊙ , right two panels) and all
simulations use the same value for the star formation efficiency
(𝑒sf = 0.32 per cent). The gravitational softening length is increased
from 250 pc (fiducial) to 500 pc (alternative). The minimum smooth-

11 The colourscales are the same across all phase-space plots.
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Figure 10. Stellar mass surface density (top row) and gas phase-space distribution (bottom row) as in Fig. 9 for the fiducial simulation parameters (first and third
columns) and a set of alternative simulation parameters (as in Table 2 and Fig. 4; second and fourth columns) for a particle mass of 𝑚B = 105 M⊙ (left two
columns) and 𝑚B = 8 × 105 M⊙ (right two columns), and a star formation efficiency of 𝑒sf = 0.32 per cent. The combination of a larger gravitational softening
scale (𝜖 = 500 pc) and the smaller minimum smoothing length (ℎmin = 7.75 pc) result in a galaxy without artificial stellar clumps and without gas in the runaway
collapse zone. The low star formation efficiency still results in a large amount of cold gas with 𝑇 < 100 K but at better resolved gas densities.

ing length is reduced from ℎmin = 77.5 pc (fiducial) to ℎmin = 7.75 pc
(alternative). These changes move the runaway collapse zone to very
high densities. In addition, the zone of induced collapse (zone D in
section 3.2, red shaded area at low densities in Fig. 10) is also slightly
reduced. The slower gravitational collapse ensures that the majority
of the cold gas is at more manageable densities (< 102 cm−3) and
the density distribution does not extend into the runaway collapse
zone. For both mass resolutions, the stellar mass surface density is
smoother for the alternative resolution parameters and there are no
dense star particle clumps, in contrast to the massive clumps present
in the simulations with the fiducial resolution parameters.
Fig. 11 shows both the star formation rates averaged over 10 Myr

(large panel) and the relative computing time (small panel on the
right) for simulations with a particle mass of𝑚B = 105 M⊙ and a star
formation efficiency of 𝑒sf = 0.32 per cent. Variations in ℎmin (line
colours) for isolated galaxies with a softening length of 𝜖 = 500 pc
(solid lines) do not have a large impact on neither the star formation
history nor the computing time, because the large softening reduces
the amount of high-density gas. For simulations with a softening
length of 𝜖 = 250 pc (dashed lines), the computing time is reduced
by a factor of ≈ 2 when reducing ℎmin by a factor of 10 (from
ℎmin = 77.5 pc, red dashed line, to ℎmin = 7.75 pc, green dashed
line).
The increased computing time for simulations with larger val-

ues of ℎmin and therefore more clumping from runaway collapse is
caused by substantial amounts of shock-heated gas at high densities
log 𝑛H [cm−3] ≳ 2) and temperatures of a few hundred to a few
thousand K (see first and third column of Fig. 10). The temperature
increase of a factor of 100 compared to simulations with smaller
values of ℎmin (second and fourth column of Fig. 10) reduces the
timestep size Δ𝑡 ∝ 𝑚

1/3
B 𝑛

−1/3
H 𝑇1/2 (see e.g. Borrow et al. 2022) by

a factor of 10. The higher “real” densities in artificially dense gas
clumps in the fiducial run do not directly affect the timestep size
because Δ𝑡 is calculated from the (underestimated) SPH densities.

Summarizing, a too large value for ℎmin does not only produce
artificially dense clumps of gas and star particles, but also increases
the computing time by a factor of ≈ 2 in our simulations.

5 DISCUSSION

The runaway collapse zone, as defined in section 3.1 and in particular
equations (9) and (10), is an approximation because the clumpingwill
depend on the exact particle configuration. Nevertheless, the isolated
galaxy simulations show a clear correlation between the amount of
gas in this zone and the presence of both artificial collapse (seen
in the recalculated gas densities) as well as the number of dense
stellar clumps, which is drastically reduced for smaller values of the
minimum smoothing length (compare centre and bottom left panels
in Fig. 9).
The star formation efficiencies are varied in the presented simula-

tions with values of 𝑒sf = 0.32 per cent and 𝑒sf = 1 per cent to illus-
trate the discussed issues. Higher values of 𝑒sf mean that gas particles
are converted into star particles on shorter timescales for a given den-
sity. The isolated galaxy simulations from this work do not produce
artificial clumps for 𝑒sf > 1 per cent, because dense gas is quickly
converted into stars and therefore very little dense gas is present.
Cosmological simulations of galaxy formation include the evolution
of a large variety of galaxies with diverse properties and mass accre-
tion histories and can occupy different density-temperature regions
at different times. It is therefore plausible that the discussed issues
are present in cosmological simulations also for 𝑒sf ≥ 1 per cent.
One could expect that smaller values for the gravitational soft-

