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ABSTRACT

At z < 1, shock heating caused by large-scale velocity flows and possibly violent feedback from galaxy formation, converts a
significant fraction of the cool gas (T ~ 10* K) in the intergalactic medium (IGM) into warm-hot phase (WHIM) with T > 10°
K, resulting in a significant deviation from the previously tight power-law IGM temperature—density relationship, T = Ty(p/
p)’~!. This study explores the impact of the WHIM on measurements of the low-z IGM thermal state, [T, y], based on the
b—Ny; distribution of the Ly « forest. Exploiting a machine learning-enabled simulation-based inference method trained on Nyx
hydrodynamical simulations, we demonstrate that [T}, 3] can still be reliably measured from the b—Ny, distribution at z = 0.1,
notwithstanding the substantial WHIM in the IGM. To investigate the effects of different feedback, we apply this inference
methodology to mock spectra derived from the IllustrisSTNG and Illustris simulations at z = 0.1. The results suggest that the
underlying [79, y] of both simulations can be recovered with biases as low as |Alog (Ty/K)| < 0.05 dex, |[Ay| < 0.1, smaller
than the precision of a typical measurement. Given the large differences in the volume-weighted WHIM fractions between the
three simulations (Illustris 38 per cent, IllustrisTNG 10 per cent, and Nyx 4 per cent), we conclude that the b—Ny, distribution
is not sensitive to the WHIM under realistic conditions. Finally, we investigate the physical properties of the detectable Ly «
absorbers, and discover that although their 7 and A distributions remain mostly unaffected by feedback, they are correlated with
the photoionization rate used in the simulation.

Key words: galaxy: formation —intergalactic medium — quasars: absorption lines.

1 INTRODUCTION

Being the largest reservoir of baryons in the Universe, the inter-
galactic medium (IGM) plays a crucial role in the evolution of the
Universe and the formation of structures. Based on the canonical
cosmological model constrained by many observational studies,
the thermal evolution of the IGM is dominated by two major
phase transition events of the Universe. The first phase transition
is hydrogen reionization caused by the first generation of galaxies at
redshift 6 < z < 20 (Becker et al. 2001; Fan et al. 2006; McGreer,
Mesinger & D’Odorico 2015; Robertson et al. 2015). The second one
is the double reionization of helium (He 1— He 111) driven by quasi-
stellar objects (QSOs; see e.g. Madau & Meiksin 1994; McQuinn
et al. 2009; Khaire 2017), which is believed to occur at 7z ~ 3
(Worseck et al. 2011, 2018; Syphers & Shull 2014), where the quasar
luminosity function reaches its peak (see e.g. Hopkins, Richards &
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Hernquist 2007; Khaire & Srianand 2015; Kulkarni, Worseck &
Hennawi 2019). These two-phase transition events heat up the IGM
dramatically to a maximum of 15000 K while ionizing the IGM.
After the completion of hydrogen reionization (Az ~1-2), the
IGM thermal state is shaped by the quasi-equilibrium balance be-
tween photoionization heating from the extragalactic UV background
(Haardt & Madau 2012; Khaire & Srianand 2019; Faucher-Giguere
2020) and various cooling processes including recombinations,
excitation, cooling due to Hubble expansion, and inverse Compton
scattering of electrons off of the cosmic microwave background
(CMB:; see e.g. McQuinn 2016). All these processes together drive
the IGM to follow a power-law temperature—density (7—A) relation:

T(A) = ToA ™, )]

where A = p/p is the overdensity, 7 is the temperature at mean
density, and y is the adiabatic index (Hui & Gnedin 1997; Mc-
Quinn & Upton Sanderbeck 2016). These two parameters [Ty, ]
thus characterize the thermal state of the IGM, making it feasible
to constrain the IGM thermal history (Lidz et al. 2010; Becker
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Figure 1. Examples of simulation skewers for IllustrisTNG (left) and Illustris (right) simulations, probing the structure generated by the same initial condition,
while the two simulations are post-processed to share the same UV backgrounds photoionization rate, I'y;. The flux is plotted in black on the top panel, while
the temperature 7, overdensity A, and velocity along LOS vj,s are shown in black in the second, third, and bottom panels consecutively.

et al. 2011; Rorai et al. 2017; Hiss et al. 2018; Walther et al. 2019;
Gaikwad et al. 2021) by measuring [T}, ] at different epochs. These
measurements improve our knowledge of the IGM thermal evolution
and shed light on the underlying heating and cooling processes
involved.

Nevertheless, the aforementioned power-law 7—A relationship for
the IGM could potentially break down at z < 1, where shock heating
caused by large-scale velocity flows (Nath & Silk 2001; Cen &
Ostriker 2006) and various feedback mechanisms become more
common (Scannapieco, Silk & Bouwens 2005; Khaire et al. 2024).
Specifically, shock heating at low-z converts a notable fraction of
the cool IGM into warm hot intergalactic medium (WHIM) with T
> 10° K (Shull et al. 2012), causing a substantial dispersion in the
IGM T-A distribution (Davé et al. 2001; Cen & Ostriker 2006). As
a result of such dispersion, the IGM 7—A distribution can no longer
be fully described by the typical power-law relationship (see Fig. 1),
which introduces additional complexities in the measurement of the
IGM thermal state (Hu et al. 2022, hereafter Hu22). The imperative
question is whether the significant shock heating at low-z influences
the observable, i.e. the Ly o forest, which serves as the primary
probe of the IGM, and if it does, how might such impacts affect
measurements of the IGM thermal state [Ty, y]?

