
FLAMINGO: calibrating large cosmological hydrodynamical
simulations with machine learning
Kugel, R.H.; Schaye, J.; Schaller, M.; Helly, J.C.; Braspenning, J.R.; Elbers, W.; ... ; Vernon,
I.

Citation
Kugel, R. H., Schaye, J., Schaller, M., Helly, J. C., Braspenning, J. R., Elbers, W., … Vernon,
I. (2023). FLAMINGO: calibrating large cosmological hydrodynamical simulations with
machine learning. Monthly Notices Of The Royal Astronomical Society, 526(4), 6103-6127.
doi:10.1093/mnras/stad2540
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3719076
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3719076


MNRAS 526, 6103–6127 (2023) https://doi.org/10.1093/mnras/stad2540 
Advance Access publication 2023 October 5 

FLAMINGO: calibrating large cosmological hydrodynamical simulations 

with machine learning 

Roi Kugel , 1 ‹ Joop Schaye , 1 Matthieu Schaller , 1 , 2 John C. Helly, 3 Joey Braspenning, 1 

Willem Elbers , 3 Carlos S. Frenk, 3 Ian G. McCarthy , 4 Juliana Kwan, 4 Jaime Salcido , 4 

Marcel P. van Daalen , 1 Bert Vandenbroucke , 1 Yannick M. Bah ́e , 1 , 5 Josh Borrow , 3 , 6 

Evgenii Chaikin , 1 Filip Hu ̌sko , 3 Adrian Jenkins , 3 Cedric G. Lace y , 3 F olkert S. J. Nobels 1 

and Ian Vernon 

7 

1 Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands 
2 Lorentz Institute for Theoretical Physics, Leiden University, PO box 9506, NL-2300 RA Leiden, the Netherlands 
3 Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK 

4 Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF, UK 

5 Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique F ́ed ́erale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland 
6 Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

7 Department of Mathematical Sciences, Durham University, Stockton Road, DH1 3LE Durham, UK 

Accepted 2023 August 12. Received 2023 August 8; in original form 2023 June 8 

A B S T R A C T 

To fully take advantage of the data provided by large-scale structure surveys, we need to quantify the potential impact of baryonic 
effects, such as feedback from active galactic nuclei (AGN) and star formation, on cosmological observables. In simulations, 
feedback processes originate on scales that remain unresolv ed. Therefore, the y need to be sourced via subgrid models that contain 

free parameters. We use machine learning to calibrate the AGN and stellar feedback models for the FLAMINGO (Fullhydro 

Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations) cosmological 
hydrodynamical simulations. Using Gaussian process emulators trained on Latin hypercubes of 32 smaller volume simulations, 
we model how the galaxy stellar mass function (SMF) and cluster gas fractions change as a function of the subgrid parameters. 
The emulators are then fit to observational data, allowing for the inclusion of potential observational biases. We apply our 
method to the three different FLAMINGO resolutions, spanning a factor of 64 in particle mass, reco v ering the observ ed relations 
within the respective resolved mass ranges. We also use the emulators, which link changes in subgrid parameters to changes 
in observables, to find models that skirt or exceed the observationally allowed range for cluster gas fractions and the SMF. 
Our method enables us to define model variations in terms of the data that they are calibrated to rather than the values of 
specific subgrid parameters. This approach is useful, because subgrid parameters are typically not directly linked to particular 
observables, and predictions for a specific observable are influenced by multiple subgrid parameters. 

Key words: methods: numerical – methods: statistical – galaxies: clusters: general – galaxies: formation – large-scale structure 
of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

he evolution of the large-scale distribution of matter in the Universe 
s highly sensitive to the underlying cosmological model. Current 
robes have given us our concordance cosmological model Lambda 
old dark matter ( � CDM), which consists of a spatially flat universe,
here dark energy and cold dark matter dominate the current energy 
ensity (for a re vie w, see Frieman, Turner & Huterer 2008 ). 
The concordance model has been independently validated by 

 large array of probes. These include the cosmic microwave 
ackground (CMB) (e.g. Planck Collaboration VI 2020 ), galaxy 
lustering and gravitational lensing (e.g. Heymans et al. 2021 ; Abbott 
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t al. 2022 ), baryon acoustic oscillations (e.g. Alam et al. 2021 ), and
ore (for a re vie w see Turner 2022 ). While all the probes broadly

gree with the � CDM model, tensions remain between early universe
robes, like the CMB, and late-time probes, like the distance ladder
nd weak lensing. For the H 0 and σ 8 parameters, the tension is at the
evel of a few standard deviations (e.g. Heymans et al. 2021 ; Abbott
t al. 2022 ; Riess et al. 2022 ). Next-generation surveys like Euclid 1 

nd LSST 

2 will measure the matter power spectrum to per cent level
ccuracy (Euclid Collaboration 2020 ). The results from these surveys 
ill provide us with a stringent test of the concordance model, and
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how us whether these tensions will force us to modify the � CDM
odel. 
Most of the modelling work for large-scale structures is done

ith collisionless N -body simulations (e.g. Heitmann et al. 2016 ;
uclid Collaboration 2019 ; DeRose et al. 2021 ). N -body simulations
odel the evolution of cold dark matter and can accurately predict

he structure and clustering of dark matter haloes under the effect
f gravity only. The dark part of the matter component is dominant
n mass and hence, predictions from these simulations may provide
tringent cosmological constraints. Ho we ver, baryons change the
istribution of dark matter through back reaction effects, but, with
he exception of gravitational lensing, we are limited to observing
he imprint of the distribution of dark matter on the baryonic matter.

ost of the baryonic matter is found in the tenuous intergalactic
edium (e.g. Nicastro et al. 2018 ; Macquart et al. 2020 ), which is

ery challenging to observe directly. Large-scale structure surveys
se galaxies, which are located within dark matter haloes, to map the
istribution of matter. 
Sophisticated semi-analytical and semi-empirical models can
ake predictions for how galaxies evolve within their dark matter

aloes (e.g. Cole et al. 2015 ; Lacey et al. 2016 ; Moster, Naab &
hite 2018 ; Behroozi et al. 2019 ; Ayromlou et al. 2021 ). Baryonic

ffects can be simulated with halo models (e.g. Semboloni et al.
011 ; Semboloni, Hoekstra & Schaye 2013 ; Mead et al. 2015 ;
ebackere, Schaye & Hoekstra 2020 ; Acuto et al. 2021 ), added to
 -body simulations by baryonification algorithms (e.g. Schneider &
eyssier 2015 ; Aric ̀o et al. 2021 ; Giri & Schneider 2021 ) or

ncluded as a parametric correction to the matter power spectrum
Van Daalen, McCarthy & Schaye 2020 ; Salcido et al. 2023 ).
o we ver, the most self-consistent way to model how the large-

cale structure is coupled with baryons, is via large cosmological
ydrodynamical simulations. Modern simulations like Magneticum
Hirschmann et al. 2014 ), EAGLE (Crain et al. 2015 ; Schaye et al.
015 ), Horizon-AGN (Kaviraj et al. 2017 ), IllustrisTNG (Pillepich
t al. 2018 ), BAHAMAS (McCarthy et al. 2017 , 2018 ), SIMBA
Dav ́e et al. 2019 ), and MilleniumTNG (Pakmor et al. 2022 ) provide
redictions for the interplay between galaxy formation and the large-
cale structure. The results from hydrodynamical simulations can
lso inform the simpler parametric and analytic models. 

One of the main difficulties for hydrodynamical simulations is the
mplementation and tuning of rele v ant astrophysical processes that
riginate on unresolved scales through subgrid physics. Processes
ike star formation and black hole (BH) growth occur on parsec
cales, and are not resolved. The resulting feedback from stars and
ctive galactic nuclei (AGN), do influence the distribution of matter
n cosmological scales (Van Daalen et al. 2011, 2020 ; Debackere
t al. 2020 ; Schneider et al. 2020 ). Therefore, we need to create
imulations that model their effect on the resolved scales. 

Subgrid physics models are characterized by a set of free param-
ters, in the sense that there is both uncertainty in the processes
e try to model and uncertainty in how the models are affected
y numerical limitations. An example of the latter is the impact of
umerical o v ercooling on galactic wind models (see Dalla Vecchia &
chaye 2012 ). The numerical effects combined with the general
on-linearity of galaxy formation makes it difficult to implement
ubgrid physics based solely on first principles. Instead, we have to
alibrate the model by comparing it to a selection of observations, a
artial forfeit of their predictive power. As argued by Schaye et al.
 2015 ), this is a necessary sacrifice. By ensuring certain relations
re reproduced, the simulation retains predictive power for other
elations. Calibrating subgrid physics forces us to find a balance
NRAS 526, 6103–6127 (2023) 
etween how many observables one tries to match and how many of
he results can be deemed predictions. 

In this paper, we discuss the calibration strategy used for the low-,
ntermediate- and high-resolution simulations of the FLAMINGO
roject (Full-hydro Large-scale structure simulations with All-sky
apping for the Interpretation of Next Generation Observations;

chaye et al. 2023 ). The intermediate-resolution FLAMINGO model
as the same resolution ( m gas = 1 . 07 × 10 9 M �) as used for the
AHAMAS project (McCarthy et al. 2017 , 2018 ), but in a volume of

2 . 8 Gpc ) 3 . This volume is o v er two orders of magnitude larger than
AHAMAS. Additionally, FLAMINGO includes a suite of feedback
nd cosmology variations in (1 Gpc ) 3 volumes. This includes a
igh ( m gas = 1 . 34 × 10 8 M �) and a low ( m gas = 8 . 56 × 10 9 M �)
esolution variation. Our goal is to expand the large-scale structure
cience of the BAHAMAS project to larger volumes, different
esolutions, and more cosmology and astrophysics variations with a
ew code and an impro v ed subgrid physics model. The FLAMINGO
imulation outputs also include on-the-fly full sky lightcones, both
s particles and as maps, for a variety of observables. Similarly to
AHAMAS, we will calibrate to the observed present-day galaxy
tellar mass function (SMF) and the gas fractions in groups and
lusters of galaxies ( f gas ). We opt for the SMF to ensure we can
eproduce galaxy clustering and lensing statistics if we use the
orrect cosmology. The gas fraction is used to ensure we have a
ealistic distribution of gas in and around clusters, which is not only
mportant for cluster cosmology, but also for baryonic effects on the
atter power spectrum (Semboloni et al. 2011 ; Schneider & Teyssier

015 ; Debackere et al. 2020 ; Van Daalen et al. 2020 ; Aric ̀o et al.
021 ; Salcido et al. 2023 ). While our fiducial models are calibrated
o reproduce the data, we also calibrate the subgrid physics to the gas
raction and SMF data that has been shifted relative to the observed
alues. These feedback variations will enable future FLAMINGO
rojects to test the importance of astrophysical effects constrained
y the uncertainties in the data. 
For BAHAMAS, and also for simulations like EAGLE and

llustrisTNG, calibration was done by hand by varying the subgrid
arameters within some reasonable range until the simulation lined
p with the calibration targets. This approach works reasonably well
n the context of galaxy formation, but it introduces biases into the
arameter selection. For cosmology applications, we require a more
ystematic and controlled approach. We want to be able to sample
he parameter space with a Markov chain Monte Carlo (MCMC)

ethod and to find the posterior probabilities of each of the subgrid
arameter values. This approach also allows us to take into account
otential systematic effects in the data and/or simulations. 
Because N -body simulations are too computationally e xpensiv e to

e used directly in MCMC-like methods, we make use of machine
earning, specifically emulation using Gaussian processes. While it
s too e xpensiv e to run a new simulation for each MCMC step,
e can train an emulator on a carefully sampled selection of input

imulations. The emulator then gives us the predicted observable
s a continuous function of the input parameters, which can be
ed into any likelihood calculation code. Emulator-based methods
ave been used in combination with semi-analytic models of galaxy
ormation (Bower et al. 2010 ; Vernon, Goldstein & Bower 2014 ;
odrigues, Vernon & Bower 2017 ; Elliott, Baugh & Lacey 2021 )
nd have become particularly popular for cosmology. By training
mulators on dark-matter-only simulations, their full non-linear
atter power spectrum can be predicted with per cent level precision

e.g. Heitmann et al. 2009 , 2016 ; Euclid Collaboration 2019 ; Angulo
t al. 2021 ; Moran et al. 2023 ). 
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Table 1. Priors and best-fitting values for the subgrid parameters for each of the three simulation resolutions. 

Resolution Parameter f SN �v SN log 10 � T AGN [K] βBH 

Prior [0.2,0.9] [80, 400] [7.7, 8.9] [0.0, 0.9] 
High resolution [m8] Median + CL 0 . 56 0 . 15 

−0 . 12 169 + 87 
−65 8 . 03 + 0 . 13 

−0 . 14 0 . 23 0 . 20 
−0 . 15 

best-fitting 0.524 259 8.07 0.038 

Prior [0, 0.5] [200, 800] [7.5, 8.5] [0.1, 0.9] 
Intermediate resolution [m9] Median + CL 0 . 20 + 0 . 11 

−0 . 09 479 + 167 
−197 7 . 84 + 0 . 18 

0 . 20 0 . 55 + 0 . 15 
−0 . 16 

best-fitting 0.238 562 7.95 0.514 

Prior – – [7, 9.5] [0, 3] 
Low resolution [m10] Median + CL – – 8 . 26 + 0 . 15 

−0 . 15 0 . 50 + 0 . 17 
−0 . 16 

best-fitting – – 8.29 0.373 

Log No Yes Yes No 

Notes. Low-resolution simulations do not include stellar feedback. The rows titled ‘Median + CL’ give the median and the 16th and 84th 
percentile confidence level (CL) obtained from the posterior of the fits. The rows titled ‘best-fitting’ list the maximum-likelihood value 
from the fitting, which is our fiducial value. The last row ‘Log’ indicates whether the parameter is sampled logarithmically. The best-fitting 
values for the jet model are listed in Table 8 and the priors for the jet model are listed in Table C1. 
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We directly emulate our calibration targets: the SMF and the 
as fractions in groups and clusters. This allows us to create a
ontinuous simulation-based model that can be compared with 
bservations. With the emulator, we can use MCMC to directly 
t the subgrid physics parameters to the observational data, while 
odelling statistical and systematic errors in both the simulations and 

he data. This procedure not only gives us a well-calibrated model, 
ut also lets us determine the maximum variations allowed by the 
odel. In this way, our resulting simulations can provide upper and 

ower limits on the expected baryonic effects. More general machine- 
earning techniques have been used to calibrate hydrodynamical 
imulations. Jo et al. ( 2023 ) calibrate to baryonic observables in the
25 Mpc ) 3 volumes of the CAMELS project (Villaescusa-Navarro 
t al. 2021 ) and Oh et al. ( 2022 ) apply a similar methodology to
ooms of Milky Way haloes. Ho we v er, these methods hav e not been
pplied to simulations of large cosmological volumes and they have 
ot accounted for possible observational biases. 
This paper is structured as follows. In Section 2 , we describe

he most rele v ant aspects of our simulation method and galaxy
ormation models. In Section 3, the reasoning for our calibration 
argets is explained, and we describe our compilation of data and 
ow we include potential observational and simulation-originated 
iases in our analysis. In Section 4, we describe how we obtain the
raining data for the emulators. We also discuss how the emulators 
re trained and how we estimate the uncertainty in the predictions 
f the emulators. We describe our likelihoods and our fitting method 
n Section 5 . In Section 6 , we show the results of fitting the
mulators at the three FLAMINGO resolutions. We also discuss 
ow the emulators can be used to better understand subgrid physics
sing parameter sweeps and we use the emulator to find models that
kirt or exceed the observ ational allo wed range for the cluster gas
ractions and the SMF. Finally, we summarize our method, strategy 
nd results in Section 7 . In this work, R 500 c is defined as the radius
ithin which the mean internal density is 500 times the critical 
ensity. The radius R 500 c also defines M 500 c , which is the mass inside
 500 c . 

