

Connecting CO-to-H2 conversion factors to molecular gas properties in nearby barred galaxy centers

Teng, Y.-H.; Sandstrom, K.; Sun, J.; Leroy, A.; Johnson, L.; Bolatto, A.; ... ; Walter, F.

Citation

Teng, Y.-H., Sandstrom, K., Sun, J., Leroy, A., Johnson, L., Bolatto, A., ... Walter, F. (2023). Connecting CO-to-H2 conversion factors to molecular gas properties in nearby barred galaxy centers. *Bulletin Of The American Astronomical Society*, 155.04. Retrieved from https://hdl.handle.net/1887/3719058

Version:Publisher's VersionLicense:Creative Commons CC BY 4.0 licenseDownloaded from:https://hdl.handle.net/1887/3719058

Note: To cite this publication please use the final published version (if applicable).

Bulletin of the AAS • Vol. 55, Issue 2

Connecting CO-to-H₂ Conversion Factors to Molecular Gas Properties in Nearby Barred Galaxy Centers

Yu-Hsuan Teng¹ Karin Sandstrom¹ Jiayi Sun² Adam Leroy² L. Johnson³ Alberto Bolatto⁴ Diederik Kruijssen⁵ Andreas Schruba⁶ Antonio Usero⁷ Ashley Barnes⁸ Frank Bigiel⁸ Guillermo Blanc⁹ Brent Groves¹⁰ Frank Israel¹¹ Daizhong Liu⁶ Erik Rosolowsky¹² Eva Schinnerer¹³ John-David Smith¹⁴ Fabian Walter¹³ PHANGS Team

¹University of California San Diego, ²Ohio State University, ³Northwestern University,
⁴University of Maryland, College Park, ⁵University of Heidelberg,
⁶Max-Planck-Institut Für Extraterrestrische Physik, ⁷Observatorio Astronómico Nacional (IGN),
⁸University of Bonn, ⁹Carnegie Observatories, ¹⁰University of Western Australia,
¹¹Leiden University, ¹²University of Alberta, ¹³MPIA, ¹⁴University of Toledo

Published on: Jan 31, 2023 URL: <u>https://baas.aas.org/pub/2023n2i155p04</u> License: <u>Creative Commons Attribution 4.0 International License (CC-BY 4.0)</u> The CO-to-H₂ conversion factor (α_{CO}) is central to measuring the amount and properties of molecular gas. However, α_{CO} is known to vary with environmental conditions, and previous kpc-scale studies have revealed 5-10 times lower α_{CO} in the centers of some nearby barred galaxies, including NGC 3351, NGC 3627 and NGC 4321. We present ALMA Band 3, 6, and 7 observations toward the inner ~2 kpc of these galaxies tracing ¹²CO, ¹³CO, and C¹⁸O lines on ~100 pc scales. Using multi-line radiative transfer modeling and Bayesian likelihood analysis, we constrain molecular gas properties and α_{CO} on a pixel-by-pixel basis. A 2-10 times lower-than-Galactic α_{CO} value is found in most regions, and there is a strong correlation between α_{CO} and low- $J^{12}CO$ optical depths which dominate the α_{CO} variation in all three centers. The galaxy nuclei within the inner ~300 pc tend to show enhanced temperature, density, and velocity dispersion that may drive distinct α_{CO} in those regions. We find that the observed CO/¹³CO (2-1) line ratio generally reflects changes in CO optical depth, and thus it may be a useful observational tracer for α_{CO} variation in galaxy centers. We also test current simulation-based α_{CO} prescriptions on these centers and find rough agreement in most regions, while clear discrepancy is seen in the inflows and nuclei with strong dynamical features.