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A B S T R A C T 

The Evolutionary Map of the Universe (EMU) large-area radio continuum survey will detect tens of millions of radio galaxies, 
giving an opportunity for the detection of previously unknown classes of objects. To maximize the scientific value and make new 

disco v eries, the analysis of these data will need to go beyond simple visual inspection. We propose the coarse-grained complexity, 
a simple scalar quantity relating to the minimum description length of an image that can be used to identify unusual structures. 
The complexity can be computed without reference to the broader sample or existing catalogue data, making the computation 

efficient on new surv e ys at v ery large scales (such as the full EMU surv e y). We apply our coarse-grained comple xity measure 
to data from the EMU Pilot Surv e y to detect and confirm anomalous objects in this data set and produce an anomaly catalogue. 
Rather than work with existing catalogue data using a specific source detection algorithm, we perform a blind scan of the area, 
computing the complexity using a sliding square aperture. The ef fecti veness of the complexity measure for identifying anomalous 
objects is e v aluated using cro wd-sourced labels generated via the Zooni verse.org platform. We find that the complexity scan 

identifies unusual sources, such as odd radio circles, by partitioning on complexity. We achieve partitions where 5 per cent of 
the data is estimated to be 86 per cent complete, and 0.5 per cent is estimated to be 94 per cent pure, with respect to anomalies 
and use this to produce an anomaly catalogue. 

Key words: surv e ys – galaxies: statistics – radio continuum: galaxies. 
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.  I N T RO D U C T I O N  

he large-scale analysis of the extragalactic sky has, in the past, 
elighted astronomers with new and unusual objects. We have no 
oubt that it will continue to do so into the future, with new large-scale 
urv e ys such as the Le gac y Surv e y of Space and Time (Ivezi ́c et al.
019 ), Dark Energy Spectroscopic Instrument (DESI Collaboration 
 E-mail: g.segal@uq.edu.au (GS); davidparkinson@kasi.re.kr (DP) 
 Permanent address: Departamento de Astronom ́ıa, Universidad de Guana- 
uato, Callej ́on de Jalisco s/n, Guanajuato, C.P. 36023, GTO, Mexico. 
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t al. 2016 ), Evolutionary Map of the Universe (EMU; Norris
t al. 2011 ), LOFAR Two-metre Sky Survey (Shimwell et al. 2022 ,
017 ), MeerKAT International GHz Tiered Extragalactic Exploration 
urv e y (Jarvis et al. 2016 ), Spectro-Photometer for the History of

he Universe, Epoch of Reionization, and Ices Explorer (Dor ́e et al.
014 ), and the Square Kilometre Array (Dewdney et al. 2009 ), either
n operation or starting very soon. The work of the astrophysicist is
o understand these objects, learn their nature, and identify if they
all inside some already understood class, or constitute an entirely 
ew type of object. For objects that have features or attributes that
re completely unexpected, so called ‘unknown unknowns’, even 
etecting these in the first place may be a challenge (Norris 2017 ). In
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his paper, we define an anomaly, in broad terms, as an observation
hat is considered unexpected, based on consensus votes from
strophysicists. 1 While a human may easily notice something that is
nexpected, training a machine to do so may be more difficult. The
pplication of machine learning approaches to astrophysics, such as
utlier detection, has already seen some developments with a number
f different algorithms or approaches (e.g. Baron & Poznanski 2017 ;
iles & Walkowicz 2020 ; Mostert et al. 2021 ). The complexity-based

pproach offers a more computationally efficient tool for anomaly
etection based on the morphology of radio sources. 
The ef fecti veness of other machine learning approaches, such as

onvolutional neural networks, has been demonstrated for identifying
nd classifying observations in astronomical surv e ys based on their
eatures (Kessler et al. 2010 ; Karpenka, Feroz & Hobson 2013 ; Diele-
an, Willett & Dambre 2015 ; Huertas-Company et al. 2015 ; Kim &
ailer-Jones 2016 ; Lochner et al. 2016 ; Aniyan & Thorat 2017 ;
harnock & Moss 2017 ; Lukic et al. 2018 , 2019 ; Wu et al. 2019 ).
nsupervised learning approaches, such as self-organizing maps,
ave also been applied to clustering and segmentation problems
ncluding PINK by Polsterer, Gieseke & Igel ( 2015 ) and Polsterer,
ieseke & Doser ( 2019 ), and applications by Baron & Poznanski

 2017 ), Galvin et al. ( 2020 ), Mostert et al. ( 2021 ), and Gupta et al.
 2022 ). Lochner & Bassett ( 2021 ) developed Astronomaly as a
eneral anomaly detection framework based on an active learning
pproach that provides personalized recommendations. Astronomaly
Lochner & Bassett 2021 ) was designed to work with a broad range of
stronomical data from images to spectra. Lochner & Bassett ( 2021 )
sed a Galaxy Zoo project to demonstrate the ef fecti veness of the
pproach, where Astronomaly was found to double the number of
nteresting objects found within the first 100 viewed within the data
ets. 

In our original paper (Segal et al. 2019 , hereafter S19 ), we intro-
uced the idea of the coarse-grained complexity measure as a tool
or identifying complex and anomalous objects. This quantity was
ased on the notions of effective complexity defined by Gell-Mann
 1994 ) and Gell-Mann & Lloyd ( 1996 ), and apparent complexity
efined and implemented in Aaronson, Carroll & Ouellette ( 2014 ),
s the information required to describe a system’s regularities, or
ore specifically, the entropy approximated by an upper bound on

he Kolmogorov complexity after applying a smoothing function. 2 

n S19 , we used data from the Australia Telescope Large Area
urv e y (ATLAS), to measure the coarse-grained complexity of
adio continuum images using the gzip (Levine 2012 ) byte length,
ost smoothing, to estimate the upper bound of the complexity
alue. We found it to be useful (when combined with clustering
ethods to automate the process) for segmenting complex or unusual

mages from simple images without requiring large training data and
ithout learning specific features from labelled data. The approach
eneralized well when applied to new data after being calibrated on
 much smaller data set, with implemented at worst-case linear time
omplexity. 3 More recently complexity has been applied by Bartlett
NRAS 521, 1429–1447 (2023) 

 Similar to the threshold suggested by the United States Supreme Court 
ustice Potter Stewart. 
 Random intensity fluctuations (noise) cannot be compressed and will 
ncrease the description length required to represent possible states beyond 
hose generated by the source object. This noise does not describe the 
omplexity of the object of interest and is reduced through smoothing as 
art of the measurement of the coarse-grained complexity. 
 The ‘worst-case time complexity’ refers to an upper bound on the time to run 
n algorithm by counting elementary operations for all permissible inputs. 
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t al. ( 2022 ) as a new approach for exoplanet characterization with
otential applications to biosignature detection. 
In this paper, we apply the coarse-grained complexity, as calibrated

n S19 and without re-training, to a much larger data set from the
ilot Surv e y of the Evolutionary Map of the Univ erse (EMU-PS;
orris et al. 2021b ). While the primary goal of the EMU-PS is to test

nd refine observing parameters and strategy for the main surv e y, the
MU-PS in itself presents opportunity for new disco v eries. Recently
elf-organizing maps have been used successfully to detect unusual
ources with reference to the broader sample (ensemble) using a
ubset of components from complex sources selected from EMU-
S catalogue data (Gupta et al. 2022 ). The method used in this
aper is based on a complexity measure that has the advantage of
eing efficient to compute as it does not require computing pair-
ise distances between observations within the broader sample

nd does not require, hence is not confined to, traditional source
xtraction or existing catalogue data. We partition the data using
rames rather than identified sources, computing the course-grained
omplexity within a sliding frame (square aperture) across the image.
n important feature of the scan method used is that the frames

re sampled from the EMU-PS data in a blind manner (that is
ithout using a source extraction tool or existing catalogue data).
his helps reduce the risk of producing a sample that is biased towards
reconceived notions of what is interesting, referred to as expectation
ias by Norris ( 2017 ) and Robinson ( 1987 ). The approach can also
e used without the prior identification of complex sources. This
s intended to assist with the identification of the unexpected in
ew and large data with the goal of new scientific disco v eries and
urprise. 

We e v aluate the ef fecti veness of the approach at finding ne w and
nusual objects by using a Zooinverse project to produce crowd-
ourced (from amongst astrophysicists) labels for frames produced
y the scan. These labels can be used to generate a partition boundary
or anomalies which can be used to create an anomaly catalogue.
n ef fecti ve anomaly partition is an intended product from this
ork, providing: a concentrated search space, rich in unusual or

nomalous objects, intended to provide an efficient tool for assisting
ith scientific analysis and new disco v eries. While not ev ery object

n the partitioned space (or anomaly catalogue) will necessarily be
ruly ‘anomalous’, the aim is to define a partitioned space (anomaly
atalogue) where almost all contained frames will be interesting in
ome fashion (i.e. complex). 

This paper proceeds as follows: In Section 2 , we introduce the
MU-PS data as a test case for using the coarse-grained complexity
easure to identify anomalous objects in future large-scale surv e ys.
he EMU-PS data is likely to contain many rare, unusual and anoma-

ous objects, providing a better representation of the complexity tail
f still much larger future surv e ys (compared to the S19 analysis). 
In Section 3 , we describe the theoretical foundations for the

oarse-grain complexity measure and show how it can be practically
omputed. This section also outlines the implemented methods,
ncluding the scanning method applied to the EMU-PS, and details
he use of a Zooniverse project to crowd-source labels for EMU-
S frames. The labels are used to e v aluate the ef fecti veness of
e.g. logarithmic, linear, quadratic, etc.) of the worst-case time complexity 
ith respect to the increasing size of the input. The worst-case running time 
f a linear time complexity algorithm will increase linearly with the sample 
ize. Often algorithms that rely on ‘between member’ operations within the 
ample (such as a classic self-organizing map algorithm) will have running 
imes that scale quadratically with increasing sample size or worse. 
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oarse-grained complexity partitions for identifying complex and 
nusual objects. 
Section 4 commences by showcasing a variety of frames captured 

n the complexity tail containing complex structures and unusual 
bjects (with additional examples and a discussion of their char- 
cteristics provided in Appendix C ). We then provide an overview 

f zoo results used to produce consensus truth labels for EMU-PS
rames. We conclude this section by providing an e v aluation of the
f fecti veness of alternative partition boundaries. 

Section 5 details the application of these boundaries in con- 
tructing anomaly catalogues and provides a discussion of potential 
lassification errors and considerations. Section 6 concludes with 
 summary of the key outcomes and conclusions drawn from this
ork. In Appendix C , we provide detailed descriptions of 36 example
bjects found in high-complexity frames. 