 SIMULATIONS  

he simulation methods and galaxy formation model are described 
n detail in Schaye et al. ( 2023 ). Here, we will provide a summary
f the most rele v ant aspects. We describe in more detail the subgrid
rescriptions that we calibrate in this work, namely those for stellar
eedback (Section 2.1 ), the growth of supermassive BHs (Section 
.2 ), and AGN feedback (Section 2.3 ), and we will moti v ate the
hoice of priors for the subgrid parameters that are varied (these are
isted in Table 1 ). 

All simulations in this work use the open-source code SWIFT 

Schaller et al. 2023 ). SWIFT is an N -body gravity and smooth particle
ydrodynamics (SPH) solver that makes use of a fine-grained tasking 
ramework and runs across multiple compute nodes using MPI . 
ravity is solved using the Fast Multiple Method (Greengard & 

okhlin 1987 ). We use the SPHENIX SPH scheme (Borrow et al.
022b ) with a Wendland ( 1995 ) C 

2 kernel. Massive neutrinos are
mplemented into SWIFT via the δf method of Elbers et al. ( 2021 ). 

Initial conditions are generated using a modified version of 
ONOFONIC (Hahn, Rampf & Uhlemann 2021 ) that includes massive 
eutrinos. We use unperturbed initial conditions for the neutrino 
articles. We do not include large-scale neutrino perturbations in the 
nitial conditions, as these have a negligible effect in the small box
izes used for this work. We adopt the ‘3 × 2pt + all’ cosmology from
bbott et al. ( 2022 ) ( �m 

= 0.306, �b = 0.0486, σ 8 = 0.807, H 0 =
8.1, and n s = 0.967) with a minimal neutrino mass of 0.06 eV. The
article masses and gravitational softening lengths corresponding 
o the three different resolutions that we will consider are listed in
able 2 . 
For simulations with volumes as large as FLAMINGO, it is 

urrently impossible to resolve all the processes that are important 
or galaxy formation. Therefore, we make use of subgrid models. 
LAMINGO builds upon the models of OWLS (Schaye et al. 
010 ), used for Cosmo-OWLS (Le Brun et al. 2014 ), BAHAMAS
McCarthy et al. 2017 ), and EAGLE (Schaye et al. 2015 ), ported
rom the code GADGET (Springel 2005 ) to SWIFT . 

We use the radiative cooling tables from Ploeckinger & Schaye 
 2020 ), which are based on photoionization models run with CLOUDY

Ferland et al. 2017 ) that include both the metagalactic and interstel-
ar radiation fields, and that account for self-shielding, dust, and 
osmic rays. 

As we are unable to resolve the multiphase interstellar medium, 
e follow Schaye & Dalla Vecchia ( 2008 ) and impose a temperature
oor. The pressure of gas with hydrogen number densities n H >
0 −4 cm 

−3 and an o v erdensity greater than 100 is limited from
elow to P / k B = 800 K ( n H /10 −4 cm 

−3 ) 4/3 , where k B is the Boltzmann
MNRAS 526, 6103–6127 (2023) 
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M

Table 2. Numerical characteristics of the final Latin hypercubes of simulations. 

Resolution L N m g m DM 

εcom 

εprop 

(cMpc) (M �) (M �) (ckpc) (pkpc) 

Low [m10] 400 2 × 360 3 8.56 × 10 9 4.52 × 10 10 44.6 11 .40 
Intermediate [m9] 200 2 × 360 3 1.07 × 10 9 5.65 × 10 9 22.3 5 .70 
High [m8] 100 2 × 360 3 1.34 × 10 8 7.06 × 10 8 11.2 2 .85 

Notes . The columns list the resolution qualifier, comoving box size, number of particles (there are initially equal numbers of dark 
matter and baryonic particles), initial baryonic particle mass, dark matter particle mass, comoving gravitational softening length, and 
maximum physical gravitational softening length. 
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During the simulation gas particles can be stochastically converted
nto star particles following the description of Schaye & Dalla
ecchia ( 2008 ). Particles with total hydrogen number density 3 n H 
 10 −1 cm 

−3 , an o v erdensity > 10, and within 0.3 dex of the
emperature floor are stochastically allowed to convert into stars
ith a probability given by the particle’s star formation rate, 

˙  ∗ = m g A (1 M �pc −2 ) −n 
( γ

G 

f g P 

)( n −1) / 2 
, (1) 

here m g is the gas particle mass, γ = 5/3 is the adiabatic index,
nd G is the gravitational constant. The star formation rate is derived
uch that self-gravitating discs reproduce the observed Kennicutt–
chmidt relation (Kennicutt Jr 1998 ; Kennicutt Jr et al. 2007 ). We
ssume the gas fraction, f g , is unity, A = 1.515 × 10 −4 M � yr −1 pc −2 ,
nd n = 1.4. 

For the low-resolution simulation, we were forced to relax the star
ormation parameters, as the default prescription was unable to form
nough stars, even in large haloes and without stellar feedback. For
ow resolution, all particles with density n H > 10 −3 cm 

−3 , o v erdensity
 10 and temperature T < 10 5 K are star forming. 
Each stellar particle is treated as a simple stellar population with

 Chabrier ( 2003 ) initial mass function (IMF). Following Wiersma
t al. ( 2009 ), we model stellar mass loss and track the abundances of
he individual elements H, He, C, N, O, Ne, Mg, Si, and Fe. We also
nclude type Ia supernova with rates taken from Schaye et al. ( 2015 ).

.1 Stellar feedback 

lthough we will often refer to stellar feedback as supernova
eedback, it may also represent other sources of energy released by
assive stars that are unresolved by our simulations such as stellar
inds, radiation pressure or cosmic rays. 
Stellar feedback is implemented kinetically. The energy budget

s normalized to the expected kinetic energy from core-collapse
upernovae, assuming that each star with a mass between 8 and
00 M � injects 10 51 erg of kinetic energy into its surrounding
edium. A fraction f SN of this energy is assumed to be coupled

o the ISM on scales resolved by the simulation and is used to kick
eighbouring gas particles with a target velocity �v SN . We use the
ethod of Chaikin et al. ( 2022a ) 4 to inject the kinetic energy in a
NRAS 526, 6103–6127 (2023) 

 Due to a bug, in the intermediate-resolution simulations gas particles with a 
etallicity equal to exactly zero were only allowed to form stars at densities 

igher than 10 cm 

−3 . This had little to no effect on any results at resolved 
tellar masses, but it did reduce the number of stars formed in the lowest mass 
alaxies. Fixing this bug would potentially have allowed us to match the SMF 
o stellar masses corresponding to fewer than 10 particles. 
 There is one difference with respect to the method described by the authors. 
n the case, where a particle would be kicked twice in a single time-step, 
hich we do not allow, we put the unused kick energy in a thermal dump, 

nstead of adding it back to the star’s feedback energy reservoir. 

〈

w  

B  

t  

a  

〈  

r  

w

2024
tatistically isotropic manner while ensuring that both momentum
nd energy are conserved. Note that if the relativ e v elocities between
he star and gas particles are non-zero, energy conservation results
n differences between the actual and target kick velocities. 

Following Dalla Vecchia & Schaye ( 2008 ) and Richings & Schaye
 2016 ), we inject the kinetic energy probabilistically during each
ime-step after the star particle has formed. The probability that a
tar particle kicks a given SPH neighbour is 

 kick ( f SN , �v SN , m ngb , t , �t ) = 2 
f SN �E SNII ( t , �t ) 

m ngb �v 2 SN 

, (2) 

here � E SN denotes the amount of energy released by the star
article of age t during a time-step � t and m ngb is the total gas mass
n the star particle’s SPH kernel. The feedback efficiency, f SN , and
he target kick velocity �v SN are the two stellar feedback parameters
hat are varied during the calibration. 

The effect of stellar feedback generally scales with f SN , which sets
he amount of energy that is injected. Based on the calibration of
AHAMAS (McCarthy et al. 2017 ) and after some experimentation
ith runs in which we varied only one parameter, we settled on prior

anges of 0.2 −0.9 and 0 −0.5 for high and intermediate resolution, re-
pecti vely. The lo w-resolution simulations do not require any stellar
eedback at all because of the strong suppression of star formation
ue to the limited resolution and because galaxies in the regime
here stellar feedback dominates (stellar mass M ∗ � 10 11 M �) are
nly sampled by � 10 stellar particles. 
If the kick velocity is too small, then stellar feedback ceases to

e ef fecti v e because of e xcessiv e radiativ e losses caused by the too-
ow post-shock temperatures (the well-known numerical o v ercooling
roblem, see Dalla Vecchia & Schaye 2012 ) and/or because the
elocities are small compared to the escape velocities. The lower
imits for �v SN are 80 and 200 km s −1 for the high- and intermediate-
esolution simulations, respectively. Our additional tests showed that
or lower velocities the kicks stopped having a significant effect. 

If the kick velocity is too large, then the feedback becomes poorly
ampled, thus limiting its ef fecti veness. Our aim is to calibrate the
MF down to masses corresponding to just a few stellar particles.
he expectation value for the number of kicks imparted by a single
tellar particle is given by Chaikin et al. ( 2022a ) 

 N kicks , SN 〉 = 1 . 85 

(
f SN 

0 . 25 

)(
�v SN 

400 km s −1 

)−2 

, (3) 

here we assumed the stellar and gas particles to have the same mass.
ased on the abo v e considerations and some small test runs, we limit

he maximum kick velocity to 400 and 800 km s −1 for the high-
nd intermediate-resolution simulations, respectively. This implies
 N kicks, SN 〉 ≈ 2 and 〈 N kicks, SN 〉 ≈ 0.4 for high- and intermediate
esolution, respectively. There should be at least four kicks for objects
ith 10 stellar particles at each resolution. 
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.2 BH growth 

ollowing Di Matteo et al. ( 2008 ) and Booth & Schaye ( 2009 ), we
eed haloes with BHs during the simulation. Starting at z = 19, we
un a friends of friends group finder every time the expansion factor
ncreases by a factor of 1.00751. We seed a BH in every group that
s abo v e a certain mass threshold and that does not already have
 BH. We seed BHs in haloes abo v e a mass of 2.757 × 10 11 M �
 m g /1.07 × 10 9 M �), corresponding to roughly fifty dark matter
articles at each resolution. Because the Bondi & Hoyle ( 1944 )
ccretion rate is proportional to the square of the BH mass, an increase 
n initial mass can cause BHs to grow much earlier. We use a BH
eed mass of 10 5 M � for intermediate and high resolution, and of
0 7 M � for low resolution. The seed mass had to be increased for
ow resolution, since the rapid growth phase of the BHs corresponds
o unresolved galaxy masses (see e.g. Bower et al. 2017 ; McAlpine
t al. 2018 ). 

As we do not properly resolve dynamical friction at our resolution, 
Hs are repositioned by hand to the minimum of the gravitational 
otential following the method of Bah ́e et al. ( 2022 ). 5 For BH
ergers, we also follow the prescription by Bah ́e et al. ( 2022 ). 
Besides merging with other BHs, BHs grow via accretion of gas, 

hich is assumed to occur at a modified Bondi–Hoyle rate, 

˙  accr = α
4 πGc 2 m 

2 
BH ρ(

c 2 s + v 2 BH 

)3 / 2 , (4) 

here m BH is the BH mass, c s is the sound speed of the gas, ρ is the
as density, c is the speed of light, and v BH is the velocity of the BH
ith respect to its environment. The factor α is a boost factor that is

dded because we do not resolve the Bondi radius and because we
ack the resolution to model the phase structure of the ISM. We use
he parametrization of Booth & Schaye ( 2009 ), 

= max 

[ (
n H 

n H , ∗

)βBH 

, 1 

] 

, (5) 

here n H, ∗ = 0.1 cm 

−3 , which corresponds to the density threshold
or star formation in the intermediate- and high-resolution simula- 
ions (we use the same value for all resolutions). The logarithmic 
ensity slope βBH is a free parameter that we vary during the 
alibration. After some experimentation using simulations where 
nly a single parameter is varied between runs, we settled on priors of
 −0.9, 0.1 −0.9, and 0 −3 for high, intermediate, and low resolutions,
espectively. 

The gas accretion rate is capped at the Eddington ( 1913 ) rate.
ollowing Bah ́e et al. ( 2022 ), the BH is allowed to ‘nibble’ on
eighbouring gas particles until the gas particles only have half of
heir original mass remaining. 

.3 AGN feedback 

n all but two of the simulations, AGN feedback energy is injected
nto the medium surrounding the BH in thermal form using the 
rescription from Booth & Schaye ( 2009 ). The model used in the
emaining simulations is based on jet feedback and is described in 
ection 2.3.1 . 
 The exclusion of the BH from the calculation of the gravitational potential 
sed for repositioning was only done for high and low resolutions, as we 
nly became aware of its importance later. This significantly strengthened 
he quenching of star formation in galaxies with large stellar masses for our 
igh-resolution simulations. 

l  

t  

s
 

t  

t  

B

While accreting gas, the BH adds a fraction εr εf = 0.015 of the
ccreted rest-mass energy to an internal feedback energy reservoir, 
here εr = 0.1 is the assumed radiative efficiency and εf = 0.15 is the

ssumed AGN feedback efficiency, i.e. the fraction of the radiated 
nergy that is coupled to the gas surrounding the BH. Once enough
nergy is available to increase the temperature of n heat gas particles
y � T AGN , this energy is injected into the neighbouring gas particles.
he energy injected in a single event is proportional to n heat � T AGN ,
here � T AGN is the increase in temperature that is applied to n heat 

eighbours. We find that it is the product n heat � T AGN that is most
mportant for regulating how much gas is expelled from clusters, and
hat � T AGN and n heat are largely degenerate. We therefore fix n heat to
ne and use � T AGN as a free parameter that is varied in the calibration.
ollowing the findings by Chaikin et al. ( 2022b ), we inject the thermal
nergy into the nearest neighbour of the BH, which gives results that
re nearly indistinguishable from a statistically isotropic approach. 