In practice, the IGM thermal state can be measured through various
statistical properties of the Ly o forest. Particularly, at z < 3, the Ly
o forest is amenable to Voigt profile decomposition (see Hiss et al.
2018), where each line can be fit by three parameters: redshift z,ps,
Doppler broadening b, and neutral hydrogen column density Ny;.
The IGM thermal state at these redshifts can thus be measured using
the 2D joint b—Ny, distribution (Schaye et al. 1999, 2000; Bolton
et al. 2014; Hiss et al. 2018; Rorai et al. 2018). Hu22 introduced a
new inference method to measure the thermal state [7j, y] and the
photoionization rate 'y, of the IGM based on the b—Ny, distribution
and Ly « line density, dN/dz, of the Ly o forest. Such a method
performs Bayesian inference with the help of neural networks and
Gaussian emulators, trained on a suite of Nyx simulations (Almgren

et al. 2013; Luki¢ et al. 2015), making it possible to measure the
thermal state of the IGM to high precision for realistic mock data
sets.

Moreover, the thermal state of the IGM at z < 1.7 remains poorly
constrained, since the Ly « transition below such redshift lies below
the atmospheric cutoff (A ~ 3300 A), requiring UV observations from
space with Hubble Space Telescope (HST). After He 1I reionization
(z < 3), the thermal state of the IGM is considered to be dominated
by adiabatic cooling from Hubble expansion, which leads to an IGM
thermal state with Ty ~ 5000 K and y ~ 1.6 at the current epoch z =0
(McQuinn & Upton Sanderbeck 2016). However, such a prediction
of low temperatures has not yet been confirmed observationally.
Meanwhile, recent studies have suggested that the Ly « lines appear
broader than predicted by numerical simulations at z < 0.5 (Gaikwad
et al. 2017; Nasir et al. 2017; Viel et al. 2017; Burkhart et al. 2022;
Bolton et al. 2022a). This observation is based on the b parameters
acquired from the HST Cosmic Origins Spectrograph (COS) spectra
(Danforth et al. 2016, referred hereafter as D16) data set. While it has
been argued that such a mismatch might be resolved by additional
sources of turbulence, an alternative explanation would be that the
IGM is actually hotter than previously presumed, with T, conceivably
approaching 10 000 K, implying the existence of unexpected sources
of heating (Bolton et al. 2022a, b), which, if true, would change our
understanding of the IGM physics thoroughly.

In this paper, we adopt the Hu22 inference method to investigate
the impact of the WHIM on measurements of the IGM thermal
state, [Ty, y1, based on the b—Ny, distribution of the Ly o forest.
First, we assess the effectiveness of [Ty, y] as IGM parameters
at low-z by comparing its performance as neural network training
labels against the photoheating labels [A, B] (see Section 2.3).
These latter labels are photoheating rate rescaling factors used to
generate the Nyx simulation suite with various thermal histories (see
e.g Becker et al. 2011). Since our emulators are trained on these
Nyx simulations generated by varying [A, B], the inference method
is naturally inclined to retrieve these photoheating labels. On the
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Figure 2. Volume weighted 7-A distribution for all three simulations at z = 0.1. The log T for each bin are plotted as solid dots with 1-o7 error bars.
The best-fitting power-law relationship is shown as dashed lines. The Nyx (left) model is the default model which has log (7o/K) = 3.612, y = 1.588; and
IlustrisTNG (middle) yields log (To/K) = 3.627, y = 1.593; whereas Illustris (right) has log (To/K) = 3.633, y = 1.577. The gas phase fractions are shown in

the annotation.

other hand, if shock heating at low-z causes the 7-A distribution of
the Ly « absorbers to deviate from the power-law relationship, the
effectiveness of [Ty, y] as labels could be compromised. Thus, our
comparison between these two sets of labels provides insight into the
robustness of [T}, y] as IGM parameters at low-z, in the presence of
substantial shock heating.

Afterwards, we explore the potential effects of different feedback
mechanisms, which are associated with WHIM, on measurements
of the IGM thermal state, [Ty, y]. In terms of our inference
methodology, the question becomes: what would happen if we
used a simulation grid without feedback to interpret a Universe
that includes feedback? Would this lead to unbiased [Ty, y]? To
answer these questions, we apply the Hu22 inference methodology
to mock data drawn from the Illustris (Genel et al. 2014) and
MustrisTNG (Weinberger et al. 2017) simulations at z = 0.1. These
two simulations incorporate galaxy formation models and feedback
mechanisms that are not included in the Nyx simulation, which heat
up the IGM substantially at low-z, and transform the cool diffuse
Ly « gas into WHIM more effectively compared with Nyx simulation
(see Fig. 2). We examine the inference results based on these two
simulations and explore whether feedback biases the measurement
of the thermal state [T, y].

To further investigate this problem, we explore the specific
impacts of shock heating and other astrophysical processes, such
as active galactic nucleus (AGN) feedback and UV background
photoionization, on the physical properties of the Ly o forest at
z = 0.1. Within the three aforementioned simulations, we identify
simulated Ly o absorbers in the simulations and establish a direct cor-
relation between the physical properties of these absorbers (including
temperature 7, overdensity A, and line-of-sight velocity v},s) and the
observed Ly « line parameters (b, Ny,) derived from the absorption
lines detected in corresponding mock spectra. We then examine the
distributions of A and T of these simulated Ly « absorbers across the
three aforementioned simulations to study the detailed effects of the
feedback and UV background photoionization rate, 'y, on the Ly o
forest.

MNRAS 527, 11338-11359 (2024)

This paper is organized as follows: In Section 2, we outline the
simulations and associated processes applied to generate synthetic Ly
« forest. It includes post-processing, forward-modelling, and Voigt
profile fitting. The inference framework and results for all three
simulations are then presented in Section 3. Section 4 is dedicated
to the investigation of the physical characteristics of low-redshift Ly
o forest absorbers in all three simulations. Finally, in Section 5, we
present a summary and discussion of our findings. For the sake of
brevity, we use log as a shorthand to denote log;, throughout the

paper.