.  EMU-PS  DATA  

he EMU-PS was observed at 944 MHz using the Australian Square 
ilometre Array Pathfinder ( ASKAP ) telescope. The ASKAP tele- 

cope consists of 12-m antennas (36 in number) spread o v er a re gion
 km in diameter at the Murchison Radio Astronomy Observatory 
n Western Australia. EMU-PS co v ers 270 square degrees of an area
o v ered by the Dark Energy Surv e y (DES) at a spatial resolution of
11–13 arcsec (Norris et al. 2021b ). 
While the primary goal of the EMU-PS is to test and refine

bserving parameters and the strategy for the main surv e y, the
ilot in itself presents opportunity for new disco v eries. Experience 
as shown (Norris 2017 ) that whenever we observe the sky to a
ignificantly greater sensitivity, or explore a significantly new volume 
f observational phase space, we make new disco v eries. This goal
as already been demonstrated through the successful identification 
f a new class of radio object, odd radio circles (ORCs, Koribalski
t al. 2021 ; Norris et al. 2021a , 2022 , Figs 5 and 6 ). 

The observations and data reduction for EMU-PS are fully de- 
cribed by Norris et al. ( 2021b ) so here we restrict our description
o the data product used in this paper. The data were taken in 10
 v erlapping tiles, each co v ering an area of 30 square degrees. These
ere then merged while correcting for the primary beam response, 

o produce a single image co v ering 270 square degrees. Here, we
se the ‘native’ resolution product (i.e. not convolved to a common 
eam size), giving a synthesized beam of about 11 × 13 arcsec 
ith an rms sensitivity of about 25 μJy per beam. Source extraction
sing the Selavy tool (Whiting et al. 2017 ) found a total of 220 102
adio components, of which 178 821 are ‘simple sources’, which are 
ither unresolved point sources or can be fitted by a single Gaussian.
he remaining 41 181 ‘complex’ sources range from small extended 
ources to giant radio galaxies (GRGs), and include a number of
bjects with complex morphology which are the sources of primary 
nterest in this paper. Ho we ver, it is important to note that, to a v oid
ias, the Selavy extractions are not used at all in this paper, which
nstead works directly with the image data. 

The EMU-PS data is likely to contain examples of anomalous 
nd unexpected objects, providing a better representation of the 
omplexity tail of still much larger future surveys such as EMU
compared to previous experiments using ATLAS data in S19 ). It is
n this tail that future disco v eries are likely to be made. 

.  M E T H O D S  

n this section, we describe the theoretical foundations for the coarse- 
rained complexity measure and show how it can be practically 
omputed. We also outline the practical implementation of this 
pproach and the method used to scan the EMU-PS data. 

We describe how we used a Zooniverse project to crowd-source 
abels of EMU-PS frames to e v aluate the coarse-grain complexity as
 tool for partitioning, and hence identifying, anomalous objects. We 
hen discuss the methods and challenges involved in subsampling for 
he zoo from the very large number of frames produced by the EMU-
S scan and conclude with details about how complexity partitions 
ill be e v aluated using the labelled data. 

.1 Coarse-grained complexity 

he coarse-grained complexity as defined in S19 is based on the
otions of effective complexity (Gell-Mann 1994 ; Gell-Mann & 

loyd 1996 ) and apparent complexity (Aaronson et al. 2014 ). The
pparent complexity is a measure of the entropy H of an object x
omputed after applying a smoothing function f , expressed as H ( f ( x )).
he Shannon entropy of a probability distribution P can be defined
s the expected number of random bits that are required to produce
 sample from that distribution: 

 ( P ) = −
∑ 

x∈ X 
P ( x ) log P ( x ) . (1) 

By Shannon’s noiseless coding theorem, the minimum average 
escription length L of a sample is close to the Shannon entropy: 

 ( P ) ≤ L ≤ H ( P ) + 1 . (2) 

he Kolmogoro v comple xity K ( f ( x )) can be used as a proxy for the
ntropy of the smoothed function H ( f ( x )), as proposed by Aaronson
t al. ( 2014 ). The analogy between the concept of entropy and
rogram size has been previously recognized (Chaitin 1975 ). The 
olmogoro v comple xity of x is the length of the shortest binary
rogram l ( p ), for the reference universal prefix Turing machine U ,
hat outputs x ; it is denoted as K ( x ): 

( x) = min p { l( p) : U ( p) = x} . (3) 

A thorough treatment is provided by Li & Vitanyi ( 2008 ). The
olmogoro v comple xity has the advantage of being well-defined for
 particular description of a system such as an image of a galaxy. This
s not the case for the Shannon entropy which is defined in terms of
he possible states of the system. While the Kolmogorov complexity 
s uncomputable, its upper bound can be reasonably approximated 
y the compressed file size C ( f ( x )) using a standard compression
rogram (Aaronson et al. 2014 ), such as gzip . 
The issue with using the approximated Kolmogorov complexity 

irectly as a measure of complexity is that it is maximized by random
nformation. Intuitiv ely a comple xity measure should pro vide low
alues for random data that does not contain structure that is
f interest to the observer (Zenil, Delahaye & Gaucherel 2012 ).
aronson et al. ( 2014 ) have shown that the apparent complexity
easure is able to achieve this by applying a smoothing function f

o the input x (which remo v es fine-grained noise while preserving
he coarse-grained structure of the image). While the Kolmogorov 
omplexity of a random sequence is large, the apparent complexity of
he same sequence becomes small with smoothing, as fluctuations are 
emo v ed where the average or median information content becomes
omogeneous at the coarse-grained resolution. Accordingly we 
efine the coarse-grained complexity, like the apparent complexity, as 
he compressed description length of regularities and structure after 
iscarding all that is incidental. The coarse-grained complexity will 
e small for both simple and random sequences. The coarse-grained 
omplexity measure extends the idea of the apparent complexity by 
MNRAS 521, 1429–1447 (2023) 



1432 G. Segal et al. 

M

i  

w  

T  

s  

t
 

C  

i  

o  

h  

c  

h  

r  

c
 

d  

e  

t  

o  

o  

d  

a  

r
 

m  

m  

t  

A  

a  

t  

i  

d  

l
 

g  

a  

c  

o  

e

3

W  

w  

o  

c  

a  

b  

c  

a  

s  

i  

a  

w  

t  

t  

o  

f  

l  

i  

2  

a  

Figure 1. The definition of frame size (side length of solid black square), 
stride length (offset between position of solid black square and dashed black 
squares), and smoothing kernel size (grey shaded rectangle). The size of the 
complexity frame is chosen such that most (but not all) extended sources 
will be fully contained. The stride length is chosen to be one quarter of the 
side length of the frame; ho we v er, the illustration abo v e depicts one half for 
illustrative purposes only. These are the only free parameters used in this 
scanning method. 

f  

t  

s
 

b  

b  

i  

o  

A  

d  

m  

m  

s  

o  

t  

p
 

f  

u  

T  

c  

a  

e  

c  

s  

T  

a  

a  

t  

w  

a  

m  

s  

T  

e
 

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/1/1429/7049132 by U
niversiteit Leiden - LU

M
C

 user on 21 February 2024
ncorporating calibration of the measurement resolution in alignment
ith expert distinctions between meaningful structure and noise.
his is achieved by adjusting the measurement resolution through a
moothing function so that complexity values correctly partition data
hat has been expertly labelled (i.e. by human astronomers). 

The objective of applying the smoothing function f when deriving
 ( f ( x )) is to remo v e incidental or random information, such as

nstrumental noise, that have no regularities comprehensible to the
bserv er ev en though it may hav e a physical basis. Comprehensibility
ere is defined with respect to the observer of the information, in this
ase scientists with specific interests. Comprehensible information
as a structure within a feature space, which in the case of images
efers to the spatial distribution of bits of information across available
hannels. 

Importantly, the coarse-grained complexity measure of an image
oes not rely on the presence of any particular structures or structural
lements and desirably does not demonstrate sensitivity under affine
ransformations based on the implementation in S19 . The calibration
f the measure makes only explicit assumptions regarding the choice
f the coarse-graining level and the scale of the image. Previous
ata are used only to calibrate the coarse-graining level (i.e. the
ppropriate measurement resolution) and only a small sample of the
ele v ant data type is required. 

Coarse-grained complexity runs into obstacles as a well-defined
easure of complexity . Firstly , the uncomputability of the Kol-
ogoro v comple xity prohibits the concept from being defined in

erms of an optimal compression. It has been pro v en by Chaitin,
rslanov & Calude ( 1995 ) that there can be no procedure for finding

ll theorems that would allow for further compression. Furthermore
he problem of distinguishing between meaningful structure and
ncidental information, especially in finite data, may fail to be well-
efined. Different smoothing functions and different coarse-graining
evels will retain different distinct regularities in the data. 

These theoretical challenges in objectively defining the coarse-
rained complexity can be circumvented when the approach is
pplied to the segmentation of observations by complexity. Here, the
oarse-grained complexity can be calibrated to coincide with notions
f complexity adopted by the observer (i.e. expert astronomers) and
 v aluated using expertly labelled data. 

.2 Scanning the EMU-PS 

e perform a scan of the EMU-PS data. When performing the scan,
e estimate the coarse-grained complexity within a sliding frame
f fixed size, rather than working with pre-selected sources. The
oarse-grained complexity is computed within each frame using the
pproach implemented in S19 without re-calibration. The approach is
ased on gzip compression using Lempel-Ziv (LZ77) and Huffman
oding. Each frame is a blind sample from the EMU-PS data, with
 high likelihood of many containing no sources, or only part of the
tructure of a large complex source. After computing the complexity
n a frame, it is shifted based on a defined stride length to the right
nd computed again, progressing in this manner until it o v erlaps
ith the edge of the image. Once the frame o v erlaps with edge of

he image it returns to the starting column and is shifted down by
he defined stride length, progressing in this manner until the frame
 v erlaps with the lower edge of the image. Fig. 1 illustrates the sliding
rame and the associated parameters. The choice of frame size, stride
ength, and smoothing kernel size are the only free parameters used
n this method. For the EMU-PS image, a frame is defined to be a
56 × 256 pixel region (equi v alent to a span of approximately ∼12
rcmin) that we slide based on a stride length of 64 pixels. This
NRAS 521, 1429–1447 (2023) 
rame size exceeds the angular size of most known radio sources in
he EMU-PS field, with the exception of a few GRGs such as those
hown in figs 16 and 28 of Norris et al. ( 2021b ). 