ening scale 𝜖 always lead to more accurate simulations than larger
values because gravitational forces would be calculated correctly up
to higher densities, but we discussed in section 3.2 that the density
- temperature zone within which the gravitational instabilities are
modelled correctly (𝜆J,N > 𝑙smooth) only depends on the particle
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mass (i.e. the mass resolution). Gas with densities and temperatures
such that 𝜆J,N < 𝑙smooth, is formally unresolved independently of the
softening length, which for a baryon particle mass of 𝑚B = 105 M⊙
includes most of the cold neutral and molecular gas in galaxies (see
the left panel of Fig. 5). A simulation with adaptive softening might
report using 𝜖min = 2 pc and a simulation with the same mass reso-
lution of 𝑚B = 105 M⊙ but constant softening might use 𝜖 = 100 pc.
Despite their very different values for 𝜖 and 𝜖min, neither simulation
models gravitational instabilities correctly in the CNM nor in the
MCs but both need to choose values for 𝜖 or 𝜖min that avoid numeri-
cal issues. As described in section 3.1, this means a very small value
for 𝜖min to avoid numerical runaway collapse for adaptive softening
(if 𝜖min = ℎmin) and potentially a larger value for 𝜖 for constant
softening if one wishes to suppress artificial sub-kernel gravitational
instabilities (see section 3.2).
In very high (mass and force) resolution simulations, clusters of

stars can form for physical reasons, but for the mass resolution in
the isolated galaxies examples (𝑚B = 105 M⊙ , 𝑚B = 8 × 105 M⊙),
we showed that the high-density gas clumps and resulting dense star
clusters are mainly numerical artefacts because their numbers and
masses are drastically reduced in simulations with better hydrody-
namic force resolution (compare the centre and bottom left panels in
Fig. 9).
For cosmological simulations the choice of the resolution param-

eters (mass, gravity, hydro) also need to take into account the effect
of artificial heating of the stellar disk by dark matter and stellar halo
particles (see e.g. Ludlow et al. 2019a, 2021, 2023; Wilkinson et al.
2022), which is reduced for larger values of 𝜖 (appendix D in Ludlow
et al. 2021). This effect is not included here because we do not use a
live dark matter halo for these idealised simulations.
The star formation rate for a gas particle in our simulation depends

on the Newtonian free-fall time (see equation 14) but the collapse
of gas clumps in the simulation follows the longer softened free-fall
time (equation A34).While for numerical stability considerations the
softened properties (free-fall time, Jeans mass and length) are more
relevant, we use the Newtonian free-fall time for the star formation
rate because we want to model this subgrid process physically rather
than numerically (see also the discussion in Nobels et al. 2023).
Which resolution and star formation criteria to choose depends on

the application of the simulation, but the softened Jeans criteria and
the temperature - density zones defined in section 3, in particular
the runaway collapse zone (section 3.1) provide a useful guideline
to avoid undesired numerical behaviour that may introduce artefacts
and can furthermore slow down the simulation.
To date most simulations of cosmological volumes that reach 𝑧 = 0

limit the pressure (or temperature) of the ISMby an effective pressure
floor 𝑃 ∝ 𝜌𝛾eff which is related to the gas density 𝜌 through the
effective polytropic index 𝛾eff . It has been argued that for 𝛾eff >

4/3, the Jeans mass does not increase with density and therefore
prevents artificial fragmentation (e.g. Schaye &Dalla Vecchia 2008).
In eagle (Schaye et al. 2015) 𝛾eff = 4/3 for 𝑛H > 0.1 cm−3 and in the
widely used Springel &Hernquist (2003)model, the polytropic index
varies with density between 𝛾eff ≈ 2.5 at 0.1 cm−3 to 𝛾eff ≈ 4/3 at
100 cm−3 (for 𝑧 = 0; see figure 1 of Springel & Hernquist 2003
for details). We argue here that such pressure (or entropy) floors are
unnecessary in modern Lagrangian simulations, even for relatively
low resolutions, provided that appropriate values for the softening and
minimum smoothing lengths are used to avoid artificially inducing
gravitational instabilities and a numerical runaway collapse.
The free-fall time in simulations with a constant softening length

(𝑡ff,s, equation 3) is longer than the Newtonian free-fall time (𝑡ff,N,
equation 2) in simulations with an adaptive softening length. In simu-

Figure 11. Main panel: Star formation histories (SFHs) for all simulations
with a particle mass 𝑚B = 105 M⊙ and a star formation efficiency of 𝑒sf =

0.32 per cent. Lines of different colours show the star formation rates (SFR,
averaged over 10 Myr) of simulations with different minimum smoothing
lengths, ℎmin, and different line styles indicate different gravitational softening
lengths, 𝜖 . The red dashed line is the SFH for the simulation with the fiducial
parameters (centre of Fig. 9, first column in Fig. 10) and the green solid line
shows the SFH for the simulation with the alternative set of parameters in the
second column of Fig. 10. The small panel on the right gives an overview
of the relative computing times normalized to the fastest simulation with the
same linestyles as in the main panel.

lations of galaxy formation, the stellar feedback processes might have
to start earlier to efficiently counteract the gravitational collapsewhen
the gravitational softening is adaptive. Early feedback processes, such
as radiation and stellar winds from young stars, or a small delay be-
tween star formation and core-collapse supernova explosions, might
therefore be more important in simulations with adaptive softening
than in simulations with a constant softening length.