2 SIMULATIONS

In this paper, we utilize the inference framework described in Hu22,
which employs the b—Ny; distribution emulator built on neural
networks trained on a set of Nyx simulations. We also use galaxy
formation simulations IllustrisTNG and Illustris to investigate the
low-z Ly « forest under different feedback mechanisms. Since this
work focuses on the low redshift Ly o forest, we use z = 0.1
simulation snapshots for all three simulations. In this section, we
first provide a description of the simulations and the implemented
physical models, followed by the (mock) data processing procedures
employed in our study. This includes the generation of simulated
line-of-sight (LOS) of Ly « forest (hereafter referred to as skewers
for simplicity), forward modelling, and the Voigt profile fitting of Ly
« lines. The cosmological parameters and thermal states of the three
simulations are summarized in Table 1.

2.1 Nyx

Nyx is an adaptive mesh, massively parallel, cosmological simulation
code primarily developed to simulate the IGM (Almgren et al. 2013;
Luki¢ etal. 2015). Nyx simulates the dark matter evolution by treating
the dark matter as self-gravitating Lagrangian particles, while it
models baryons as an ideal gas on a uniform Cartesian grid following
an Eulerian approach. The Eulerian hydrodynamics equations are
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Table 1. Parameters of cosmology and 7—A relation (at z = 0.1).

Parameters Nyx MustrisTNG Mlustris
Q2 0.3192 0.3089 0.2726
QA 0.6808 0.6911 0.7274
Qp 0.0496 0.0486 0.0456
h 0.670 0.677 0.704
o3 0.8288 0.8159 0.809
ng 0.96 0.97 0.963
To 4093 K 4241 K 4292 K
y 1.588 1.593 1.577

solved using a second-order piece-wise parabolic method, which is
capable of accurately capturing shocks.

Nyx includes the major astrophysical processes relevant to the
evolution of the the Ly « forest. First, gas in the Nyx simulation
is treated as having a primordial composition with a hydrogen
mass fraction of 0.76 and helium mass fraction of 0.24, and zero
metallicity. Nyx takes into account the process of inverse Compton
cooling off the microwave background and tracks the total thermal
energy loss due to atomic collisional processes. Nyx also implements
recombination, collisional ionization, dielectric recombination, and
cooling following the prescription given in Lukié et al. (2015).
Tonizing radiation in Nyx is modelled by a spatially uniform but time-
varying ultraviolet background radiation field of Haardt & Madau
(2012), while assuming all cells in the simulation are optically
thin. Furthermore, following standard practice, we allow the UV
background photoionization rate, 'y, to be a free parameter in post-
processing while generating mock Ly o skewers. Lastly, Nyx does not
implement any galaxy formation or feedback, which simplification
reduces the required computational resources significantly, allowing
us to run a large ensemble of simulations with different thermal
histories (see Section 2.3), which is required for accurate statistical
inference.

Each Nyx simulation model used in this study was initialized with
the same initial condition at z = 159 and evolved down to z = 0.03
ina Lyy, = 20 cMpc A~ simulation box with N = 1024 Eulerian
cells and 10243 dark matter particles. The box size is a compromise
between computational cost and the need for convergence at least to
< 10 per cent on small scales (large k). In short, such choices of box
size and resolution should not affect the line parameters of the Ly «
forest significantly. More discussion of the resolution, box size, and
convergence issues can be found in Lukié et al. (2015) and Hu et al.
(2022).

2.2 IustrisTNG and Illustris

To evaluate the effectiveness of the IGM thermal state [T}, v ] as the
IGM parameters and test the efficacy of our inference framework on
the realistic IGM, which can be affected by astrophysical processes
that are not included in Nyx simulation such as galaxy formation
and AGN feedback, we employ Illustris (Genel et al. 2014) and II-
lustrisTNG (Weinberger et al. 2017; Nelson et al. 2019) simulations,
and use them as mock observational data in our inference method.
The IlustrisTNG and Illustris are cosmological hydrodynamic
simulations powered by the AREPO code (Springel 2010). This code
employs a moving mesh approach to solve hydrodynamics through
the Euler equations, and it computes gravitational forces on a quasi-
Lagrangian moving Voronoi mesh via the tree-PM method. Both
simulations incorporate a wide range of astrophysical processes for
galaxy formation, such as star formation, stellar and AGN feedback,
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galactic winds, and chemical enrichment (Marinacci et al. 2018;
Naiman et al. 2018; Springel et al. 2018). They utilize the UV back-
ground detailed in Faucher-Giguere et al. (2009) for photoionization
heating and cooling. Other processes for modelling the Ly aforest,
like collisional ionization and inverse Compton cooling from the
cosmic microwave background, are also taken into account.

The primary distinction between IllustrisTNG and Illustris lies
in their AGN feedback mechanisms, especially regarding AGN
feedback. Both simulations implement AGN feedback in two modes
based on the gas accretion rate on to the central supermassive black
hole: the ‘quasar-mode’ at high accretion rates (Springel 2005;
Hopkins et al. 2008; Debuhr, Quataert & Ma 2011) and the ‘radio-
mode’ at low rates (Bower et al. 2006; Croton et al. 2006; Sijacki
et al. 2007). While both use continuous thermal feedback in ‘quasar-
mode’, their ‘radio-mode’ implementations differ. Illustris employs
a bubble model for radio-mode feedback, accumulating substantial
feedback energy for explosive release, often ejecting excessive
hot gas (Genel et al. 2014). Conversely, IllustrisTNG models this
feedback as a kinetic wind, injecting momentum into neighbouring
regions from the central black hole. This approach better replicates
astrophysical properties like star formation rates and galaxy colour
distributions (Nelson et al. 2018; Pillepich et al. 2018a, b).