To choose the prior for � T AGN we take a similar approach as
or the stellar feedback kick velocity. Ho we ver, instead of a v oiding
elocities that are too low to have an effect, we now have to make sure
hat feedback raises the temperature to a v alue suf ficiently high to
 v oid catastrophic numerical o v ercooling. The sampling issue is also
lightly different than for stellar feedback. While stellar feedback is 
imited to young stars, BHs can inject energy throughout their lives
nd hence the time sampling of these events becomes important. If
he time between AGN feedback events becomes too long, then the
Hs will be unable to self-regulate. If BHs cannot regulate their
rowth, then this can lead to an unrealistic mass distribution of both
he BHs and their host galaxies. To summarize, we have two main
onsiderations: 

(i) What is the � T AGN below which radiative losses are already
evere at injection for the densities at which stars form? 

(ii) What is the � T AGN abo v e which the time between AGN events
ecomes longer than the BH growth time? 

Dalla Vecchia & Schaye ( 2012 ) demonstrated that the density
bo v e which thermal feedback becomes inef fecti ve can be predicted
ased on the ratio of the radiative cooling time, which depends on
he density and temperature, and the sound crossing time across 
 resolution element, which depends on the numerical resolution. 
ccording to their equation ( 18 ), feedback becomes inefficient for
ensities exceeding 

 H ,t c = 0 . 25 cm 

−3 

(
�T AGN 

10 7 . 5 K 

)3 / 2 (
m g 

1 . 09 × 10 9 M �

)−1 / 2 

. (6) 

omparing this to our threshold for star formation ( n H = 10 −1 cm 

−3 

or intermediate/high resolution and 10 −3 cm 

−3 for low resolution), 
ields minimum values of log 10 � T AGN /K = 6.9, 7.2, and 6.2 for
he high, intermediate, and lo w resolution, respecti vely. Ho we ver,
he abo v e equation assumes radiative losses to be dominated by
remsstrahlung and Dalla Vecchia & Schaye ( 2012 ) showed that

t underestimates the radiative losses for �T AGN < 10 7 K . For this
eason, we do not consider values below 10 7 K. On the other hand,
ince we inject the energy at the end of the time step, the feedback
an do work during a single time step even if the temperature is too
ow to a v oid o v ercooling, which means that some what lo wer v alues
han implied by the abo v e equation (but still higher than 10 7 K) may
till be of interest. 

If we define � m BH to be the gas mass that must be accreted for
he BH to have sufficient energy to heat a single gas particle, then
he ratio of the time between AGN feedback events and the time of
H growth is given by (Booth & Schaye 2009 ), 
MNRAS 526, 6103–6127 (2023) 
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t AGN 

t BH 
= 

�m BH / ̇m BH 

m BH / ̇m BH 
, (7) 

= 

m g k B (1 − εr ) 

( γ − 1) μm H εf εr c 2 

n heat �T AGN 

m BH 
, (8) 

≈ 0 . 98 

(
1 − εr 

0 . 9 

)(
m g 

1 . 09 × 10 9 M �

)( εf εr 

0 . 015 

)−1 

×
(

n heat �T AGN 

10 8 . 5 K 

)(
m BH 

10 7 M �

)−1 

, (9) 

here γ = 5/3 is the ratio of specific heats and μ = 0.6 is the mean
article mass in units of the proton mass m H . Given that we expect
o need AGN feedback to quench star formation in galaxies with
tellar mass M ∗ � 10 11 M � and that in this mass range, BHs are
bserved to have masses M BH ∼ 10 −3 M ∗ (H ̈aring & Rix 2004 ), we
eed the BHs to become self-regulating when M BH � 10 8 M �. The
ondition t AGN < t BH then implies that for our n heat = 1 we require
T AGN � 10 8 . 5 K for intermediate resolution, and values eight times

igher (lower) for high (low) resolution. 
Based on the abo v e considerations and some small test runs,

e adopted the flat priors log 10 � T AGN /K = 7.7 −8.9, 7.5 −8.5, and
.0 −9.5 for high, intermediate, and low resolutions, respectiv ely. F or
oth intermediate and high resolution, the prior ranges are smaller
han what is possible based on our considerations. From our test
uns, we found that these ranges bracket a sufficiently large range in
he observables we are interested in and the smaller ranges lead to
lightly better sampling of the parameter space around the best-fitting
odel. For low resolution, the prior extends to (unnecessarily) high

alues, but we will see that the best-fitting value is actually similar
o those for the other resolutions. We can afford a larger prior range
or the low resolution simulations as we are only sampling two
arameters. 

.3.1 Jet feedback 

n addition to the fully thermal AGN feedback scheme described
bo v e, we also calibrate a kinetic AGN feedback variation. The
odel used for kinetic AGN feedback is based on the spin-driven jet

eedback model described by Hu ̌sko et al. ( 2022 ), and implemented
nto SWIFT . In this model, energy is injected by kicking two particles
n opposite sides of the BH, according to its angular momentum
ector. The angular momentum of the BH is calculated in a subgrid
odel for an accretion disc that is based on general relativistic mag-

etohydrodynamics simulations of single BHs in the low accretion
egime ( < 0.01 Eddington). For more details, see Hu ̌sko et al. ( 2022 ).
he spin from BHs that remains after mergers is computed according

o the description by Rezzolla et al. ( 2008 ). 
Due to the relatively low resolutions used for FLAMINGO, we
ake some simplifications to the complete model. As we intend for

he jet model to be maximally different from the thermal feedback
ode, we do not switch from kinetic to thermal feedback at high
ddington rates, and instead use the kinetic feedback at all accretion

ates. Instead of using the efficiencies based on the subgrid accretion
odel, we fix the jet efficiency to ε = 0.015. This efficiency is

qual to the combined coupling and radiative efficiency, εf εr , for
he thermal mode feedback. This implies that for each unit of mass
ccreted by the BH, the same amount of energy becomes available
n the jet model as for the fiducial thermal model. While we do not
se a spin-dependent feedback efficiency, we do still use the subgrid
odel to track the angular momentum vector of the BH and use it

o select the direction in which gas particles are kicked. The BH
NRAS 526, 6103–6127 (2023) 
ccretion model is identical to that described in Section 2.2 , and for
alibration of the jet model we vary the boost factor βBH . 

When the BH has accreted enough mass, two neighbouring gas
articles are kicked with a total kinetic energy equal to 

 jet = 2 × 1 

2 
m g v 

2 
jet , (10) 

here v jet is the target jet velocity (we use the term target because
t is the energy that is fixed, similarly to the supernova kicks, see
ection 2.1 ), which is a free parameter that we calibrate. The jet
elocity plays a role similar to � T AGN for the case of thermal
eedback. As the energy is injected in kinetic form, the model is
ess affected by thermal losses, but picking velocities that are too
ow will make the gas unable to escape to large distances (see Hu ̌sko
t al. 2022 ). For very high values, we again run into sampling issues.
ased on these considerations and some initial tests, we use flat
riors o v er the range of v jet /(km s −1 ) = 10 2.7 −10 3.5 , corresponding
n energy to �T AGN / K ≈ 10 7 . 1 −10 8 . 7 . We only calibrate this model
t intermediate resolution. 

 OBSERVA  T I O NA L  DA  TA  A N D  BIASES  

efore we can start to calibrate our simulations, we need to have
bservational data to compare with our simulations. We calibrate
o the galaxy SMF and the gas fractions in groups and clusters
 f gas, 500c ( M 500 c )). 

One of the goals of the FLAMINGO simulations is to predict
alaxy clustering and cross-correlations between galaxies and other
racers of the matter distribution. The SMF allows us to constrain the
tellar content of haloes as a function of their mass. This is not only
rucial for the prediction of observations using galaxies, the stellar
ass also directly affects the distribution of dark matter in haloes,

nd the orbits of subhaloes. Although matching the SMF does not
nsure that each halo contains the correct stellar mass, it suggests the
elation is at least statistically plausible provided the model assumes
he correct cosmology. 

Besides galaxy clustering, we also wish to use FLAMINGO to
nvestigate other cosmological observables tracing the distribution of
atter, such as X-ray emission, the Sun yaev–Zeldo vich (SZ) effect

nd lensing maps. From studies by Semboloni et al. ( 2013 ), Van
aalen et al. ( 2020 ), and Salcido et al. ( 2023 ), we know that the gas

ractions in clusters have a large impact on the matter power spectra
n scales rele v ant for, for example, cosmic shear. By calibrating to
he observed gas fractions, we can also make robust predictions for
he distribution of gas expelled from group/cluster cores. 

We calibrate to the same observables as were used for the BA-
AMAS simulation (McCarthy et al. 2017 , 2018 ). In this section, we
ill discuss the data that we considered and the observational biases

hat we account for. 

.1 The galaxy SMF 

onstraining the SMF has been the goal of a large number of studies,
any of which are based on the SDSS (Li & White 2009 ; Bernardi

t al. 2013 ; D’Souza, Vegetti & Kauffmann 2015 ; Bernardi et al.
017 ) or the more recent GAMA surv e y (Baldry et al. 2012 ; Wright
t al. 2017 ; Driver et al. 2022 ). A compilation of these data sets
s shown in the left-hand panel of Fig. 1 . It is clear that there are
ubstantial systematic differences between some of the different
roups that have tried to measure the SMF, particularly at the low-
nd high-mass ends. Ho we ver, some of the most significant outliers
re older results. While there are still discrepancies at the high-
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Figure 1. Compilation of observational data used for calibration. On the left-hand panel, we plot the SMF. On the right-hand panel, we plot the cluster gas 
fraction versus total mass, both measured at R 500 c . Where available we display the 1 σ measurement errors, which do not include intrinsic scatter. The X-ray 
data are binned from a compilation of available data, see Section 3.2.1 , except the lowest mass point, which is obtained from a fit by Lovisari, Reiprich & 

Schellenberger ( 2015 ). We show the individual clusters as black dots. Note that the X-ray data are plotted without any correction for the hydrostatic mass bias. 
For this work, we use the Driver et al. ( 2022 ) data for the SMF, and the X-ray and Akino et al. ( 2022 ) data for the gas fractions. 

Table 3. The mass ranges that are used for each observable when fitting the emulator to data. 

Observable SMF M ∗ lower limit (M �) SMF M ∗ upper limit (M �) f gas, 500c M 500 c lower limit (M �) f gas, 500c M 500 c upper limit (M �) 

High resolution [m8] 10 8.67 10 11.50 10 13.50 10 13.73 

Intermediate resolution [m9] 10 9.92 10 11.50 10 13.50 10 14.36 

Low resolution [m10] 10 11.17 10 11.50 10 13.50 10 14.53 

Notes . The values are rounded because the exact ranges vary with the values of the observational bias factors 
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ass end, the results from the three most recent studies, D’Souza 
t al. ( 2015 ), Bernardi et al. ( 2017 ) and Driver et al. ( 2022 ), are in
easonable agreement o v er a large part of the mass range. Instead
f trying to combine different data sets, we limit the fitted mass
ange to M ∗ < 10 11 . 5 M � and we choose to use the most recent
AMA result from Driver et al. ( 2022 ) at z = 0. Not only is this

he most recent study, it also provides a useful prior for possible
iasing due to cosmic variance. The upper mass limit also decreases 
he possible bias we get due to our choice of simulation aperture
see Section 4.2 and Appendix A for more details). We al w ays
et a simulation-resolution-dependent lower mass limit on the mass 
ange we use for fitting. The mass ranges we use can be found in 
able 3 . 
Fitting the SMFs from simulations to observations requires special 

are. There are some important differences/sources of uncertainty 
hat need to be taken into account: 

(i) Observ ations suf fer from random errors in measuring the 
ass. While simulations have no mass measurement errors (at 

east for a fixed definition of a galaxy, i.e. for a given subhalo
nder). Simulations do suffer from randomness errors (see Borrow 

t al. 2022a ), as discussed by these authors, this issue is negli-
ible for our analysis because we consider large ensembles of 
alaxies. 
(ii) Observations possibly suffer from systematic errors, which 
ay originate from spectral energy distribution fitting, corrections 

or dust extinction, surface brightness profile fitting, and/or selection 
ffects. 

(iii) Observations may suffer from cosmic variance. 

Before discussing how we take each of these effects into account,
e note that the uncertainty in the stellar IMF is not directly rele v ant
ecause the observational analysis and the simulations use the same 
MF. The observed SMF also depends on the assumed cosmology, 
ut this is close enough to the one used in the simulations to have a
egligible effect on the comparison. 

.1.1 Random errors on the observed stellar mass 

ymmetric observational scatter in the measured stellar mass will 
ause a systematic shift in the inferred SMF. Because there are more
alaxies in lower mass bins, it is more likely for galaxies to scatter to a
igher mass bin than to a lower mass bin. This is especially important
t the high-mass end, where the SMF is steep. This effect is known
s Eddington ( 1913 ) bias. We account for it by adding scatter to the
imulation masses. We adopt the log-normal scatter from Behroozi 
t al. ( 2019 ), which has a redshift-dependent standard deviation of 

( log 10 M ∗) = min ( 0 . 070 + 0 . 071 z, 0 . 3 ) dex , (11) 
MNRAS 526, 6103–6127 (2023) 
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Table 4. Overview of the cluster gas mass fraction data used for this work. 

Reference N Type Selection 

Vikhlinin et al. ( 2006 ) 10 HSE Nearby, relaxed, ambiguous X-ray limit 
Maughan et al. ( 2008 ) 114 HSE NED cross-match, z > 0.1 
Rasmussen & Ponman ( 2009 ) 15 HSE Bright groups 
Sun et al. ( 2009 ) 23 HSE 0.015 < z < 0.13, resolved temperature profiles 
Pratt et al. ( 2010 ) 31 HSE X-ray flux limited, z < 0.2 
Lin et al. ( 2012 ) 94 HSE Infrared magnitude limited 
Lagan ́a et al. ( 2013 ) 126 HSE Crossmatch between Maughan et al. ( 2008 ) and SDSS; X-ray flux limit 
Sanderson et al. ( 2013 ) 5 HSE Optical magnitude limit, σ ≤ 500 c km s −1 

Gonzalez et al. ( 2013 ) 15 HSE Optical magnitude limit, 0.03 < z < 0.13 
Lovisari et al. ( 2015 ) 20 HSE X-ray flux limited 
Hoekstra et al. ( 2015 ) 50 WL X-ray flux limited 
Pearson et al. ( 2017 ) 8 HSE GAMA r -band selection, N > 12, z < 0.12 
Mulroy et al. ( 2019 ) Fit WL X-ray luminosity limit 
Lovisari et al. ( 2020 ) 120 HSE tSZ-selected from Planck data 
Akino et al. ( 2022 ) Fit WL C1 – X-ray selected, C2 no clear selection 

Notes. The first column lists the reference from which the data were obtained, the second column lists the number of objects, where ‘fit’ indicates that the main 
result is a fitted relation between M 500 c and f gas, 500 c , the third column sho ws ho w the total mass was measured (HSE: X-ray data assuming HSE; WL: weak 
gravitational lensing), and the final column contains comments on the selection method. 
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here we sample the log-normal distribution for each galaxy. This
hen adds an Eddington-like bias to the simulation results, consistent
ith observations. 

