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A B S T R A C T 

Fluctuations in L yman- α (L y α) forest transmission towards high- z quasars are partially sourced from spatial fluctuations in 

the ultraviolet background, the level of which are set by the mean free path of ionizing photons ( λmfp ). The autocorrelation 

function of Ly α forest flux characterizes the strength and scale of transmission fluctuations and, as we show, is thus sensitive 
to λmfp . Recent measurements at z ∼ 6 suggest a rapid evolution of λmfp at z > 5.0 which would leave a signature in the 
evolution of the autocorrelation function. For this forecast, we model mock Ly α forest data with properties similar to the 
XQR-30 extended data set at 5.4 ≤ z ≤ 6.0. At each z, we investigate 100 mock data sets and an ideal case where mock data 
matches model values of the autocorrelation function. For ideal data with λmfp = 9.0 cMpc at z = 6.0, we reco v er λmfp = 12 

+ 6 
−3 

cMpc. This precision is comparable to direct measurements of λmfp from the stacking of quasar spectra beyond the Lyman limit. 
Hypothetical high-resolution data leads to a ∼ 40 per cent reduction in the error bars o v er all z. The distribution of mock values 
of the autocorrelation function in this work is highly non-Gaussian for high- z, which should caution work with other statistics 
of the high- z Ly α forest against making this assumption. We use a rigorous statistical method to pass an inference test, ho we ver 
future work on non-Gaussian methods will enable higher precision measurements. 

Key w ords: (cosmolo gy:) dark ages, reionization, first stars – (galaxies:) intergalactic medium – (galaxies:) quasars: absorption 

lines – methods: statistical. 
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.  I N T RO D U C T I O N  

he neutral hydrogen in the intergalactic medium (IGM) was reion-
zed by the first luminous sources during the epoch of reionization.
his period was one of the most dramatic changes in the history of

he Universe. Current Planck constraints from the cosmic microwave
ackground put the midpoint of reionization at z re = 7.7 ± 0.7
Planck Collaboration VI 2020 ). There have also been multiple
easurements that suggest reionization was not completed until

fter z ≤ 6 (Fan et al. 2006 ; Becker et al. 2015 , 2018 ; Bosman
t al. 2018 , 2022 ; Eilers, Davies & Hennawi 2018 ; Boera et al. 2019 ;
ung et al. 2020 ; Kashino et al. 2020 ; Yang et al. 2020 ; Morales et al.
021 ). Ho we ver, much is still unknown about this process such as
he exact timing, the impact on the thermal state of the IGM, the
riving sources, and the number of photons that must be produced to
omplete reionization. 

Characterizing the IGM both during and immediately after
eionization will give vital information to answer these remaining
uestions. Of particular interest is the average distance that the
onizing photons travel through the IGM before interacting with
ts neutral hydrogen – also known as the mean free path of ionizing
 E-mail: mawolfson@ucsb.edu 

m  

R  

o  

Pub
hotons, λmfp . The end of reionization results in a rapid increase in
mfp as the initially isolated regions of ionized hydrogen o v erlap to
orm a mostly ionized universe (Gnedin 2000 ; Gnedin & Fan 2006 ;

yithe, Bolton & Haehnelt 2008 ; D’Aloisio et al. 2018 ; Kulkarni
t al. 2019 ; Keating et al. 2020a , b ; Nasir & D’Aloisio 2020 ; Cain
t al. 2021 ; Gnedin & Madau 2022 ). Detecting this rapid increase is
herefore a clear signal of the end of reionization. 

Direct measurements of λmfp at z ≤ 5.2 have been achieved from
tacked quasar spectra (Prochaska, Worseck & O’Meara 2009 ; Fuma-
alli et al. 2013 ; O’Meara et al. 2013 ; Worseck et al. 2014 ). Using a
imilar method, Becker et al. ( 2021 ) recently reported measurements
f λmfp = 9 . 09 + 1 . 62 

−1 . 28 proper Mpc at z = 5.1 and λmfp = 0 . 75 + 0 . 65 
−0 . 45 

roper Mpc at z = 6. This value at z = 6 is significantly smaller than
xtrapolations from previous lower z measurements (Worseck et al.
014 ), causes tension with measurements of the ionizing output from
alaxies (Cain et al. 2021 ; Davies et al. 2021 ), and also suggests
 roughly 12-fold increase in λmfp between z = 6 and z = 5.1,
otentially signalling the end of reionization. An alternative method
resented in Bosman ( 2021 ) used lower limits on individual free
aths towards high- z sources to place a 2 σ limit of λmfp > 0.31
roper Mpc at z = 6.0. This Bosman ( 2021 ) method is similar to other
easurements using individual free paths (Songaila & Cowie 2010 ;
udie et al. 2013 ; Romano et al. 2019 ). Additional independent meth-
ds of measuring λmfp are necessary to verify these measurements.
© 2023 The Author(s) 
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f particular interest are methods that can be used at several redshift
ins at z > 5 in order to study the evolution of λmfp in finer detail. 
In this paper, we investigate using the autocorrelation function of 

y α forest flux in high- z quasar sightlines to constrain λmfp . The
y α opacity, τLy α , is related to λmfp via τLy α = n HI σLy α ∝ 1 / � HI ∝
 /λα

mfp where α is typically between 3/2 and 2 (see e.g. Rauch 
998 ; Haardt & Madau 2012 ). Additionally, during reionization the 
xistence of significant neutral hydrogen in the IGM will cause a short 
ean free path value to also result in large spatial fluctuations in the

ltraviolet background (UVB). This is because, during reionization 
onizing photons are produced from the first sources and then quickly 
bsorbed by the remaining neutral hydrogen. Thus there are large 
alues of the UVB where the photons are produced and very small
alues where neutral hydrogen remains. If the mean free path is
arge, photons will travel further and ef fecti vely smooth the UVB
Mesinger & Furlanetto 2009 ). The positive fluctuations in the UVB 

n small scales that accompany a short mean free path would then
oost the flux of the Ly α forest on small scales, which could then
e detected in the autocorrelation function. Various previous studies 
av e inv estigated the effect of large-scale variations in the UVB on
he autocorrelation function and power spectrum of the Ly α forest 
Zuo 1992a , b ; Croft 2004 ; Meiksin & White 2004 ; McDonald et al.
005 ; Gontcho A Gontcho, Miralda-Escud ́e & Busca 2014 ; Pontzen
014 ; Pontzen et al. 2014 ; D’Aloisio et al. 2018 ; Meiksin & McQuinn
019 ; O ̃ norbe et al. 2019 ). Our work is focused on determining if
he effect of the fluctuating UVB on the autocorrelation function can 
ead to a constraint on λmfp . 

While the power spectrum has been a more popular statistic 
sed on the high- z Ly α forest to date (Boera et al. 2019 ; Walther
t al. 2019 ; Gaikwad et al. 2021 ), the autocorrelation function has
 few characteristics that make it easier to work with than the
ower spectrum. The two most obvious are the effect of noise and
asking on the autocorrelation function when compared to the power 

pectrum. Astronomical spectrograph noise is expected to be white 
r uncorrelated. Uncorrelated noise only impacts the autocorrelation 
unction at zero lag, since at all other lags the uncorrelated noise
ill average to zero. Therefore, by not measuring the autocorrelation 

t zero lag we have fully remo v ed the effect of white noise. On the
ther hand, white noise is a constant positive value at all scales for the
ower spectrum. Thus the unknown noise level must be calculated 
nd subtracted from power spectrum measurements which will add 
dditional uncertainty to the final measurement. Additionally, real 
ata often has regions of spectra that need to be removed from the
uasar spectrum (e.g. for metal lines). Masking out these and other 
egions introduces a complicated window function to the power 
pectrum that must be corrected for (see e.g. Walther et al. 2019 )
nd will again increasing the uncertainty in the measurement. The 
utocorrelation function does not require a similar correction since 
asking only result in fewer points in bins for certain lags. 
The structure of this paper is as follows. We discuss our simulation

ata in Section 2 . The autocorrelation function and our other 
tatistical methods are described in Section 3 . We then discuss our
esults in Section 4 and summarize in Section 5 . Here, we also touch
n how additional work on modelling λmfp in simulations as well as
etter statistical methods will impro v e these constraints. 

.  SIMULA  T I O N  DA  TA  

.1 Models 

n this work, we use a simulation box run with Nyx code (Almgren
t al. 2013 ). Nyx is a hydrodynamical simulation code that was
esigned for simulating the Ly α forest with updated physical rates 
rom Luki ́c et al. ( 2015 ). The Nyx box has a size of L box = 100 cMpc
 

−1 with 4096 3 dark matter particles and 4096 3 baryon grid cells.
his box is reionized by a Haardt & Madau ( 2012 ) uniform UVB that

s switched on at z ∼ 15. We have two snapshots of this simulation
t z = 5.5 and z = 6. In this work, we want to consider these models
t seven redshifts: 5.4 ≤ z ≤ 6 with �z = 0.1. In order to consider
he redshifts for which we do not have a simulation output, we select
he nearest snapshot and use the desired redshift when calculating 
he proper size of the box and the mean density. This means we use
he density fluctuations, temperature, and velocities directly from 

he nearest Nyx simulation output. We additionally used the z = 6.0
imulation snapshot to generate lo w-resolution ske wers at z = 5.7
nd found no significant change in our finally results, confirming that
sing the nearest simulation snapshot in this way is sufficient. 
We also have separate boxes of fluctuating � HI values generated 

ith the seminumerical method of Davies & Furlanetto ( 2016 ). These 
ox es hav e a size L box = 512 cMpc and 128 3 pix els. We hav e one
napshot of these � HI boxes at z = 5.5. To get the flux skewers used
n this work, we combine random skewers of � HI from these UVB
oxes with the skewers from the Nyx box. The UVB box es hav e a
ifferent resolution than the Nyx box, to generate a skewer of � HI 

alues we randomly selected a starting location and direction in the
VB box then linearly interpolated the log ( � HI ) values onto the

ame length and resolution as the Nyx skewers. 
The method of Davies & Furlanetto ( 2016 ) allows for a spatially

arying mean free path generated from fluctuations in the density of
he sources of ionizing radiation with λ ∝ � 