6 SUMMARY

The Jeans stability criteria based on the analysis by Jeans (1902) de-
fine a length scale, 𝜆J,N, the so called Jeans length, by comparing the
free-fall timescale to the sound crossing timescale (see the deriva-
tion in appendix A). In a homogeneous medium with gas density
𝑛H and temperature 𝑇 , density perturbations on scales > 𝜆J,N are
gravitationally unstable (i.e. the density perturbations grow) while
density perturbations on scales < 𝜆J,N are gravitationally stable (i.e.
the density perturbations decay with time until a new equilibrium is
reached).
In this work we introduce “softened Jeans criteria” (section 2)

for which we re-derive the Jeans length in softened gravity, as used
in Lagrangian simulations to suppress 2-body scattering. In parallel
to the Newtonian Jeans criteria, the softened Jeans length (mass),
𝜆J,s (𝑀J,s) describes the minimum length (mass) scale above which
density perturbations grow and become gravitationally unstable in
simulations with softened gravity.
For gas with densities and temperatures for which the Newtonian

Jeans length is smaller that the gravitational softening length (den-
sities above or temperatures below the red dashed line, 𝜆J,N = 𝜖 ,
in Fig. 1), gravitational fragmentation is described by the softened
Jeans criteria instead of the Newtonian Jeans criteria. The further
gravitational collapse is slowed down in softened gravity and bet-
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ter described by the softened free-fall time (equation 3) than the
Newtonian free-fall time (equation 2).
Depending on the gravitational softening length, 𝜖 , the softened

Jeans mass can exceed the Newtonian Jeans mass 𝑀J,N by several
orders of magnitude for gas densities and temperatures typical of the
cold interstellar medium. For example, at a gas temperature of a few
tens of K and a gas density of ≈ 100 cm−3, the Newtonian Jeans
mass is 𝑀J,N ≈ 102 M⊙ , and the softened Jeans mass for a constant
softening length of 𝜖 = 100 pc is 𝑀J,s ≈ 105 M⊙ (Fig. 1).
In simulations with particle masses of ≈ 105 M⊙ that do not im-

pose an artificial pressure or entropy floor in the form of an effective
equation of state, cold neutral and molecular ISM gas is formally un-
resolved because gravitational instabilities should form within an in-
dividual smoothing kernel (𝜆J,N < 𝑙smooth). Modelling amulti-phase
interstellar medium at these mass resolutions therefore requires an
understanding of how instabilities behave at and below the resolution
limit (see section 3).
If the hydrodynamic forces are resolved by at least one smooth-

ing kernel, gravitational instabilities would be modelled correctly (if
𝜆J,s = 𝜆J,N), or be suppressed (𝜆J,s > 𝜆J,N) for all gas densities
and temperatures in simulations, because softened gravity never ex-
ceeds Newtonian gravity and therefore 𝜆J,s ≥ 𝜆J,N. Yet, we show
in section 3 that perturbations can grow under specific conditions
within a hydrodynamic smoothing kernel. Two distinct pathways are
identified for numerically induced instabilities, both related to an
inaccurate calculation of the hydrodynamic properties below the res-
olution limit: instabilities caused by (i) an underestimated gas density
(subsection 3.1) and (ii) pressure that is smoothed on length scales
larger than those on which gravity is softened (subsection 3.2). The
former instability is relevant for simulations with both adaptive and
constant softening lengths, while the latter only applies to simulations
with a constant softening length (see discussion in section 3).
The effects of sub-kernel instabilities is demonstrated in section 4

in simulations of isolated galaxies using the Swift code with a con-
stant softening length, 𝜖 . As outlined in subsection 3.1, the density
of gas clumps that are smaller than the minimum allowed smoothing
length, ℎmin, are under-estimated. Re-calculating the densities of all
gas particles with a vanishing value for ℎmin reveals gas clumps with
several orders of magnitude higher gas densities (compare top and
bottom row of Fig. 8). These gas clumps result in dense star clusters
that largely disappear for smaller minimum smoothing length values
and are therefore artificial (Fig. 9).
Based on the analysis in section 3.1, we recommend for both

simulations with constant and adaptive softening lengths to set the
minimum smoothing lengths to a value small enough value that the
smoothing lengths are not limited to a constant value in a simulation
with particle mass, 𝑚B and a maximum expected density, 𝑛sim,max:

ℎmin < 8.3 pc
(

𝑚B
105 M⊙

)1/3 (
𝑛sim,max

104 cm−3

)−1/3
. (15)

We recommend to generously fulfill this condition and could not
identify a benefit of a larger value for ℎmin. If the minimum values
for softening and smoothing lengths are identical (𝜖min = ℎmin) in
simulations with adaptive softening, a small value for 𝜖min is also
required.
Gravitational instabilities that would form within a smoothing ker-

nel are unresolved by definition, even if both theminimum smoothing
length and the softening length are approaching zero12. Assuming

12 A simulation with a given particle mass 𝑚B does not have a higher res-

ℎmin → 0, the fundamental differences that remain between simu-
lations with adaptive and constant softening lengths for instabilities
within a kernel are described in section 3.2. Neither method gives
the right solution for sub-kernel gravitational instabilities: an adap-
tive softening length that follows the smoothing length of the kernel
leads to artificial suppression of sub-kernel instabilities while a con-
stant softening length can result in artificially inducing sub-kernel
instabilities. Because these length scales are by definition below the
resolution limit of the simulation, their detailed impact on galaxy
properties needs further investigation and is beyond the scope of this
work.
Suppressing sub-kernel instabilities in simulations with constant

softening lengths requires a softening length that exceeds the value
given by equation 13. However, increasing the softening length ar-
tificially stabilizes gravitational instabilities at the hydrodynamical
spatial resolution limit: the size of a smoothing kernel, 𝑙smooth, for
larger regions in density-temperature space (see the middle panel
in Fig. 5). The impact of sub-kernel instabilities on galaxy proper-
ties remains to be tested, because cooling rates, star formation rates
and other density- or pressure-dependent sub-grid models use the
smoother SPH estimates. The optimal value of a constant softening
length, 𝜖 , will therefore depend on the application.
Finally, we argue that SPH simulations with relatively low baryon