Both the IllustrisTNG and Illustris simulations we used in this
study have box sizes of 75 cMpch™' and 1820* baryon and dark
matter particles. Since AREPO is a moving mesh code, we convert
the Voronoi mesh outputs to 18207 cartesian grids by dumping the
smoothed quantities such as temperature.', density, and velocities on
grids to generate Ly « forest skewers. A Gaussian kernel with a size
equal to 2.5 times the radius of each Voronoi cell is applied for the
smoothing, assuming each Voronoi cell is spherical. We then generate
skewers for IllustrisTNG and Illustris simulations following the
approach discussed in Section 2.4. In Fig. 1, we plot two simulation
skewers for IllustrisTNG and Illustris respectively, while the two
simulations are post-processed to share the same UV backgrounds
photoionization rate, 'y, (see Section 2.5 for more discussion). The
flux (e77) is plotted in the top panel, and the temperature, over-
density, and LOS velocity profiles are shown in the second, third,
and bottom panels consecutively. It is worth mentioning that the two
skewers probe the structure generated by the same initial condition,
suggesting that the differences in 7, A, and v, are primarily caused
by different feedback strengths. Specifically, the Illustris exhibits
higher temperatures due to its stronger feedback, which results in
weaker absorption features given the same UV backgrounds. More
discussion on the differences between Ly « forest in IllustrisTNG
and Illustris simulations can be found in Khaire et al. (2024) and
Khaire et al. (2023).

2.3 IGM thermal state and parameter grid

Following Hu22, we make use of the Thermal History and Evolution
in Reionization Models of Absorption Lines (THERMAL?) suite of
Nyx simulations (see Hiss et al. 2018; Walther et al. 2019) to model
the IGM with various thermal histories. The suite consists of 48
models with varying thermal histories, each generated by changing

!As presented in Appendix A of Martizzi et al. (2019), there exists a bug
that affects the IGM temperature of the IllustrisTNG simulation. However, its
effect on the Ly « forest is minimal because the bug predominantly impacts the
gas with the lowest density. Consequently, we continue to use the uncorrected
temperature for the IllustrisTNG simulation.

2For details of THERMAL suite, see http://thermal joseonorbe.com
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Figure 3. Parameters grid (solid circles) from snapshots of Nyx simulations from the THERMAL suite at z = 0.1, parametrized by the thermal state [T, y].
The left-hand panel shows the y—Tp grid, whose shape is determined by the photoheating labels [A, B] (see Fig. A3) and the evolution of the thermal state of
the IGM. The right-hand panel is y—I'y; grid, showing the 13 I'yy; values for each point on the y—T grid.

the photoheating rate of the simulation following the prescription
described in Becker et al. (2011), in which the photoheating rate, €
is assumed as a function of overdensity, i.e.

€ = EHMlz(Z)AAB, (2)

where epmi2(z) stands for the time-varying photoheating rate per H
IT ion tabulated in Haardt & Madau (2012), and the constants A and
B are free photoheating parameters that are varied in the different
Nyx runs to achieve different thermal histories, which results in
different thermal states at z = 0.1. The distribution of parameters in
our thermal grid, i.e. the different values of [T}, y] are illustrated
in Fig. 3, and the corresponding values of [A, B] are presented in
Fig. A3 (see Appendix A for more discussion).

Conventionally, the thermal parameters [T, y] are obtained by
fitting a power law to the 7-A relationships (see equation 1). Such a
fitting procedure is straightforward at higher redshift (z 2 2) where
the 7-A distributions of the IGM are tight. However, in low-z, the
distributions of the IGM temperatures are noticeably broader due to
the extensive shock heating, which heats up the IGM, resulting in
more WHIM. The T-A distributions for all three simulations (Nyx
default model with A = 1, B = 0, and IllustrisTNG and Illustris)
are shown in Fig. 2. For each simulation, the gas is divided into
four phases depending on the temperature and density, namely the
WHIM, Diffuse Ly «, hot halo gas, and condensed, where the cutoffs
are set to be T = 10° K and A = 120°. It can be seen that there
exist significant dispersion in the 7-A distributions of the low-z
IGM, i.e. the shock-heated WHIM, for all three simulations, and the
fractions of the WHIM are directly proportional to the strength of the
feedback. Specifically, fwhiM, ttustris > SWHIM, IlustrisTNG > fWHIM, Nyxo
while Illustris implements extreme feedback, IllustrisTNG employs
mild feedback and Nyx has no feedback.

In order to fit the power-law relationship in the presence of dis-
persion in the IGM T-A distribution, we utilize the fitting procedure
presented in Hu22, which fits the power-law 7-A relationship by

3Here, we adopt the cutoff 7= 10° K, and A = 120 for different gas phases
following Davé et al. (2010), and more discussion about the different cutoff
can be found in Gaikwad et al. (2017).
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binning the Diffuse Ly a gas (T < 10° K and A < 120) into 20
bins based on log A, and applying a least-squares linear fit to the
mean temperatures of the gas in each bin. Here, we modify the fitting
range to —0.5 < log A < 1.5.%, which provides a more accurate
representation of the A range of the Ly « absorbers at z ~ 0.1, which
is the principal subject of this paper.

Such a fitting procedure is applied to all simulations used in
this study, including all Nyx models and IllustrisTNG and Illustris
simulations. The best-fitting power-law relationship based on [7y, y]
and the 7-A distributions are illustrated in Fig. 2. The figure shows
that although the three simulations yield very different overall 7-A
distributions, their thermal state Ty and y are however similar.

Furthermore, as described in Hu22, we vary the UV background
photoionization rate, 'y, of the Nyx simulations in post-processing
when the simulation skewers are generated, extending the parameter
grid to [log Ty, y, log 'y;]. The value of I'y; we used in this study
spans from log(I'y,;/s™') = —13.834 to —12.932 in logarithmic
steps of 0.075 dex, which gives 13 values in total (see the right-hand
panel of Fig. 3). The range of 'y, used here covers more than twice
the range obtained by UV background models of Khaire & Srianand
(2019) at z = 0.1, achieved by varying the spectral energy distribution
of quasars. Note that the range also coves more than 20 uncertainty
in the 'y, measurements (Gaikwad et al. 2017; Khaire et al. 2019).
In total, the 3D thermal grid consists of 48 x 13 = 624 Nyx models.