2 / 3 
HI � 

−1 , for λ, the local
ean free path, and � , the local matter density. These simulations

re scaled such that the mean value 〈 λ〉 = λmfp as desired. A brief
ummary of the Davies & Furlanetto ( 2016 ) method is as follows.
osmological initial conditions, independent of those from the 100- 
Mpc h −1 Nyx boxes, were generated for the 512 cMpc box and
volved to z = 5.5 via the Zel’dovich approximation (Zel’dovich 
970 ). Haloes were created via the approach of Mesinger & Furlan-
tto ( 2007 ) down to a minimum halo mass of M min = 2 × 10 9 M �.
he ionizing luminosity of galaxies corresponding to each halo 
ere determined following two steps: First the UV luminosities of 
alaxies were assigned by abundance matching to the Bouwens et al.
 2015 ) UV luminosity function and then the ionizing luminosity of
ach galaxy was assumed to be proportional to its UV luminosity
here the constant of proportionality is left as a free parameter. The

onizing background radiation intensity, J ν , is then computed by a
adiative transfer algorithm. The photoionization rate, � HI , is finally 
alculated by integrating over J ν . For more details on the method see
avies & Furlanetto ( 2016 ), Davies et al. ( 2018 ), or Davies et al.

in preparation) where they also use this stitching procedure. Note 
hat this method of generating UVB fluctuations ignores the effect 
f correlations between the baryon density in the Nyx boxes and the
VB. This is sufficient for the aims of this work but see Section 3.2

or a discussion on the effects of ignoring these correlations on the
esulting autocorrelation function and therefore future measurements 
f λmfp from real data. 
Example slices through the UVB boxes for four values of λmfp 

re shown in Fig. 1 with a lo wer cutof f of log ( � HI / 〈 � HI 〉 ) = −1 for
isual purposes. The top-left box shows a slice of � HI for the UVB
imulation with the shortest λmfp = 5 cMpc and has the greatest
uctuations. The bottom-right box shows a slice of � HI for the UVB
imulation with the longest λmfp = 150 cMpc and has the weakest
uctuations. This follows since o v erall longer λ values means that
hotons travel further and ef fecti vely smooth the UVB over these
arge scales. 
MNRAS 521, 4056–4073 (2023) 
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Figure 1. Each quadrant of this figure shows a slice through the box of the 
z = 5.5 UVB model used for four example values of λmfp (5, 15, 50, and 
150 cMpc). The colour bar is cut off at log ( � HI / 10 −12 s −1 ) = −1 in order to 
better visualize the differences between the models. The models with smaller 
λmfp v alues sho w greater v ariation in the UVB than those with larger λmfp , 
as expected. 

Figure 2. The blue triangles and orange squares sho w pre vious measure- 
ments of λmfp at high- z from Becker et al. ( 2021 ) and Worseck et al. ( 2014 ), 
respectively. The green limit is from Bosman ( 2021 ). Additionally, the dotted 
line shows the results of the power-law fit to data from z = 2–5 from Worseck 
et al. ( 2014 ). For this work, we modified this power-law fit into a double 
power law using the same low- z scaling by eye in order to agree with the 
Becker et al. ( 2021 ) points. This new scaling is shown by the dot–dashed 
line. We used this double power law as an example redshift evolution of λmfp , 
where the values we modelled are shown as black circles. 
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Table 1. This table lists several relevant parameters for our 
simulations and mock data set. The second column lists 
the ‘true’ values of the redshift-dependent λmfp calculated 
from equation ( 1 ). The third column gives the true values of 
〈 F 〉 at each z from Bosman et al. ( 2022 ). These 〈 F 〉 values 
are the central value for the grid of values considered. The 
final column contains the number of quasar sightlines we 
modelled for one mock data set, which is the data set size in 
Bosman et al. ( 2022 ). These sightlines each have a length of 
�z = 0.1. 

z λmfp (cMpc) 〈 F 〉 # QSOs 

5.4 39 0.0801 64 
5.5 32 0.0591 64 
5.6 26 0.0447 59 
5.7 20 0.0256 51 
5.8 16 0.0172 45 
5.9 12 0.0114 28 
6.0 9 0.0089 19 
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We ran UVB boxes for 14 values of λmfp (in cMpc): 5, 6, 8, 10,
5, 20, 25, 30, 40, 50, 60, 80, 100, and 150. To generate UVB boxes
or additional values of λmfp we linearly interpolated the log ( � HI )
alues at each location in the box between the two UVB boxes with
he nearest λmfp values. This was done for three linearly spaced
alues between each existing λmfp values, resulting in a total of 53
VB boxes. 
To model a hypothetical evolution of λmfp as a function of redshift

e used the double power law shown as the dot–dashed line shown
n Fig. 2 . This double power la w was fit by e ye with the following
wo considerations. We fixed the low- z behaviour to the power-
aw fit from Worseck et al. ( 2014 ) for z < 5: λmfp ( z) = (37 ±
) h 

−1 
70 [(1 + z) / 5] −5 . 4 ±0 . 5 Mpc (proper). We also required consistency

ith the new measurements at higher z from Becker et al. ( 2021 ).
NRAS 521, 4056–4073 (2023) 
he resulting double power law is 

mfp ( z) = 

37 h 

−1 
70 

(
5 

6 . 55 

)5 . 4 

(
1 + z 
6 . 55 

)5 . 4 + 

(
1 + z 
6 . 55 

)25 . 5 Mpc (proper). (1) 

e then e v aluated equation ( 1 ) at centre of the seven redshift bins
e considered and rounded to the nearest integer. The resulting true
odel λmfp values are listed in Table 1 and are plot as the black circles

n Fig. 2 . If these values were already in our set of 53 models then
othing else was done. If not, we linearly interpolated the value of
og ( � HI ) at each point in the UVB simulation box between the two
VB boxes with the closest values of λmfp to get the final desired
VB box. This ultimately caused some redshifts to have 53 models
f λmfp while others have 54. To generate the final flux skewers, we
alculated the optical depths assuming a constant UVB then rescaled
mfp = τ const. /( � HI / 〈 � HI 〉 ). The z = 5.5 values of � HI are used when
enerating flux skewers at all redshifts. This is justified because the
alue of λmfp is more important than the redshift evolution of the bias
f the source population between 5 ≤ z ≤ 6 (Furlanetto et al. 2017 ).
The o v erall av erage of � HI calculated in the UVB fluctuation

imulations is not uniquely determined since this originates from
omplicated g alaxy ph ysics. Thus, we force the average mean flux,
 F 〉 , to be the same for each model where the average is taken o v er
ll flux skewers considered. This is achieved by calculating a con-
tant, a , such that 〈 e −a τ 〉 = 〈 F 〉 . Additionally, we want to consider
ow changes in 〈 F 〉 would affect the autocorrelation function and
etermine if there is a de generac y with λmfp . Therefore, we create a
rid of nine values of 〈 F 〉 at each redshift. We chose the central value
f 〈 F 〉 for a grid from Bosman et al. ( 2022 ) and chose the range of
alues to keep 〈 F 〉 > 0 while not running into boundary issues during
ur inference. 

.2 Comparison of flux skewers 

e drew 1000 skewers from the Nyx simulation and 1000 indepen-
ent skewers of � HI from the UVB boxes to use in this work. One
xample flux skewer, which combines the Nyx simulation skewer
nd the � HI values from the UVB boxes, at z = 5.4 is shown in
ig. 3 for three different values of λmfp all normalized to 〈 F 〉 =
.0801. The bottom panel of this figure shows the corresponding
VB skewers that were used to calculate the flux. Two-dimensional

2D) slices of the UVB boxes these skewers came from are shown
n Fig. 1 . The model shown with the shortest λmfp , 5 cMpc (blue),

art/stad701_f1.eps
art/stad701_f2.eps
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Figure 3. This figure shows the flux for one skewer of our simulation at z = 5.4 with different values of λmfp all normalized to 〈 F 〉 = 0.0801 in the top panel. 
The bottom panel shows the corresponding UVB skewer used to calculate the flux. Smaller λmfp values (such as λmfp = 5 cMpc in blue) has greater variations 
in � HI while the larger λmfp values (such as λmfp = 150 cMpc in green) are more uniform. Larger values of � HI leads to increased flux in that region which can 
be seen when comparing the two panels. Consider �v = −2000 km s −1 , here λmfp = 5 cMpc model (blue) has a peak in � HI . The corresponding flux is boosted 
when compared to the other models. Additionally, for λmfp = 5 cMpc (blue) the � HI values are very small for �v ≥ 0 km s −1 resulting in F ∼ 0. 
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esults in the greatest variation of � HI / 〈 � HI 〉 . In particular, note that
t �v = −2000 km s −1 , the λmfp = 5 cMpc model (blue) has a peak
n � HI and the corresponding flux is boosted when compared to the
ther models. Additionally, for λmfp = 5 cMpc (blue) the � HI values 
re very small for �v ≥ 0 km s −1 resulting in F ∼ 0. The model
ith the largest λmfp , 150 cMpc (green), shows a mostly uniform 

 HI skewer throughout the whole velocity range leading to more 
onsistent flux levels. 

.3 Forward modelling 

or this work, we aim to model the resolution, noise, and size
roperties of a realistic data set. We first chose to model a simplified
ersion of the XQR-30 (main and extended) data set. 1 The main 
QR-30 data set consists of 30 spectra of the brightest z > 5.8
uasars observed with VLT/X-shooter (Vernet et al. 2011 ). These 
pectra are supplemented with an extended data set consisting of 
2 archi v al X-shooter spectra with comparable signal-to-noise ratio 
SNR). See D’Odorico (in preparation) for additional information on 
hese data. For this work, we specifically model properties similar to 
he data set of Bosman et al. ( 2022 ) which consists of the extended
QR-30 data supplemented with additional archi v al X-Shooter data 

nd archi v al K eck/ESI spectra which have a lo wer resolution than
he X-shooter spectra. 