mass resolution (shown here up to 𝑚B = 8 × 105 M⊙ but the de-
pendence on 𝑚B is weak) do not depend on an effective pressure
floor for numerical stability13. Simulations with comparable mass
resolutions and without an artificial pressure floor do not suffer from
the numerical issue discussed in section 3.1 if ℎmin satisfies equa-
tion (15).While the collapse of individual gas clouds is suppressed or
slowed down when gravity is softened, this can be taken into account
by subgrid prescriptions, e.g. for star formation, and is generally not
a bottleneck if the aim of a simulation is to reproduce general galaxy
properties.
The ideal simulation has both the mass and force resolution to

accurately model the gravitational fragmentation and collapse of
individual molecular clouds but in this work we showed a numeri-
cally stable alternative, both for adaptive and constant softening, for
projects for which this is computationally too expensive.
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DATA AVAILABILITY

The simulations were run with the public SPH code Swift (Schaller
et al. 2023) (www.swiftsim.com) version: 0.9.0, revision v0.9.0-
1182-g423e9dd8. The initial conditions are discussed in Nobels
et al. (2023) and public within the “IsolatedGalaxy” example within
Swift (here the “M5_disk.hdf5” and “M6_disk.hdf5” files are
used). The routines to set up, run and analyse the simulations,
including the routines to create each figure, are public on git-
lab (https://gitlab.phaidra.org/softenedjeanscriteria). The results are
therefore fully reproducible, and only require limited computational
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APPENDIX A: DERIVATION OF SOFTENED JEANS
CRITERIA

In the following, we re-derive the Jeans length for softened grav-
ity. For simplicity we focus on comparing the free-fall time, 𝑡ff , to
the sound crossing time, 𝑡sc, of a self-gravitating structure with an
initial radius, 𝑅. This derivation can easily be extended to general
gravitational accelerations.
A system is in equilibrium if it has a radius 𝑅 for which the free-

fall time equals the sound-crossing time (𝑅 ≡ 𝜆J, the Jeans length).
If the structure (here: a gas cloud) has a radius larger than the Jeans
length, the cloud collapses or fragments, otherwise it expands. The
sound crossing time is defined as

𝑡sc =
𝑅

𝑐s
(A1)

with the sound speed

𝑐s =

(
𝛾𝑘B𝑇

𝜇𝑚H

)1/2
(A2)

and 𝑡sc is independent of the shape of the gravitational potential.
Here, 𝛾 is ratio of specific heats, 𝑘B is the Boltzmann constant, 𝑇 is
the gas temperature, 𝜇 the mean particle mass, and 𝑚H the hydrogen
particle mass.
For a general definition of the free-fall time, we integrate the time

it takes a test mass to fall from rest at a distance 𝑅 to the centre of
the potential:

𝑡ff =

∫ 0

𝑟=𝑅
d𝑡 =

∫ 0

𝑟=𝑅

d𝑡
d𝑟

d𝑟 =
∫ 0

𝑟=𝑅

1
𝑣(𝑟) d𝑟 . (A3)

Integrating the equation of motion

𝑣
d𝑣
d𝑟

= −|𝑎(𝑟) | (A4)

from 𝑅 to 𝑟 leads to

𝑣(𝑟) =
(
2
∫ 𝑟

𝑟 ′=𝑅
−|𝑎(𝑟 ′) |d𝑟 ′

)1/2
. (A5)

which is used in equation A3 to calculate the free-fall time

𝑡ff (𝑅) =
∫ 0

𝑟=𝑅
𝑣(𝑟)−1d𝑟 =

∫ 0

𝑟=𝑅

(
2
∫ 𝑟

𝑟 ′=𝑅
−|𝑎(𝑟 ′) | d𝑟 ′

)−1/2
d𝑟 .

(A6)

A pressure-less collapse and therefore no shell-crossing is assumed,
which means that the mass inside the radius of the test mass re-
mains constant throughout the free-fall: 𝑀 (< 𝑟) = 𝑀 = 4𝜋𝑅3/3𝜌.
Finally, the Jeans length is calculated by solving the equation
𝑡ff (𝑅) = 𝑡sc (𝑅, 𝑐s) for 𝑅.

A1 Newtonian (unsoftened) gravity

The Jeans length for Newtonian gravity can be found in many text-
books but depending on the derivation the prefactors are slightly
different. We repeat one of the textbook derivations here briefly to

allow for a direct comparison of the individual steps with the deriva-
tion of the softened Jeans length and to demonstrate which prefactors
are included in this derivation14.
For Newtonian gravity,

|𝑎(𝑟) | = |𝑎N (𝑟) | = 𝐺𝑀

𝑟2 (A7)

and the velocity for the free-fall is

𝑣N (𝑟) = (2𝐺𝑀)1/2
(

1
𝑟
− 1

𝑅

)1/2
. (A8)