An important feature of the scan method is that the frames are
lind samples from the EMU-PS data. This helps reduce the risk of
iasing the sample to preconceived notions of what is complex and
nteresting. It also a v oids restricting the sampling to only regions
f an image that are already represented in existing catalogue data.
s a consequence of this method, many frames will not contain any
etectable sources or objects of interest. Conversely, some frames
ay contain a part of a source but not the entire object. To help
inimize this risk, a stride length of one quarter the span of the frame

ize was selected. The o v erlapping frames pro vide better co v erage
f the EMU-PS data for computing complexity, as they improve
he probability of capturing entire complex structures, or interesting
arts of structures in a single frame. 
The smoothing kernel size defines the measurement resolution

or the coarse-grained complexity scan. Smoothing is implemented
sing a median filter f applied to frames from the EMU-PS image x .
he smoothing kernel size h , is in this case calibrated to 10 pixels,
onsistent with the learned smoothing kernel size from S19 . This
llows the generalizability of the calibration adopted in S19 to be
 v aluated using ne w data from the EMU-PS. The kernel size was
alibrated in S19 using ATLAS Data Release 1 (DR1) data using
ources that had been manually classified as simple and complex.
he kernel size was chosen by maximizing the difference between the
verage coarse-grained complexity of observations labelled complex
nd simple thus coinciding with notions of complexity of interest
o the observer (in this case expert astronomers). A median filter
as chosen as the filter type because it completely remo v es noise

nd incidental values in regions that are predominantly without flux
easurement (i.e. where no sources are detected) and retains the

trength of signals in regions dominated by actual measurements.
he median filter is also ef fecti ve at preserving edges (compared to,
.g. a Gaussian filter), given the expected noise in each frame. 

This approach does not control for the distance of objects contained
ithin each frame and accordingly the measurement resolution does

art/stad537_f1.eps
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Figure 2. Example workflow from Anomaly in the EMU Zoo. In this example, we pick a frame containing 2MASX J21291901 −5053040, bent tail radio 
galaxy near ABELL 3771 cluster. 
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ot vary depending on the observed scale of sources contained within 
ach frame. Rather this approach provides a consistent e v aluation of
omplexity for each section of sky covered by the sliding window, 
rrespective of the sources it contains. 

The approach is implemented in accordance with the procedure 
ollowed in S19 to calculate the coarse-grained complexity within 
ach frame. 4 The same parameters were applied consistently across 
he entire EMU-PS radio mosaic. Consistent with S19 , a pixel 
ntensity threshold is set at the 90th percentile whereby all values 
elow the threshold are set to zero. S19 explores the sensitivity of
he method to the threshold v alue, sho wing the ef fecti veness of the
hreshold selected compared to alternatives. To estimate C ( f ( x )) as
n upper bound on the Kolmogorov complexity K ( f ( x )), we calculate
he size in bytes of the gzip compressed image. The signal-to-noise
atio (SNR) was calculated using the reciprocal of the coefficient 
f variation for the smoothed array as was implemented in S19 .
ur analysis in S19 found that a noise measure complemented 

he complexity measures and that the noise and complexity plane 
mpro v ed results when identifying complex and unusual sources. 

.3 Cr owd-sour ced evaluation of frames 

o identify anomalous observations, the sample can be partitioned 
y determining an appropriate threshold, i.e. a complexity value 
n the tail of the complexity distribution, above which defines an 
nomaly. A threshold drawn at a low complexity value will produce 
 very large sample of potential anomalies. If the goal is to identify
omplex and unusual objects while minimizing the search space for 
ew disco v eries (to impro v e efficienc y), then the objectiv e becomes
o partition at the largest complexity value that is still exceeded by
s many of the most interesting objects as possible. 

In S19 , the sample was segmented based on the coarse-grained 
omplexity and the SNR using unsupervised clustering methods 
Gaussian mixture models), and the results were e v aluated using
ruth labels based on expert classification of the ATLAS data. In
 Unlike the procedure followed in S19 , frames are not cropped. Instead the 
omplexity is computed for the entire 256 × 256 pixel frame. 

c  

o
r
r

he case of the EMU-PS scan, we have a much larger sample size
f blindly sampled frames, not necessarily containing sources, for 
hich truth labels do not exist. 
Truth labels are required to e v aluate the ef fecti veness of alternati ve

omplexity thresholds for partitioning anomalous sources. To pro- 
ide truth labels for the frames produced by the complexity scan, we
an a project on the Zooniverse.org platform, titled ‘Anomaly in the
MU Zoo’ (hereafter zoo), requesting expert astronomers to e v aluate 
n unbiased sample of frames subsampled from the EMU-PS scan. 
onsensus from the zoo labels was then used to e v aluate the recall,

nformedness, and precision associated with prospective partition 
oundaries. recall, informedness, and precision are explained in 
etail in Appendix B . 
Expert volunteers were approached from within the EMU-PS and 

t the SPARCS 2021 conference. A subsample of 1627 frames from
he EMU-PS scan ( n total = 365 000) were presented to volunteers
or classification through the Zooniverse project. 44 volunteers 
articipated in the project, with 10 of these classifying more than
00 frames. 
The zoo asked the expert volunteers to e v aluate frames subsampled

rom the EMU-PS scan and to select an option that best describes
he most interesting radio sources in each frame before moving on
o the next. Subsampling is discussed in Section 3.4 . An example
f this workflow is shown in Fig. 2 . The four options presented for
election were as follows: 

(i) No sources/just noise, 
(ii) One or more simple sources/unrelated simple sources, 
(iii) At least one complex source/sources with multiple compo- 

ents, or 
(iv) Contains something unexpected/anomaly. 

The zoo distinguished between complex and extended sources 
ith multiple components, and sources that were deemed by the 
olunteers to be truly unexpected or anomalous. This distinction 
etween complex and anomalous sources enabled the e v aluation of a
omplexity threshold that could be used to partition a smaller sample
f interesting frames that had high recall and informedness with 
espect to anomalies. Ensuring that the partitioned data have high 
ecall and informedness with respect to anomalies only supports 
MNRAS 521, 1429–1447 (2023) 
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Table 1. Classification counts by consensus for each of the options provided 
in the EMU-PS Anomaly in the EMU Zoo. The enrichment sample 
supplements the zoo subsample with frames measuring complexity above 
the 99.5th percentile. This creates a bias for the purpose of calculating 
recall but impro v es the sample size for calculation of precision abo v e 
prospective partition thresholds. These data show that 86 per cent of the 
enrichment sample, where consensus was reached, contains frames classified 
as containing complex and anomalous sources. 

Classification Count: Count: Count: 
Non-bias sample Enrichment Combined sample 

( n = 1528) ( n = 99) ( n = 1627) 

Anomalous 7 17 24 
Complex 366 57 423 
Simple 1059 12 1071 
No source 31 0 31 
No consensus 65 13 78 
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cience objectives for studying and identifying interesting objects
hat may result in new disco v eries and minimizes the search space
or such objects. Retaining more typical complex objects to maintain
 high recall was not seen as an issue, given the potential o v erlap
n the complexity values of more typical complex objects and truly
nomalous objects, so long as the search space remained small as
easured by the false positive rate (FPR). This also helps account

or the subjective nature of assigning truth labels, where only some
olunteers may assign labels based on unexpected or subtle unusual
eatures belonging to what otherwise would appear a more typical
omplex object. 

Only frames converging on a label through majority consensus
ere used to e v aluate the ef fecti veness of the complexity for

dentifying anomalous sources. Those frames from the zoo sample
here majority consensus was not reached were excluded from the
 v aluation. 

.4 Subsampling of EMU-PS frames 

he EMU-PS data co v er an area containing approximately 220 000
atalogue sources (Norris et al. 2021b ) and can be used to generate
pproximately 365 000 sampled frames based on the scan parameters
elected. This makes e v aluating potential partitions more challeng-
ng, as it is not feasible to have experts inspect and classify the
undreds of thousands of frames produced by the scan. 
Subsampling can be used to make the e v aluation of alternative

omplexity partitions in the EMU-PS data more feasible. Here, the
ata size is reduced by selecting a subset from the original sample.
xpert e v aluation of this subset is more feasible on shorter time-
cales. 

Selecting sample frames from the EMU-PS scan to be e v aluated
y the zoo was done in two phases. The first phase involved blind
nbiased subsampling ( n = 1528) by sampling proportionally across
he distribution of complexity values. Sampling was performed on
on-o v erlapping frames (using the first occurrence) without replace-
ent. The second phase involved enrichment sampling ( n = 99) from

n EMU-PS scan done at a stride length of 32 pixels, half the original
tride length. The reduced stride length samples from the EMU-PS
ore thoroughly, and so can capture frames of higher complexity

han the scan done at a stride length of 64 pix els, e xtending the tail
f high complexity values. Due to the much larger number of frames
roduced ( n = 1.4 million) when using the smaller stride length, only
rames abo v e the 99.5th percentile comple xity value were retained
 n = 7000) and subsampling was performed uniformly across these
NRAS 521, 1429–1447 (2023) 
alues to produce the enrichment sample ( n = 99). Subsampling was
erformed inward from the tails of the complexity distribution of
amples produced from the complete scan, leaving out frames close
o the median complexity value. Subsampling from within this range
as not deemed as necessary as discussed in detail in Appendix A . 
The purpose of the enrichment sample was to supplement the

ail of the 64 pixel stride subsample distribution with frames of
omple xity abo v e the 99.5th percentile. The sample size for the zoo
as limited ( n = 1627) to ensure every frame could be evaluated with

ufficient multiplicity to achieve consensus; however, this results
n poor subsampling from the far-right (high-complexity) tail. The
nrichment sample was intended to provide better representation
f the type of observations found within frames beyond the 99.5th
ercentile. 

.5 Measuring the effecti v eness of partitions 

he truth labels derived from the zoo were used to e v aluate the effec-
iveness of alternative partition boundaries for identifying anomalous
ources. We e v aluated alternati ve partition boundaries using a binary
lassification approach, e v aluating the recall, informedness, and
recision as discussed further in Appendix B , and illustrated in
able B1 . 
The objects in the zoo that were selected in the first phase of

ampling (without the enrichment sample added) allow the recall to
e assessed at a giv en comple xity threshold. The enrichment sample
reates a bias for the purpose of calculating recall by o v errepresenting
igh-complexity objects in the total zoo sample and accordingly was
ot included in the non-bias sample used to e v aluate prospecti ve
artitions. The second phase, where the enrichment sample is added,
as performed to increase the sample size of unusual observations

nd provide further analysis of the precision within the complexity
ail. 

When e v aluating recall and precision, we consider the positi ve
lass to include only frames containing something unexpected or
nomalous and the ne gativ e class to include all other frames. Limiting
he positive class to only frames containing unexpected or anomalous
ources provides a measurement framework that will assist in
efining an anomaly catalogue with the objective of supporting new
nd no v el scientific disco v eries in an efficient manner. A catalogue
ontaining all extended sources would be much larger and would
ncrease the search space for no v el and anomalous objects, making
he disco v ery process less efficient. 