For our simplified modelling, we use the resolving power of X- 
hooter for visible light with a 0.9-arcsec slit, so R = 8800. We also
se a typical SNR per 10 km s −1 pixel (SNR 10 ) of SNR 10 = 35.9,
hich is the median of all the data presented in Bosman et al. ( 2022 ).
dditionally, we investigate how higher resolution data with access 

o smaller scales in the Ly α forest would impact measurements of
 https:// xqr30.inaf.it/ 

 

fl  

λ  

v  
mfp from the autocorrelation function. To achieve this, we consider 
 ‘high-resolution’ data set with the same SNR 10 and size properties
s the ‘low-resolution’ ( R = 8800) data set but with R = 30 000.
his resolution is achie v able with instruments such as Keck/HIRES,
LT/UVES, and Magellan/MIKE though the number of sightlines 

nd noise properties used here do not represent a high-resolution data
et currently in existence. 

We model the resolution by smoothing the flux by a Gaussian filter
hen after smoothing we re-sampled such that there are four pixels
er resolution element, where the resolution element is the full width
t half-maximum (FWHM). This means, for the low-resolution data 
et, we smoothed by a Gaussian filter with FWHM ≈ 34 km s −1 then 
e-sampled so the pixel size was �v = 8 . 53 km s −1 . For the high-
esolution data set, we smoothed by a Gaussian filter with FWHM =
0 km s −1 then re-sampled so the pixel size was �v = 2 . 5 km s −1 . 
As stated abo v e, we modelled an SNR 10 = 35.9. Using SNR �v =

NR 10 

√ 

�v/ 10 km s −1 , this corresponds to an SNR of 33.2 per 
.53 km s −1 low-resolution pixel and an SNR of 18.0 per 2.5 km s −1 

igh-resolution pix el. F or simplicity, we add flux-independent noise 
n the following way. We generate one realization of random noise
rawn from a Gaussian with σ N = 1/SNR �v for each SNR value and
dd this noise realization to every model at every redshift. The size
f each noise realization is the number of skewers created (1000) by
he number of pixels in the re-sampled flux skewers (1705 pixels for
ow resolution and 5814 pixels for high resolution). Using the same
oise realization o v er the dif ferent models pre vents stochasticity from
ifferent realizations of the noise from causing a noisy likelihood, 
hich means the likelihood will be smooth as a function of model
arameter. Thus, the noise modelling will not unduly, adversely affect 
he parameter inference. 

A section of one skewer for both the initial and forward-modelled
ux is shown in Fig. 4 . Both panels show a skewer at z = 5.4 with
mfp = 39 cMpc and 〈 F 〉 = 0.0801, our assumed true parameter
alues at this redshift. The initial flux in both panels is the same
MNRAS 521, 4056–4073 (2023) 
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Figure 4. Both panels show initial and forward-modelled flux from a skewer 
with λmfp = 39 cMpc and 〈 F 〉 = 0.0801 at z = 5.4. The initial flux is the 
same in both panels (red dashed line) while the forward modelled flux (black 
histogram) varies. The top panel shows the low-resolution flux with R = 8800, 
which represents XQR-30 data. The bottom panel shows the high-resolution 
flux with R = 30 000. Both of these resolutions have SNR 10 = 35.9 which 
leads to differing SNR �v as can be seen when comparing the two panels. 

a  

r  

T  

(  

t  

p
 

s  

l  

l  

t  

c  

5
l  

1  

f  

n  

p  

o  

p  

 

s  

r

3

3

T

ξ

w  

p  

T  

(

P

N  

s  

t  

t  

t  

u  

u  

w  

p  

a  

o  

 

f  

3  

c
2  

f  

f  

s  

t  

a  

v  

b  

m  

e

�

w  

d  

o  

m  

h  

e  

u  

A  

m
 

d  

w  

t  

f  

t  

e  

–  

m  

(  

s
(  

r  

a  

〈  

t  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/3/4056/7071911 by Bibliotheek Instituut M
oleculaire Plantkunde user on 21 February 2024
nd is shown as a red dashed line. The top panel shows the low-
esolution forward-modelled flux (black histogram) with R = 8800.
he bottom panel shows the high-resolution forward-modelled flux

black histogram) with R = 30 000. Again both of these panels have
he same SNR 10 = 35.9 which results in different noise levels per
ixel, as can be seen when comparing the two panels. 
We assume a fiducial data set size that matches the number of

ightlines reported in table 4 of Bosman et al. ( 2022 ) each with a
ength of �z = 0.1. The number of sightlines are reported in the
ast column of Table 1 where to total path-length considered is equal
o these values multiplied by �z = 0.1. Redshift bins of �z = 0.1
orrespond to distances of 33–29 cMpc h −1 when centred at z =
.4 to z = 6.0. Ho we ver, the Nyx simulation box is 100 cMpc h −1 

ong, much longer than these redshift bins. If we were to use the full
00 cMpc h −1 skewers in our calculation we would be averaging over
e wer ske wers to get the same total �z path. We wanted to use greater
umber independent skewers with more accurate lengths when com-
ared with observed Ly α forest regions. For simplicity, we split all
ur skewers into two 40 cMpc h −1 regions which we treated as inde-
endent, giving us an effective number of 2000 independent skewers.
Note that unless otherwise specified the plots in this work mainly

how results from the low resolution, R = 8800 data, since it
epresents existing XQR-30 data. 

.  M E T H O D S  

.1 Autocorrelation function 

he autocorrelation function of the flux ( ξF ( �v)) is defined as 

F ( �v) = 〈 F ( v) F ( v + �v) 〉 (2) 
NRAS 521, 4056–4073 (2023) 
here F ( v) is the flux of the Ly α forest and the average is
erformed o v er all pairs of pixels at the same velocity lag ( �v).
he autocorrelation function is related to the power spectral density
 P F ( k )) as 

 F ( k) = 〈 F 〉 −2 
∫ ∞ 

−∞ 

ξF ( �v ) e −ik�v d( �v ) . (3) 

ote that this implies that the autocorrelation function should be sen-
itive to the same physical parameters as the power spectrum. Addi-
ionally, the autocorrelation function has nice properties with respect
o white noise and spectral masks that make it a promising statistic
o measure. Conventionally, the flux contrast field, ( F − 〈 F 〉 )/ 〈 F 〉 , is
sed when measuring statistics of the Ly α forest. Here, we chose to
se the flux since 〈 F 〉 is small and has large uncertainties at high- z
here we are most interested in this measurement. Using the flux thus
revents us from dividing by a small number which would come from
n independent measurement and could potentially blow up the value
f the flux contrast. This leads to the factor of 〈 F 〉 −2 in equation ( 3 ).
For each resolution and model we compute the autocorrelation

unction with a bin size of one FWHM of the resolution (either
4 km s −1 or 10 km s −1 ) starting from this resolution size out to 20
Mpc h −1 (half the length of the skewer) which corresponds to ∼
900 km s −1 at z = 5.4. The model value of the autocorrelation
unction was determined by taking the average of the autocorrelation
unction o v er all 2000 forw ard-modelled sk ewers. Each mock data
et of the autocorrelation were calculated by taking an average over
he appropriate number of random skewers for the number of quasars
t that redshift from the initial 2000 forward-modelled skewers. The
alue of the autocorrelation function for small-scale bins is affected
y the finite resolution. This effect is left in both the models and the
ock data. We determine the errors on the models via the following

stimate of the covariance matrix from mock draws of the data: 

( ξmodel ) = 

1 

N mocks 

N mocks ∑ 

i= 1 

( ξ i − ξmodel )( ξ i − ξmodel ) 
T (4) 

here ξ i is the autocorrelation function calculated for the i th mock
ata set, ξmodel is the average value of the autocorrelation function
 v er all 2000 skewers, and N mocks is the number of forward-modelled
ock data sets used. Both the mock data sets and the o v erall av erage

ave the same values of λmfp and 〈 F 〉 in this calculation, so we
nd up with a covariance matrix at each parameter grid point. We
se N mocks = 500 000 for all models and redshifts in this work, see
ppendix A for a discussion on the convergence of the covariance
atrix. 
Fig. 5 shows the model value of the autocorrelation function with

if ferent parameter v alues at z = 5.4. The top panel shows models
ith a changing λmfp and constant 〈 F 〉 = 0.0801. The solid lines show

he model values calculated by averaging the autocorrelation function
rom all forward modelled skewers while the shaded regions show
he errors from the diagonal elements of the covariance matrix as
stimated in equation ( 4 ). Smaller λmfp values (such as λmfp = 5 cMpc
blue) result in a greater correlation function at all scales, though
ainly at small scales, and larger error bars than large λmfp values

such as λmfp = 150 cMpc – green). These models are non-linearly
paced with greater differences between the models at small λmfp 

blue versus orange) than large λmfp (orange versus green) which will
esult in variable sensitivity to λmfp from the autocorrelation function
t dif ferent λmfp v alues. The bottom panel sho ws models with v arying
 F 〉 and constant λmfp = 39 cMpc. 〈 F 〉 sets the o v erall amplitude of
he autocorrelation function. Here the differences between models
re linear where larger 〈 F 〉 leads to larger autocorrelation values.
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Figure 5. This figure demonstrates the effects of varying λmfp and 〈 F 〉 on the model values of the autocorrelation function at z = 5.4 and R = 8800. The solid 
lines show the model values calculated by averaging the autocorrelation function from all forward modelled skewers available while the shaded regions show 

the errors from the covariance matrix as estimated in equation ( 4 ). The top panel varies λmfp with a constant 〈 F 〉 labelled in the top-left corner while the bottom 

panel does the opposite. Both λmfp and 〈 F 〉 change the autocorrelation function on all scales shown, though λmfp appears to affect small scales more than large 
scales. In the top panel, the model value of the autocorrelation function are further apart for λmfp = 5 cMpc (blue) and λmfp = 15 cMpc (orange) than for λmfp = 

15 cMpc (orange) and λmfp = 150 cMpc (green), which is a greater difference in λmfp value. This means the autocorrelation function is more sensitive to small 
λmfp values than large λmfp v alues. Comparati vely, in the bottom panel, the differences in the mean autocorrelation function appear roughly linear with varying 
〈 F 〉 which should result in similar sensitivity for all 〈 F 〉 values. 
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Figure 6. This figure shows the correlation matrix calculated with equation 
( 5 ) with N mocks = 500 000 for the model at z = 5.4 with λmfp = 39 cMpc, 
〈 F 〉 = 0.0801, and R = 8800. The colour bar is fixed to span from −1 to 1, 
which is all possible values of the correlation matrix. Here, it is clear that all 
bins in the autocorrelation function are highly correlated with each other. 
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his scaling is roughly ∝ 〈 F 〉 2 , which follows from the definition of
he autocorrelation function. 