The free-fall time is

𝑡ff,N =

(
𝜋2𝑅3

8𝐺𝑀

)1/2
=

(
3𝜋

32𝐺𝜌

)1/2
(A9)

or

𝑡ff,N = 4.4 Myr
(

𝑛H
100 cm−3

)−1/2
(A10)

for the gas density 𝜌 = 𝑛H𝑚H/𝑋H with the hydrogen number density,
𝑛H, the hydrogen mass fraction 𝑋H (here we use 𝑋H = 0.74 for solar
chemical composition, Asplund et al. 2009). The Jeans length for
Newtonian gravity is

𝜆J,N = 𝑡ff,N · 𝑐s (A11)

=

(
3𝜋𝛾𝑋H𝑘B𝑇

32𝐺𝜇𝑚2
H𝑛H

)1/2

(A12)

= 1.5 pc
(

𝑇

10 K

)1/2 (
𝑛H

100 cm−3

)−1/2
, (A13)

which corresponds to a Jeans mass of

𝑀J,N =
4𝜋𝜌𝜆3

J,N
3

= 46 M⊙

(
𝑇

10 K

)3/2 (
𝑛H

100 cm−3

)−1/2
, (A14)

where we use 𝛾 = 5/3 and 𝜇 = 1.28, values typical for a neutral
atomic ideas gas with solar metallicity. For diatomic gas, such as
molecular hydrogen, the ratio of specific heats would be 𝛾 = 1.4 and
𝜇 = 2, but these are comparable to other order of unity effects, such
as the concrete particle distribution.

A2 Plummer softening

For a Plummer (1911) softened potential with

|𝑎(𝑟) | = |𝑎P (𝑟) | =
𝐺𝑀𝑟(

𝑟2 + 𝜖2)3/2 , (A15)

and a softening scale 𝜖 , the free-fall velocity, equation (A5), becomes

14 A pre-factor of order unity is not important due to the approximate nature
of the Jeans criterion in realistic applications but for comparisons to the
softenened Jeans criteria and for the sake of completeness, we keep all pre-
factors.
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Figure A1. Top panels: Ratios of gravitationally softened Jeans length 𝜆J,s
to Newtonian Jeans length 𝜆J,N (black lines and symbols, left y-axis) and
softened Jeans mass to Newtonian Jeans mass (red lines and symbols, right
y-axis) for a Plummer potential with a softening length 𝜖 (left panels) and a
Wendland C2 potential with a softening length 𝐻 = 3𝜖 (right panels). The
solid lines in the top panels are the fits (equations A21, A22 for the Plummer
potential and equations A36, A37 for the Wendland C2 potential) to the
numerical root finding (points, only selected points shown) and the bottom
panels illustrate the accuracy of the fit.

𝑣P (𝑟) = (2𝐺𝑀)1/2
(

1(
𝑟2 + 𝜖2)1/2 − 1(

𝑅2 + 𝜖2)1/2

)1/2

, (A16)

and the free-fall time (equation A6) is

𝑡ff,P = (2𝐺𝑀)−1/2 ·∫ 0

𝑟=𝑅

(
1(

𝑟2 + 𝜖2)1/2 − 1(
𝑅2 + 𝜖2)1/2

)−1/2

d𝑟 . (A17)

This expression can be re-written as

𝑡ff,P = 𝑡ff,N

∫ 1

𝑥=0

2
𝜋

( [
𝑥2 + 𝑓 2

P

]−1/2
−

[
1 + 𝑓 2

P

]−1/2
)−1/2

d𝑥 ,

(A18)

with the Newtonian free fall time 𝑡ff,N and the dimensionless pa-
rameters 𝑥 = 𝑟/𝑅 and 𝑓P = 𝜖/𝑅. This integral cannot be solved
analytically but it can be numerically evaluated for different values
of 𝑓P. The following fit matches these data points to within a few
percent:

𝑡ff,P,fit = 𝑡ff,N
(
1 + 22/3 𝑓 2

P

)3/4
. (A19)

The free-fall in a Plummer softened potential is therefore slowed
down by a factor of ≈ 2.0 if the softening scale equals the size of the
clump ( 𝑓P = 1) and by a factor ≈ 45 for a softening scale that is 10
times the size of the clump ( 𝑓P = 10).
For the limiting case 𝑓P ≫ 1 (i.e. softening is important) the

Plummer free-fall time can be calculated analytically (see Nobels

et al. 2023) and for 𝑓P ≪ 1 the Plummer free-fall time approaches the
Newtonian free-fall time. For the full expression of the Jeans length
(solving 𝑡ff,P,fit = 𝑅/𝑐s for 𝑅 with 𝜆J,N = 𝑡ff,N𝑐s, the Newtonian
Jeans length) we use a root finding algorithm for

(
𝜆J,P
𝜆J,N

)10/3
−

(
𝜆J,P
𝜆J,N

)2
− 22/3

(
𝜖

𝜆J,N

)2
= 0 . (A20)

This dimensionless equation is solved numerically for values of
𝜖/𝜆J,N between 0.01 and 105. The results are fit by

𝜆J,P,fit = 𝜆J,N

(
1 + 1.42

(
𝜖

𝜆J,N

)3/2
)2/5

, (A21)

and the softened Jeans for the Plummer potential is fit by

𝑀J,P,fit = 𝑀J,N

(
1 + 1.42

(
𝜖

𝜆J,N

)3/2
)6/5

. (A22)

The top left panel in Fig. A1 illustrates the Jeans length (black, left
y-axis) and Jeans mass (red, right y-axis) as a function of the ratio
between the gravitational softening length, 𝜖 , and the Newtonian
Jeans length 𝜆J,N. For small values of 𝜖/𝜆J,N (i.e. the gas cloud
is much larger than the softening scale), the softened Jeans length
approaches the Newtonian Jeans length (log𝜆J,P/𝜆J,N → 0) but for
large values of 𝜖/𝜆J,N the softened Jeans length and the softened
Jeans mass are much larger than their Newtonian counterparts.
The bottom left panel shows the ratio between the exact (numeri-

cal) solution and the fits from equations (A21) and (A22) which differ
by up to 20 per cent for the Jeans mass. This is small compared to
other order of unity effects (i.e. different derivations, non-spherical
particle distribution).