We note that many objects with complex and interesting morphol-
gy will have familiar features and accordingly not be considered
nomalies. As science progresses and new disco v eries become
amiliar the frequency of finding such familiar objects at high
omplexity will increase. Misclassification of such complex sources
s anomalies is not deemed an issue so long as the o v erall search
pace (or catalogue size) defined by the complexity measure remains
mall enough to support an efficient search for no v el disco v eries.
his can be achieved by e v aluating the trade-off between a high

ecall and a high FPR through maximizing the informedness (see
ppendix B ). 
A high informedness value can still be accompanied by low

recision, as we expect in this case, due to the low frequency of
ources deemed by consensus as being anomalous compared to
hose being deemed complex (see Table 1 ) and the potential o v erlap
n complexity values of familiar complex objects and anomalous
omplex objects. To determine if low precision is explained by
he misclassification of familiar complex objects we also e v aluate
he precision associated with prospective complexity partitions by



Complexity scan of EMU-PS 1435 

Figure 3. Complexity distribution for EMU-PS data after removal of low- 
complexity background data (frames with the minimum complexity value). 
The left tail contains frames without sources or point sources, predominantly 
point sources towards the centre. 
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efining the positive class to include both anomalies as well as
rames containing at least one complex source or a source with 
ultiple components. These sources will still be interesting to some 

bservers and should not hinder the search for novel discoveries so
ong as the FPR and o v erall search space remains small. 

.  RESU LTS  

.1 EMU-PS scan results 

e now apply our method to analyse radio images. We scan the
MU-PS data, examine the distribution of complexity values for 
ach frame, and showcase a variety of complex and unusual objects 
aptured in the complexity tail. 

We performed a complexity scan of the EMU-PS data using the 
ethod described abo v e. The distribution of complexity values from

ach sampled frame is shown in Fig. 3 . Complexity values are shown
n Fig. 4 as a heat map o v er the EMU-PS field. 

Visual inspection of a subsample of frames shows that the 
igh-complexity value tail of the distribution comprises unusual, 
omple x, and e xtended objects. Extended sources featured heavily 
n the tail abo v e the 95th percentile ( ∼15 000 bytes), with WAT
alaxies and objects of a more anomalous appearance apparent from 

bo v e the 99th percentile ( ∼16 500 bytes). Findings demonstrate the
f fecti veness of this approach in recovering known extended and 
omplex structures. Examples of these objects, sampled above the 
9th percentile, are shown in Fig. 5 . These examples illustrate the
readth of objects found within frames in the high-complexity value 
ail, including, (a) the unusual source PKS 2130 −538 (Otrupcek & 

right 1991 ) known as the dancing ghosts (Norris et al. 2021b ), (b) a
right WAT source on 2MASX J21291901 −5053040 in cluster Abell 
771, (c) the large X-shaped radio source PKS 2014 −55 (2MASX 

20180125 −5539312), (d) two ORCs, EMU PD J205842.8 −573658 
ORC2) and EMU PD J205856.0 −573655 (ORC3), (e) a face-on 
piral galaxy NGC 7125, (f) 2MASX J20483764 −4911157 an FR II
emnant, (g) DES J202818.12 −492408.4 an FR I potential double- 
ouble radio galaxy, and (h) an FR I extended radio source with host
alaxy 2MASX J21512991 −5520124. 5 
 These objects, with some additional examples, are shown in Appendix C , 
here we discuss the more unusual features of the objects, grouping these 

xamples together in the currently most commonly used radio-morphological 

c

c
o

The EMU-PS has already produced valuable scientific disco v eries, 
ncluding the identification of a new class of radio object called
RCs (Koribalski et al. 2021 ; Norris et al. 2021a , 2022 ). Examples,

abelled ORC 2 and ORC 3, are shown in the high-complexity frames
resented in Appendix C , Figs 5 d and 6 . ORCs provide examples
f recent disco v eries coming from EMU-PS that are found in the
ar-right tail of the complexity distribution. The ability of the course-
rained complexity measure to segment these sources above a high 
omplexity value in the distribution tail, in this case abo v e the 99.5th
ercentile, supports the ef fecti veness of this approach at identifying
cientifically interesting observations in large data in an efficient 
anner. Being able to capture and segment complex structures and 

nusual observations in the far-right tail provides a smaller and more
oncentrated search space that can potentially impro v e the speed
nd efficiency of making new disco v eries. As discussed in S19 ,
he worst-case linear time complexity of the method also makes it
omputationally efficient to implement. 

.2 Zoo results 

e use truth labels determined from the zoo to e v aluate the ef fecti ve-
ess of alternative partitions for identifying anomalous objects. As 
n immediate benefit, an ef fecti ve partition can be used to identify
rames containing complex structures and unusual objects from the 
MU-PS data and build an anomaly catalogue. An ef fecti ve boundary 
an also be used when analysing new, and even larger surveys,
or interesting objects and new disco v eries. As an example, the
hresholds determined from the EMU-PS data can be used to identify
he most interesting frames in the subsequent full EMU surv e y which
s anticipated to capture approximately 40 million sources. 

The EMU-PS scan contains approximately 365 000 sampled 
rames making e v aluation of all frames from the zoo infeasible.
hrough subsampling of the EMU-PS scan, the sample size for 

he zoo was limited ( n = 1627) to ensure all frames could be
 v aluated by a larger number of volunteers. Ho we ver, this results
n poor subsampling from the far-right (high-complexity) tail. The 
nrichment sample was intended to provide better representation 
f the type of observations found within frames beyond the 99.5th
ercentile. Classification counts for each of the zoo classes are shown
n Table 1 . This table includes the anomaly counts both before and
fter the inclusion of the enrichment sample. 

Only frames converging on a label through majority consensus 
ere used to e v aluate the ef fecti v eness of the comple xity to identify

nomalous sources. Those frames from the zoo sample where ma- 
ority consensus was not reached were excluded from the e v aluation.

Table 2 shows that 99.8 per cent of the zoo sample frames received
 v aluations from three or more volunteers and 94 per cent from five
r more. We used the criterion that only frames receiving five or
ore e v aluations were used to e v aluate consensus, and be gi ven a

eliable ‘truth’ label. These restrictions were imposed to a v oid the
esults being impacted by outlier e v aluations that differed from the
ajority of expert volunteers. 
The average number of e v aluations per frame was 6.85, with a

elati vely e ven number of average e v aluations across the outcome
abels as shown in Table 3 . Table 3 also shows that where an outcome
abel was assigned, the average consensus level was 70 per cent or
reater. The number of zoo sample frames converging on a majority
MNRAS 521, 1429–1447 (2023) 

onsensus in each class is shown in Table 1 . 

lassification schemes. These include a previously unreported GRG with LLS 
f 1.94 Mpc shown in panel 5D of Fig. C1 . 
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Figure 4. A complexity ‘heat map’ of the EMU-PS region, where the complexity of the frame is indicated by the brightness of the pixel. While many of the 
frames are red coloured, indicating the presence of a simple source, there are a few yellow or white pixels, indicating more complex sources or low-surface 
brightness structures. The most complex frames seem to be randomly distributed across the surv e y re gion, with the e xception of the edges, where incidental 
structure increases the complexity. The region outside of the EMU-PS is coloured black. 
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.3 Defining complexity boundaries 

ig. 7 shows both the coarse-grained complexity and the SNR, 6 

nd the relationship between them, for the EMU-PS zoo subsample
nclusive of the enrichment sample ( n = 1627). The figure also shows
he classification of frames derived through consensus from EMU
n the Anomaly Zoo. We see that frames e v aluated as containing an
nomalous object by consensus are measured as having larger coarse-
rained complexity and SNR values, with all anomalous objects
aving complexity values greater than 14 000 bytes and an SNR
atio > 0.14. The figure also shows that the concentration of frames
ith complex and anomalous zoo labels increases in the tail abo v e

he 99.5th percentile, a complexity value of approximately 17 000
ytes. 
Table 4 shows that recall in the zoo subsample abo v e a comple xity

hreshold of 14 000 bytes is 1.00, equi v alent to 100 per cent retention
NRAS 521, 1429–1447 (2023) 

 The SNR is calculated as the reciprocal of the coefficient of variation for 
he channel intensity values as outlined in S19 and Section 3.2 . As frames 
ontain predominantly channel values close to zero, these ratios are typically 
ell below unity. 

a

C

T  

f  
f anomalous objects; ho we ver, the FPR of 0.37 results in an
nformedness of 0.63. The FPR here is measured based on the
roportion of frames not containing anomalous objects by consensus
hat fall abo v e the threshold. The results show that when an SNR
hreshold of 0.14 is incorporated, the recall remains at 1.00; ho we ver,
he FPR reduces to 0.17 resulting in an informedness of 0.83. The
ationale for including the SNR is discussed further when considering
lassification errors in Section 5.3 . 

In order to segment frames containing anomalous sources, and
educe the FPR, we fit (based on visual inspection) a function as
he catalogue boundary in terms of the complexity C ( f ( x )) and SNR.
his is illustrated in Fig. 7 as an exponential curve where truth

abels were defined using consensus votes from zoo classifications.
he functional catalogue boundary can also be expressed in terms
f a log ratio adjustment of a lower bound complexity value for
nomalous frames: 

 ( f ( x )) ≥ 13 101 ln 

(
2 

3 
√ 

SNR 

)
. (4) 

o be considered as a candidate for the anomaly catalogue, a
rame must have a complexity value greater than the right side

art/stad537_f4.eps


Complexity scan of EMU-PS 1437 

Figure 5. Examples of objects found within frames sampled abo v e the 
99th percentile complexity value from the EMU-PS complexity scan. These 
examples illustrate the breadth of objects found within frames in the 
complexity tail including, (a) the unusual source PKS 2130 −538 (Otrupcek & 

Wright 1991 ) known as the dancing ghosts (Norris et al. 2021b ), (b) a bright 
wide-angle tail (WAT) source on 2MASX J21291901 −5053040 in cluster 
Abell 3771, (c) the large X-shaped radio source PKS 2014 −55 (2MASX 

J20180125 −5539312), (d) two ORCs, EMU PD J205842.8 −573658 (ORC2) 
and EMU PD J205856.0 −573655 (ORC3), (e) a face-on spiral galaxy 
NGC 7125, (f) 2MASX J20483764 −4911157 F anaroff–Rile y type II (FR 

II) remnant, (g) DES J202818.12 −492408.4 FR I potential double-double 
radio galaxy, and (h) FR I extended radio source with host galaxy 2MASX 

J21512991 −5520124. 
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Figure 6. An example frame with a complexity value above the 99.5th 
percentile ( > 17 000 bytes). In this frame, EMU PD J205842.8 −573658 
(labelled ORC2) in the top right is the dominant source. This frame also 
contains EMU PD J205856.0 −573655 (labelled ORC3). 