To visualize the covariance matrix, we define the correlation 
atrix, C . The correlation matrix is the covariance matrix with the

iagonal normalized to 1. This is done to the j th, k th element by 

 jk = 

� jk √ 

� jj � kk 

. (5) 

ne example correlation matrix is shown in Fig. 6 for z = 5.4, λmfp =
9 cMpc, and 〈 F 〉 = 0.0801. All bins of the autocorrelation function
re very-highly correlated which is due to the fact that each pixel in
he Ly α forest contribute to multiple (in fact almost all) bins in the
utocorrelation function. 

.2 Effect of model limits on the autocorrelation function 

s stated in Section 2 , the seminumerical method to generate the
uctuating UVB with various λmfp ignores the correlation between 

he density and � HI . This is a result of the current limitations on
vailable simulation boxes. We require that the UVB boxes are large 
nough to a v oid suppressing UVB fluctuations and we require that
he underlying hydrodynamical simulation boxes of the IGM have 
 grid that is fine enough to resolve the small structures in the Ly α
orest. Luki ́c et al. ( 2015 ) found that this grid needs to have a grid
esolution of 20 h −1 kpc to produce 1 per cent convergence of Ly α
orest flux statistics. Davies & Furlanetto ( 2016 ) found that, with
heir 400-Mpc box of � HI values, the tail of their optical depth
istribution was impacted by cosmic variance, highlighting the need 
o go to even larger boxes. Having both a large box with a fine grid,
hich would be required to correlate the UVB and simulation box 
ensity, is currently too computationally e xpensiv e to be feasible. 
In general, there is a positive correlation between density and � HI 

nd a ne gativ e correlation between density and transmitted flux. This
eans that in areas with high � HI there should also be higher density
hich would in turn decrease the transmitted flux, therefore reducing 

he extra signal from the short λmfp . To quantitatively explore this,
e used a Nyx simulation box with a size of L box = 40 cMpc h −1 

t z = 5.8. This box size has associated UVB values for λmfp = 15
MNRAS 521, 4056–4073 (2023) 
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Figure 7. This figure demonstrates the effect of ignoring density correlations as well as using a small box size when generating � HI . The blue line shows the 
autocorrelation function when using a � HI calculated with the appropriate density field and a box size of L box = 40 cMpc h −1 . The orange line shows the same 
for a � HI calculated with a random density field and a box size of L box = 40 cMpc h −1 , isolating the effect of density correlations when compared to blue. 
The green line shows the same for a � HI calculated with a random density field and a box size of L box = 512 cMpc, isolating the effect of the box size when 
compared with orange. Here, we see that the correct density field will cause the signal on small scales to be reduced and that using a larger box size will increase 
the signal for all scales. 
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Mpc generated with the same method of Davies & Furlanetto ( 2016 )
s described in Section 2.1 . For these UVB boxes the local matter
ensity matches that of the Nyx simulations of the IGM. We selected
kewers from the UVB boxes in two ways: from the same location
s the Nyx skewers or from a random location in the box. When the
VB skewers come from the same location as the Nyx skewers the
ensity field and UVB field are correlated. When the UVB skewers
ome from a random location these two fields will not be correlated,
hich is analogous to the uncorrelated modelling adopted in the
ain text. The resulting autocorrelation function models are shown

n Fig. 7 as the blue and orange lines. The blue line is the model with
VB skewers from the 40- h −1 cMpc box that were derived from

he same density field as the Nyx simulations. The orange line is
he model with UVB skewers from the 40- h −1 cMpc box that were
erived from a random density field. Comparing these two lines
solates the effects of ignoring the UVB-density correlations. Here,
e see that the density correlations reduce the autocorrelation signal

t small scales while leaving the large-scale signal unchanged. When
orrelated, � HI is proportional to the local density field so the regions
f high � HI values will also be regions of higher density. Since the
ptical depth scales as a power of the local density field, the boosted
ignal on small scales from regions of high � HI in the orange model
ill be reduced by the corresponding increased local density leading

o the reduction in small scales in the blue model. Since the reduction
s happening on small scales, this mimics the effect of instead having
 model with a larger λmfp . 

Additionally, we investigated the effect of the box size used to
enerate the UVB on the amount of fluctuations in � HI seen at a
xed λmfp . Using a smaller box size, such as the 40- h −1 cMpc box
onsidered in O ̃ norbe et al. ( 2019 ), can suppress fluctuations in the
ocal λ value since there is a smaller volume that must average to λmfp .
or this comparison, we use randomly selected UVB skewers from

he 40- h −1 cMpc box as well as randomly selected skewers from our
12 cMpc UVB box with λmfp = 15 cMpc from the main text of this
ork as described in Section 2.1 . The UVB skewers chosen with both
f these methods are uncorrelated with the density field, so we isolate
he effect of only the box size. The two resulting autocorrelation
unction models are also shown in Fig. 7 . Again, the orange line
NRAS 521, 4056–4073 (2023) 

u  
s the model with UVB skewers from the 40- h −1 cMpc box that
ere derived from a random density field. The green line shows the
odel with UVB skewers from the 512-cMpc box that has a random

ensity field compared to the Nyx simulation. Comparing this green
ine to the orange line thus isolates the effect of the small box size
here again the large box size is required for UVB fluctuations to

onverge for a given λmfp . Here, we see that the green model has a
reater signal than the orange at all scales. Therefore, both the blue
nd orange models with UVB skewers generated in a 40- h −1 cMpc
ox are likely underestimating the autocorrelation function on all
cales. This makes it difficult to quantify the level of excess signal in
he autocorrelation function that we get from ignoring correlations
etween the UVB and the local density field since the signal is
nderestimated on all scales when using the smaller UVB box. For
his reason, we choose not to correct the mock data to account for
he effect of using an uncorrelated UVB. 

The mock data and models of the autocorrelation function from
his study are self-consistently generated since both ignore the
orrelations between the UVB and the local density field. Therefore,
he excess signal on small scales from modelling with an uncorrelated
VB will not bias the constraints obtained in this work. Ho we ver,

his excess on small scales needs to be accounted for when using the
odels of the autocorrelation function from the main text to constrain

mfp with observational data. We would expect measurements made
y comparing data to models generated without UVB-density corre-
ations to be biased towards larger values of λmfp , since the reduced
ignal on small scales from real density correlations would look like a
arger λmfp in our models. We cannot quantify this potential bias with
hese simulations because, again, the small box size of 40 h −1 cMpc
educes the autocorrelation function signal on all scales. Modelling
he UVB consistently with Ly α forest simulations in larger boxes is
ecessary to conclusively study the limitations of the model used in
his work. We therefore leave this to future work. 

.3 Parameter estimation 

o quantify the precision with which λmfp can be measured we
se Bayesian inference with a multi v ariate Gaussian likelihood
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Figure 8. This figure illustrated the results of our inference procedure applied to one mock data set at z = 5.4. The top panel shows the resulting models from 

our inference procedure without re-weighting while the bottom panel has two corner plots that show the resulting parameters, the left without re-weighting and 
the right with re-weighting. In the top panel, the black points with error bars are the mock data with error bars from the inferred model. The inferred model 
was calculated by the median (50th percentile) of the MCMC chains of each parameter independently. The inferred model is shown as a red line while the 
accompanying red text reports errors calculated from the 16th and 84th percentiles of each parameter. In comparison, the true model the data was drawn from is 
the green dotted line and accompanying text. To demonstrate the width of the posterior, multiple faint blue lines are shown, which are the models corresponding 
to the parameters from 100 random draws of the MCMC chain. The bottom-left panel shows a corner plot of the values of λmfp and 〈 F 〉 that immediately result 
from our inference procedure. The bottom-right panel shows the corner plot of the values of λmfp and 〈 F 〉 from our inference procedure using the re-weighting 
approach. This means the corner plot has been made with the weights calculated from our inference test as described in Section 3.4 . 
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nd a flat prior o v er the parameters of interest. This likelihood
 L = p( ξ | λmfp , 〈 F 〉 )) has the form 

 = 

1 √ 

det ( �)(2 π ) n 
exp 

(
−1 

2 
( ξ − ξmodel ) 

T � 

−1 ( ξ − ξmodel ) 

)
(6) 

here ξ is the autocorrelation function from our mock data, � = 

( ξmodel ) is the model-dependent covariance matrix estimated by 
quation ( 4 ), and n is the number of points in the autocorrelation
unction. We discuss the assumption of using a multi v ariate Gaussian
ikelihood in Appendix B . 