As mentioned earlier, 7y and y characterize the IGM thermal
state at z 2 2, where the IGM is dominated by the power-law T—
A relationship. However, their efficacy as parameters for the IGM
thermal state remains uncertain at z < 1, where a significant fraction
of the gas deviates from the power-law 7—A relationship due to shock
heating and feedback. In this paper, we evaluate the effectiveness of
the thermal state [Ty, y] as IGM parametrization at low-z using
the inference framework presented in Hu22, and we make use of
the photoheating parameters [A, B] as an alternative set of labels as

4Such a choice of fitting range of the power law T-A relationship leads to
slightly different thermal states [Ty, y] for the three simulations compared
with those presented in previous works (Hu22; Khaire et al. 2024), but the
difference is minor.
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Figure 4. One of the forward-modelled mock spectra. The simulated spectrum is shown in black, where the model spectrum determined from VPFIT is shown

in blue, and the noise vector is plotted in red.

a comparison. These labels are particularly relevant since all Nyx
models used in the training procedure of our neural network, which
is the major component of our inference method, are generated by
varying [A, B]. This suggests that our inference framework should
be capable of recovering the values of [A, B] efficiently. Therefore,
[A, B] are particularly useful in the evaluation of the [T, y]. More
information about the photoheating labels [A, B] is presented in
Appendix. A.

2.4 Mock spectra, forward-modelling, and VPFIT

We follow the procedure described in Hu22 and generate mock
spectra by calculating the Ly « optical depth (r) array along the
mock LOS. For each simulation, including all Nyx models and
IustrisTNG and Illustris, an ensemble of 20 000 skewers is created.

In this study, we include observational noise and instrumental
effects to conduct our analysis under realistic conditions. We generate
mock data sets with properties consistent with the D16 compilation
of low redshift Ly « forest spectra, which comprises 82 unique
quasar spectra observed with the COS on the HST. Among them,
34 spectra cover our targeted redshift range of 0.06 < z < 0.16 and
have signal-to-noise ratio (SNR)s greater than 5 per pixel. These
spectra segments contribute to a total observational pathlength of
Azon = 2.136. We follow the forward-modelling procedure described
in Hu22. For each mock spectrum, we select one of the 34 spectra
segments randomly, stitching skewers to match the wavelength grid
of the selected segment®. We then convolve these combined skewers
with the COS 130M LSF, and add Gaussian noise based on the noise
vectors associated with the chosen spectrum segment. This process

5The length of the Nyx skewers is 25 Mpch~!, corresponding to rough Az
= 0.01. Roughly 10 Nyx skewers are needed for one forwarded-modelled
mock spectrum. Similarly, for Illustris and IllustrisTNG, which have box sizes
of 75Mpc h™!, about 3 skewers are used to generate one mock spectrum.

ensures that our mock data sets closely replicate the observational
characteristics of the COS spectra, allowing for a more accurate and
realistic analysis.

For each simulation model, including all Nyx simulation models
as well as both IllustrisTNG and Illustris simulations, we generated
1000 forward-modelled mock spectra. The total pathlength for each
simulation is approximately Az ~ 60, which ensures that our
training set for the b—Ny; distribution emulator (see Section 3.1)
is large enough and the resulting b—Ny;, distribution is not biased by
the choice of (mock) spectra.

We then use VPFIT (Carswell & Webb 2014)° to fit the Ly «
lines in our simulated spectra to obtain a set of {b, Ny} pairs for
all of the mock data sets, following the prescription given in Hu22.
In this paper, as is the convention in low-z Ly « forest analysis, we
apply a filter for both b and Ny, and uses only b—Ny; pairs with
12.5 < log(Ny;/cm™2) < 14.5 and 0.5 < log (b/kms™!) < 2.5 in our
analysis (Schaye et al. 2000; Rudie, Steidel & Pettini 2012; Hiss et al.
2018). A segment of one of the forward-modelled mock spectra is
shown in Fig. 4. The simulated spectrum is shown in grey, where the
model spectrum determined from VPFIT is shown in blue, and the
noise vector is plotted in red.

The top panels of Fig. 5 display 1D histograms of both b (left) and
Ny, (right) for all three simulations, and the bottom panels illustrate
their relative differences when compared to the Nyx simulation (as
discussed in Section 2.5, the three simulations used here are dN/dz
matched). The median value for log b and log Ny, are indicated by
dashed vertical lines for each simulation. Notably, while the median
values of both b and Ny, are comparable across the three simulations,
there are distinct differences in the distributions of both parameters
across the three simulations. We also notice that the differences in
the b parameters are more significant across the three simulations
compared with Ny;.

OVPFIT: http://www.ast.cam.ac.uk/~rfc/vpfit.html
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Figure 5. Top: Marginalized 1D b (left) and Ny, (right) distributions for all three simulations. For each simulation, the {b, Ny} data set is obtained by VP-fitting

an ensemble of 1000 forward-modelled mock spectra. The median values for log b and log Ny are indicated by dashed vertical lines. bottom: The relative
difference compared with Nyx simulation. The three simulations used here are dN/dz matched.

2.5 Photoioniztion rate I'y, and dN/dz

Itis noteworthy that the three simulations used in this study by default
have different UV background photoionization rates 'y, (for Nyx,
here we are referring to the default model with log (7/K) = 3.612
and y = 1.588.) This is because the photoionization rate 'y, are
tuned in post-processing across all three simulations to ensure they
exhibit the same absorber density dNV/dz as the one we measured from
D16 data set at z = 0.1. Specifically, we apply the aforementioned
VP-fitting procedure to D16 spectra (segments) with 0.06 < z <
0.16, and obtain dN/dz = 167.3 for absorbers within the limits
125 < 1og(NHI/cm*2) < 14.5and 0.5 < log (b/kms~") < 2.5. Such
matching of dN/dz is analogous to the matching of the mean flux of
simulations at high-z for optically thin absorbers (Lukié et al. 2015).
To match this dN/dz, we tune the photoionization rate, following
the prescription described in Section 2.3, and set log(I'y;, /s™!)
= —13.093, —13.021, —13.414 for Nyx, IllustrisTNG, and Illustris,
respectively (see Fig. 6). Such mismatch in 'y, is caused by the
degeneracy between the photoionization rate and different feedback
recipes used in the simulations. Since both the UV background and
feedback suppress the formation of Ly « absorbers (Khaire et al.
2024). More specifically, the feedback heats up the IGM, converting
a significant amount of the diffuse Ly « gas into WHIM, which
reduces the Ly o transmission caused by the neutral hydrogen H I
in the cool diffuse Ly o gas. To this end, simulations with stronger
feedback exhibit lower dN/dz under the same I'y;.