A3 Wendland C2 softening

For the Wendland (1995) C2 kernel the acceleration |𝑎 | = |𝑎W | is
defined in two parts, 𝑎W (𝑟 < 𝐻, 𝐻) and 𝑎W (𝑟 ≥ 𝐻) = 𝑎N (𝑟). This
means that the free-fall velocity has distinct formulations depending
on the relative size of the cloud, 𝑅, and the softening scale 𝐻 = 3𝜖 ,
where 𝜖 is the Plummer equivalent softening length.
If the size of the cloud is smaller than 𝐻 ( 𝑓W ≡ 𝐻/𝑅 ≥ 1), the

gravitational acceleration is softened throughout the free-fall and the
velocity is calculated from

𝑣(𝑟) =
[
−2

∫ 𝑟

𝑟 ′=𝑅

𝐺𝑀𝑟 ′

𝐻3 𝑉 (𝑢)d𝑟 ′
]1/2

(A23)

with the Wendland C2 kernel

𝑊 (𝑢) = −3𝑢7 + 15𝑢6 − 28𝑢5 + 21𝑢4 − 7𝑢2 + 3 (A24)

𝑉 (𝑢) = −𝑊 ′(𝑢)/𝑢 = 21𝑢5 − 90𝑢4 + 140𝑢3 − 84𝑢2 + 14 (A25)

where 𝑢 = 𝑟/𝐻. If the size of the cloud is larger than the softening
length, the free-fall velocity is Newtonian for 𝑟 > 𝐻 and softened for
𝑟 ≤ 𝐻 (or: 𝑢 ≡ 𝑟/𝐻 ≤ 1). The full integral for the velocity for 𝑟 < 𝐻

consists therefore of two parts:
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𝑣(𝑟) =

√
2
[∫ 𝐻

𝑟 ′=𝑅
−|𝑎N (𝑟) | d𝑟 ′ +

∫ 0

𝑟 ′=𝐻
−|𝑎W (𝑟 < 𝐻, 𝐻) | d𝑟 ′

]1/2
,

(A26)
and the free-fall velocity is Newtonian (equation A8) for 𝑢 > 1.
Combining all these cases results in the following expression for the
free-fall velocity in a Wendland C2 softened gravitational potential:

𝑣W (𝑟) =

√
2𝐺𝑀



𝐻−1/2
[
𝑊 (𝑢) −𝑊

(
1
𝑓W

)]1/2
if 𝑓W ≥ 1

𝐻−1/2 [𝑊 (𝑢) − 𝑓W]1/2 if 𝑓W < 1 ∧ 𝑢 ≤ 1[
1
𝑟 − 1

𝑅

]1/2
if 𝑓W < 1 ∧ 𝑢 > 1

(A27)

These expressions have been numerically verified by an explicit
leapfrog integration with a small, constant timestep of 0.1 Myr.

Case 1: free-fall always softened ( 𝑓W ≥ 1 or 𝑅 ≤ 𝐻): The free-fall
time is

𝑡ff,W ( 𝑓W ≥ 1) =
∫ 0

𝑟=𝑅

[𝑣W (𝑟, 𝑓W ≥ 1)]−1 d𝑟 , (A28)

which can be expressed relative to the Newtonian free-fall time 𝑡ff,N
and the dimensionless variables, 𝑥 = 𝑟/𝑅 and 𝑓W = 𝐻/𝑅 as

𝑡ff,W ( 𝑓W ≥ 1) = 𝑡ff,N
2
𝜋
𝑓 4
W ·∫ 0

𝑥=1

(
−3𝑥7 + 15𝑥6 𝑓W − 28𝑥5 𝑓 2

W + 21𝑥4 𝑓 3
W − 7𝑥2 𝑓 5

W

+3 − 15 𝑓W + 28 𝑓 2
W − 21 𝑓 3

W + 7 𝑓 5
W

)−1/2
d𝑥 . (A29)

The dimensionless integral and therefore 𝑡ff,W/ 𝑓ff,N is solved nu-
merically for values of 𝑓W between 1 and 103.