Table 2. Distribution of e v aluation counts across the 
zoo sample. 

Number of e v aluations 
Percentage of samples 

(per cent) 

1 0.0 
2 0.2 
3 0.9 
4 5.2 
5 12.4 
6 23.7 
7 24.3 
8 18.6 
9 10.5 
10 3.5 
11 0.6 
12 0.1 

Table 3. Average number of e v aluations and consensus level across 
the outcome labels. 

Zoo label Average number of votes 
Average consensus 

(per cent) 

Anomalous 6.8 70 
Complex 6.9 77 
Simple 6.9 87 
No source 6.5 78 
No consensus 6.4 48 
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f equation ( 4 ). This equation provides a complexity boundary 
f C ( f ( x )) > 14000 when the SNR of the frame is roughly 0.3.
he majority of frames have an SNR < 0.3 (as we can see from
ig. 7 ), and so would require a higher complexity to be considered
s part of the anomaly catalogue. Using a function based catalogue 
oundary that incorporates both complexity and the SNR impro v es 
he precision and informedness of the segmented sample by reducing 
he retention of false positives, as illustrated in Fig. 7 . We propose
hat a similar partition will be ef fecti ve with respect to the full EMU
urv e y. 
We use the function defined in equation ( 4 ) to segment the
nriched sample to identify anomalous and complex frames and 
how these predictions in terms of zoo labels in Table 5 . We
easure the recall, informedness, and precision based on the binary 

lassification of anomalies versus all other classes using the non- 
ias sample with results presented as a confusion matrix shown in
able 6 . The recall and informedness can be e v aluated with respect
MNRAS 521, 1429–1447 (2023) 
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Figure 7. Scatter plot showing the coarse-grained complexity and the SNR, and the relationship between them, for the EMU-PS zoo subsample inclusive of the 
enrichment sample ( n = 1627). The figure shows the classification of frames derived through consensus from the zoo and the function based catalogue boundary 
for anomalies (catalogue boundary) with its exponential form shown in this figure and expressed in terms of a log ratio adjustment of a lower bound complexity 
value in equation ( 4 ). 

Table 4. Informedness and precision measures at various partition boundaries. These measures are explained in detail in Appendix B . 

EMU-PS Anomaly in the EMU Zoo subsample excluding enrichment sample and no consensus zoo labels ( n = 1463) 
Partition boundary Recall FPR Informedness Precision 

(Anomalous only) (Anomalous only) (Anomalous only) (Anomalous only) 

Complexity ≥ 14 000 bytes 1.00 0.37 0.63 0.01 
Complexity ≥ 14 000 bytes, SNR ≥ 0.14 1.00 0.17 0.83 0.03 

Table 5. We use the function defined in equation ( 4 ) to segment 
the enriched sample to identify anomalous frames and show these 
predictions in terms of truth labels derived based on zoo consensus. 
Results show only a single false ne gativ e for the anomalous class 
discussed further in Section 5.3 . 

Enriched sample Prediction: Prediction: Total 
Zoo label Anomaly Other 

Anomalous 23 1 24 
Complex 58 365 423 
Simple 22 1049 1071 
No source 5 26 31 
Total 108 1441 1549 

Table 6. We use the function-based boundary to segment the non-bias 
sample and construct a confusion matrix based on the binary classification of 
anomalies versus all other classes where zoo consensus was reached. We use 
this binary classification scheme to e v aluate recall and informedness. 

Non-bias sample Prediction: anomaly Prediction: other Total 

Zoo: anomaly 6 1 7 
Zoo: other 59 1397 1456 
Total 65 1398 1463 

t  

i  

o  

p  

m  

s
 

c  

A  

b  

f  

c  

r  

o  

c  

i  

o  

c
 

t  

u  

a  

c  

i  

s  

0
 

a  

i  

c  

a  

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/1/1429/7049132 by U
niversiteit Leiden - LU

M
C

 user on 21 February 2024
o the horizontal totals with results showing a recall of 0.86 and
nformedness of 0.82 for positive predictions. We use estimates
f recall and informedness based on the non-bias subsample to
rovide more accurate estimates by a v oiding the allocation of too
NRAS 521, 1429–1447 (2023) 
uch weight to the tail through the inclusion of the enrichment
ample. 

As shown in Table 1 , the number of anomalies is very small
ompared to the number of frames containing complex objects.
ccordingly, even at a very low FPR of 0.04 for the functional
oundary, the precision remains low as the boundary permits more
amiliar complex objects that are not deemed anomalies. We use the
ombined complex and anomalous classes to verify that the precision
emains high with respect to both these classes. We use estimates
f precision based on the enriched subsample to provide better
o v erage of the right tail of the complexity distribution, as discussed
n Section 3.4 , with the aim of providing a better representation
f the concentration of complex and anomalous sources above the
omplexity threshold defined using the function based boundary. 

The precision can be e v aluated with respect to the vertical totals of
he confusion matrix returning a low value of 0.09 when computed
sing the non-bias sample with the positive class defined using
nomalies only. Based on the enriched sample, with the positive
lass including both anomalies and complex objects, the precision
s estimated to be 0.75 for the functional boundary. Imposing a
tricter complexity cut of 17 000 bytes the precision is estimated to be
.94. 
Summary statistics are presented in Table 7 . Results show only

 single false ne gativ e for the anomalous class discussed further
n Section 5.3 . We note that the informedness of the function-based
atalogue boundary is comparable to the orthogonal thresholds, made
t a complexity cut of 14 000 bytes and an SNR cut at 0.14 as shown in
able 4 . A key advantage of the function-based catalogue boundary
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Table 7. Informedness and precision measures for different anomaly catalogues. The functional form of the complexity boundary is given 
by equation ( 4 ), and plotted in Fig. 7 . Precision is calculated using both the non-bias sample with the positive class based on anomalies only 
(complementary with the calculation of recall) and also the enriched sample with the positive class based on both anomalies and complex 
objects (to e v aluate the concentration of complex objects amongst the false positives retained). 

Catalogues created 
Name Partition boundary Sample size Scan Recall Informedness Precision Precision 

retained (%) (non-bias) (non-bias) (non-bias) (enriched) 

Most complete Complexity boundary (function) 16 157 5 0.86 0.82 0.09 0.75 
Compromise Function & complexity cut ≥ 15 000 bytes 3791 1 0.71 0.69 0.14 0.88 
Most pure Function & complexity cut ≥ 17 000 bytes 1558 0.5 0.43 0.42 0.17 0.94 
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o we ver is the much smaller FPR with respect to anomalies, less
han one quarter ( < 25 per cent ) the size. This results in a much more
fficient search space for unusual objects and can be used to produce
n anomaly catalogue of a more manageable size. Imposing stricter 
omplexity thresholds on top of the functional boundary can further 
educe the FPR and impro v e precision as shown in Table 7 . These
esults also show a significant impro v ement in precision with respect
o both anomalies and complex objects can be achieved when stricter
omplexity thresholds are overlaid, with results showing an enriched 
recision of 0.88 and 0.94 when applying complexity thresholds of 
5 000 and 17 000 bytes, respecti vely. These results allo w the trade-
ff between catalogue size, recall and precision to be evaluated for
ifferent boundary choices. 

.  DISC U SSION  

.1 Anomaly catalogue 

e construct three anomaly catalogue partitions, as shown in Table 7 ,
he first based only on a function incorporating complexity and SNR
alues to formulate the boundary, and the other two combining the 
unction-based catalogue boundary with a complexity cut at ≥15 000 
nd ≥17 000 bytes. 

Using the function-based catalogue boundary, without any further 
omplexity cuts, produces a partitioned sample with the highest recall 
f 0.86. Ho we ver, it also produces a relati vely large catalogue of
 = 16 157 frames with an estimated FPR of 0.04. 
To provide a more efficient search space that promotes the discov- 

ry of unusual and no v el objects, we introduce further complexity
uts to reduce the catalogue size. At a complexity cut of ≥17 000
ytes, the catalogue size is reduced significantly from 16 157 to 1558
rames with an estimated FPR of 0.01. We note ho we ver, that despite
he reduction in the FPR, the precision remains low at 0.17 with
espect to the positive class based on anomalies only. Evaluating the 
recision based on the enriched sample and including both anomalies 
nd complex objects within the positive class we achieve a precision 
f 0.94 suggesting that the majority of objects captured in this
atalogue will have some structure, and will be more interesting 
han simple unresolved sources or single component sources. We 
xpect that very few of the frames belonging to this catalogue would
e classified as containing only simple objects or noise. This is the
mallest catalogue, and provides a fast search space, minimizing the 
umber of false positi ves; ho we ver, the low recall of 0.43 presents a
ignificant risk that new and interesting objects of interest will not 
e captured. 
At a compromise complexity cut of ≥15 000 bytes, the catalogue 

ize of n = 3791 remains significantly smaller than the catalogue 
hen excluding a complexity cut ( n = 16 157). The estimated recall
f 0.71, informedness of 0.69 (based on a FPR of 0.02), precision of
.14, and enriched precision of 0.88 (based on more familiar complex
bjects and anomalies in the positive class) also provide a middle
round, combining impro v ed co v erage of actual anomalies with a
igh concentration of interesting objects, albeit both complex and 
nomalous. Furthermore, the most pure subsample can be extracted 
rom the compromise subsample by filtering abo v e a comple xity of
7 000 bytes. 
The compromise catalogue is made available as supplementary 
aterial. Using this catalogue, we extract 36 examples of high- 

omplexity objects, each with a complexity of 17 000 bytes or
reater, and present these in Appendix C . Here, we discuss in more
etail example objects of interest, concentrating on the more unusual 
eatures of the objects, and we group these together in the currently
ost commonly used radio-morphological classification schemes. 

.2 Using the anomaly catalogue 

he catalogue contains the complexity value, the SNR, and the 
ky coordinates of each frame centre (RA DEC in deg). As the
rames represent a square aperture of approximately ∼12 arcmin it is
ecommended that the coordinates of each frame centre be used 
o conduct a search for objects and structures of interest within
 radius of 9 arcmin. It is also important to note that as frames
re sampled with a stride of one quarter the frame length, many
rames will be associated with the same objects of interest, with
any directly overlapping. To help make the search more efficient, 

rames have been grouped by clustering frame centre locations based 
n the distance between them. The cluster number associated with 
ach frame is provided in the catalogue. This can help improve the
fficiency of the search once an apparent host object of interest has
een located within a cluster. The catalogue also contains an indicator 
ariable to identify high-complexity frames positioned adjacent to 
he edges of the EMU-PS region. This is to help identify frames where
ontributions to complexity may come from incidental structure 
r artefacts produced near the edges. These frames have not been
ssigned a complexity cluster but have been retained in the catalogue
s they may still be associated with objects of interest. 