.1.2 Systematic errors in the observed stellar mass 

here are systematic discrepancies between the different obser-
ations. The reason for this is mostly found in the stellar pop-
lation synthesis and dust correction models used, as the ob-
erved luminosity functions agree better between different stud-
es than the mass functions. Ho we ver, at the FLAMINGO res-
lution, the stellar masses can be predicted much more accu-
ately than the star formation histories, current-day star forma-
ion rates and dust extinction rates. Therefore, calibration to the
MF is preferable o v er a direct comparison with the luminosity 
unction. 

To account for potential systematic shifts in the observed stellar
asses, we include a stellar mass bias parameter 

log 10 ( M ∗, obs ) → log 10 ( M ∗, obs ) + log 10 b ∗, (12) 

here the bias b ∗ is assumed to be independent of mass. Note that
he sign is defined such that a positive stellar mass bias implies
he observations underestimate the true stellar mass. We use a log-
ormal prior to constrain the bias parameter. The prior is taken from
ehroozi et al. ( 2019 ) (their equation 25) and is based on the existing

ensions between observed time-integrated star formation rates and
bserved SMFs, 

log 10 b ∗ = N (0 , 0 . 14) , (13) 

here N ( μ, σ ) is a normal distribution with mean μ and standard
eviation σ . 
We adopt a mass-independent bias. While a mass-dependent

ias might hav e impro v ed the agreement between the data and the
imulations, the mass dependence is unknown and therefore there
s no obvious parametrization of the mass dependence. This implies
he new free parameters would have no clear priors. Additionally,
e note that our decision not to fit abo v e a stellar mass of 10 11 . 5 M �
as a similar effect as switching to a much higher stellar mass bias
bo v e this mass. 
NRAS 526, 6103–6127 (2023) 
.1.3 Cosmic variance 

river & Robotham ( 2010 ) showed that the error on the SMF due to
osmic variance can be 5 −10 per cent for surv e ys like GAMA and
he SDSS, depending on the volume considered. Cosmic variance
an bias the number density measurements, because the surv e y may
onsist of slightly o v erdense or underdense re gions. F or our mass
ange, we assume that this effect is independent of mass (S. P. Driver,
ri v ate communication). To account for cosmic variance, we allow
he observed number densities to shift up and down slightly, 

 obs → f obs + log 10 ( b cv ) . (14) 

ote that the sign is defined such that a positive cosmic variance
ias implies the observations underestimate the number density of
alaxies. We constrain this bias parameter with a Gaussian prior
aken from Driver et al. ( 2022 ). They estimate the error due to cosmic
ariance to be about 6 per cent, so our prior is given by 

 cv = N (1 , 0 . 06) . (15) 

.2 The cluster gas mass fractions 

ata for the cluster gas mass fractions, f gas, 500c , come in two varieties.
hey are either obtained purely from X-ray observations or from a
ombination of X-ray and weak gravitational lensing observations
here the latter are used to measure the total cluster mass. For the
-ray only data, the density, and temperature profiles fitted to the
bservations are used to measure the total mass assuming the gas
s in hydrostatic equilibrium (HSE). In both cases, the gas mass
s obtained by integrating the density profile measured from X-ray
bservations out to the measured value of R 500 c . Table 4 summarizes
ll the different sets of data that we use. 

As was the case for the SMF, there are biases that we need to
ccount for when we compare observations with simulations. There
re four distinct issues that we take into account: 

(i) At the low-mass end, selection effects become important,
ecause at fixed halo mass objects with a higher gas content will
end to emit more X-ray radiation. Any X-ray selected sample may
herefore have gas fractions that are biased high, particularly at low

asses. 
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Table 5. Compilation of cluster X-ray gas fraction data used for calibration. 

M 500 c f gas, 500 c 

(log 10 M �) 

13.89 0.083 ± 0.002 
14.06 0.094 ± 0.003 
14.23 0.105 ± 0.005 
14.40 0.115 ± 0.008 
14.57 0.130 ± 0.002 
14.74 0.130 ± 0.002 
14.91 0.139 ± 0.003 

Notes. These values are for the DESYR3 cosmology ( h = 0.681 and �m 

= 0.298). The values are obtained by taking the median of the X-ray data 
described in Table 4 in eight logarithmically spaced bins between 10 13.8 

and 10 15.0 M �. The errors are the absolute difference between the 16th or 
84th percentile and the median (whichever is largest), obtained by bootstrap 
resampling the median. 
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(ii) The measurement of total mass from X-ray data under the 
ssumption of HSE is well documented to be biased low (e.g. 
oekstra et al. 2015 ; Eckert et al. 2016 ; Smith et al. 2016 ). 
(iii) For the weak-lensing data, we make use of the fits of the

elation between gas fraction and mass provided by the authors. The 
ts are preferred to individual measurements as the fits account for

he selection function of the sample. Ho we ver, for our purposes, the
ts need to be sampled at particular masses. This needs to be done

n a way that limits the covariance between the samples and that is
epresentative of the data used (i.e. no extrapolation). 

(iv) As clusters are rare objects they are usually observed over 
 large redshift range. Furthermore, because weak lensing is most 
fficient when the lens is halfway between the observer and the 
ackground galaxies, weak-lensing observations tend to probe higher 
edshifts than X-ray data. Clusters evolve over time, so we need 
o make sure the simulation samples are representative for the 
bservational samples we compare them with. 

For the cluster gas fractions the largest mass, we can fit for is
imited by the box size of each simulation. The upper mass limit used
or fitting therefore changes with resolution (as we use a different box
ize for each resolution). The upper limits can be found in Table 3 . 

.2.1 X-ray data 

he first set of gas fraction data we describe is the X-ray (or HSE)
ata. For each data set, we store M 500 c and f gas, 500c , with asymmetric
rrors where available, and correct the data to the FLAMINGO 

osmology ( M 500 c ∝ h −1 , f gas, 500c ∝ h −1.5 ). The combined data
et has 581 objects but contains duplicates. For each object that 
ppears more than once, we calculate a new data point by taking an
nweighted mean of the different measurements. The mean is taken 
n both M 500 c and f gas, 500c . Because the duplicates are often based
n (in part) the same data, the errors will not be independent and we
ombine them via 

2 = 

1 

N 

N ∑ 

i 

σ 2 
i , (16) 

here N is the number of times a single object appears in the set.
his leaves us with 533 objects. Note that we do not use the errors

or the re-binning, as we make use of bootstrap re-sampling to 
ompute the errors. 

We need to consider redshift evolution. The emulators will be 
rained on simulation snapshots corresponding to a single redshift. 
mposing a redshift cut of z < 0.25 causes, the median redshift of
he X-ray sample to become 0.1, thus allowing us to compare with
imulation snapshots at z = 0.1. The redshift cut reduces the sample
o 310 objects. The individual masses and gas fractions are shown as
lack dots in Fig. 1 . 
We combine the X-ray measurements by computing the median 

as fraction in eight logarithmically spaced hydrostatic mass bins 
etween 10 13.8 and 10 15.0 M �. For each bin, the error on the
edian is obtained by taking the difference between the median 

nd the 16th −84th percentiles obtained from bootstrap resampling 
he objects. This gives us asymmetric errors around the median. As
ur likelihood uses symmetric errors, we use only the greater of the
ositive and negative errors. The tabulated data points can be found 
n Table 5 . 

Furthermore, selection effects are expected to be most prevalent at 
ower halo masses. The median observed gas fraction as a function 
f mass shows a clear trend-break at M 500 c, HSE ≈ 10 13 . 8 M �. Below
his mass the gas fractions no longer decrease, but instead plateau, 
 behaviour that deviates from what is expected for an unbiased
ample (e.g. McCarthy et al. 2017 ). To deal with this, we impose a
ass cut at a hydrostatic mass of M 500c, HSE > 10 13.8 M �, but add the
t from Lovisari et al. ( 2015 ) at their median mass (4 × 10 13 M �) as
 separate data point. 

We account for hydrostatic mass bias by adding a constant bias
erm to the HSE masses, 

log 10 M 500 c = log 10 M 500 c, HSE − log 10 ( b HSE ) . (17) 

ote that values b HSE < 1 imply that the hydrostatic mass estimate
nderestimates the true mass. We neglect the effect of hydrostatic bias 
n the gas fraction because it is comparatively small (McCarthy et al.
017 ). This is because both the total and gas mass increase with in-
reasing R 500c . The measured gas fraction will differ only at the level
f the change in cumulative gas fraction between the true and biased
 500c . This is expected to cause only mild changes in the gas fraction

see e.g. fig. 6 of Velliscig et al. 2014 ). Before calculating the median
hat we compare with the simulation, we thus adjust all the observed
SE masses. By combining both X-ray and weak-lensing observa- 

ions, we can constrain the hydrostatic bias. Ho we ver, we found that
ur compilation of data on its own is not constraining enough without
he use of a prior. To define our prior, we take the values 0.72 ± 0.08
rom Eckert et al. ( 2016 ) and 0.76 ± 0.06 from Hoekstra et al. ( 2015 )
nd combine the two to obtain the Gaussian prior 

 HSE = N (0 . 74 , 0 . 10) . (18) 

ckert et al. ( 2016 ) and Hoekstra et al. ( 2015 ) estimate the
ydrostatic mass bias by directly comparing the masses they obtain 
rom weak lensing and from X-rays. 

.2.2 Weak-lensing data 

e complement the X-ray data with the latest HSC-XXL weak 
ravitational lensing data from Akino et al. ( 2022 ). Higher mass data
rom Mulroy et al. ( 2019 ) and Hoekstra et al. ( 2015 ) are available and
lotted in Fig. 1 , but the box size used for our calibration runs is too
mall to make use of them. To compare with the weak-lensing data,
e make use of the power-law fits to the relation between the gas frac-

ion and mass given by the authors. These fits take selection effects
nto account. Because the power-law fits have two free parameters, 
ampling them at more than two masses would result in strong covari-
nce between the sampled points. We therefore use the fit to create
wo data points that are spaced equally far from the pivot used by the
MNRAS 526, 6103–6127 (2023) 



6112 R. Kugel et al. 

M

a  

a  

b  

h  

w
 

t  

w  

s  

c  

d  

s  

g  

f  

u

4

C  

r  

I  

m  

u  

s  

a  

o  

t  

C  

(  

i  

o  

t

4

T  

o  

k  

f  

f  

t  

t  

A  

A  

w  

t  

m  

m
 

h  

T  

o  

o  

n  

t  

a  

θ  

r  

c  

w  

a  

w  

Figure 2. The sampling of parameters in the 32-node Latin hypercube used 
to train the emulator for the intermediate-resolution simulations. 
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uthors. This gives us f gas, 500 c ( M 500 c = 10 13.5 M �) = 0.054 ± 0.010
nd f gas, 500 c ( M 500 c = 10 14.5 M �) = 0.106 ± 0.023. Due to the limited
ox size, we use only the lower, M 500 c = 10 13.5 M �, point for fitting
igh- and intermediate-resolution simulations. For low resolution,
e are able to include the second M 500 c = 10 14 . 5 M � point. 
The median redshift of the HSC-XXL sample is z = 0.3. We

herefore construct a separate emulator for f gas, 500c at z = 0.3, which
e use to fit the weak-lensing data. The fits make use of self-similar

caling to mo v e the different clusters to the same redshift, so we
ould have corrected them to the redshift z = 0.1 used for the X-ray
ata. Ho we ver, we prefer to use a redshift close to that of the actual
ample, to minimize the size of the correction. Akino et al. ( 2022 )
ive both the weak lensing inferred and the true M 500 c , as they correct
or the expected bias on the weak lensing inferred M 500 c . We make
se of their calibrated true M 500 c masses. 

 E M U L ATO R  C O N S T RU C T I O N  

osmological hydrodynamical simulations are too e xpensiv e to be
un for each step in an MCMC chain used to e v aluate likelihoods.
n order to use simulation outputs in MCMC methods, we therefore
ake use of emulators trained on a set of simulations. Emulators are

sed to interpolate results in the parameter space between training
imulations. They are able to predict the output of the simulations
s a continuous function of the input parameters, in a fraction of the
riginal computation time. This method has previously been applied
o the matter power spectrum (e.g. Heitmann et al. 2009 , 2016 ; Euclid
ollaboration 2019 ; Angulo et al. 2021 ) and to baryonic observables

e.g. Oh et al. 2022 ; Jo et al. 2023 ). By using emulators, we can
nterpolate between the results of a set of training simulations and
btain a fully continuous prediction of how the simulation responds
o changes in subgrid parameters. 

.1 Training sets 

he first step in setting up the emulator is to create a training set. In
ur training set, we want to vary those subgrid parameters that we
now are important for the calibration. As discussed in Section 2 ,
or the intermediate- and high-resolution simulations, we vary the
ollowing four parameters: the stellar feedback efficiency, f SN , the
arget kick velocity for stellar feedback, �v SN , the power-law slope of
he density dependence of the BH accretion boost factor, βBH , and the
GN heating temperature, � T AGN ( v jet , the target kick velocity for
GN feedback in the jet model). For the low-resolution simulations,
e do not require stellar feedback and therefore vary only the last

wo parameters. The ranges o v er which the parameters are varied are
oti v ated in Section 2 and listed in Table 1 (Table C1 for the jet
odel). 
To optimize the parameter space, we make use of a Latin

ypercube, first proposed by McKay, Beckman & Cono v er ( 1979 ).
o set up a Latin hypercube with N sims nodes, we start with an
rdered list of N sims independent samples along every dimension
f the hypercube, where the number of dimensions equals the
umber of subgrid parameters that are varied. These samples are
hen combined and shuffled to create a set of N sims points θ that
re distributed uniformly within the hypercube, where in our case
= ( f SN , log 10 �v SN , βBH , log 10 �T AGN ) for intermediate and high

esolution, and θ = ( βBH , log 10 �T AGN ) for low resolution. Our
riterion for optimizing the sampling is the ‘maximin’ approach,
hich maximizes the minimum distance that sampled points are

way from each other. An in-depth explanation of how the method
orks is provided by Heitmann et al. ( 2009 ). We apply to each sample
NRAS 526, 6103–6127 (2023) 
 random shift of at most half the average spacing between samples.
e then run the N sims simulations corresponding to the nodes of the

atin hypercube. 
We use the public package SWIFTEMULATOR 

6 (Kugel & Borrow
022 ), built on the package GEORGE (Ambikasaran et al. 2015 ),
o set up the Latin hypercube as well as to train and test the
mulators. SWIFTEMULATOR streamlines the emulation process for
esults obtained from SWIFT runs. Within SWIFTEMULATOR we use
he Latin hypercube generator from PYDOE (Baudin et al. 2012 ). 