Case 2: free-fall partially softened ( 𝑓W < 1 or 𝑅 > 𝐻): If the size,
𝑅, of the self-gravitating structure is larger than the softening length,
𝐻, the free-fall time consists of two parts and is defined as

𝑡ff,W ( 𝑓W < 1) =
∫ 𝐻

𝑟=𝑅
𝑣𝑁 (𝑟)−1d𝑟

+
∫ 0

𝑟=𝐻
𝑣W (𝑟, 𝑓W < 1 ∧ 𝑢 ≤ 1)−1d𝑟

(A30)

with the Newtonian free-fall velocity 𝑣𝑁 . The first integral can be
solved analytically∫ 𝐻

𝑟=𝑅
𝑣N (𝑟)−1d𝑟 = 𝑡ff,N

2
𝜋

[
𝑓W𝐶W + tan−1 (𝐶W)

]
(A31)

with 𝐶W = (1/ 𝑓W − 1)1/2. The second integral is rewritten as∫ 0

𝑟=𝐻
𝑣W (𝑟, 𝑓W < 1 ∧ 𝑢 ≤ 1)−1d𝑟 = 𝑡ff,N

2
𝜋
𝑓

3/2
W ·∫ 0

𝑢=1
(𝑊 (𝑢) − 𝑓W)−1/2d𝑢 .

(A32)

The free-fall time for a partially softened trajectory in a Wendland
C2 potential is

𝑡ff,W ( 𝑓W < 1) = 𝑡ff,N
2
𝜋

[
𝑓W𝐶W + tan−1 (𝐶W)

+ 𝑓 3/2
W

∫ 0

𝑢=1
(𝑊 (𝑢) − 𝑓W)−1/2d𝑢

] (A33)

and is solved numerically for 𝑓W between 10−3 and 1.

Combined: The numerically calculated values for 𝑡ff,W/𝑡ff,N are fit
with

𝑡ff,W,fit = 𝑡ff,N

(
1 + 1

7
𝑓 3
W

)1/2
. (A34)

The Jeans length for a Wendland C2 softened gravitational potential
is calculated by solving 𝑡ff,W,fit = 𝑅/𝑐s for 𝑅 with 𝜆J,N = 𝑡ff,N𝑐s, the
Newtonian Jeans length. We use a root finding algorithm for

(
𝜆J,W
𝜆J,N

)5
−

(
𝜆J,W
𝜆J,N

)3
− 1

7

(
𝐻

𝜆J,N

)3
= 0 (A35)

and this dimensionless equation is fit with

𝜆J,W,fit = 𝜆J,N ·
(
1 + 0.27

(
𝐻

𝜆J,N

)2
)3/10

, (A36)

which leads us the softened Jeans mass

𝑀J,W,fit = 𝑀J,N

(
1 + 0.27

(
𝐻

𝜆J,N

)2
)9/10

. (A37)

The expressions from equations (A36) and (A37) as well as the accu-
racy of the fits are shown in the right panels of Fig. A1. The behaviour
is very similar to the softened Jeans criteria for the Plummer potential
(left panels of Fig. A1) with a slight offset.

APPENDIX B: APPLICATION TO HIGHER-RESOLUTION
SIMULATIONS

Throughout this work, we have discussed the derived instability
criteria for large-scale simulations with baryon particle masses of
≳ 105 M⊙ . Here, we briefly demonstrate how the discussion in sec-
tion 3 applies to simulations with much higher mass resolution.
Assuming a vanishing value for the minimum smoothing length,

sub-kernel clumping may be of concern in simulations with a con-
stant softening length. Fig. B1 repeats the analysis from Fig. 7 for
simulations with a particle mass of 𝑚B = 4 M⊙ and constant soften-
ing lengths of 𝑙soft = 0.15, 0.75, and 1.5 pc (𝜖 = 0.1, 0.5, and 1 pc).
Gas with densities and temperatures below the black lines is gravita-
tionally unstable in the respective simulation to perturbations with a
length scale of 𝑙smooth, the size of an individual kernel and the spatial
resolution limit of the hydrodynamic solver. In the low-density part
(purple shaded area, defined as 𝑙soft < 𝑙smooth) instabilities within
the kernel may grow (see sections 3.2.1 and 3.2.2 for a detailed dis-
cussion). For 𝑚B = 4 M⊙ and 𝑙soft = 0.15 pc (e.g. Hislop et al. 2022;
Steinwandel et al. 2023), sub-kernel instabilities may form over the
full density and temperature range typical for molecular gas in the
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22 S. Ploeckinger et al.

Figure B1. Lines and colours are as in the right panel of Fig. 7 but for
simulations with much higher mass resolution (𝑚B = 4 M⊙) and constant
softening lengths of 𝑙soft = 0.15, 0.75, and 1.5 pc (𝜖 = 0.1, 0.5, and 1 pc).
Typical densities and temperatures for the CNM and MCs are indicated with
dark patches, as in Fig. 4.

Milky Way (indicated as dark patch at 102 ≲ 𝑛H [cm−3] ≲ 106,
𝑇 ≈ 20 K).
Steinwandel et al. (2023) mention that the global galactic proper-

ties are not very sensitive to variations in the softening length but
that reducing 𝜖 to below 0.1 pc, leads to numerical issues caused by
runaway stars with very high velocities. For the same particle mass
(𝑚B = 4 M⊙), Hu et al. (2017) varied the softening length between
𝜖 = 0.5 pc and 𝜖 = 2 pc in their appendix B2. They find that the gas
density distribution in their simulations extends to higher densities
for smaller values of 𝜖 , but that integrated galaxy properties, such
as the total star formation rate only has a weak dependence on 𝜖 . It
would be interesting to see if the discussed sub-kernel clumping is
visible upon closer inspection in these simulations with very small
values for 𝜖 , but such an analysis is beyond the scope of this work.
Based on Fig. B1, sub-kernel clumping can be avoided for simu-

lations with 𝑚B = 4 M⊙ , for softening lengths of 𝜖 ≥ 2 pc, as e.g.
used in Hu et al. (2016, 2017).