We measure the dN/dz for the three simulations, including all
Nyx simulation models and IllustrisTNG and Illustris, each based
on its respective set of 1000 forward-modelled mock spectra. The
relationships between UV background photoionization rate and
dN/dz for all three models are shown in Fig. 6, where the dN/dz
for Nyx is plotted in blue, IllustrisTNG in green, and Illustris in red,
while the dN/dz for the D16 data at z = 0.1 is shown as the horizontal
dashed—dotted grey line. Fig. 6 demonstrates that while Illustis has
the strongest feedback, which causes more gas to be collisionally
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Figure 6. dN/dz versus I'y; for all three simulations at z = 0.1. Nyx (default
model) is shown in blue, IllustrisTNG in green, and Illustris in red, while the
observed dN/dz calculated from D16 data set for the corresponding redshift
are shown in the horizontal grey dashed—dotted line. The I'y; values used for
each simulation to match the observed dN/dz are indicated by vertical dashed
lines with the corresponding colour.

ionized, reducing the Ly o absorption, it requires the lowest 'y, to
match the dN/dz to the observed value, and IllustrisTNG, with mild
feedback, has higher for the same UV background. Interestingly,
whereas Nyx employs no feedback mechanism, it requires slightly
lower I'y; compared with IllustrisTNG, which implements feedback,
to achieve the same dN/dz. Such a trend, which is opposite to the
correlation between dN/dz and feedback strength (as seen between
Mlustris and IllustrisTNG), is caused by the small difference in
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the A, T distributions in Nyx and IllustrisTNG. More specifically,
IustrisTNG exhibits a slightly higher mass fraction of the diffuse
Ly « gas in the particular A, T range that is probed by the Ly «
forest’. It is possible that while the mild feedback in the IllustrisTNG
simulation results in a slightly higher WHIM fraction compared with
Nyx, it also produces more gas with T ~ 10*3 K and A ~ 10,
which is the A, T range probed by the Ly « forest at z = 0.1 (see
Section 4). However, the detailed astrophysical mechanism leading
to this specific A-T distribution in IlustrisTNG at z = 0.1 is still
unclear, and we leave it to our future work.

If not otherwise specified, the three simulations used in this study,
including Ilustris, HlustrisTNG, and Nyx default model, are tuned
to have the same Ly o line densities, with dN/dz = 167.3, which is
the same value we measured from the D16 data set.

3 INFERENCE METHOD

3.1 Emulating the {b, Ny,} distribution

In this work, we make use of the inference framework following
Hu22, which measures the thermal state and the photoionization
rate 'y, of the low redshift IGM using its b—Ny, distribution
and absorber line density dN/dz. The b—Ny, distribution emulator
is built on density-estimation likelihood-free inference (DELFI),
which turns inference into a density estimation task by learning
the distribution of a data set as a function of the labels or parameters
(Papamakarios & Murray 2016; Alsing, Wandelt & Feeney 2018;
Lueckmann et al. 2018; Papamakarios, Sterratt & Murray 2018;
Alsing et al. 2019). Following Hu22, we make use of pydelfi,
the publicly available python implementation of DELFL? which
makes use of neural density estimation (NDE) to learn the sampling
conditional probability distribution P(d | #) of the data summaries d,
as a function of labels/parameters 6, from a training set of simulated
data. Here, the data summaries d are [log Ny, log ], and our two
sets of label parameters @ are the thermal state [log Ty, y, log I'u;]
and photoheating labels [A, B, log I'y,]. The 'y, grids are identical
for the two sets of labels.

We generate two training data sets by labelling the {b, Ny}
pairs obtained from our simulated spectra with the two sets of
labels respectively. We train the neural network on the summary-
parameter pairs for each training data set separately. Our b—Ny;,
distribution emulator learns the conditional probability distribution
P, Ny, | Ty, y,logTy,) and P(b, Ny, | A, B, log 'y,) from the
corresponding training data set. These conditional b—Ny, distribu-
tions are then used in our inference algorithm, where we try to find
the best-fitting model given the observational/mock data set, which
is described in the following section.

3.1.1 Likelihood function

In Bayesian inference, a likelihood £ = P(datajmodel) is used to
describe the probability of observing the data for any given model.
We adopt the likelihood formalism introduced in Hu22, which is

"This is different from the mass-weighted or volume-weighted diffuse Ly o
fraction, fiyq, which is defined to include all gas with T < 10° K and A <
120 following Davé et al. (2010). Instead, the gas probed by the observed
HST COS Ly « Forest has a narrow range of A and 7 which also depends on
the T'y; value used in the simulation (see Section 4 for more details).

8See https://github.com/justinalsing/pydelfi
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summarized as follows:
Int = Zln(,u,i) - (d—N> AZdatas 3)
i=1 dZ model

where u; is the Poisson rate of an absorber occupying a cell in the
b— Ny plane with area ANy ; x Abi, i.e.

dz

The P(bi, Ny, | 6) in the equation is the probability distribution
function at the point (bi, Ny, i) for any given model parameters
0 evaluated by the DELFI b—Ny, distribution emulator described
in Section 3.1. The Azgy, is the total redshift pathlength covered
by the quasar spectra from which we obtain our {b, Ny} data set,
and (AN /dz)4e 18 the absorber density which is evaluated for any
given set of parameters using a Gaussian process emulator (based on
George, see Ambikasaran et al. 2016), which is also trained on our
training data sets obtained from the Nyx simulation suite.