We use N sims = 32. The sampling of parameter space provided
y the Latin hypercube used for intermediate resolution is shown
n Fig. 2 . The box sizes used for the training are (100 Mpc) 3 ,
200 Mpc) 3 , and (400 Mpc) 3 for high, intermediate, and low
esolution, respectively. The volume is a compromise between
omputational cost and the maximum mass for which we train the
mulator. Each run costs ∼800, ∼1300, and ∼1600 cpu hours for
ow, intermediate, and high resolution, respectively. Using single
imulations with an eight times larger volume at each resolution and
ith the results of Schaye et al. ( 2023 ), we have verified that these
ox sizes are sufficiently large for box size effects to be negligible
ith respect to the production runs. 

.2 Obtaining the r equir ed simulation output 

rom our simulation, we take three snapshots at z = 0, 0.1,
nd 0.3. For each snapshot, we find haloes and subhaloes using
ELOCIRAPTOR (Ca ̃ nas et al. 2019 ; Elahi et al. 2019 ). After an

nitial friends of friends group search, it uses the full 6D phase-space
nformation to disentangle the central and satellite subhaloes. 

One of the difficulties of comparing with data is that we have to
hoose how to define the edge of simulated galaxies. Observed cluster
as mass fractions are measured within R 500 c . For the stellar masses
eeded to compute the SMF, the situation is less clear. Ideally, we

https://swiftemulator.readthedocs.io/en/latest/
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ould create mock observations, fit them with S ́ersic profiles and in-
egrate these to obtain stellar masses, which is the procedure adopted 
y observational studies. This was recently done for the EAGLE 

imulation by De Graaff et al. ( 2022 ). However, the resolution of the
LAMINGO simulations is too limited to mimic the observational 
trategy. As shown by Schaye et al. ( 2023 ), FLAMINGO significantly 
 v erestimates the sizes of low-intermediate-mass galaxies, which 
eans we cannot create realistic virtual galaxy observations. Based 

n the findings of De Graaff et al. ( 2022 ), we choose to calibrate the
MF using a 3D aperture with a radius of 50 kpc for the simulations.
 comparison between different choices of aperture can be found 

n Appendix A , where we show that the aperture becomes only
mportant abo v e a stellar mass of ≈10 11 M �. 

Before computing the galaxy SMF, we first add random errors 
o the simulation stellar masses as described in Section 3.1.1 . 
he SMF is then sampled in 25 logarithmically spaced mass bins
etween 10 9 and 2 × 10 12 M � for intermediate- and low-resolution 
imulations, and 40 bins between 10 8 and 2 × 10 13 M � for high-
esolution simulations. We choose to use a finer binning than is
vailable for the observational data to allow the emulator to capture 
he finer features of the predicted SMF. Tests with different binning 
trategies show this had no effect on the results. We have enough
alaxies across the fitted mass range for the Poisson errors to still be
 ery small ev en with finer binning. The uncertainty we provide to
he emulator is the Poisson error for each bin. 

For the gas fraction, we instead opt for an adaptive binning strategy. 
hile the simulation volumes used for the calibration are large 

nough to constrain the SMF o v er the adopted mass range, at the
igh cluster mass end, we al w ays run out of clusters before we run
ut of data to compare with. For all resolutions, we use 20 bins
etween M 500 c of 10 13 and 10 15 M �, although we never manage to
ake use of this entire range. As the higher mass bins start to run

ut of objects, we allow the highest mass bin to stretch to include a
ufficient number of objects. We require each bin to contain at least
0 objects. We also limit the stretching of the bin to half the original
in width. The uncertainties we provide to the emulator are based on
he 16th −84th percentiles. As the emulator only takes symmetrical 
rrors, we take mean of the absolute difference between the median 
nd 16th percentile and the difference between the median and 84th 
ercentile. For both the SMF and the cluster gas fraction, we discard
ny empty bins. 

.3 Training using Gaussian processes 

fter measuring the SMF and cluster gas fraction for each node 
f the hypercube, we can train an emulator for each observable. 
ecause each individual node of the Latin hypercube requires a 
osmological hydro simulation, we are operating in a regime where 
e have a limited number of samples. We also know a priori that

he observables we want to emulate (i.e. the galaxy number density 
nd group and cluster gas fractions) vary smoothly with mass and 
ith the values of the subgrid parameters. Both these properties are 

n the regime in which Gaussian processes giv e e xcellent predictiv e
ower with respect to the input data (see e.g. Rasmussen et al. 2004 ;
asmussen & Williams 2006 ). 
We set up a different Gaussian process for each relation we 

mulate. We combine the mass (either stellar or M 500 c ) and subgrid
arameters into a single input data vector x = ( log 10 M, θ ), from
hich the emulator then predicts the dependent quantity, which is 

ither the number density of galaxies, f ( M ∗), or the gas fraction,
 gas, 500c . Each emulator thus has N + 1 parameters, where N is the
umber of subgrid parameters that are varied. In order to limit the
ynamic range, we transformed many of the inputs to log-space. This
ncludes the masses (aperture stellar mass or M 500 c ), the values of the
MF and the two subgrid parameters that are sampled in log-space
 �v SN and � T AGN ). This is an important step as it greatly increases
he smoothness of the emulated relations, making it much easier for
he emulator to give accurate predictions. As the input relations are
mooth o v er the range we are interested in, we do not require an y
ther transformations of the input. We feed the data directly into the
aussian process. We use a squared exponential kernel 

( x , x ′ ) = exp 

(
− ( x − x ′ ) T � 

−1 ( x − x ′ ) 
2 

)
, (19) 

here � represents a diagonal matrix containing the hyperparame- 
ers that set the scale for each input parameter, and x and x ′ are two
ositions in parameter space. The hyperparameters are optimized 
ased on maximizing the marginal likelihood (see Rasmussen & 

illiams 2006 ). As we train a separate Gaussian process for each
elation, we also have a separate set of hyperparameters for each
elation. We have verified the posteriors of the hyperparameters to 
nsure that the values we use are well converged. 

.4 Error estimation 

t is important to verify that the emulator is able to give accu-
ate results before we use it to find best-fitting subgrid and bias
arameters. Moreo v er, we need to quantify the accuracy of the
mulator because we will account for emulation errors when fitting 
o data. The best way to measure the uncertainty in the emulator
redictions is to perform test simulations that span the emulated 
arameter space. Ho we ver, this implies that we would need to run
any additional simulations. To save time, we choose instead to 
easure the uncertainty by making use of k -fold cross-validation, 
hich we will refer to as cross-checks. 
We create N sims new data sets, where N sims is the number of nodes

n our Latin hypercube (32 in our case). For each of these data sets,
e take out one simulation and retrain the emulator on the reduced

et of N sims − 1 samples. We then test how accurately the emulator is
ble to predict the simulation that was left out. We do this by taking
he ratio between the result from the run that was left out, and the
rediction of the emulator for the parameter values of the left-out
un. This gives us a value for each mass bin in the training data. We
ombine the ratios for all mass bins and N sims emulators into a single
ist and compute the standard deviation, σ crosscheck . The error on the
mulator prediction, σ emu , is then given by 

emu = | σcrosscheck f ( M, θ ) | , (20) 

here f ( M , θ ) is the value predicted by the emulator for mass M
nd at parameter values θ . The result of the cross-checks for the
atin hypercube of intermediate-resolution simulations can be seen 

n Fig. 3 . It is important to note that cross-checks are a conserv ati ve
ethod to estimate the uncertainty. The input for cross-checks is 

niformly sampled, implying that a significant fraction of the test 
oints is located near the boundaries of the parameter space, where
 Gaussian process is naturally less accurate. 

From Fig. 3, it is clear that our emulators do not suffer from
ignificant systematic errors for our three calibration targets, the z =
 SMF, z = 0.1 X-ray cluster gas fractions, and z = 0.3 weak-lensing
luster gas fractions. There are no significant trends with mass, and
he medians ratio is centred close to one, which corresponds to an
rror of zero. 

It is clear that the emulator for the SMF is more accurate than the
mulators for the gas fractions. This is a reflection of the way we
MNRAS 526, 6103–6127 (2023) 
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M

Figure 3. Performance of the emulator on cross-checks (see Section 4.4 ) for the redshift z = 0 SMF (left-hand panel), the z = 0.1 X-ray cluster gas fractions 
(middle panel), and the z = 0.3 weak-lensing cluster gas fractions (right-hand panel) at intermediate [m9] resolution. Each of the 32 red lines corresponds to the 
case where a single simulation from the 32-node Latin hypercube has been omitted from the training set. The curves show the ratio of the emulator prediction 
for the parameter values of the omitted simulation to the actual simulation values. The solid black line shows the median as a function of mass. The horizontal 
dash–dotted and dashed lines indicate the 1 σ and 2 σ mean errors on the emulator, respectively. The horizontal dotted lines indicate the one-to-one lines, i.e. 
zero errors. The grey bands indicate the regions that are not used for fitting in Section 5 . In each panel, we also indicate the observational errors. For the SMF, 
we show the error due to cosmic variance and the errors on the data by Driver et al. ( 2022 ), for the z = 0.1 gas fractions, we combine the error from the X-ray 
data with the error due to hydrostatic bias and for the z = 0.3 gas fraction we show the error on the weak-lensing data by Akino et al. ( 2022 ). The emulator 
predictions are accurate enough to predict the simulation output within the observed constraints. 

Table 6. Accuracy of the emulators, σ crosscheck , for the three different 
simulation resolutions and the jet model AGN variation, in percentages. 

Calibration target High Intermediate Low Jet 

log 10 SMF 2.7 2.2 1.5 1.9 
f gas, z = 0.1 8.9 7.5 4.8 7.1 
f gas, z = 0.3 7.9 6.7 4.2 6.1 

Notes. The values are obtained by taking the standard deviation of the ratio 
between the result from the simulation omitted from the Latin hypercube and 
the prediction from the emulator trained on all but that simulation. 
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onstrain the input simulations. In the case of the SMF, the errors on
he input are Poisson errors, which are quite small for our simulation
olumes in the mass range we are interested in. The f gas errors are
ased on the 16th −84th percentiles of the simulated gas fractions in
ach mass bin, which can be larger than the 5 per cent accuracy that
he emulator attains. 

The emulator accuracy for all resolutions can be found in Table 6 .
he emulators become more accurate going to lower resolution.
here are several possible reasons for this trend. First, we used larger
ox sizes for the lower resolution simulations, so the uncertainty
ntrinsic to the simulation is smaller at fixed mass. Secondly, we
sed a slightly larger parameter range for high resolution than for
ntermediate resolution, while for low resolution we only used two
arameters, greatly reducing the sampled space. 
The obtained accuracy is sufficient, as it is higher than the

bservational scatter/uncertainty. Any deviations between the model
nd the data at the level of the emulator error would still be
onsistent with the observational constraints, especially as we allow
or observational biases in our analysis. 
NRAS 526, 6103–6127 (2023) 
 USI NG  T H E  E M U L ATO R  F O R  PARAMETER  

STIMATION  

o use the emulator as the model that we compare with observational
ata, we need a way to optimize the subgrid parameters θ (see
ection 2 ) and, optionally, the observational bias factors log 10 b ∗,
 CV , and b HSE (see Section 3 ). 
For parameter optimization, we use the MCMC package EMCEE

F oreman-Macke y et al. 2013 ). We use the ensemble sampler, which
e give our posterior likelihood. F or ev ery fit we have done using
CMC, we have varied the number of w alk ers and steps to ensure

he resulting values are converged. We discard the first 500 steps of
ach chain to a v oid systematic errors due to the burn-in phase. 

To e v aluate the goodness of fit of an emulator prediction to the
bservations, we first define the log likelihood for a single observed
ass bin. For the SMF, this is given by 

ln P SMF ( M ∗, obs , b cv , b ∗, θ ) 

≡ −
[
f obs ( M ∗, obs ) + log 10 b CV − f emu ( b ∗M ∗, obs , θ ) 

]2 

σ 2 
obs ( M ∗, obs ) + σ 2 

emu ( b ∗M ∗, obs , θ ) 
, (21) 

ere f ( M ∗) is the SMF, 

 ( M ∗) ≡ log 10 

(
d n 

d log 10 ( M ∗) 

)
, (22) 

he subscripts indicate whether the quantity is observed (‘obs’) or
mulated (‘emu’), θ is a vector containing the values of the varied
ubgrid parameters, and σ is the error on f . For σ emu , this refers
o the error on the emulator from cross-checks, equation ( 20 ). The
xpression also accounts for observational bias factors due to cosmic
ariance, b CV , and the conversion of direct observables into stellar
ass, b ∗, that were discussed in Section 3.1 . For cluster gas fractions
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easured from X-ray observations, the log likelihood is defined as 

ln P gas ( M 500 c, obs , b HSE , θ ) 

≡ −
[
f gas,500c,obs ( M 500 c, obs ) − f gas,500c,emu ( b 

−1 
HSE M 500c,obs , θ ) 

]2 

σ 2 
obs ( M 500 c, obs ) + σ 2 

emu ( b 
−1 
HSE M 500c,obs , θ ) 

, 

(23) 

here b HSE is an observational bias factor due to the assumption of
SE that was discussed in Section 3.2 . For gas fractions measured

rom weak-lensing plus X-ray observations, the log likelihood 
efinition is identical except that we assume the masses are unbiased, 
mplying b HSE = 1 (see e.g. Becker & Kravtsov 2011 ; Bah ́e,

cCarthy & King 2012 ). Note that for the likelihood of both the
MF and the cluster gas fraction, we include a variance term to
ccount for the error on the emulator prediction. This is added to
 v oid situations where we o v erfit with respect to the uncertainty
rom the emulator alone. 

The likelihood for the observational data is a combination of the 
ikelihoods of the individual mass bins of the three data sets 

ln P likelihood ( b cv , b ∗, b HSE , θ ) 

= 

1 

N SMF 

N SMF ∑ 

i 

ln P SMF ( M ∗, obs ,i , b cv , b ∗, θ ) 

+ 

1 

2 

⎡ 

⎣ 

1 

N HSE 

N HSE ∑ 

j 

ln P gas,X-ray ( M 500 c, obs ,j , b HSE , θ ) 

+ 

1 

N WL 

N WL ∑ 

k 

ln P gas,WL ( M 500 c, obs ,k , θ ) 

] 

, (24) 

here N SMF , N HSE , and N WL are the number of (re-binned) obser-
ational data points (i.e. mass bins) for the SMF, the X-ray cluster
as fraction and the weak-lensing cluster gas fraction, respectively. 
he values of N depend on the fitted mass ranges (Table 3 ) and
ary with resolution. We normalize each likelihood by the number 
f data points to ensure each separate likelihood is not directly 
ependent on the number of bins used. Furthermore, we average 
he likelihoods from the two types of cluster gas fraction data to
nsure that the cluster gas fraction and SMF data carry equal weight.
n an unweighted fit, the SMF would drive the results, because it is
uch better constrained. As the baryon fractions are the main driver 

f the baryonic suppression of the matter power spectrum (see e.g. 
an Daalen et al. 2011 ; Debackere et al. 2020 ; Schneider et al. 2020 ;
an Daalen et al. 2020 ; Salcido et al. 2023 ), we choose to give the
as fractions equal weight in our analysis. 

