

The space interferometer for cosmic evolution (SPICE) far-IR probe

Leisawitz, D.; Aalto, S.; Bergner, J.; Bonato, M.; bracken, C.; Eales, S.; ... ; Tompkins, S.

Citation

Leisawitz, D., Aalto, S., Bergner, J., Bonato, M., Bracken, C., Eales, S., ... Tompkins, S. (2023). The space interferometer for cosmic evolution (SPICE) far-IR probe. *Bulletin Of The American Astronomical Society*, 160.04. Retrieved from https://hdl.handle.net/1887/3719104

Version:Publisher's VersionLicense:Creative Commons CC BY 4.0 licenseDownloaded from:https://hdl.handle.net/1887/3719104

Note: To cite this publication please use the final published version (if applicable).

Bulletin of the AAS • Vol. 55, Issue 2

The Space Interferometer for Cosmic Evolution (SPICE) Far-IR Probe

David Leisawitz¹ Susanne Aalto² Jennifer Bergner³ Matteo Bonato⁴ Colm bracken⁵ Stephen Eales⁶ Duncan Farrah⁷ Grant Kennedy⁸ Alan Kogut⁹ Joshua Lovell¹⁰ Luca Matra¹¹ Taro Matsuo¹² Brenda Matthews¹³ Melissa McClure¹⁴ Lee Mundy¹⁵ Joan Najita¹⁶ Nicole Pawellek¹⁷ Petr Pokorny¹⁸ David Sanders⁷ Nicholas Scoville¹⁹ Irene Shivaei²⁰ Locke Spencer²¹ Kate Su²² Jessica Sutter²³ Leon Trapman²⁴ Carole Tucker⁶ C. Meg Urry²⁵ Serena Viti¹⁴ David Wilner²⁶ Grant Wilson²⁷ Mark Wyatt²⁸ Dave DiPietro¹ Michael DiPirro²⁹ Tupper Hyde¹ Antonios Seas⁹ Steven Tompkins¹

¹NASA GSFC, ²Chalmers University of Technology, ³University of Chicago, ⁴IRA-INAF,
⁵Maynooth University, ⁶Cardiff University, ⁷University of Hawaii, ⁸Warwick University,
⁹NASA Goddard Space Flight Center, ¹⁰Harvard-Smithsonian Center for Astrophysics,
¹¹Trinity College Dublin, ¹²Nagoya University, ¹³NRC of Canada, ¹⁴Leiden University,
¹⁵University of Maryland, College Park, ¹⁶NSF's NOIRLab, ¹⁷University of Vienna,
¹⁸Catholic University of America/GSFC, ¹⁹Caltech, ²⁰University of Arizona,
²¹University of Lethbridge, ²²Steward Observatory, ²³UCSD, ²⁴University of Wisconsin-Madison,
²⁵Yale University, ²⁶Center for Astrophysics | Harvard & Smithsonian,
²⁷University of Massachusetts, Amherst, ²⁸University of Cambridge, ²⁹NASA/GSFC

Published on: Jan 31, 2023

URL: https://baas.aas.org/pub/2023n2i160p04

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

SPICE is a candidate NASA Far-IR Probe mission that could launch in 2032 and address fundamental challenges in our understanding of the universe. The SPICE mission addresses the enduring question, How did we get here? What physical processes drive the evolution of galaxies and their central massive black holes throughout cosmic time? How can we explain the diverse set of planetary system architectures? And how do developing planetary systems evolve chemically and sometimes produce habitable planets? SPICE is a spatio-spectral interferometer designed to image and spectroscopically measure circumstellar disks and many individual distant galaxies to help answer these questions. SPICE offers angular resolution matching that of the Webb telescope but at ten-times longer far-infrared wavelengths (25-400 µm). With cryo-cooled telescopes and state-of-the-art detectors, SPICE's sensitivity is about 10 times that of the Herschel Space Observatory. SPICE can provide a moderate-resolution (R ~ 3000-7000) spectrum in every spatial pixel. These spectra will be rich with information about physical and chemical conditions in the objects studied, as well as the redshifts and distances of galaxies. The SPICE Science Team envisages a Legacy Science program and a Guest Observer program. The Legacy Science program will take about 1 year out of the 5-year minimum mission lifetime, leaving at least four years of observing time open to the community's proposed investigations. In each case the observer will receive calibrated hyperspectral data cubes for analysis.