Our models are defined by two parameters: λmfp and 〈 F 〉 . We
ompute the posteriors for these parameters using Markov Chain 
onte Carlo (MCMC) with the EMCEE package (F oreman-Macke y 

t al. 2013 ). We linearly interpolate the model values and covariance
atrix elements onto a finer 2D grid of λmfp and 〈 F 〉 then use the
earest model during the MCMC. This fine grid has 137 values of
mfp and 37 values of 〈 F 〉 . Our MCMC was run with 16 walkers taking
000 steps each and skipping the first 500 steps of each w alk er as a
urn-in. 

Fig. 8 shows the result of our inference procedure for one mock
ata set at z = 5.4. The top panel shows the mock data set with various
ines relating to the inference procedure as follows. The green dotted
ine and accompanying text presents the true model that the mock data 
as drawn from. The mock data set is plot as the black point with error
ars that come from the diagonal elements of the covariance matrix of 
he model that is nearest to the inferred model. The inferred model is
he model that comes from the median of each parameter determined
ndependently via the 50th percentile of the MCMC chains. The 
ed lines and accompan ying te xt shows the inferred model from
MNRAS 521, 4056–4073 (2023) 
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Figure 9. The left-hand panel of this figure shows the co v erage resulting from the inference test from 500 models at z = 5.4 and R = 8800 drawn from our 
priors on λmfp and 〈 F 〉 . Here, we see that the true parameters for the models fall abo v e the 60th percentile in the MCMC chain ∼ 50 per cent of the time, for 
example. The right-hand panel of this figure shows the coverage resulting from the inference test with the use of one set of weights to re-weight the posteriors. 
With these weights we are able to pass the inference test. 
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he distance between the 16th, 50th, and 84th percentiles of the
CMC chains. The blue lines show the models corresponding to

00 random draws from the MCMC chain to visually demonstrate
ariety of models that come from the resulting posterior. The bottom-
eft panel shows a corner plot of the posteriors for both λmfp and 〈 F 〉 .
ere, we see evidence of an extended tail out towards larger λmfp 

hich is quantified in the asymmetric errors reported on the inferred
alue of λmfp . This asymmetry comes from the non-linear spacing of
he autocorrelation function models as discussed in Section 3.1 . 

.4 Inference test and re-weighting 

e perform a test to check the fidelity of our inference procedure in
rder to ensure that our resulting posteriors act in a statistically valid
ay. This will ensure any assumptions we make during our inference

re justified. For example, in this work, we used an approximate
ikelihood in the form of a multi v ariate Gaussian likelihood. The
y α forest is known to be a non-Gaussian random field. By adopting
 multi v ariate Gaussian likelihood here, we are tacitly assuming that
v eraging o v er all pix el pairs when calculating the autocorrelation
unction will Gaussianize the resulting distribution of the values of
he autocorrelation function, as is expected from the central limit
heorem. We discuss the distribution of these values for our mock
ata in detail in Appendix B . If this assumption is not valid our
eported errors may be either underestimated or o v erestimated. 

The general idea of our inference test is to compare the true
robability contour levels with the ‘coverage’ probability. The
o v erage probability is the per cent of time the probability of the true
arameters of a mock data set fall abo v e a giv en probability lev el o v er
any mock data sets. In our case, we compute this o v er 500 mock

ata sets where the true parameters considered are samples from our
riors. Ideally, this co v erage probability should be equal to the chosen
robability contour level. This calculation can be done at many
hosen probabilities resulting in multiple corresponding co v erage
robabilities. Existing work that explore this co v erage probability
NRAS 521, 4056–4073 (2023) 
nclude Prangle et al. ( 2014 ), Ziegel & Gneiting ( 2014 ), Morrison &
imon ( 2018 ), and Sellentin & Starck ( 2019 ). 
When considering multiple chosen probabilities, P true , and result-

ng co v erage probabilities, P inf , the results can be plot against each
ther. The results of our inference test at z = 5.4 from 500 posteriors
ith true parameters randomly drawn from our priors are shown

n the left-hand panel of Fig. 9 . The gre y-shaded re gions around
ur resulting line show the Poisson errors for our results. Again we
xpect P true = P inf which would give the red dashed line in this figure.
o interpret this plot, first consider one point, e.g. P true ≈ 0.6. This
epresents the 60th percentile contour, which was calculated by the
0th percentile of the probabilities from the draws of the MCMC
hain for each mock data set. Here, the true parameters fall within
he 60th percentile contour only ≈ 50 per cent of the time. This
mplies that our posteriors are too narrow and should be wider such
hat the true model parameters will fall in the 60th percentile contour

ore often, so we are in fact underestimating our errors. We run this
nference test at all z considered in this work and found the deviation
rom the 1–1 line is worse at higher redshifts. See Appendix C for
 discussion of the inference test at z = 6. We additionally run the
nference test for mock data generated from a multi v ariate Gaussian
istribution in Appendix D . 
There has also been past work trying to correct posteriors that

o not pass this co v erage probability test (Prangle et al. 2014 ;
r ̈unwald & van Ommen 2017 ; Sellentin & Starck 2019 ). In this
ork, we are using the method of Hennawi et al. (in preparation),
here we can calculate one set of weights for the MCMC draws that
roaden the posteriors in a mathematically rigorous way. 
A brief description of the re-weighting method from Hennawi et al.

in preparation) is as follows. Consider one data set which gives a
orresponding posterior probability density function (PDF). Initially,
e have 

∫ 

d ̂  x p( ̂  x ) H ( p( ̂  x ) > p 0 ) = α0 (7) 
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here p( ̂  x ) is the PDF of the posterior of some parameters ˆ x , p 0 is
 chosen posterior probability, H is the Heaviside function – causing 
he integrand to be 0 when the probability is less than the given
ontour p 0 , and α0 is the corresponding volume of the PDF where
he probability of ˆ x is greater than p 0 . This means that α0 = 1 −
 ( p 0 ) where C is the cumulative distribution function. 
If we instead consider our MCMC chain used to estimate the 

osterior with N samples points each with probability 1/ N samples in the 
hain we get 

1 

N samples 

N samples ∑ 

i 

H ( p i > p 0 ) = 

# of samples with p > p 0 

N samples 
= α0 (8) 

here the last equality comes from the fact that this sum is a Monte
arlo integral. 
Consider the corresponding percentile, P true , of this probability 

ontour. By definition, C ( P true ) = 1 − P true (because the greatest
alues of the probability correspond to the smallest percentile 
ontours). Thus, we have 

1 

N samples 

N samples ∑ 

i 

H ( p i > p 0 ) = P true . (9) 

Ho we ver, as discussed above, after running an inference test what
as thought of as the P true percentile contour is in reality the inferred
ercentile, P inf , contour. Previous work Sellentin & Starck ( 2019 )
uggested relabeling the P true contour as the P inf contour. Ho we ver,
nother method to broaden (or condense) the probability contour is 
y using a set of weights. Consider re-writing equation ( 9 ) using
eights, w: 

1 

N samples 

N samples ∑ 

i 

w( x i ) H ( p i > p 0 ) ≈ f ( P true ) . (10) 

ou can then consider multiple values of P true and absorb the factor
f 1 

N samples 
into the weights 

 w = f ( P true ) (11) 

here A is matrix of only 1s and 0s from the Heaviside function, w is
he vector of weights, and P true is the vector of probability contours 
onsidered. In fact, we can order the samples from the smallest
robability value to the largest probability value such that A is an
pper triangular matrix. To guarantee the new weighted probability 
ontours behave as they should statistically (i.e. the true value falls
n the P th percentile contour P per cent of the time), we set f ( P true ) =
 inf . This works because P inf is the measured statistically correct 
ercentile contour for this P true value from the previous inference 
est. Therefore, we can compute weights by 

 = A 

−1 P inf . (12) 

Note that this equation implies that we must run the inference 
est for the number of probability contours equal to the number of

CMC probability samples we have for each posterior. Ho we ver, in
ractice we compute much fewer P inf values during the inference test
nd then interpolate this vector onto one with the number of MCMC
amples we have. 

Thus, we are able to calculate one set of (5000 − 500) ×
6 = 72 000 weights that would be used for all 500 mock data sets
o broaden the posteriors and pass this inference test. The weights 
alculated by this method, for a given set of MCMC chains, are
nique. The line resulting from the inference test after calculating 
nd using a set of weights is shown in the right-hand panel of Fig. 9 .
his line clearly falls along the 1–1 line as expected so our calculated
eights allow us to re-weight our posteriors into a statistically 
orrect form. See Appendix C for a discussion of the re-weighting
t z = 6. 

We show the re-weighted posteriors on λmfp and 〈 F 〉 in the
ottom-right part of Fig. 8 . The weights give greater importance
o larger values of λmfp in the tail of values to the right, effectively
roadening the posteriors and increasing the errors on the fit. For the
ock data set in Fig. 8 the re-weighted marginalized posterior for

mfp gives λmfp = 30 + 14 
−7 cMpc whereas before the inferred value 

as 30 + 10 
−6 cMpc, so the new errors are ∼ 30 per cent larger. 

hen looking at the 2D distribution in this panel we see that the
eights do introduce an additional source of noise to the posterior
istribution. 
This whole inference procedure is not the optimal and will not give

he best constraints on λmfp possible from this statistic. The need to
se re-weighting, or some method to correct our posteriors to pass
n inference test, comes from our incorrect (though frequently used) 
ssumption of a multi v ariate Gaussian likelihood. The values of the
utocorrelation function at these high z do not suf ficiently follo w a
ulti v ariate Gaussian distribution to justify this assumption, which 

hould be a warning for other studies of the Ly α forest at these z.
sing a more correct form of the likelihood (such as a skewed distri-
ution) or likelihood-free inference (such as approximate Bayesian 
omputation as used in Davies et al. ( 2018 ) or other machine learning
ethods) would lead to more optimal posteriors that better reflect the

nformation in the autocorrelation function. Therefore, future work 
n this inference procedure will impro v e the constraints on λmfp . 