We then combine the different likelihoods into a single posterior, 

log P posterior = log P likelihood + log P prior , (25) 

here the total prior is 

log P prior = log P bias ( b ∗) + log P bias ( b cv ) + log P bias ( b HSE ) 

+ log P subgrid ( θ ) , (26) 

 bias are our priors for the observational bias factors, and P subgrid is
ur combined prior for the subgrid parameters in θ that we wish to
alibrate. For the subgrid parameters, we use flat priors that do not
 xtend be yond the ranges used for the Latin hypercube (see Table 1 )
n order to a v oid extrapolations. The priors on the bias factors were
iscussed in Section 3 . 
We also calculate the reduced χ2 for some of our models. We
efine the reduced χ2 as 

2 
ν = 

[ 

N SMF ∑ 

i 

log P SMF ( M ∗, obs ,i , b cv , b ∗, θ ) 

+ 

N HSE ∑ 

j 

log P gas,X-ray ( M 500 c, obs ,j , b HSE , θ) 

+ 

N WL ∑ 

k 

log P gas,WL ( M 500 c, obs ,k , θ ) 

] / 

( N SMF + N HSE + N WL − N θ ) , (27) 

where N θ is the number of sub-grid and bias parameters used for
he fit. 

 RESULTS  

n this section, we will describe the main results from our calibration
pproach. We use the emulators to perform parameter sweeps in 
ection 6.1 , then we discuss the fitting results, first at intermediate
esolution in Section 6.2 and then at the other resolutions in Section
.3 , and finally we discuss how we use the emulator to set up two
GN feedback variations in Section 6.4 . 

.1 Parameter sweeps 

mulators can be used to investigate the effect of individual param-
ters via parameter sweeps, where the emulator predicts the effect 
f varying a single parameter o v er the range used for the Latin
ypercube, while keeping all other parameters fixed to their best- 
tting values. Parameter sweeps can give valuable insight into the 

mportance of particular physical processes and prevent calibration 
hrough emulation from becoming a black box. The result of the
ubgrid parameter sweeps for our intermediate resolution runs are 
hown in Fig. 4 . Looking at the response of the calibration targets, it
s clear that the different parameters have distinct effects, indicating 
hat the fits will not hav e an y strong de generacies between the varied
ubgrid parameters. 

Increasing the slope of the BH accretion rate boost factor sup-
resses the high-mass end of the SMF, but has almost no effect on
he low-mass end and the cluster gas fractions. Increasing the AGN
emperature jump leads to a mild reduction of the high-mass SMF, but
 strong decrease of the cluster gas fractions. The effects of increasing
he stellar feedback energy and kick velocity are more similar. In both
ases the stellar masses are decreased, leading to a mass-dependent 
tretching of the SMF towards lower masses. Depending on the 
alaxy mass, the SMF can either increase or decrease, though the
ffect is small for the high-mass end. Cluster gas fractions decrease
hen either of the stellar feedback parameters increases, presumably 
ecause the stronger stellar feedback suppresses BH growth and 
ence AGN feedback (Bower et al. 2017 ). 

.2 The best-fitting intermediate-resolution model 

he best-fitting (i.e. maximum likelihood) values of the subgrid 
nd observational bias parameters can be found in Tables 1 and 7 ,
espectively. These tables also list the medians and 16 −84 per cent
Ls of the posterior distributions. 
The posteriors for the subgrid and bias parameters resulting from 

tting the emulator predictions for intermediate-resolution simula- 
ions to the data are shown in Fig. 5 . The first thing to note is that
MNRAS 526, 6103–6127 (2023) 
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Figure 4. Subgrid parameter sweeps using the emulator trained on our 32-node Latin hypercube of (200 Mpc) 3 intermediate-resolution simulations. The 
parameter sweeps are centred on the best-fitting parameters (see Section 6.2 ). The left- and right-hand columns show the galaxy SMF and cluster gas fractions, 
respectively. In each row, a single subgrid parameter is varied across the allowed range. From the top to bottom panels, we vary the slope of the BH accretion 
rate boost factor slope, the AGN-heating temperature, the stellar feedback energy, and the stellar feedback kick velocity. The grey regions indicate the mass 
ranges that are excluded for fitting (see also Table 3 ). Parameter sweeps help gain insight into how changes in subgrid model parameters map onto observables. 

Table 7. Results from the fitting for the observational bias factors. 

Bias Median + CL Best fitting 

Stellar mass log 10 b ∗ 0 . 06 + 0 . 11 
−0 . 11 0.026 

Cosmic variance b CV 0 . 98 + 0 . 06 
−0 . 06 0.995 

HSE b HSE 0 . 74 + 0 . 09 
−0 . 09 0.743 

Note. The second column shows the median and 16th and 84th percentiles, 
the third column lists the maximum-likelihood value which we denote as the 
best fitting. 
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he maximum-likelihood model (solid, red circle) lies comfortably
ithin the 68 per cent confidence intervals (inner contour) for each
arameter and that it does not lie close to an edge of the parameter
pace. The chosen parameter ranges, i.e. the imposed priors, are thus
ufficiently large for the models to bracket the target data and they
o not drive the results. 
It is also clear that there are no strong degeneracies between any

f the subgrid parameters or between any of the bias parameters.
he absence of strongly degenerate subgrid parameters is partially
y construction, because we chose to fix some of the parameters
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Figure 5. The posterior distributions of the model parameters resulting from fitting the emulator to the observed SMF and cluster gas fractions for intermediate- 
resolution simulations. The parameters shown are the stellar feedback energy, f SN , the stellar feedback kick velocity, �v SN , the AGN feedback temperature 
jump, � T AGN , the logarithmic slope of the density dependence of the BH accretion rate boost factor, βBH , the stellar mass bias, b M ∗ , the hydrostatic mass 
bias, b HSE , and the cosmic variance bias, b CV . The four subgrid parameters are described in Section 2 and the three observational bias factors are discussed in 
Section 3 . The black contours show the 68 and 95 per cent CLs. The panels along the diagonal show the one dimensional probability density for each parameter. 
In these plots, the three vertical lines indicate the 16th, 50th, and 84th percentiles. The solid, red circles indicate the maximum-likelihood values, which were 
used for the fiducial model. Each panel is centred on the centres of the priors given in Table 1 . The posteriors show that we can find a single solution that fits 
the simulations to the observational data. 
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hat would otherwise have caused the results to become degenerate 
e.g. n heat and � T AGN , see Section 2.3 ). There is, ho we ver, significant
e generac y between the slope of the density dependence of the BH
ccretion boost factor ( βBH ) and the stellar mass bias ( b ∗). These two
arameters are anticorrelated. Increasing the bias shifts the observed 
MF towards higher masses, which means the BH boost factor needs 
o decrease to allow more stars to form in high-mass galaxies, whose
rowth is controlled by AGN feedback. 
The best-fitting values for the galaxy mass and cosmic variance 

iases are log 10 b ∗ = 0.026 and b CV = 0.995, respectively. The
tted hydrostatic bias, b HSE = 0.743, enables the model cluster gas
ractions to agree simultaneously with the Akino et al. ( 2022 ) weak-
MNRAS 526, 6103–6127 (2023) 
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ensing data and the compilation of X-ray data. For all the bias
alues, we find posteriors that are in agreement with the priors, so
e conclude that our fitting does not put any significant additional

onstraints on the bias parameters. 
The best-fitting emulator predictions for intermediate resolution

re compared with the data in the middle row of Fig. 6 , which also
hows the result of a (200 Mpc) 3 simulation run with the best-fitting
ubgrid parameter values (i.e. our fiducial model). The left- and right-
and panels show the SMF and cluster gas fractions, respectively. The
as fractions are shown for both the redshift of the X-ray data, z =
.1 (light blue line and dark blue data points), and the redshift of the
eak-lensing data, z = 0.3 (purple line and dark purple data points).
re y re gions and dotted line styles indicate mass ranges that were

xcluded from the fit. The ranges can be found in Table 3 . Note that
he fitted bias factors have been used to shift the data. We obtain good
greement with the fitted observations with a reduced χ2 

ν = 1 . 23 for
he combined fit to the SMF and the cluster gas fractions. The good
greement between the blue and the red lines demonstrates that the
mulator was able to predict accurately what the fiducial simulation
ould look like in the fitted mass range. 
Remarkably, the simulations fit the SMF down to galaxy masses

orresponding to slightly fewer than 10 stellar particles. Comparing
he predicted gas fractions at z = 0.1 and 0.3, we see there is very
ittle evolution. The model o v ershoots the gas fractions for cluster

asses between M 500 c ≈ 10 13 . 8 M � and ≈ 10 14 . 5 M �, by about 1 σ .
e emphasize, ho we ver, that our observ ational error bars are about

 factor of five smaller than the observed object-to-object scatter.
nfortunately, a box size of (200 Mpc ) 3 (or even (400 Mpc ) 3 ) is not

arge enough to constrain the gas fractions in haloes with M 500 c ≥
0 15 M �. Performing the same analysis in a larger volume would
otentially allow the emulator to train up to the range where the
 500 c –f gas relation starts to flatten. 

.3 The best-fitting subgrid high- and low-resolution models 

lthough we use the simulation-based emulator to fit for the observa-
ional biases, the biases refer to observational effects and should thus
e the same for all models. We therefore do not vary them between the
ifferent simulation resolutions. We use the intermediate-resolution
imulations to fit the biases, because their resolution and box size
nable us to fit a substantial mass range for both the SMF and the
luster gas fractions (see Fig. 6 ). For the other resolutions, we keep
he observational biases fixed to the values listed in Table 7 . In this
ay, we ensure that a direct comparison can be made between the

hree different resolutions. 7 

Fixing the observational biases to the values found for intermediate
esolution leaves only four parameters to fit for high resolution. For
ow resolution, we only have two parameters to vary because we
NRAS 526, 6103–6127 (2023) 

 The Driver et al. ( 2022 ) data points at M ∗, obs ≤ 10 10 M � were updated after 
e had already finished the (2.8 Gpc) 3 intermediate-resolution FLAMINGO 

imulation. To be able to use the updated data for the calibration of the high- 
esolution simulations, which resolve the SMF down to masses for which the 
ata were updated, we re-fit the observational biases at intermediate resolution 
hile keeping the subgrid parameters constant. The stellar mass bias changed 

rom log 10 b ∗ = 0.031 to 0.026, the cosmic variance bias changed from b CV = 

.014 to 0.995 and the HSE bias from b HSE = 0.745 to 0.743. The bias values 
hanged by a negligible amount with respect to the 16th −84th percentile 
Ls, for both b ∗ and b HSE the change is less than 3 per cent of the 16th −84th 
ercentile range. For b CV , the change is ∼15 per cent of the 16th −84th 
ercentile range. The values we report in Table 7 use the most up-to-date 
Driver et al. 2022 ) data. 
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urn off stellar feedback as these simulations do not resolve the
asses below which stellar feedback dominates (see Section 2.1 ).
he best-fitting parameter values for each resolution can be found

n Table 1 . Corner plots of the posterior distributions for the subgrid
arameters are shown in Appendix B . A comparison of the best-
tting emulator prediction, the data and runs using the predicted
est-fitting subgrid parameter values is shown in the top and bottom
ows of Fig. 6 for (100 Mpc) 3 high- and (400 Mpc) 3 low-resolution
olumes, respectively. 

At high resolution, there is again excellent agreement between the
mulator prediction and the observed data, with reduced χ2 

ν = 1 . 15.
he high-resolution simulation resolves the largest range of stellar
ass in the SMF, from ≈ 10 8 . 6 to ≈ 10 11 . 5 M �. There is a dip around
 mass of 10 10.2 M � and a slight bump around the knee of the mass
unction but the maximum deviation from the data are less than
 per cent. It seems that the emulator was unable to predict the dip,
nd the best-fitting simulation falls outside of the predicted errors.
omparing the predicted errors between the different resolutions, it

s clear that the high-resolution simulation has the largest predicted
rror. This is due to it using the smallest box size. This causes
he emulator prediction to be too ‘smooth’ when compared with
imulation results. The deviation at the dip is less than the 1 σ
ncertainty due to cosmic variance. The small box size (100 Mpc ) 3 

sed for calibration at high resolution, limits the mass range that can
e used to fit the gas fractions to halo masses lower than 6 × 10 13 M �.
his leaves only two data points to compare to. The agreement in the
tted range is, ho we v er, v ery good. 
Comparing the best-fitting subgrid parameter values for the high-

esolution model to those for intermediate resolution (Table 1 ), we
ee that the stellar feedback requires about twice as much energy
nd about half as high a kick velocity. This reflects the need for
tronger stellar feedback when higher gas densities are resolved and
he fact that feedback can be ef ficient do wn to smaller wind velocities
n the lower mass haloes that remained unresolved at intermediate
esolution. While the AGN heating temperatures are very similar, the
igh-resolution simulations require a much smaller slope of the BH
ccretion rate boost factor, βBH = 0.038 (where zero corresponds
o no boost) versus βBH = 0.514 at intermediate resolution. Since
he high-resolution simulation can resolve higher gas densities, and
ence higher BH accretion rates, we do not need to boost the accretion
ate as much. 

At low resolution, the agreement with the data are also very good,
ith reduced χ2 

ν = 0 . 95. Now it is the stellar mass range that is
ery limited, M ∗ ≈ 10 11 . 17 M � to M ∗ ≈ 10 11 . 5 M �, which includes
nly two data points. The larger box size of (400 Mpc) 3 allows for
he use of the two Akino et al. ( 2022 ) weak-lensing data points as
ell as five X-ray data points for fitting the cluster gas fractions.
o we ver, the high-mass plateau of the gas fractions remains out of

each for this box size. The comparison of the best-fitting subgrid
arameter values of the low-resolution model to those of the higher
esolution simulations (Table 1 ) is difficult to interpret because the
ow-resolution model requires a much lower threshold density for
tar formation, a much higher BH seed mass, and does not include
ny stellar feedback. 