.3 Classification errors 

he e v aluation of classification errors provides important context 
or selecting a partition boundary for an anomaly catalogue. Type 
I errors, representing the incorrect classifications of true positives 
i.e. false ne gativ es), remained low at the boundaries e v aluated.
ll anomalies identified by zoo participants were contained by 
rthogonal thresholds, made at a complexity of 14 000 bytes and
n SNR of 0.14. The function-based catalogue boundary produced 
nly one false ne gativ e as shown in Fig. 7 (below the perforated
xponential line). 
MNRAS 521, 1429–1447 (2023) 
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Figure 8. F alse ne gativ e errors may arise due to the removal of meaningful 
information by the smoothing functions due to the faint representation of 
complex features. This was the case with the single false ne gativ e falling 
outside of the function-based catalogue boundary. A faint complex structure 
is apparent in the top-left corner of the frame. While consensus converged 
on the classification of this frame as an anomaly, three out of seven zoo 
participants e v aluated the frame as containing only simple objects (most 
likely referring the bright source at the bottom of the frame towards the right 
side). In alternativ e o v erlapping frames, outside of the zoo subsample, even 
larger complexity values are attributed to this structure. Further investigation 
shows that the faint complex radio emission in the top-left corner of the frame 
appears to be due to a face-on spiral galaxy ESO 236-G008 ( z = 0.03088, 
optical angular diameter ∼1.5 arcmin). Interestingly, the complexity value 
separates this frame from even more unusual faint radio structures such as 
ORC-like ringed radio emissions. 
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Figure 9. The X-shaped radio galaxy 2MASX J20180125 −5539312 pro- 
vides an example where frames captured only part of the larger structure. 
These partial frames were sometimes misclassified by participants as not 
being of interest. 
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F alse ne gativ e errors may arise due to the removal of meaningful
nformation by the smoothing functions, potentially due to the sparse
r faint representation of complex features, discernible to the human
ye or through additional measurements, b ut ha ving a reduced impact
n the information content of the frame itself. This was the case
ith the single false ne gativ e falling outside of the function-based

atalogue boundary. This example is illustrated in Fig. 8 , where
 faint complex structure is apparent in the top-left corner of the
rame. While consensus converged on the classification of this frame
s an anomaly, three out of seven zoo participants considered the
rame as not containing an y comple x structures, and e v aluated the
rame as containing only simple objects (most likely referring to
he bright source at the bottom of the frame towards the right
ide). Even though this frame falls outside of the function-based
atalogue boundary, a complexity value of over 14 000 bytes suggests
hat this frame does contain a complex structure. In alternative
 v erlapping frames, outside of the zoo subsample, even larger
omplexity values are attributed to sections of sky containing this
tructure. Further investigation shows that the faint complex radio
mission in the top-left corner of the frame appears to be due
o a face-on spiral galaxy ESO 236-G008 ( z = 0.030 88, optical
ngular diameter ∼1.5 arcmin). Interestingly, the complexity value
f this frame falls below that of, and separates it from, even
ore unusual faint radio structures such as ORC-like ringed radio

missions. 
NRAS 521, 1429–1447 (2023) 
F alse ne gativ e errors can also be caused by the mislabelling of
oise and simple objects as positives (i.e. incorrect assignment of
ruth labels) due to the judgement error of zoo participants. Errors
an also be caused by a failure of zoo participant e v aluations to
onverge accurately given the small number of potential volunteers
ith the appropriate expertise to e v aluate certain objects. 
Type I errors, representing the incorrect identification of simple

ources as complex (i.e. false positives), may be due to the presence
f non-random information deemed by a human observer to be
ncidental and not contributing to the complexity of the source
tself. An example could be a telescope imaging artefact containing
tructure, such as a point spread function originating from a brighter
ource. Type I errors may also occur where multiple simple sources
re captured within a frame, as the number of sources captured in
ach frame can vary significantly. 

Errors again may also be due to a failure of volunteer e v aluations
o converge on accurate truth labels, in this case mislabelling frames
ontaining complex and unusual objects as ne gativ es potentially
ue to the loss of information in each frame due to the sampling
rocess. This is particularly likely where only part of an interesting
ource was captured in the sample frame. For example, the X-shaped
adio galaxy 2MASX J20180125 −5539312, as shown in Fig. 9 , is
arge enough that the scan frames capture only part of this larger
tructure. These examples were misclassified by some participants
s frames containing only noise or simple objects. While expert
stronomers did in fact identify these frames as containing complex
nd anomalous structures, misclassifications by some volunteers
esulted in the failure of some of these frames to reach a consensus
ote that converged on a positive label. Furthermore, the human
riteria for what is interesting or anomalous may be somewhat
arnished by previous exposure and not judged on its own merits (e.g.
 galaxy image may have a high complexity, but be identical to images
reviously seen by the human judge and accordingly classified as
imple). 

Alternatively, Type I errors may be explained by the retention of
andom inputs not remo v ed by the smoothing function. In S19 we
emonstrated that in the ATLAS sample there was a large amount of
oise in the simple sources at baseline. This presents a risk that in
ome images random inputs will take the form of incidental structure
hat may not be remo v ed as smoothing increases. Where random
nputs are retained after smoothing, se gmentation efficienc y is likely
o be impro v ed by incorporating thresholds in both the coarse-grained
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omplexity and the SNR, as incidental structure and imaging artefacts 
re less likely to have the same gradient structure as astronomical 
ources and are therefore likely to be distributed more uniformly 
cross the available channel values. Fig. 7 illustrates the benefit of
ncorporating the SNR to reduce false positives (Type I errors). 

.  S U M M A RY  

he coarse-grained complexity can be used as a tool for identifying 
nusual and complex images, useful for segmenting complex images 
rom simple images, as demonstrated in S19 . In this work, we apply
t to the new and larger EMU-PS data (365 000 sampled frames
ontaining at least the ∼220 000 Selavy catalogue sources) after 
eing calibrated on the much smaller ATLAS DR1 data used in S19
 ∼700 training sources) to identify and segment unusual sources 
i.e. anomalies). This demonstrates the generalizability of the coarse- 
rained complexity for identifying unusual sources in increasingly 
arger deep radio continuum surv e ys such as the full EMU surv e y.
he supporting steps taken and results discussed in this paper are 
ummarized as follows: 

(i) We scanned the mosaic image of EMU-PS, measuring the 
omplexity of frames rather than individual sources, and examined 
he distribution of complexity values. An important feature of the 
can method is that the frames are sampled from the EMU-PS data
n a blind manner, without reference to any source catalogue. 

(ii) We found that the high-value tail of the complexity distribution 
omprises many unusual, complex, and extended objects. Extended 
ources featured heavily in the tail abo v e the 95th percentile, with
AT radio galaxies and objects of a more anomalous appearance 

pparent from abo v e the 99th percentile. The ability of the coarse-
rained complexity measure to segment these sources in the distri- 
ution tail shows the ef fecti veness of this approach at identifying
cientifically interesting observations in large data sets in an efficient 
anner. 
(iii) These results demonstrate the ef fecti veness of this approach in

eco v ering e xtended or comple x structures. Examples are presented
n Appendix C . These include peculiar FR II and FR I sources, tailed
adio galaxies, ORCs, and GRGs including a previously unreported 
RG with largest linear scale (LLS) of 1.94 Mpc shown in panel 5d
f Fig. C1 . 
(iv) We used a Zooinverse project to produce crowd-sourced labels 

or a subsample of frames produced by a blind scan of the EMU-PS
ata to e v aluate the ef fecti veness of the coarse-grained complexity
s an anomaly partition. We identified an ef fecti ve anomaly partition
sing the coarse-grained complexity and SNR values. These can be 
sed to generate an anomaly catalogue and we propose that a similar
artition will be ef fecti ve with respect to the full EMU survey. 
(v) We generate three anomaly catalogue boundaries using coarse- 

rained complexity and SNR values to partition the frames. The most
omplete catalogue boundary uses a function based on complexity 
nd SNR values to formulate the boundary, and has n = 16 157
rames, < 5 per cent of the total n = 365 000 frames produced from the
MU-PS scan, with an estimated recall of 0.86 and an informedness
f 0.82. 
(vi) The most pure catalogue boundary has an additional com- 

lexity cut at ≥17 000 bytes (on top of the functional boundary),
ith a catalogue size of 1558 frames and an estimated recall of
.43 and informedness of 0.42. While precision is measured at 0.17 
ased on anomalies only, by redefining the positive class in terms of
oth familiar complex objects and anomalies this partition returns an 
nriched precision of 0.94. 
(vii) The compromise catalogue boundary uses a lower complex- 
ty cut of only ≥15 000 bytes and has a catalogue size of n = 3791,
ith a recall of 0.71 and informedness of 0.69, providing a middle
round with respect to catalogue size and recall. We make this
atalogue available to the community as supplementary material. 

The analysis has demonstrated the ability of the coarse-grained 
omplexity to single out regions of the sky that contain complex and
nusual sources based on calibration from a much smaller sample. 
he approach is efficient to compute and reduces expectation bias 
s it can be computed at worst-case linear time complexity without
eference to the broader sample or existing catalogue data. This 
ositions the approach as an efficient and powerful tool in identifying
ew and anomalous sources in the full EMU surv e y, as well as
ubsequent large and deep radio continuum and optical imaging 
urv e ys. 
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nomaly catalogue based on the compromise catalogue boundary,
s described in Section 5 , as supplementary material. Section 5.2
rovides guidance on how to use the catalogue. 
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Figure A2. Cumulative probability of complexity values from both the total 
sample and for anomalies identified in the zoo. 
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nomalous below 14 000 bytes. Any false negatives (Type II errors)
esulting from defining the partition boundary at this level or above 
re expected to be few. This is supported by the large zoo subsample
elow 14 000 bytes, o v er 60 per cent of the total zoo subsample,
n which no sources were classified as anomalous. Furthermore 
he fraction of anomalous sources appears to reduce quickly at 
ower complexity values, as demonstrated by the steep slope at 
igh complexity values in the cumulative probability distribution 
or anomalies, as shown in Fig. A2 . Accordingly, re-sampling from
ithin the missing range was not deemed as necessary. 