.  RESULTS  

n order to consider the range of observational constraints possible 
rom one set of λmfp and 〈 F 〉 values because of cosmic variance, we
tudy the distribution of measurements for 100 mock data sets. For
ach z, we use the λmfp and 〈 F 〉 values reported in Table 1 . Each mock
ata set is chosen by randomly selecting the appropriate number of
ke wers gi ven the data set size at each redshift, and averaging the
utocorrelation function for each individual skewer. For each mock 
ata set, we perform MCMC as described in Section 3.3 and then re-
eight the resulting posteriors following Section 3.4 . Once we have

he weights and the chains resulting from our inference procedure 
e can calculate the marginalized posterior for λmfp . 
We calculate the marginalized re-weighted posteriors for 100 mock 

ata sets at each z and R . All 100 marginalized re-weighted posteriors
re shown as the faint blue lines in Fig. 10 at z = 5.4 for R =
800 (top panel) and R = 30 000 (bottom panel). In addition to the
andomly selected mock data sets, we computed the re-weighted 
osterior using the model value of the autocorrelation. This is shown
s the blue histogram in Fig. 10 . Using the model value as mock data
s the ideal case and remo v es the luck of the draw from affecting
he precision of this posterior. The measurement resulting from the 
odel data is written in the blue text of this figure and the values at

ach z and R are reported in Table 2 . 
Fig. 10 shows the results from all 100 mock data sets (blue lines)

t z = 5.4 in order to visualize the various shapes of the resulting re-
eighted posteriors. These data sets all have the true values of λmfp =
9 cMpc, 〈 F 〉 = 0.0801, and a 64 quasar data set. The top panel shows
he low-resolution R = 8800 results and the bottom panel shows the
igh-resolution R = 30 000 results. The re-weighted histograms in 
ig. 10 are noisy; much like is seen in the bottom-right panel of
ig. 8 . This is a direct consequence of our re-weighting procedure
nd will be impro v ed with further work on likelihood-free inference.
here are roughly two behaviours of posteriors shown here: those 
MNRAS 521, 4056–4073 (2023) 
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M

Figure 10. This figure shows 100 re-weighted posteriors of λmfp at z = 5.4 
with true λmfp = 39 cMpc and 〈 F 〉 = 0.0801 (blue faint lines). The top panel 
shows the low-resolution R = 8800 results and the bottom panel shows the 
high-resolution R = 30 000 results. It also displays the re-weighted posterior 
(thick blue histogram) from the model’s value of the autocorrelation function 
with the measurement of these average posteriors written in blue text. This 
demonstrates the different possible behaviours the posterior can have from 

our method. Overall, the higher resolution data do produce more precise 
posteriors, including the average posterior which is seen in the higher peak 
and smaller reported errors. 

Table 2. This table contains the results of analysing the λmfp posteriors 
for the model value of the autocorrelation function. The mock data at 
each z have the same value of λmfp as recorded in Table 1 . The first 
column contains the modelled value of λmfp at each z that was used in 
this measurement. The next column contains the resulting measurements 
at each z for R = 8800 data while the last column has the resulting 
measurements for R = 30 000 data. In general the trend of the errors 
is to initially decrease with increasing redshift and then stay about flat 
beyond z = 5.7. This trend follows from the evolution in the true value 
of λmfp and the data set size at each z. 

z Model λmfp (cMpc) Measured λmfp (cMpc) 
R = 8800 R = 30 000 

5.4 39 40 + 27 
−9 32 + 7 −5 

5.5 32 35 + 12 
−6 33 + 6 −4 

5.6 26 28 + 7 −4 27 + 5 −3 
5.7 20 22 + 7 −4 20 + 4 −3 
5.8 16 18 + 6 −4 16 + 3 −3 
5.9 12 14 + 5 −4 13 + 3 −3 
6.0 9 12 + 6 −3 11 + 4 −2 
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hat have a large peak at lo w v alues and those that are lower limits
tarting at low value and staying non-zero at our upper boundary
f 150 cMpc. For both the lower resolution and higher resolution
ata, the model values of the autocorrelation function give posteriors
ith typical widths when compared to the mock data. Both model
osteriors also contain the true value of λmfp within their 1 σ error
ars. Overall, the higher resolution data do produce tighter, more
recise posteriors for both the model value and the mock data. 
Table 2 reports the measurements that result from using the
odel values of the autocorrelation function as our data. This is
NRAS 521, 4056–4073 (2023) 
n ideal scenario that remo v es luck of the draw from the resulting
easurement. The first column contains the modelled value of λmfp 

t each z that was used in this measurement, which also appears in
able 1 . The next column has the resulting measurements for R =
800 data while the last column has the resulting measurement for
he R = 30 000 data. The errors initially decrease with increasing
edshift and then stay about the same beyond z = 5.7. There are
w o important f actors to consider when looking at this trend. First
s the trend of the true value of λmfp with z where λmfp decreases
ith increasing z. The autocorrelation function is more sensitive to

maller values of λmfp as discussed in Section 3.1 . Briefly this is due
o the fact that smaller λmfp produces greater fluctuations resulting
n a larger signal. This means we would expect the results to get

ore precise and thus have smaller errors at higher z. The other
actor is the size of the data set, which is greatest at the lowest
. We would expect the measurements to be less precise and thus
ave larger errors for the smaller data sets at high z. These effects
ombine resulting in the trend we see. When comparing the R = 8800
nd R = 30 000 measurements, we find that the R = 30 000 values
re on average 40 per cent more precise. Note that it also appears
hat the measured values of λmfp are al w ays biased high. Ho we ver,
hese posterior distributions have tails to greater values of λmfp which
auses the reported median measured value of λmfp to be greater than
he most likely value of λmfp . 

In order to visualize the differences between measurements at
ifferent redshifts, we plot the results for five random mock data
ets with R = 8800 in Fig. 11 . Each violin is the re-weighted
arginalized posterior for one randomly selected mock data set at

he corresponding redshift. The light blue-shaded region demarcates
he 2.5th and 97.5th percentiles (2 σ ) of the MCMC draws while the
arker blue-shaded region demarcates the 16th and 84th percentiles
1 σ ) of the MCMC draws. The dot–dashed line is the double power
aw, equation ( 1 ), which we used to determine the true λmfp evolution
s shown in Fig. 2 . 

Looking at the posteriors for a given redshift (one column in
he figure), the only difference between the posteriors is the random
ock data set drawn. This still produces different precision results as

een in Fig. 10 for z = 5.4. There are then three differences between
ock data sets shown for a given panel. First is again the mock data

s chosen at random so there will be fluctuations in the precision
ith the luck of the draw. The mock data at different redshift also
ave different true λmfp values, shown in the dot–dashed black line,
here the smallest λmfp value is at the highest z. The autocorrelation

unction is most precise at small inferred λmfp values which are more
ikely at the highest z. Additionally, the redshifts each have different
ata set sizes, as reported in Table 1 . The highest redshifts have the
mallest data set sizes, leading to greater scatter in the precision of
he posteriors. Again, the individual posteriors are noisy, resulting
rom the re-weighting procedure as described in Section 3.4 . 

Here all the mock data sets are at our lower resolution, R =
800, which was chosen to mimic the existing XQR-30 data. In
ppendix E , we discuss the same plot (Fig. E1 ) but with the higher

esolution, R = 30 000, data. The only difference between the data
sed in Figs 11 and E1 is the resolution of the mock data. The
andomly chosen mock data sets, the data set sizes, and the true
alues are the same. 

.  C O N C L U S I O N S  

n this work, we have investigated to what precision λmfp can be
onstrained using the autocorrelation function of Ly α forest flux in
uasar sightlines. Overall, we found that the autocorrelation function

art/stad701_f10.eps
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Figure 11. Each panel of this figure shows one posterior for a different randomly selected low-resolution ( R = 8800) mock data set at each z. For each posterior, 
the light blue-shaded region demarcates the 2.5th and 97.5th percentile of the MCMC draws while the dark blue-shaded region demarcates the 17th and 83rd 
percentile of the MCMC draws. The black dot–dashed line shows the double power law from equation ( 1 ) and Fig. 2 . The behaviour of each posterior at the 
different z is determined by the luck of the draw when selecting the mock data, the true λmfp value at each z, and the data set size at each z. The true λmfp values 
and data set sizes are reported in Table 1 . 
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s sensitive to the value of λmfp across multiple redshift bins and for
ealistic mock data with both high and low resolution. We computed
he marginalized re-weighted posterior for λmfp for 100 mock data
ets with properties similar to the XQR-30 extended data set at 5.4

z ≤ 6.0. We additionally considered 100 mock data sets with
 = 30 000, o v er three times greater than XQR-30 data resolution.
he re-weighted posterior showed a variety of behaviours based on

he luck of the draw of the mock data chosen, the true value of λmfp 

or the mock data, and the data set size at each z. 
We considered an ideal data set which had the model value of

he autocorrelation function, ef fecti v ely remo ving the luck of the
raw from our measurement. The error on these measurements for
oth the high- and low-resolution data initially got smaller (more
recise) with increasing redshift then stayed about the same beyond
 = 5.7. This followed from the changing true value of λmfp and the
ize of the data set at each z. Small values of λmfp lead to greater
uctuations in the UVB and thus produce an increased signal in the
utocorrelation function. This makes the autocorrelation function
ore sensitive to smaller values of λmfp than larger values of λmfp 

here the fluctuations are smaller. This work has opened up the
ossibility for future measurements of λmfp with the autocorrelation
unction by quantifying the sensitivity of this method. 