As we obtain a good fit to the same data for each of the three
esolutions, we conclude that we have good’weak convergence’
etween the three resolutions, using the terminology of Schaye et al.
 2015 ). The FLAMINGO suite includes high-, intermediate-, and
ow-resolution simulations that were run with our fiducial subgrid
arameter values in volumes with side lengths of 1, 2.8, and 1 Gpc,
espectiv ely. F or a comparison of these models with other data, we
efer to Schaye et al. (2023 ). 
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Figure 6. Comparison of the best-fitting models to the observed galaxy SMF (left-hand column) at z = 0 and observed cluster gas fractions (right-hand column). 
The top, middle and bottom rows show results for high-, intermediate- and low-resolution simulations, respectively. The observations are plotted as points with 
error bars [black: Driver et al. ( 2022 ) SMF at z = 0, dark blue: compilation of X-ray data at z = 0.1, dark magenta: Akino et al. ( 2022 ) weak-lensing data at z = 

0.3]. Each panel shows the best-fitting emulator prediction as a blue curve, the emulator uncertainty as a blue-shaded region, and the result from a simulation 
using the best-fitting subgrid parameter values in a (100 Mpc ) 3 , (200 Mpc ) 3 , and (400 Mpc ) 3 volume for high, intermediate, and low resolution, respectively, 
as a red curv e. F or f gas, 500 c , we only plot the best-fitting simulation result at z = 0.1 in red, and leave out the result at z = 0.3 to a v oid clutter. For the cluster 
gas fractions, besides showing in blue the z = 0.1 emulator that should be compared with the dark blue X-ray data, we also show the z = 0 . 3 emulator, in 
magenta, that is used to fit the dark magenta Akino et al. ( 2022 ) weak-lensing data. The gre y re gions indicate the mass ranges that are excluded from the fitting, 
see also Table 3 . The model predictions are shown using dotted lines in these e xcluded ranges. The v ertical dotted line in the left-hand panels indicates a mass 
corresponding to 10 stellar particles. The SMF and X-ray gas fraction data have been shifted by the best-fitting observational bias factors (see Table 7 ), which 
are, ho we v er, ne gligible for the SMF. The SMF from the best-fitting simulation includes Eddington bias (see Section 3.1.1 ) in line with how the emulator is 
trained. The systematic errors given by the priors on the bias parameters are shown as points with error bars in the top panels. At each resolution, we obtain 
excellent agreement between the emulator, a simulation with the best-fitting parameters, and the observational data. 
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.4 Feedback variations 

ne of the goals of FLAMINGO is to investigate the impact of
eedback on cosmological observables. In this section, we show how 

e use emulators to calibrate simulations to produce gas fractions 
r SMFs that have been shifted away from their fiducial, observed
alues. We focus mostly on changes to the gas fractions, as previous
ork has shown that baryon fractions in groups and clusters anticor-

elate with the baryonic suppression of the matter power spectrum 
MNRAS 526, 6103–6127 (2023) 



6120 R. Kugel et al. 

M

Table 8. Best-fitting values for the subgrid parameters for the feedback variations at intermediate resolution. 

f SN �v SN (km s −1 ) � T AGN (K) or v jet (km s −1 ) βBH 

Variation σ Median + CL Best fitting Median + CL Best fitting Median + CL Best fitting Median + CL Best fitting 

fgas + 2 σ + 2 0 . 22 + 0 . 09 
−0 . 08 0.219 525 + 151 

−186 577 10 7 . 69 + 0 . 16 
−0 . 13 10 7.71 0 . 58 + 0 . 10 

−0 . 10 0.554 

Fiducial 0 0 . 20 + 0 . 11 
−0 . 09 0.238 479 + 167 

−197 562 10 7 . 84 + 0 . 18 
−0 . 20 10 7.95 0 . 55 + 0 . 15 

−0 . 16 0.514 

fgas −2 σ −2 0 . 21 + 0 . 08 
−0 . 07 0.206 478 + 149 

−179 552 10 8 . 03 + 0 . 14 
−0 . 16 10 8.08 0 . 54 + 0 . 10 

−0 . 09 0.497 

fgas −4 σ −4 0 . 20 + 0 . 08 
−0 . 07 0.191 479 + 167 

−162 532 10 8 . 18 + 0 . 13 
−0 . 13 10 8.21 0 . 51 + 0 . 09 

−0 . 09 0.482 

fgas −8 σ −8 0 . 15 + 0 . 07 
−0 . 06 0.145 417 + 156 

−154 483 10 8 . 36 + 0 . 09 
−0 . 11 10 8.40 0 . 49 + 0 . 07 

−0 . 08 0.462 

M ∗−σ 0 0 . 30 + 0 . 10 
−0 . 10 0.322 537 + 124 

−198 608 10 7 . 98 + 0 . 14 
−0 . 17 10 8.06 0 . 68 + 0 . 11 

−0 . 10 0.626 

M ∗−σ + fgas −4 σ −4 0 . 25 + 0 . 10 
−0 . 08 0.261 490 + 127 

−174 557 10 8 . 25 + 0 . 13 
−0 . 13 10 8.27 0 . 65 + 0 . 09 

−0 . 09 0.620 

Jet 0 0 . 19 + 0 . 07 
−0 . 06 0.166 562 + 196 

−164 477 977 + 311 
−236 836 0 . 54 + 0 . 10 

−0 . 12 0.597 

Jet + fgas −4 σ −4 0 . 18 + 0 . 08 
−0 . 06 0.176 524 + 200 

−162 527 1949 + 238 
−251 1995 0 . 44 + 0 . 07 

−0 . 08 0.439 

The columns list the name of the variation, the number of σ by which the observed f gas data were shifted, and for each parameter the median and 16th to 84th 
percentile CL, and the best-fitting (i.e. maximum likelihood) fiducial values. Note that for the jet AGN model, the seventh and eighth columns show v jet instead 
of the heating temperature, while for the other feedback variations, they show � T AGN 
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n the scales rele v ant for current and next-generation surveys (e.g.
emboloni et al. 2013 ; Debackere et al. 2020 ; Van Daalen et al.
020 ; Salcido et al. 2023 ). For clusters, the gas fractions dominate
 v er the stellar fraction when computing the baryon fractions (the
tellar mass content of haloes becomes important at smaller scales).

hile most of our variations use our fiducial thermal AGN feedback
odel, we will also calibrate a model that uses kinetic, jet-like AGN 

eedback. 
To quantify the effect of reasonable changes in the astrophysics,

e include a set of feedback variations in the simulation suite. These
imulations should at least bracket the uncertainty in the cluster gas
raction data, while fitting the SMF data. Previous works created
ariations of subgrid physics based directly on the values of certain
ubgrid parameters. For example, the BAHAMAS project (McCarthy
t al. 2018 ) varied the AGN heating temperature by ±0.2 dex, which
esulted in very small changes to the SMF and cluster gas fractions
hat roughly bracketed the observational uncertainty. To arrive at the
alues of the subgrid parameters for our runs, we make use of the
mulators and we will allow all fitted subgrid parameters to vary.
ur variations are based on systematically shifting of the data, based
n their uncertainties, making the variations less reliant on the sub-
rid model used. We also include models with gas fractions that are
robably ruled out observationally, because we anticipate these will
e useful to gain insight into the effect of baryonic feedback on other
osmological observables. 

The variations are run at intermediate resolution. We use the
ducial values of the observational bias factors listed in Table 7 . For

he gas fraction variations, the SMF data are kept the same except for
ne variation, where we systematically reduce all observed stellar
asses. The f gas data are shifted up by 2 σ and down by 2, 4, and 8 σ

or the fgas + 2 σ , −2 σ , −4 σ , and −8 σ models, respectively, where
is the error obtained from bootstrapping for the X-ray data, or the

rror on the fit for the weak-lensing data from Akino et al. ( 2022 ), as
iscussed in Section 3.2 . We systematically shift all the data by N σ

nder the assumption that the errors in the gas fraction are mostly
ystematic and correlated. We shift in steps of 2 σ and 4 σ instead of a
maller shift (e.g. 1 σ ) as the cluster-to-cluster scatter is much larger
han the errors we found from bootstrapping (see Section 3.2.1 ). We
lso create models that vary the SMF. As the baryonic suppression
s sensitive to the total baryon fraction (see e.g. Salcido et al. 2023 ),
e include these variations to investigate the effect of changes in
NRAS 526, 6103–6127 (2023) 
he baryon fraction at a constant gas fraction, and to see the effect of
hanging the stellar fractions. For these variations, we systematically
hift the SMF data to lower masses according to the 1 σ given by the
tellar mass bias (0.14 dex; Section 3.1.2 ). For the M ∗−1 σ model, we
se the fiducial gas fractions and for the fgas −4 σ + M ∗−1 σ model,
e simultaneously shift the X-ray and weak-lensing gas fractions
own by 4 σ . 
The best-fitting subgrid parameter values for the feedback varia-

ions can be found in Table 8 . The changes in the subgrid parameters
ith respect to the fiducial model are small. As expected, the AGN

ubgrid parameters bracket the fiducial values, with the fgas −2 σ
odel having a slightly higher AGN feedback temperature. As

ould already be seen in Fig. 4 , the gas fraction is very sensitive
o � T AGN , which varies by only 0.37 dex between the fgas + 2 σ and

2 σ models, in good agreement with BAHAMAS. The fgas −4 σ
nd −8 σ models follow this trend. Changes in the gas fractions are
riven mainly by changes in � T AGN . Going from the fgas −4 σ to
he M ∗−1 σ + fgas −4 σ model, the biggest change is seen in f SN II 

nd βBH , as expected from Fig. 4 . The increase in the BH accretion
oost factor is required to compensate for the removal of gas by the
ncreased supernova energy. 

The feedback models are compared with the fiducial model and
he calibration data in Fig. 7 . In the top two panels, we show the
mulator predictions for the SMF and the gas fractions for each
f the variations. Within the fitted mass ranges, there is excellent
greement for the SMF between all the different cluster gas fraction
ariations. There is good agreement between f gas for the f gas −4 σ
nd the SMF −1 σ + f gas −4 σ variations. In the bottom panels,
e compare the emulator predictions to the results of (200 Mpc) 3 

imulations run with the best-fitting parameters. For the SMF, we
ee that the emulator predictions are accurate at around the per cent
evel, with only the jet model fgas −4 σ deviating by ≈5 per cent. For
 gas , all predictions are accurate to ≈10 per cent, and most predictions
re accurate to within ≈5 per cent. The accuracy is slightly better than
he expected emulator accuracy from cross-checks (see Table 6 ). We
onclude that by allowing for small adjustments to four subgrid
arameters, we are able to vary specific observables while keeping
thers constant. 
In addition to the parameter variations, we also calibrate a different

mplementation of AGN feedback. As described in Section 2.3.1 ,
his model uses kinetic bipolar kicks instead of thermal injections
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Figure 7. Top left- and right-hand panels: the emulator predictions for the SMF and gas fractions, respectively, for the feedback variations and the fiducial 
model (different colours, as indicated in the legend). The observations are shown as black points with error bars. In the top corners of the panels, we indicate 
the assumed systematic errors in the data from the priors on the fitted biases. The bottom panels show the ratio of the emulator prediction and a (200 Mpc) 3 

simulation run with the same parameters. In both panels, the black-dotted line indicates a ratio of one. For the SMF ( f gas, 500 c ), the black dot–dashed lines 
indicate deviations of 1 per cent (5 per cent). We only show the cluster gas fraction emulator prediction at z = 0.1 and leave out the z = 0.3 gas fraction results 
to a v oid clutter. The excluded mass range for fitting is indicated by the gre y re gions (see also Table 3 .) We use the emulators to make a direct mapping between 
our subgrid physics models and systematic shifts in the observations, based on the observational errors. 

t
s
a
i
h  

w  

i  

a
c
W  

f
fi  

t
b

 

s
m  

h
a  

d  

z  

m

8

t
b
l
e
W
t
a

w  

a  

t  

u
w  

p
t  

w  

d
m

7

I  

a  

d
f
w  

c
p
t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/4/6103/7291940 by U
niversiteit Leiden - LU

M
C

 user on 21 February 202
o distribute AGN feedback energy around accreting BHs 8 . As the 
ubgrid model differs fundamentally from the fiducial model, we run 
 new Latin hypercube with 32 intermediate-resolution simulations 
n (200 Mpc) 3 volumes. The subgrid parameter ranges for this 
ypercube can be found in Table C1 . To construct the emulator,
e again follow the prescription of Section 4 and we again verify

ts accuracy using cross-checks (see Table 6 ). The goal is to have
 simulation with a different implementation of AGN feedback 
alibrated to the same observables as the fiducial implementation. 
e therefore use the same fitting limits, methods and likelihoods as

or the fiducial intermediate-resolution model. For the jet model, we 
t to both the fiducial data and to the perturbed data used to calibrate

he f gas −4 σ model. The resulting medians and best-fitting values can 
e found in Table 8 . 
The jet models are shown as the green lines in Fig. 7 . They

ho w some dif ferences from the fiducial thermal AGN feedback 
odels. The jet models fit the knee of the SMF slightly better by

aving slightly more galaxies with M ∗ ≈ 10 10 . 7 M �. The difference 
t the very low-mass end of the SMF, below the fitted range, is
ue to the fact that the bug in the threshold of star formation for
ero metallicity gas 3 was fixed for the jet models. The f gas −4 σ jet
odel also has a significant reduction in the number of galaxies 
 Due to a bug, the calibration of the jet models was done using a version of 
he model where the jets are launched along the z-direction of the simulation 
ox, instead of along the spin axis of the black hole. We have verified that this 
eads to small differences, in agreement with the results reported by Hu ̌sko 
t al. ( 2023) , who showed that the directionality of the jets has little effect. 

hen using the correct implementation, the agreement with the emulator of 
he SMF becomes slightly better for both runs that use jets; and for fgas, the 
greement only worsens outside the range used for calibration. 

f
m

t  

s
t  

s  

2
e  

a
t  

4

ith masses abo v e our fitting limit, thus yielding an SMF with
 steeper high-mass cut of f. Ho we ver, the bottom panel suggests
hat this is at least partially explained by the fact that the emulator
nderpredicts the number density by a few per cent. Compared 
ith the thermal AGN models fit to the same data, the jet models
redict higher gas fractions in groups ( M 500 c ∼ 10 13 M �), where 
here is, ho we ver, no observ ational data. From the bottom panels,
e can see that for f gas the accuracy of the jet emulator does not
iffer significantly from the emulator for the thermal AGN feedback 
odels. 