APPENDIX C: ROBUSTNESS OF RESULTS

The simulations presented in section 4 illustrate the process of a
numerical runaway collapse as outlined in section 3.1. In this section
we vary the energy per supernova (C1) and the thermal state of the
interstellar medium (C2) to demonstrate that our conclusions are
robust to these changes.

C1 Supernova energy

The simulations in section 4 use an energy per supernova of 𝐸SN =

1051 erg. This energy is stochastically injected into the nearest gas
particle by increasing its temperature by Δ𝑇heat = 107.5 K. Dalla
Vecchia & Schaye (2012) estimate the maximum gas density up to
which thermal feedback is efficient by comparing the gas cooling
time, 𝑡c, to the sound-crossing time, 𝑡sc, across a heated resolution
element. If 𝑡c ≫ 𝑡sc (e.g. by a factor of 𝑓t ≡ 𝑡c/ 𝑓sc = 10), the

gas expands adiabatically before the thermal energy is lost through
radiative cooling.
As discussed in section 4, the maximum density below which

thermal feedback is efficient is ≈ 10 cm−3 (equation 18 from Dalla
Vecchia & Schaye 2012) for the fiducial simulations. In Fig. C1, we
show simulations with a 2 and 4 times higher energy per supernova,
while keeping the heating temperature constant at Δ𝑇heat = 107.5 K.
In the stochastic model, this means more frequent thermal energy
injections. For reference, Schaye et al. (2015) used an energy per
supernova that varies between 𝐸SN = 0.3×1051 erg and 3×1051 erg
depending on metallicity (higher 𝐸SN for lower metallicity) and gas
density at the time of star formation (higher 𝐸SN for higher gas
density).
Increasing 𝐸SN (1051 erg, 2× 1051 erg, 4× 1051 erg, columns 1 to

3) indeed reduces the clumping of the stars as well as the amount of
shock-heated gas, even for large values of the minimum smoothing
length (here: ℎmin = 77.5 pc). This agrees with the prediction from
section 3.1 that the artificial clumping depends on the amount of gas
in the runaway collapse zone. A larger value for 𝐸SN reduces the
highest density gas within the galaxy and for the largest energy per
supernova (𝐸SN = 4 × 1051 erg, 3rd column), barely any molecular
gas (with 𝑛H > 100 cm−3) is left within the galaxy. On the other
hand, a smaller value of ℎmin reduces the artificial clumping of stars
also in the presence of cold gas.

C2 Photoheating and cosmic rays

The simulations presented in section 4 use the radiative cool-
ing and heating rates from Ploeckinger & Schaye (2020).
The rates are pre-calculated, assuming a pressure-dependent
interstellar radiation field (ISRF) and cosmic ray (CR) rate
(see Ploeckinger & Schaye 2020 for details) and a redshift-
dependent radiation background from distant galaxies. In ad-
dition to the fiducial table (“UVB_dust1_CR1_G1_shield1"),
Ploeckinger & Schaye (2020) also provide tables without an
ISRF or CRs (“UVB_dust1_CR0_G0_shield1"), and with a
10 times higher normalization for the ISRF and CR rates
(“UVB_dust1_CR2_G2_shield1").
The fiducial simulation (𝑚B = 105 M⊙ , 𝜖 = 250 pc) was rerun

without an ISRF (“No ISRF") which also does not include CRs, and
with the cooling and heating rates that correspond to the higher ISRF
and CR normalization (“Strong ISRF"). Fig. C2 demonstrates that
the features that we have identified for large values of the minimum
smoothing length, ℎmin: (i) stellar clumps and (ii) shock-heated, high-
density (𝑛H ≳ 100 cm−3) gas with temperatures of a few hundred to
a few thousand K, are insensitive to variations in the radiation field,
if the value of ℎmin is large (77.5 pc, columns 1 to 3) and many gas
particles are located within the runaway collapse zone. In turn, the
presence of both features is drastically reduced, when reducing the
value of ℎmin to 7.75 pc (columns 4 to 6), confirming the findings
from section 4.
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Resolution criteria to avoid artificial clumping 23

Figure C1. Stellar mass surface density maps (top row) and gas density-
temperature histograms for ℎmin = 77.5 pc, as in Fig. C2. Increasing the
energy deposited per supernova from the canonical value of 𝐸SN = 1051 erg
(1st column) by a factor of 2 (2nd column) and by a factor of 4 (3rd column)
reduces the amount of gas in the runaway collapse zone (red shaded area),
resulting in reduced stellar clumping. Typical densities and temperatures for
the WNM, CNM, and MCs are indicated with dark patches, as in Fig. 4.
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24 S. Ploeckinger et al.

Figure C2. Stellar mass surface density maps (top row) and gas density-temperature histograms, as in Fig. 10. The drastically reduced clumping in stars, as well
as the reduced amount of dense shock-heated gas is apparent for simulations with different cooling functions (no ISRF: 1st and 4th column, fiducial ISRF: 2nd
and 5th column, strong ISRF: 3rd and 6th column) when reducing the minimum smoothing length, ℎmin from 77.5 pc (columns 1 to 3) to 7.75 pc (columns 4 to
6). Typical densities and temperatures for the WNM, CNM, and MCs are indicated with dark patches, as in Fig. 4.
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