Of particular interest is the measurement at z = 6.0, where recent
easurements imply a rapid evolution of λmfp . For our ideal model

ata at z = 6.0 with R = 8800, we get λmfp = 12 + 6 
−3 cMpc where

he true value we modelled was λmfp = 9 cMpc. In comparison, the
easurement from Becker et al. ( 2021 ) at z = 6.0 is 0 . 75 + 0 . 65 

−0 . 45 proper
pc (or 5 . 25 + 4 . 25 

−3 . 15 cMpc). Thus, our ideal measurement with this new
tatistical method has comparable error bars as those from Becker
t al. ( 2021 ). We therefore expect that a measurement using this
echnique on real data will provide a competitive, secondary check
n the value of λmfp at z = 6.0. Additionally, we have shown that our
ethod can be applied to multiple fine redshift bins from 5.4 ≤ z ≤

.0 to precisely constrain the evolution of λmfp . 
Note that our procedure uses a multi v ariate Gaussian likelihood,
CMC, and a set of weights for the MCMC chains that ensures

ur posteriors pass an inference test. The original failure of our
rocedure to pass an inference test is likely due to the incorrect
ssumption that the autocorrelation function follows a multi v ariate
aussian distribution, as discussed in Appendix B . This result should

aution against using a multi v ariate Gaussian likelihood with other
tatistics, such as the power spectrum, when making measurements
t z > 5 as the same issue of non-Gaussian data likely applies.
his is especially concerning if the lo w v alue of λmfp with high
orresponding fluctuations in the UVB at high- z holds true. In the
uture, better likelihoods or likelihood-free inference will allow for
 more optimal inference procedure (see e.g. Davies et al. 2018 or
lsing et al. 2019 ). This will lead to tighter constraints on λmfp from

he autocorrelation function. 
For this work, we used the method of Davies & Furlanetto

 2016 ) to generate the UVB boxes as described in Section 2.1 .
his assumes a fixed source model which could potentially pro v e

o be incorrect. F or e xample, if fainter galaxies had higher escape
ractions it would reduce the strength of UVB fluctuations at fixed
mfp , also reducing the autocorrelation signal. This would bias λmfp 

easurements through this method from real data compared to these
odels (though it is consistent for our mock data generated from

ur models). We leave a detailed consideration of the effect of other
ource models to future work. 

Our work also discussed the effect of the current limitations in
odelling the UVB and Ly α forest on the autocorrelation function.
amely, our UVB boxes are not correlated with the density of
NRAS 521, 4056–4073 (2023) 
ur Nyx simulation box, where in reality these quantities are
hysically correlated. We considered the effect of a correlated UVB
n Section 3.2 . We found that the correlation between high-density
reas with increased UVB values would reduce the autocorrelation
ignal for a fixed λmfp on small scales, since higher density leads to
educed transmission. This would again bias a measurement from real
ata, where these correlations would exist, because the true signal for
 given λmfp should be lower than it is in our models, which mimics a
odel with a larger λmfp v alue. Ho we ver, this comparison was done in
 small box (40 cMpc h −1 ) which suppresses UVB fluctuations on all
cales as is also discussed in Section 3.2 . Suppressing fluctuations
n the UVB causes the autocorrelation signal to be lower in these
oxes. Thus in this comparison the signal is smaller from the density
orrelations but the UVB fluctuations are also underestimated due to
he box size. The existence of both of these effects means that we
ere not able to quantify any potential bias from the uncorrelated
VB boxes. The mock data used in this work are generated in the

ame ways as the models they are compared to, so the measurements
ere are self-consistent. Ho we v er, an y attempts to compare these
odels with actual data will need to take into account the effect of

sing an uncorrelated UVB in the modelling. Thus, future work on
VB models will be necessary before observational λmfp constraints

an be produced. 
Another potential physical impact on the autocorrelation signal

s fluctuation in the temperature of the IGM. O ̃ norbe et al. ( 2019 )
howed that fluctuations in the temperature of the IGM impacted the
argest scales of the power spectrum at z > 5. We therefore would
onclude these fluctuations would also impact the autocorrelation
unction, which is the Fourier transform of the power spectrum.
o we ver, O ̃ norbe et al. ( 2019 ) also considered a fluctuating UVB

nd found that this ef fecti vely cancelled out the impact of the thermal
uctuations on the largest scales of the power spectrum. We leave
urther work on the impact of temperature fluctuations along with
VB fluctuations to future work. 
Continuum errors will affect the measurement of the autocor-

elation on larger scales which are less important than the small
cales when considering λmfp . The reconstruction done in Bosman
t al. ( 2022 ) is shown to reconstruct the continuum within 8 per cent.
dditionally, Eilers, Hennawi & Lee ( 2017 ) showed that continuum

rrors had minimal effect on the shape of the normalized flux PDF at
 = 5 where transmission is low. We have left a detailed exploration
f the effect of continuum errors on the autocorrelation function for
uture work. 

We also note that there is additional z > 5 Ly α forest data in
elescope archives with lower SNR that could be used in our analysis.
ere, we limited the consideration to mock XQR-30 data (and a high-

esolution analogue) but will consider the impact of adding noisier
ata in future work. 
The value of λmfp and its evolution at high z is important for

nderstanding reionization. Measuring λmfp at high z is a difficult
ask that so far has been restricted to two redshift bins at z > 5. This
ork has shown that the autocorrelation function of the Ly α forest
ux provides a ne w, competiti ve way to constrain λmfp in multiple
edshift bins at z ≥ 5.4. 
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Figure A1. This figure shows the behaviour of three elements of the model 
covariance matrix ( z = 6, R = 8800, λmfp = 9 cMpc, and 〈 F 〉 = 0.0089) 
for different numbers of mock draws. At all values of the number of mocks 
considered, the covariance elements fall within 3 per cent of their final value. 
By around ∼ 200 000 draws, all of the values fall within 1 per cent of the final 
value. For this reason, we believe using 500 000 mock draws is sufficient to 
generate the covariance matrices used in this study. 500 000 mock draws is 
represented by the vertical dashed black line. 
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PPENDI X  A :  C O N V E R G E N C E  O F  T H E  

OVA R I A N C E  MATRI CES  

We calculate the covariance matrices for our models with mock 
raws, as defined in equation ( 4 ). Using mock draws is inherently
oisy and it should converge as 1 / 

√ 

N where N is the number of
raws used. As stated in the text, we used 500 000 mock draws.
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Figure B1. This figure shows the distribution 1000 mock draws from 

two bins of the autocorrelation function ( �v = 85 . 0 km s −1 and �v = 

289 . 0 km s −1 ) for one model ( z = 5.4, R = 8800, λmfp = 39 cMpc, 
and 〈 F 〉 = 0.0801). The top panel shows the distribution of only the 
�v = 289 . 0 km s −1 bin while the right-hand panel shows the distribution 
of only the �v = 85 . 0 km s −1 bin. The blue (green) circle represents the 
68 per cent (95 per cent) ellipse calculated from the covariance matrix 
calculated for this model from equation ( 4 ). The red plus shows the calculated 
mean. Additionally the per cent of mock draws that fall within each of these 
contours is written in the top-right side. Both the 1D and 2D distributions 
seem relatively well described by a Gaussian distribution. In the 2D plot, 
there are more points outside the 95 per cent contour to the top-right side than 
on any other side but it is not extreme. 
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alculation, we looked at the behaviour of elements of one covariance
atrix in Fig. A1 . This covariance matrix is for the model with z =

, R = 8800, λmfp = 9 cMpc, and 〈 F 〉 = 0.0089, chosen because z =
 has the lowest ‘true’ λmfp value which would lead to the largest
uctuations in the UVB. The values in the plot have been normalized

o 1 at 10 6 draws. The three elements have been chosen such that
here is one diagonal value and two off-diagonal values in different
egions of the matrix. Looking at the correlation matrix in Fig. 6
which is for a different model but the qualitative behaviour is the
ame for this model) we see that at all values both on and off the
iagonal of the correlation matrix are high and positive, so we expect
he convergence for all elements to be roughly the same. At all values
f the number of mock draws considered, the covariance elements
all within 3 per cent of their final value. By around ∼ 200 000 draws,
he values fall within 1 per cent of the final value. For this reason,
e believe using 500 000 mock draws is sufficient to generate the

ovariance matrices used in this study. In Fig. A1 , 500 000 mock
raws are represented by the vertical dashed black line. 

PPENDIX  B:  N O N - G AU S S I A N  DISTRIBU T I ON  

F  T H E  VA LUES  O F  T H E  AU TO C O R R E L AT I O N  

U N C T I O N  

or our inference, we used the multi v ariate Gaussian likelihood
efined in equation ( 6 ). This functional form assumes that the dis-
ribution of mock draws of the autocorrelation function is Gaussian
istributed about the mean for each bin. In order to visually check
his, we will look at the distribution of mock draws from two bins of
he autocorrelation function for two different models. 

Both Figs B1 and B2 show the distribution of 1000 mock data
ets from the velocity bins of the autocorrelation function with
v = 85 . 0 km s −1 and �v = 289 . 0 km s −1 . The bottom-left panels

how the 2D distribution of the autocorrelation values from these
ins. The blue (green) ellipses represent the theoretical 68 per cent
95 per cent) percentile contour calculated from the covariance matrix
alculated for each model from equation ( 4 ). The red crosses show
he calculated mean. The top panels show the distribution of only
he v = 289 . 0 km s −1 bins while the right-hand panels show the
istribution of only the v = 85 . 0 km s −1 bins. 
Fig. B1 shows mock values of two bins of the autocorrelation

unction for the model at z = 5.4 with R = 8800, λmfp = 39 cMpc, and
 F 〉 = 0.0801. These mock data sets consist of 64 quasar sightlines
f length �z = 0.1. Both the 1D and 2D distributions seem relatively
ell described by Gaussian distributions by eye though they do show

ome evidence of non-Gaussian tails to larger values. The numbers
f points falling in each contour both fall within 2 per cent of the
xpected values. In the bottom-left panel with the 2D distribution,
here are more mock values falling outside the 95 per cent contour
o the top-right side (higher values) than in any other direction. For
his reason the distribution is not exactly Gaussian but a Gaussian
isually appears as an acceptable approximation. 
Fig. B2 shows mock values of two bins of the autocorrelation

unction for the model at z = 6 with R = 8800, λmfp = 9 cMpc,
nd 〈 F 〉 = 0.0089. These mock data sets consist of 19 quasar
ightlines of length �z = 0.1. In both the top panel and right-
and panels, which show the distribution of values for one bin of
he autocorrelation function, it is clear that the distribution of mock
raws is skewed and a Gaussian is not a good approximation for the
istributions. This is quantified by the per cent of points in the two
llipses from the bottom-left panel labelled in the top-right panel with
9.0 per cent of the mock draws falling within the 68 per cent contour
NRAS 521, 4056–4073 (2023) 
nd 92.2 per cent of the mock draws falling within the 95 per cent
ontour. The points outside of the contours are highly skewered
owards the top-right side (higher values). It is only possible for the
utocorrelation function to be ne gativ e due to noise, which generally
verages to very small values approaching zero at the non-zero lags of
he autocorrelation function. Ho we ver, real fluctuations in the UVB
ause the positive fluctuations, making them much more likely and
ause the resulting skewed distribution at high z where the o v erall
ignal is closer to zero. 