 C O N C L U S I O N S  

n order to fully exploit the large-scale structure data that will become
vailable with surv e ys like Euclid and LSST, we need to acquire a
eeper understanding of how baryonic effects, like AGN and stellar 
eedback, impact the matter distribution. The most self-consistent 
ay of experimenting with these effects is through the use of

osmological hydrodynamical simulations. The FLAMINGO project 
rovides such simulations in volumes sufficiently large to study 
he evolution of large-scale structure and massive galaxy clusters 
or different numerical resolutions, cosmologies and astrophysical 
odels. 
As feedback processes originate on unresolved scales, we have 

o add them via subgrid prescriptions. Ho we ver, because these
ubgrid models are theoretically not well constrained, they need 
o be calibrated to reproduce a rele v ant set of observ ables. Pre vious
imulation projects like EAGLE (Crain et al. 2015 ; Schaye et al.
015 ), IllustrisTNG (Pillepich et al. 2018 ), BAHAMAS (McCarthy 
t al. 2017 , 2018 ), and SIMBA (Dav ́e et al. 2019 ) achieved good
greement with data by varying subgrid parameters by hand until 
he simulation lined up with the target observ ations. Ho we ver,
MNRAS 526, 6103–6127 (2023) 
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or cosmology, a more robust and objective calibration method is
esirable, particularly if it can also be used to predict the effect of
ubgrid variations that have not been simulated directly. 

To create a robust method of calibration, we make use of ma-
hine learning, specifically Gaussian process emulators. Instead of
mulating the effects of changes in the cosmological parameters,
hich is becoming a common application of machine learning in

osmology, we emulate the observables that we want to match
o observations as a function of a set of subgrid parameters. For
hree different numerical resolutions, which span a factor of 64
n particle mass, we train an emulator on 32 input simulations
here we vary the four most impactful subgrid parameters, two
f which relate to stellar feedback and two of which relate to AGN
eedback (Section 2 ). In addition, we train an emulator for another
ntermediate-resolution implementation of AGN feedback, which
ses jets (i.e. directed kinetic feedback) instead of injecting the
eedback energy thermally. At each resolution, we run simulations
ith 360 3 gas particles, implying a (100 Mpc) 3 , (200 Mpc) 3 , and

400 Mpc) 3 volume for FLAMINGO high [m8], intermediate [m9],
nd low [m10] resolution, respectively. We then use MCMC to fit the
mulator to carefully selected observational data. We repeat the same
rocedure for each resolution, and only change the fitted mass ranges
o account for resolution and box size limitations. Additionally, we
ave created a set of subgrid physics implementations based on fitting
he emulators to the data after systematically shifting it by N σ . 

We calibrate to the observed low-redshift galaxy SMF from the
AMA surv e y and a compilation of group and cluster gas fraction
easurements based on X-ray and weak-lensing data. A no v el aspect

f our approach is that we also fit for possible observational biases
i.e. systematic errors). We account for biases in the stellar mass and
he cluster mass inferred from X-ray data under the assumption of
SE, as well as for the effect of cosmic variance on the SMF. In

ddition, we account for the effect of random errors in the observed
tellar mass on the SMF (i.e. Eddington bias) by randomly perturbing
he simulated stellar masses(Section 3 ). The observational biases
re only fit during the calibration of the intermediate-resolution
imulations and the best-fitting values are then also applied to the
ther resolutions. 
Our main conclusions are as follows: 

(i) By carefully setting up the subgrid parameter space, we were
ble to train emulators that are more accurate than the target
bservational constraints (Fig. 3 ). 
(ii) The emulator framework enables simultaneously fitting for

ubgrid parameters and observational biases. For FLAMINGO, the
osteriors found for the biases are driven by and in agreement with
he priors. We find a negligible value for the stellar mass and cosmic
ariance error, and a hydrostatic bias of b HSE = 0.743. 

(iii) Emulators can be used to make parameter sweeps, i.e. plots
ho wing ho w the trained relation depends on the value of a single
ubgrid parameter (Fig. 4 ). As the emulators give the continuous
esponse of the trained relation to changes in subgrid parameters,
mulators can be used to gain a deeper understanding of how the
bservable relations are affected by the subgrid models. 
(iv) The parameter space that we explore is devoid of major de-

eneracies between the subgrid parameters. The emulator + MCMC
ramework finds a single best-fitting solution (Fig. 5 ). We note
hat this is partially by construction, as parameters that had major
egeneracies were omitted from the parameter space (see Section 2 ).
or future work, it might be interesting to see if these degeneracies
an be solved by fitting the model to additional observational data. 
NRAS 526, 6103–6127 (2023) 
(v) At each resolution, we find excellent agreement between the
est-fitting model and the calibration data (Fig. 6 ). 
(vi) The emulator framework can be used to map observational

ncertainties onto changes in subgrid parameters. By fitting the
mulator to variations in gas fractions and the SMF, we produce
 set of simulations for which specific observables are varied while
eeping others constant (Fig. 7 ). As the model variations are directly
ied to observations, the resulting simulations can be used to quantify
he effect of uncertainties in the calibration data on the predictions
or other observables. 

(vii) We used the emulator framework to calibrate a different
mplementation of the model, which we did for kinetic AGN feedback
in contrast with the thermal AGN feedback used our fiducial model;
ig. 7 ). By making different models match the same calibration
bservations, the simulations can be used to quantify the uncertainty
n predictions for other observables due to uncertainties in the
nderlying physics. 

We have used Gaussian process emulators to create a close
ink between subgrid models and observations. By creating a ro-
ust statistical framework for calibration, future hydrodynamical
imulations will be able to use available and upcoming data to
onstrain the subgrid physics and to quantify the uncertainty in
he predictions of simulations that remains after the models have
een constrained to fit particular sets of data. In this work, we have
ocused on calibrating simulations using different resolutions, and
 single variation of the implementation of AGN feedback. For
uture work, the same framework could be used to get agreement
etween different simulation codes and subgrid models for specific
bservables. In this way, we could impro v e our understanding of the
egeneracies between different methods and the uncertainties in their 
redictions. 
In the companion paper (Schaye et al. 2023 ), we present the large-

olume FLAMINGO simulations that use the calibrated parameter
alues that we obtained here. More information on and visualizations
f the FLAMINGO simulations can be found on the website. 9 
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Figure A1. The effect on the SMF of choosing a different aperture when 
measuring stellar masses in the simulation. For each line, we set up a new 

emulator based on the simulation results for the corresponding aperture. Each 
emulator is then used to predict the behaviour at the best-fitting parameter 
values for the fiducial 50-kpc aperture. Differences between the apertures 
start to occur abo v e a stellar mass of 10 11 M �. 

t  

a  

l  

t  

a  

a  

e  

m  

D  

r

A
L

T  

a  

s  

h  

fi  

i  

o
 

F  

b  

fi  

d  

a  

i  

t  

s  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/4/6103/7291940 by U
niversiteit Leiden - LU

M
C

 user on 21 February 2024
ulroy S. L. et al., 2019, MNRAS , 484, 60 
icastro F. et al., 2018, Nature , 558, 406 
h B. K. , An H., Shin E.-j., Kim J.-h., Hong S. E., 2022, MNRAS , 515, 693
akmor R. et al., 2022, MNRAS , 524, 2539 
earson R. J. et al., 2017, MNRAS , 469, 3489 
illepich A. et al., 2018, MNRAS , 473, 4077 
lanck Collaboration VI , 2020, A&A , 641, A6 
loeckinger S. , Schaye J., 2020, MNRAS , 497, 4857 
ratt G. W. et al., 2010, A&A , 511, A85 
asmussen C. E. , Williams C. K. I., 2006, Gaussian Processes for Machine

Learning. MIT Press Ltd, Cambridge, MA 

asmussen C. , Bousquet O., Luxburg U., R ̈atsch G., 2004, Advanced Lectures
on Machine Learning: ML Summer Schools 2003, 3176, Springer, Berlin,
Heidelberg 

asmussen J. , Ponman T. J., 2009, MNRAS , 399, 239 
ezzolla L. , Barausse E., Dorband E. N., Pollney D., Reisswig C., Seiler J.,

Husa S., 2008, Phys. Rev. D , 78, 044002 
ichings A. J. , Schaye J., 2016, MNRAS , 458, 270 
iess A. G. et al., 2022, ApJ , 934, L7 
odrigues L. F. S. , Vernon I., Bower R. G., 2017, MNRAS , 466, 2418 
alcido J. , McCarthy I. G., Kwan J., Upadhye A., Font A. S., 2023, MNRAS ,

523, 2247 
anderson A. J. R. , O’Sulli v an E., Ponman T. J., Gonzalez A. H., Si v anandam

S., Zabludoff A. I., Zaritsky D., 2013, MNRAS , 429, 3288 
challer M. , Gonnet P ., Draper P . W., Chalk A. B. G., Bower R. G., Willis

J., Hausammann L., 2018, Astrophysics Source Code Library, record
ascl:1805.020 

challer M. et al., 2023, preprint ( arXiv:2305.13380 ) 
chaye J. , Dalla Vecchia C., 2008, MNRAS , 383, 1210 
chaye J. et al., 2010, MNRAS , 402, 1536 
chaye J. et al., 2015, MNRAS , 446, 521 
chaye J. et al., 2023, preprint ( arXiv:2306.04024 ) 
chneider A. , Teyssier R., 2015, J. Cosmol. Astropart. Phys. , 2015,

049 
chneider A. , Stoira N., Refregier A., Weiss A. J., Knabenhans M., Stadel J.,

Teyssier R., 2020, J. Cosmol. Astropart. Phys. , 2020, 019 
emboloni E. , Hoekstra H., Schaye J., van Daalen M. P., McCarthy I. G.,

2011, MNRAS , 417, 2020 
emboloni E. , Hoekstra H., Schaye J., 2013, MNRAS , 434, 148 
mith G. P. et al., 2016, MNRAS , 456, L74 
pringel V. , 2005, MNRAS , 364, 1105 
un M. , Voit G. M., Donahue M., Jones C., Forman W., Vikhlinin A., 2009,

ApJ , 693, 1142 
urner M. S. , 2022, Annu. Rev. Nucl. Part. Sci. , 72, 1 
an Daalen M. P. , Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS ,

415, 3649 
an Daalen M. P. , McCarthy I. G., Schaye J., 2020, MNRAS , 491, 2424 
elliscig M. , van Daalen M. P., Schaye J., McCarthy I. G., Cacciato M., Le

Brun A. M. C., Dalla Vecchia C., 2014, MNRAS , 442, 2641 
ernon I. , Goldstein M., Bower R., 2014, Stat. Sci. , 29, 81 
ikhlinin A. , Kravtsov A., Forman W., Jones C., Markevitch M., Murray S.

S., Van Speybroeck L., 2006, ApJ , 640, 691 
illaescusa-Navarro F. et al., 2021, ApJ , 915, 71 
endland H. , 1995, Adv. Comput. Math. , 4, 389 
iersma R. P. C. , Schaye J., Theuns T., Dalla Vecchia C., Tornatore L., 2009,

MNRAS , 399, 574 
right A. H. et al., 2017, MNRAS , 470, 283 

PPENDIX  A :  DIFFERENT  APERTURES  

ig. A1 compares the SMF results for different choices of 3D
pertures with radii of 30, 50 (our fiducial aperture), and 100 kpc.
or each non-fiducial aperture, we retrain the emulator on the SMFs
btained with the different aperture. The new emulator, based on a
ifferent aperture, is then evaluated at the fiducial subgrid parameter
alues. We do not refit the SMF for each aperture, because we wish
NRAS 526, 6103–6127 (2023) 
o quantify the effect of the aperture size on the SMF predicted by
 given simulation. The choice of aperture only has an impact at the
argest stellar masses (see also Schaye et al. 2015 ). For our analysis,
his implies that the main effect of an increase in aperture would be
 slight increase in the slope of the density dependence of the AGN
ccretion rate boost factor. Ho we ver, for the fitted mass range, this
f fect is relati vely small. The ef fect of using a mass measurement
ethod more similar to that used by observers may be larger (e.g.
e Graaff et al. 2022 ), but such a comparison is not feasible at the

esolution of our simulations. 

PPENDI X  B:  POSTERI ORS  F O R  H I G H  A N D  

OW  R E S O L U T I O N S  

he posteriors for low resolution are shown in Fig. B1 . There is
 de generac y between the two parameters. Both parameters are
ampled well within our chosen ranges. Even though the range for the
eating temperature is much wider than for the other resolutions, we
nd that the best-fitting value is in the range where AGN feedback

s well sampled, and does not suffer from catastrophic numerical
 v ercooling (see Section 2.3 ). 
The posteriors for the high-resolution simulation are shown in

ig. B2 . Similar to the intermediate-resolution posteriors, we find a
est-fitting model within the chosen parameter ranges. The best-
tting value for βBH is quite close to the edge, partly due to a
e generac y between βBH and �v SN . The high-resolution posteriors
re more degenerate than for the intermediate resolution. This
s likely due to the fact that we fit a much broader range of
he SMF, making it more important to get the balance between
tellar and AGN feedback right. The posteriors show that there
re some significant degeneracies in how this problem can be
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Figure B1. The posterior distributions of the model parameters resulting 
from fitting the emulator for low-resolution simulations to the observed 
SMF and cluster gas fractions. The parameters shown are the AGN feedback 
temperature jump � T AGN and the logarithmic slope of the density dependence 
of the BH accretion rate boost factor, βBH . The two subgrid parameters are 
described in Section 2 . The black contours show the 68 and 95 per cent 
CLs. The panels along the diagonal show the one dimensional probability 
density for each parameter. In these plots, the three vertical lines indicate the 
16th, 50th, and 84th percentiles. The solid, red circle indicate the maximum- 
likelihood values, which were used for the fiducial model. There is some 
de generac y, but there is a clear single best-fitting solution. 
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olved. Note that for both high and low resolutions, we have 
xed the biases to the values for the intermediate resolution, see 
ection 6.2 . 
MNRAS 526, 6103–6127 (2023) 
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M

Figure B2. The posterior distributions of the model parameters resulting from fitting the emulator for high-resolution simulations to the observed SMF and 
cluster gas fractions. The parameters shown are the stellar feedback energy, f SN , the stellar feedback kick velocity, �v SN , the AGN feedback temperature jump, 
� T AGN and the logarithmic slope of the density dependence of the BH accretion rate boost factor, βBH . The four subgrid parameters are described in Section 2 . 
The black contours show the 68 and 95 per cent CLs. The panels along the diagonal show the one dimensional probability density for each parameter. In these 
plots, the three vertical lines indicate the 16th, 50th, and 84th percentiles. The solid, red circles indicate the maximum-likelihood values, which were used for 
the fiducial model. The results show some moderate degeneracies, but the individual parameters each have a clear peak close to the best-fitting values. 
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PPENDIX  C :  PARAMETER  R A N G E S  F O R  T H E  

G N  J E T  M O D E L  

he subgrid parameter ranges for the Latin hypercube that was used 
o train the emulators for the AGN jet model can be found in Table C1 .
2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
able C1. Subgrid parameter ranges for the Latin hypercube used to train
he jet model emulators. 

arameter Prior 

 SN [0.0,0.5] 
v SN (km s −1 ) [10 2.3 , 10 3 ] 

 jet (km s −1 ) [10 2.7 , 10 3.5 ] 

BH [0.1,0.7] 
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