PPEN D IX  B:  P E R F O R M A N C E  EVALUATI ON  

1 Recall and precision 

o measure recall and precision using the results from the Anomaly 
oo, we use the following metrics: 

ecall = 

T P 

T P + F N 

(B1) 

recision = 

T P 

T P + F P 

, (B2) 

where FP are false positives (or Type I errors, objects misidentified 
s being of interest), FN are false ne gativ es (or Type II errors,
omplex and unusual objects misidentified as being simple), TP 

re true positives (correct positive classifications), and TN are true 
e gativ es (correct ne gativ e classifications). 
Precision determines the number of correct positive classifications 

s a fraction of all positive classifications, TP/(TP + FP), while recall
etermines the number of correct positive classifications as a fraction 
f the total number of real positives (RP = TP + FN), and so is TP/RP.
he fraction of positive objects that have been missed would be 1 −

ecall, in the binary classification case. 
Table B1. Confusion matrix for binary classification prob

Class + 

Prediction + TP FP
Prediction − FN (Type II error) 
Total Real positives (RP) Real
2 Informedness 

n alternative framework for measuring performance involves the 
se of receiver operating characteristic (ROC) curves. The use of 
OC curves to construct a comparative framework has been adopted 

n the machine learning literature (F ̈urnkranz & Flach 2005 ). These
pproaches account for chance level performance and can also be 
sed to account for the cost weightings of ne gativ e and positive
ases. ROC analysis examines the FPR (FP/RN) versus the true 
ositive rate (TPR; TP/RP), which can be used to account for the
rade-off between these two measures. 

The maximum positive distance of the ROC curve from the 45
egree chance line is known as Youden’s J statistic (Youden 1950 )
r as the informedness measure (Powers 2011 ). The informedness 
easure is equi v alent to the subtraction of the FPR from the TPR as

ollows: 

nformedness = 

T P 

T P + F N 

− F P 

T N + F P 

= TPR − FPR . (B3) 

Po wers ( 2011 ) sho ws that informedness is an unbiased estimator
f abo v e chance performance. The measure incorporates both Type
 errors (false positives) and Type II errors (false ne gativ es) and
escribes the impro v ed performance of the measured classifier with
espect to chance, costing true positives and false positives in a
ay analogous to how a bookmaker fairly prices the odds (Powers
011 ). For this reason, the measure is also referred to as bookmaker
nformedness. The informedness measure is defined on a ( −1,1) 
nterval and gives equal weighting to the TPR and FPR. 

Informedness appears appropriate for e v aluating the ef fecti veness
f alternative approaches at detecting and classifying complex and 
nusual observations in large astronomical data. The informedness 
easure relates to the following objectives of classification: 

(i) Maximize TPR (i.e. minimize the Type II error rate) – ensuring 
he search space contains as many truly interesting things as possible.

(ii) Minimize FPR (i.e. minimize the Type I error rate) – ensuring 
he search space does not become too large and predominantly 
ontains truly interesting things. 

Remo ving false positiv es reduces the search space, and the
ssociated costs of handling larger data sets, helping to make the
isco v ery process more efficient. Due to the likely small number
f actually unusual observations (new types of objects) compared 
o normal observations (objects belonging to an already known or 
ommon class) in the total sample, the metric is likely to be more
ensitive to small changes in the true positive count resulting from
isclassification or disagreement between zoo volunteers. 
In assessing the ef fecti v eness of the approach, a ke y consideration

s the reduction of the Type II error rate, measuring the ef fecti veness
f the approach at identifying as many of the unusual observations
s possible. Minimizing the Type I error rate is also of importance
n providing a significant reduction in the search space. Reducing 
he Type I error rate also reduces contamination of the search space
y simple sources and noise. This is reflected in the complementary 
MNRAS 521, 1429–1447 (2023) 

lem. 

Class - Total 

 (Type I error) Predicted positives (PP) 
TN Predicted ne gativ es (PN) 
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easure of precision. For these reasons the informedness and pre-
ision measures were chosen as the principle criteria for e v aluating
rospective partition boundaries. 

PPENDIX  C :  EXAMPLES  O F  

I G H - C O M P L E X I T Y  S O U R C E S  

able 7 outlines three boundaries used to construct and partition an
nomaly catalogue using complexity cuts. 

Examples of interesting non-o v erlapping frames from within the
atalogue boundary, with a complexity of 17 000 bytes or greater,
re shown in Fig. C1 . Frames with figure reference 2C, 4A, 4B,
C, and 7A were found efficiently within the catalogue search
pace. The remaining frames shown in Fig. C1 were sampled from
ithin selected fractional percentile bins abo v e 17 000 bytes and
rovide a representation of the high-value complexity tail and the
iverse morphology found within. We found the apparent host object
ssociated with each example frame and detail these along with their
ain characteristics in Table C1 . 

1 Notes on examples of interest 

e looked up the regions of the 36 panels displayed in Fig. C1 in
oth the EMU-PS full-resolution radio image (Norris et al. 2021b )
s well as in the deep optical images of the DES DR1 (Abbott et al.
018 ) as offered in the Aladin software package (Bonnarel et al.
000 ). This allowed us to identify the apparent host object, and
e retrieved their main characteristics (exact position, brightness,

pectroscopic redshifts, etc.) from the NASA/IPAC Extragalactic
atabase ( ned.ipac.caltech.edu ) as well as the VizieR

atalogue browser at CDS (Ochsenbein, Bauer & Marcout 2000 ).
hotometric redshifts were searched in various catalogues not readily
vailable from the abo v e data sources, like Bilicki et al. ( 2014 , 2016 ),
hou et al. ( 2021 ), and Zou et al. ( 2022 ) and an average value was
dopted if more than one was available. The largest angular sizes
f the radio sources (including parts that exceed the panel limits
f Fig. C1 ) were measured and converted to LLSs using standard
osmological parameters, H 0 = 70 km s −1 Mpc −1 , �m = 0.3, and
� 

= 0.7. These details along with the location of the apparent host
bject are provided in Table C1 . 
In what follows we describe our findings, concentrating on the
ore unusual features of the objects, which we group together in the

urrently most commonly used radio-morphological classification
chemes, with the major such scheme being the FR I/II (according
o Fanaroff & Riley 1974 ) followed by WAT or narrow-angle tail
NAT) radio galaxies, and less-well-defined morphological classes. 

1.1 FR II sources 

he FR II radio galaxies shown in Fig. C1 tend to have more inflated
obes than that of average objects with this classification, most likely
ecause these features contribute to the complexity level. The most
egular and at the same time linearly largest FR II is seen in panel 5D,
hile the others (panels 1A, 1B, 1C, 2A, 4D, 5B, and 9B) tend to
ave more inflated lobes of the remnant type, the most extreme of
hese being the one in panel 8A, already presented in fig. 23 of Norris
t al. ( 2021b ). 

1.2 FR I sources 

R I sources are more abundant in our selection for Fig. C1 .
part from some sources mentioned elsewhere in this section, we
NRAS 521, 1429–1447 (2023) 
mphasize the WAT-like one in panel 2D which has two symmetric
nner jets but only one complex lobe due North, while a South lobe
r tail is not detected. The source’s linear size, already without a
outh lobe, is close to 1 Mpc. At an adequate contrast the N jet

s seen to follow a NNE direction, then curving backward on itself
n projection due SSE. The host may be either one of two bright
alaxies in a close pair, whose interaction may be responsible for the
iggles in the jets. 

1.3 Tailed radio galaxies like WATs and NATs 

he angularly largest WAT is the one in panel 7D, whose N lobe is
een only in the lower section of panel 3D. Another large WAT is
he one seen in both panels 6D with its central part and 8D with its
outhern tail. Salient features in the EMU-PS radio image are the
harp edges of the widening S tail and a circular shock feature in
he NNE tail. The two most peculiar WAT-type sources are those in
anels 7A and 8B. The one in 7A has been coined ‘dancing ghosts’
n Norris et al. ( 2021b ) and features two WATs in the same cluster,
bell 3785, as already discussed by these authors (see their fig. 21).
he one in panel 8B has its host just beyond the SW corner of the
anel, and was already shown in a more spectacular radio-optical
 v erlay in fig. 22 of Norris et al. ( 2021b ). 
Another odd-shaped WAT is that in panel 3B which looks like a

adio ring but clearly has its very bright cD-like host galaxy at one
adio knot due SW. The tails are likely curved in projection along
he line of sight to cause the impression of a ring. The host is by far
he brightest galaxy towards the cluster Abell 3796, and is likely a
ember of the intermediate-distance group of three (with z ∼0.056,

.076, and 0.094) that seem to cause the illusion of a single rich
luster. 

Panel 2C shows a WAT with its host at its Southern tip. The
ails bend rather sharply and symmetrically due N before they are
airly abruptly bent due W, perhaps due to shear in the intergalactic
edium. A very twisted, but still rather symmetric WAT is seen in

anel 3C, and another WAT rather sharply bent near its host at its
astern tip is shown in panel 9C. 
No actual NATs are among those in Fig. C1 , possibly due to

heir complexity falling below the 99.5th percentile. Analysis of the
omplexity distribution of Selavy cutouts suggests NATs are more
ommon abo v e the 98th percentile. 

1.4 Circular, X-shaped, hybrid, or otherwise oddly shaped sources

anel 4C shows the pair of ‘ORCs’ (ORC 2 and ORC 3) already
escribed in Norris et al. ( 2021a , 2022 ) and Koribalski et al. ( 2021 ).
Apart from the giant X-shaped source PKS 2014 −558 (Cotton

t al. 2020 ) there is another X-shaped source with less prominent
ings in panel 6C. Panel 4D shows an E-W oriented FR II radio
alaxy with plumes extending NE and SW from the core and may
hus be considered as X-shaped as well. 

Hybrid morphology sources (see e.g. Kapi ́nska et al. 2017 ) are
hose with FR I morphology on one side and FR II on the other.
hese are very rare sources and the example closest to this in Fig. C1
ay be seen in panel 8C with a 610-kpc wide radio galaxy with

n FR I East lobe and a shorter FR II West lobe that widens with
istance from the core and ends in a lobe with an outer boundary
riented perpendicular to the main source axis. The compact source
urther W of it is due to a quasar candidate. 

Panel 2B shows the radio emission of the bright elliptical galaxy
airall 106 which extends over 2 arcmin on the DES image, showing



Complexity scan of EMU-PS 1445 

Figure C1. Examples of interesting non-o v erlapping frames with a complexity of 17 000 bytes or greater. All frames presented are of equal size, showing a 
256 × 256 pixel region (equi v alent to a span of approximately ∼12 arcmin). These frames were used to locate each object of interest ho we ver the associated 
characteristics of each object and the precise coordinates of the host were determined after the object was found. Coordinates of the optical host for each object 
are provided in Table C1 . The colour bars show the intensity scale for each image based on the flux density in each pixel (mJy per beam). 
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Table C1. Optical identifications of sources in all frames of Fig. C1 , with a complexity of at least 17 000 bytes. Column 1 gives the frame position (row 

number and column letter) in C1 , Column 1 provides the complexity in bytes of the sample frame used to find the object of interest, Column 3 provides 
the complexity percentile or the estimated probability of a frame having a complexity below this value, Columns 4 and 5 give the RA and DEC (J2000) 
of the optical host object, Column 6 its largest angular radio size, and Column 7 the redshift, followed by its type (s for spectroscopic, p for photometric). 
Column 8 lists the largest linear size (LLS), and Column 9 the name of the host with an explicit mention in case of spiral galaxies. 