Figs B1 and B2 show the changing distribution of the autocor-
elation value with λmfp , 〈 F 〉 , and mock data set size. There is a
reater deviation from a multivariate Gaussian distribution at higher
. It is possible that adding additional sightlines will cause the
utocorrelation function to better follow a multivariate Gaussian
istribution due to the central limit theorem, though investigating this
n detail is beyond the scope of the paper. The incorrect assumption
f the multi v ariate Gaussian likelihood thus contributes to the failure
f our method to pass an inference test as discussed in Section 3.4
or z = 5.4 and Appendix C for z = 6. For our final constraints,
e calculated weights for our MCMC chains such that the resulting
osteriors do pass our inference test, as discussed in Section 3.4 .
he whole method of assuming a multi v ariate Gaussian then re-
eighting the posteriors in non-optimal and future work using a
ore correct likelihood or likelihood-free inference will impro v e our

esults. 
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Figure B2. This figure shows the distribution 1000 mock draws from 

two bins of the autocorrelation function ( �v = 85 . 0 km s −1 and �v = 

289 . 0 km s −1 ) for one model ( z = 6, R = 8800, λmfp = 9 cMpc, and 
〈 F 〉 = 0.0089). The top panel shows the distribution of only the �v = 

289 . 0 km s −1 bin while the right-hand panel shows the distribution of only 
the �v = 85 . 0 km s −1 bin. The blue (green) circle represents the 68 per cent 
(95 per cent) ellipse calculated from the covariance matrix calculated for 
this model from equation ( 4 ). The red plus shows the calculated mean. 
Additionally the per cent of mock draws that fall within each of these contours 
is written in the top-right side. Both the 1D and 2D distributions do not seem 

to be well described by a Gaussian with 79.0 per cent of the mock draws 
falling within the 68 per cent contour and 92.2 per cent of the mock draws 
falling within the 95 per cent contour. 
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Figure C1. The left-hand panel of this figure shows the co v erage plot resulting fr
our priors on λmfp and 〈 F 〉 . Here, we see that the true parameters for the models fa
for example. The right-hand panel of this figure shows the co v erage plot resulting
posteriors. With these weights the true parameters for the models fall on the P inf =
only able to reach P inf ∼ 0.8 so our re-weighting could only match up to this value
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PPENDI X  C :  I NFERENCE  TEST  AT  H I G H  

EDSHIFT  

ere, we present the results of the inference test at z = 6. This cal-
ulation was done following the procedure described in Section 3.4 .
ig. C1 shows the results for z = 6 and can be compared to the
 = 5.4 results in Fig. 9 . The left-hand panel here shows the initial
o v erage plot which deviates greatly from the expected P inf = P true 

ine, much more so than the z = 5.4. This likely comes from a
reater deviation from the assumption of a multivariate Gaussian 
ikelihood as described in Appendix B . The z = 6 mock data show
ighly skewed distributions that are not well described by a Gaussian
ikelihood. 

This initial co v erage plot only ever reaches a value of P inf ≈ 0.8,
hich becomes an issue for the re-weighting. In the right-hand panel
f Fig. C1 , the re-weighted inference line thus still only able to reach
 inf ≈ 0.8 creating a plateau in the line once it reaches this value.
ne way to reach higher values is to increase the number of steps

n the MCMC chain. We tried to triple the number of steps but did
ot see much impro v ement in the inference test. For computational
easons we stick with the numbers used at other redshifts resulting in
2 000 total steps as described in Section 3.4 . This plateau at P true =
.8 means that our 1 σ (68th percentile) contours are robust but our
 σ (95th percentile) contours are underestimated since we can only 
orrect up to ∼80th percentile. 

The inference lines at other redshifts are available upon request. 
or 5.4 ≤ z ≤ 5.8 the co v erage plots after re-weighting do not plateau,

ike the re-weighted co v erage plot shown in Fig. 9 . Both the z = 6.0
nd the z = 5.9 co v erage plots plateau after re-weighting, like that
n Fig. C1 . This means our re-weighted posteriors at z = 5.9 and
 = 6 may still need additional work to further enlarge probability
ontours abo v e the value of the plateau. 
MNRAS 521, 4056–4073 (2023) 

om the inference test from 500 models at z = 6 and R = 8800 drawn from 

ll abo v e the 60th percentile in the MCMC chain ∼ 20 per cent of the time, 
 from the inference test with the use of one set of weights to re-weight the 
 P true line up to P true ∼ 0.8. This is because the original co v erage plot was 

. 

ek Instituut M
oleculaire Plantkunde user on 21 February 2024
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M

Figure D1. Both panels of this figure show the co v erage plot resulting from the inference test from 500 data sets generated by randomly drawing points from 

the mean model and covariance matrix. The means and covariance matrices used come from z = 5.4 and R = 8800 in the left-hand panel and z = 6.0 and R = 

8800 in the right-hand panel. The true parameter values for both panels were drawn from our priors on λmfp and 〈 F 〉 . In both panels, the Gaussian mock data 
produced inference lines that fall on top of the 1-1 line within errors, as expected for the statistically correct posteriors. 
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PPENDIX  D :  GAUSSIAN  DATA  INFERENCE  

EST  

s shown in Appendix B , the distribution of mock values of the
utocorrelation function is not exactly Gaussian distributed. In order
o confirm the failure of our mock data to pass an inference test (as
iscussed in Section 3.4 and Appendix C ) comes from the use of a
ulti v ariate Gaussian likelihood, we generate Gaussian distributed

ata and run inference tests. For one value of λmfp and 〈 F 〉 , we
andomly generate a mock data set from a multi v ariate Gaussian with
he given mean model and covariance matrix that we calculated for
ur mock data in Section 3.1 . We can then continue with the inference
est as described in Section 3.4 . The results for this inference test for
 = 5.4 and z = 6.0 (both with R = 8800) are shown in Fig. D1 .
ere, both redshifts inference lines fall along the 1-1 line that is

xpected for all probability contour, P true , values. This behaviour is
lso seen at the other redshifts and R = 30 000. The fact that perfectly
aussian data pass an inference test with the same likelihood, priors,

nd method as was used on mock data confirms that the failure of
ur mock data to pass an inference test is due to the non-Gaussian
istribution of the mock data. 

PPENDIX  E:  H I G H - R E S O L U T I O N  RESULTS  

n Section 4 , we only show the posteriors for multiple mock data sets
t different redshifts for R = 8800. Here, we present the same results
ut for mock data with R = 30 000. Each violin plot in Fig. E1 is the
e-weighted marginalized posterior for one randomly selected mock
ata set at the corresponding redshift. The light red-shaded region
NRAS 521, 4056–4073 (2023) 
emarcates the 2.5th and 97.5th percentiles (2 σ ) of the MCMC draws
hile the darker red-shaded region demarcates the 16th and 84th
ercentiles (1 σ ) of the MCMC draws. Beneath the red violins are blue
iolins for the posteriors for the same data with R = 8800 as shown
n Fig. 11 . The dot–dashed line is the double power law, equation
 1 ), which we used to determine the true λmfp evolution as shown
n Fig. 2 . The random mock data selected for this figure matches
xactly with the random mock data used to make Fig. 11 . The only
ifference between the data used in these two figures is the resolution.
enerally, the posteriors from the R = 30 000 data shown in Fig. E1

re more precise than those from the R = 8800 data. 
Again, looking at the posteriors for a given redshift (one column in

he figure), the only difference between the posteriors is the random
ock data set drawn. These results still have varying precision as is

xpected from luck of the draw with the mock data sets. There are then
hree differences between mock data sets shown for a given panel.
irst is the same as the difference between mocks at one redshift:
he mock data is chosen at random so there is just the luck of the
raw. The mock data at each redshift also vary with the true λmfp 

 alue, sho wn in the dot–dashed black line, where the smallest λmfp 

alue is at the highest z. The autocorrelation function is most precise
t small inferred λmfp values which are more likely at the highest
. Additionally, the redshifts each have different data set sizes, as
eported in Table 1 . The highest redshifts have the smallest data set
izes, leading to greater scatter in the precision of the posteriors.
gain, the individual posteriors are noisy, resulting from the re-
eighting procedure as described in Section 3.4 . 
24
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Figure E1. Each panel of this figure shows one posterior for a different randomly selected high-resolution ( R = 30 000) mock data set at each z in shades of 
red. Note that the low-resolution ( R = 8800) mock data posteriors are plot below the high-resolution posteriors in blue. For each posterior, the light red-shaded 
region demarcates the 2.5th and 97.5th percentile of the MCMC draws while the dark red-shaded region demarcates the 16th and 84th percentile of the MCMC 

draws. The black dot–dashed line shows the double power law from equation ( 1 ) and Fig. 2 . The behaviour of each posterior at the different z is determined 
by the luck of the draw when selecting the mock data, the true λmfp value at each z, and the data set size at each z. The true λmfp values and data set sizes are 
reported in Table 1 . 
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