To perform our analysis under realistic conditions, all tests
performed in this paper are based on mock data sets consisting of 34
forward-modelled spectra, each corresponding to one of the 34 D16
quasar spectra, which gives these data sets the same pathlength as
the observation data set with Azy, = 2.136. Each of the mock data
sets is constructed by randomly selecting 34 spectra from the 1000
forward-modelled spectra, while making sure that each of the 34 D16
quasar spectra is represented exactly once, thereby maintaining the
integrity and representativeness of our mock data sets.

An example of the MCMC posterior obtained based on the
aforementioned likelihood function is given in Fig. 7. The inference
is conducted using the labels [Ty, y, log I'y]. The posterior appears
compact, with the medians of the marginalized posteriors landing
close to the true parameters for all three parameters, i.e. within
1o errors for marginalized 1D distributions. The b—Ny;, distribution
recovered from the mock data set is presented in Fig. 8, which is
emulated by our b—Ny, distribution emulator, trained on [T}, y,
log I'y,], based on the inferred parameters, i.e. median values of the
marginalized 1D MCMC posterior. The plot exhibits a good match
between the mock data set (black dots) and the recovered b—Ny;
distribution (colour map).

As a comparison to the IGM parametrization based on the thermal
state, [7o, v, log 'y,], the inference result derived from the same
mock data set using the photoheating labels [A, B, log I'y,] is given
in Appendix. A.

dN
Mni = ( ) P(bi, Nuyi | 0) ANu; Ab Azgqa. 4)
model

3.2 Inference test

Aninference test is an effective method to evaluate the robustness of a
given inference algorithm, which usually consists of approximations
and emulation/interpolation procedures that might induce additional
uncertainties, altering the error budget. In practice, an inference
test can be conducted by performing a set of realizations of the
inference method using mock data sets and evaluating the robustness
of the resulting posterior probability distributions, which can be
quantified by the coverage probability P, (Prangle et al. 2014;
Ziegel & Gneiting 2014; Morrison & Simon 2018; Sellentin & Starck
2019), the proportion of the time that the true parameters used to
generate a mock data set are contained within the posterior contour
corresponding to a certain probability level P;,;. Such calculations
can be performed for many different probability levels, resulting in a
series of coverage probabilities. For perfect inference, this coverage
probability P, is always equal to the probability level of the chosen
posterior contour Pjys (shown as the black dashed line in Fig. 9).
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Figure 7. An example of posterior obtained by our inference method based on inference labels [Ty, y, log I'y;]. Projections of the thermal grid used for
generating models are shown as blue dots, while the true model is shown as red dots. The inner (outer) black contour represents the projected 2D 1(2)o interval.
Red lines in the marginal distributions indicate the parameters of true models, while the dashed black lines indicate the 16, 50, and 84 percentile values of the
marginalized 1D posterior. The true parameters are: log (To/K) = 3.612 and y = 1.588, while log(T'y;/s~!) = —13.093.

In this study, we make use of the inference test described in
Wolfson et al. (2022), which calculates the coverage probability
based on the MCMC posteriors. Compared with the one used in
Hu?22, this inference test algorithm is more precise and automatically
returns full coverage probabilities from O to 1 rather than coverage
probabilities at only a few specific probability levels.

To evaluate the effectiveness of [Ty, y, log I'y;] as IGM parameters
for inference at low-z, where the IGM 7-A distribution is no longer
characterized by the power-law relationship, we perform inference
tests based on different sets of labels. We compare the result of
the inference test based on labels [Ty, y, logI'y;] with the one
based on the photoheating labels [A, B, log'y;]. As discussed in
Section 2.3, the comparison between these two sets of labels sheds
light on the efficacy of [T}, y] as IGM parameters at low-z, where
the pervasive shock heating causes significant dispersion in the IGM
T-A distribution.

For each set of labels, we ran 300 realizations of our inference
method, each based on a model randomly chosen from the grid. We
exclude models that are close to the boundaries to mitigate boundary
effects caused by the hard cutoff of the inference prior, which leads to
the truncation of the posteriors. For [Ty, y, log I'y,] gird, we specify
3.3 < log(Ty/K) <3.9,1.0 <y <23, —13.75 < log(T'y/s7!) <
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—13.0. We then calculate the full coverage probabilities based on all
300 MCMC posteriors.

The results of the inference tests are shown in Fig. 9, where the
x-axis stands for inferred probability Pi,s, and the y-axis shows
the coverage probability, P... The shaded regions indicate the
1-o error for P.,, which is calculated based on the binomial
distribution. The y = x black-dashed line represents a perfect
inference test. It can be seen that for Nyx simulations, our inference
method is mildly overconfident, and the thermal state [T, y] (blue)
performs slightly better than the photoheating labels [A, B] (red),
i.e. Peoy/Piys 1s closer to unity. Quantitatively, for inference based
on the thermal state [T, y], the 68 percent contour contains the
true parameters 61.2 £ 2.8% of the time, and the 95 percent
contour contains the true parameters 90.4 + 1.6% of the time.
The results show that the [Ty, y] are still robust inference labels
for the IGM at low-z, although the shock heating alters the 7-A
distribution. This further suggests that shock heating alone does not
significantly change our understanding in determining the thermal
state of the IGM using the Ly o forest. Lastly, while the general
efficacy of the inference framework remains robust, we attribute
its imperfections to two primary sources: deficiencies within the
neural network used in our inference algorithm, and the boundary
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Figure 9. Coverage probability P, for inference tests based on different
labels. The x-axis stands for the inferred probability Pj,r, and the y-axis shows
the coverage probability P, for the true parameters to fall in the contour
corresponding to Pip¢. Blue: Inference test based on the thermal state [7p, y,
log 'y, Red: Inference test based on the photoheating label [A, B, log I'y;].
The shaded regions indicate the 1o error for Pcoy.

effects caused by the truncation of the posteriors when hitting the
boundary.