Fig ref Complexity (bytes) Percentile RAJhost DECJhost 
LAS 

(arcmin) z ztype 
LLS 

(Mpc) Host name 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1A 17 348 99.5 306.8107 −55.3130 2.88 0.36 p 0.87 DES J202714.57 −551846.9 
1B 18 932 99.9 319.1425 −63.0186 2.82 0.25 p 0.66 2MASX J21163413 −6301068 
1C 19 749 99.9 326.0088 −48.3159 7.95 0.135 p 1.15 2MASX J21440210 −4818581 
1D 19 670 99.9 324.1203 −54.5573 4.0 0.002 825 s 0.014 NGC 7090, edge-on spiral galaxy 
2A 18 965 99.9 306.6852 −55.3743 2.15 0.26 p 0.51 DES J202644.45 −552227.3 
2B 19 467 99.9 323.7978 −62.0786 3.6 0.056 29 s 0.24 2MASX J21351149 −6204432 
2C 19 316 99.9 322.3293 −50.8844 3.2 0.079 99 s 0.29 2MASX J21291901 −5053040 
2D 19 476 99.9 325.7994 −61.4718 5.2 0.1825 s 0.96 2MASX J21431182 −6128184 
3A 19 023 99.9 330.1005 −56.1782 1.6 0.075 78 s 0.14 2MASX J22002408 −5610413 
3B 17 367 99.5 324.8748 −51.3955 1.7 0.075 73 s 0.15 2MASX J21392989 −5123440 
3C 19 987 99.9 309.1440 −57.6233 3.56 0.035 86 s 0.15 ESO 143 −G035, Fairall 74 
3D 19 152 99.9 327.8747 −55.3369 15.2 0.038 78 s 0.70 2MASX J21512991 −5520124 
4A 19 839 99.9 304.5055 −55.6586 22.4 0.0606 s 1.57 2MASX J20180125 −5539312 
4B 19 745 99.9 304.5055 −55.6586 22.4 0.0606 s 1.57 2MASX J20180125 −5539312 
4C 17 570 99.5 314.7033 −57.6033 2.68 0.31 p 0.73 DES J205848.79 −573612.0 
4D 19 629 99.9 335.2748 −50.3070 2.2 0.32 p 0.62 DES J222105.94 −501825.2 
5A 18 870 99.9 327.3166 −60.7131 3.1 0.010 501 s 0.041 NGC 7125, face-on spiral galaxy 
5B 17 992 99.8 308.5346 −52.8950 1.68 0.70 p 0.72 DES J203408.30 −525341.8 
5C 17 212 99.5 325.8806 −51.0948 3.3 0.58 p 1.30 DES J214331.34 −510541.1 
5D 17 867 99.8 334.1668 −62.8782 4.86 0.596 p 1.94 DES J221640.02 −625241.6 
6A 17 419 99.6 330.6730 −51.2964 3.7 0.000 407 s 0.002 IC 5152; ESO 237 −G027 
6B 17 655 99.7 314.4749 −51.8708 1.6 0.015 577 s 0.031 NGC 6984, spiral galaxy 
6C 17 411 99.6 324.5352 −59.6218 1.93 0.21 p 0.40 DES J213808.45 −593718.4 
6D 20 230 99.9 311.4677 −51.1074 13.9 0.048 49 s 0.79 2MASX J20455226 −5106267 
7A 20 179 99.9 323.5737 −53.6363 4.4 0.079 45 s 0.39 2MASX J21341775 −5338101 
7B 17 642 99.7 309.5843 −52.1104 1.5 0.015 154 s 0.027 NGC 6935, ringed face-on spiral galaxy 
7C 18 983 99.9 332.1429 −57.4426 3.8 0.005 623 s 0.027 NGC 7205, spiral galaxy 
7D 20 670 99.9 327.8747 −55.3369 15.2 0.038 78 s 0.70 2MASX J21512991 −5520124 
8A 18 944 99.9 312.1568 −49.1876 4.76 0.11 p 0.57 2MASX J20483764 −4911157 
8B 18 906 99.9 310.3001 −52.9605 5.8 0.048 01 s 0.33 2MASX J20411202 −5257379 
8C 18 185 99.8 328.8026 −59.1505 5.0 0.115 p 0.61 2MASX J21551267 −5909011 
8D 20 215 99.9 311.4677 −51.1074 13.9 0.048 49 s 0.79 2MASX J20455226 −5106267 
9A 17 886 99.8 307.0755 −49.4023 5.14 0.31 p 1.37 DES J202818.12 −492408.4 
9B 19 108 99.9 334.8894 −60.0305 3.3 0.19 p 0.63 DES J221933.46 −600149.9 
9C 18 270 99.8 322.1716 −60.3659 2.61 0.100 52 s 0.29 2MASX J21284113 −6021568 
9D 17 913 99.8 321.8395 −60.0146 3.5 0.005 784 s 0.036 NGC 7059, spiral galaxy 

Note. 1B: Further source at frame centre, extended ∼1 arcmin N-S, has no obvious optical identification; 2B: Fairall 106, optical shells; 3D: Only N half of 
N lobe is seen in frame 3D, rest of source is in frame 7D; 4D: In W half of frame; central part shows 2MASX J22212664 −5016453; 5C: Trident-shaped 
lobes; 6A: Dwarf irregular G in Local Group; 6D: S part of source in panel 8D; 7A: Also shows 2MASX J21340666-5334186 in Abell 3785; 7D: Inner part 
of large WAT, N lobe in frame 3D; 8D: N half of source in panel 6D. 
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aint optical shells. It is the brightest of a group of four members
eported by D ́ıaz-Gim ́enez & Zandi v arez ( 2015 ). Its complex and
iffuse radio emission is predominantly East of the galaxy extending
 v er <3 times its optical size. 
The radio emission of the source in panel 3A is peaked on the

rightest galaxy in Abell 3826B (the more distant of two groups)
nd has been interpreted as due to a (currently) E–W-oriented jet that
as precessed in the past in a counterclockwise direction causing a
hort circular arc in the N and a longer one in the S half of the source
see middle panel of fig. 8 of Gupta et al. 2022 ). 

Panel 5C displays a double radio galaxy with highly unusual
obe shapes. These lobes appear to consist of inner spines (jets?)
ccompanied by parallel elongated features on each side of the
pines, somewhat reminiscent of a trident, which is suggestive of
 collimated backflow of jet/lobe material after reaching the outer
NRAS 521, 1429–1447 (2023) 

T  
nds of the source, and which show no prominent hotspots. While
he radio core appears to be extended due W, almost perpendicular to
he general source axis, this is likely due to a point source ∼11arcsec

SW, on the unrelated galaxy DESI J325.8764- −51.0961 which
ppears to be located at a similar redshift. 

1.5 Giant radio galaxies 

s can be seen from Table C1 , there are five sources that exceed an
LS of 1 Mpc. The largest, and previously unreported, one of 1.94
pc is seen in panel 5D of Fig. C1 , is hosted by an r = 20.2-mag

alaxy. EMU-PS shows continuous emission from one end of the
ource to the other, suggesting the presence of jets all the way from
he core to the lobes which is unusual for such large radio galaxies.
he next largest GRG of 1.57 Mpc (panels 4A and 4B) is the largest
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-shaped source known, PKS 2014 −558, and was studied in detail 
y Cotton et al. ( 2020 ). The source in panel 9A reminds of a restarted
or double-double) radio galaxy with its inner radio knots on opposite 
ides of the host, but the outer FR I lobes rather suggest it is a WAT
riented with its plane containing our line of sight. Ho we ver, there
s no evidence for a cluster in the DES image, and its size of 1.37

pc is unusual for WAT sources. Panel 5C shows a core-dominated 
ouble source with trident-shaped lobes, already described abo v e 
nd extremely unusual for its large LLS of 1.30 ‘„‘^pc. The fifth-
argest source of 1.15 Mpc is seen in panel 1C, although its northern
obe reaches beyond the panel size. It has very diffuse, remnant-type 
nflated lobes, again unusual for such large sources. Apart from these 
ources there are seven more (panels 1A, 2D, 3D = 7D, 4C, 5B, 6D,
nd 8D) in the range LLS = 0.7–1 Mpc, considered by most current
uthors as GRGs as well. 

1.6 Nearby spiral galaxies 

piral galaxies, with extremely few exceptions, tend to show radio 
mission that more or less extends over part or all of their optical
xtent. Edge-on spirals, when observed with sufficient sensitivity, 
ay show radio emission e xtending a way from their galactic planes.
he latter is what we see for the only perfect edge-on spiral in Fig. C1 ,
GC 7090, in panel 1D, with an inclination angle of 0 ◦ according

o HyperLEDA (Makarov et al. 2014 ), where the optical galaxy is
riented SE-NW and the radio emission on its NE side appears more
xtended than on its SW side. Radio emission is detected o v er about
alf the projected length of the optical disk in the DES image (see
lso fig. 26 of Norris et al. 2021b ). 

Panel 5A shows the radio emission of the barred and almost face-
n spiral NGC 7125, which extends over its entire optical extent, but
s more patchy and irregular than the optical emission (see fig. 27 of
orris et al. 2021b ). 
The SE corner of panel 6A shows the amorphous radio emission

f the dwarf irregular galaxy IC 5152, a member of the Local Group.
Panel 6B shows the barred spiral NGC 6984, which is too small

or EMU-PS to resolve details of the spiral structure. 
The SE quadrant of panel 7B features the ring-like radio emis-

ion of NGC 6935, a very high-surface brightness-barred spiral 
urrounded by faint and tightly bound spiral arms in the DES image,
here radio emission is still faintly seen in EMU-PS. 
The radio emission in panel 7C traces the spiral structure of the

bc-type galaxy NGC 7205 of intermediate inclination. 
Finally, the upper half of panel 9D shows the barred spiral

GC 7059 with its inner region bright in both radio and optical. The
ompact radio source in the Eastern outskirts of the galaxy coincides
ith the X-ray source 2SXPS J212729.2 −600102 and is likely the

ounterpart of the γ -ray source 4FGL J2127.6 −5959 (Kerby et al.
021 ) in the background of NGC 7059. 
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