3.3 Inference results for IllustrisTNG and Illustris

In this section, we employ the IllustrisTNG and Illustris simulations
as mock observational data to explore the impacts of feedback,
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mainly AGN feedback, on the IGM thermal state [Ty, y]. More
specifically, we evaluate the robustness of our inference method,
built on the Nyx thermal grid without galaxy formation and feedback,
when applied to observational data derived from a (mock) Universe
with substantial feedback associated with galaxy formation and
AGN activities. The investigation is broken down into two separate
inquiries. First, it explores the extent to which feedback associated
with galaxy formation and AGN activities impacts the Ly o forest.
Second, it investigates how, given the presence of these effects, the
feedback influences the inferred parameters [Ty, y].

Following the forward-modelling prescription described in Sec-
tion 2.4, we generate mock data sets with Az = 2.136, the pathlength
of D16 data set at z = 0.1, for both simulations (see Fig. 11),
and run our inference method on each data set. As discussed in
Section 2.5, a degeneracy exists between the strength of the AGN
feedback implemented in the simulations and the UV background
photoionization rate I'y;, both of which suppress the abundance
of absorbers, hence reducing the dN/dz(see Khaire et al. 2024, for
more details). Given that our inference method primarily derives the
photoionization rate 'y, based on the dN/dz, the resulting I'yy, always
aligns with the value that generates the equivalent dN/dz in the Nyx
simulation (see Section 2.5). Since here we use IllustrisTNG and
INlustris simulations with their dN/dz matched to the D16 low-z data
set, the inferred 'y, always disagrees with the true values used to
generate the IllustrisTNG and Illustris simulations. To this end, we
conduct our inference test in 2D without considering the accuracy
with which we recover the photoionization rate ['y,. Posterior
distributions for the thermal parameters obtained from our inference
applied to Ilustris and IllustrisTNG are shown in Fig. 10, where we
have marginalized over ['y,. For these two mock data sets, we infer
that [log (To/K), y1 = [3.5867 0473, 1.658759%%] for MlustrisTNG
(13.627,1.593]), and [log (To/K), y1 = [3.69610%0, 1.4850:00]
for Hlustris ([3.633,1.577]), while the true parameters for the two
simulations, [Ty, ¥ ]s, are given in parentheses respectively.

It can be seen that the true parameters [7), ¥ ]s;, obtained by fitting
the T-A distributions of the simulations, are within 1o errors (1D
marginalized) for both simulations, and the 1o errors for both the
IMustrisTNG and Illustris simulations are slightly larger than those
for Nyx simulations, which is caused by the intrinsic difference
between Nyx, IllustrisTNG, and Illustris simulations, where the
latter two are based on completely different hydrodynamic codes.
In Fig. 11, we present both the mock data sets used for inference
and the b—Ny, distributions emulated based on the inference results.
The plots highlight strong agreement between the emulated b—Ny;,
distributions and the respective mock data set for each simulation.

Nevertheless, it is worth mentioning that the inferred thermal states
for IlustrisTNG and Illustris presented above are based on realistic
conditions, with total pathlength Az = 2.136. Such a small Az
makes the inference result vulnerable to randomness induced by the
selection of mock data sets. To address this issue, here we conduct our
inference on IllustrisTNG and Illustris simulations, using data sets
with much larger pathlength, specifically with Az = 42.47, which is
20 times the size of the observational data set. The inference results
yield [log (To/K), y] = [3.60575931 1.65770:922] for MlustrisTNG
(13.627,1.59]), and [log (To/K), y] = [3.6807 050, 1.48370021] for
lustris ([3.633,1.58]), while the true parameters for the two sim-
ulations, [T, ylinf, are given in parentheses. The resulting corner
plots are presented in Fig. 12. These results are used as our inferred
thermal states [T, y Jins for IllustrisTNG and Illustris simulations in
the following part of this study. It is noticeable that the inferred T,
for Ilustris is higher than the true value with an error Alog (7/K) =
0.047 dex, while the y is below the true value, with Ay = —0.094.
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simulations, obtained by fitting the 7-A distributions of the simulations, are indicated by the red dot (lines) in the (marginal) distributions, while the dashed
black lines indicate the 16, 50, and 84 percentile values of the marginalized 1D posterior.
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For IustrisTNG, the offsets between the [Ty, ¥ linr and [7p, ¥ Ig are
smaller, with Alog (7y/K) = —0.022 dex, Ay = 0.064. We notice
that these offsets are smaller than the typical inference precision
obtained based on realistic data sets, as shown in Figs 7 and 10,
which report the marginalized 1D 1o error in log T, 0o 7,, ~0.1
dex and the marginalized 1D 1o error in y, o,, ~0.1. For both
simulations, we observe the offsets Alog Ty < 0.5015.7;,, and Ay <
oy.
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To check the robustness of these results, we use the IllustrisTNG
and Illustris simulations as mock observational data and perform
inference tests using two different sets of ‘true parameters’: the
[Ty, y]s obtained from our power-law fits the A — T distribution
of the simulations (see Fig. 2), and the [T, ylinr given by our
inference method when applied to an extremely large mock data
set, as described above. Given that the inferred 'y, for both
NlustrisTNG and Illustris simulations consistently deviates from
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Figure 12. Corner plots for IllustrisTNG (left) and Illustris (right), based on the larger mock data set, with Az =42.72, corresponding 20 times the observational
data set. Projections of the thermal grid used for generating models are shown as blue dots. The inner (outer) black contour represents the projected 2D 1(2)o
interval. The true parameters for the simulations, obtained by fitting the 7—A distributions of the simulations, are indicated by the red dot (lines) in the (marginal)
distributions, while the dashed black lines indicate the 16, 50, and 84 percentile values of the posterior.

the actual values, owing to the previously mentioned degeneracy
between the photoheating rate and feedback strength, any inference
tests incorporating the I'y; from these two simulations will surely
fail. To this end, we focus on the inference results on the Ty—y
plane and conduct marginalized inference tests by marginalizing the
posteriors over the 'y, in which 2D marginalized contours levels are
modelled by Gaussian mixture models. For each simulation, we run
100 realizations on each set of ‘true parameters’, and run inference
tests on the obtained posteriors. The results are shown in Fig. 13,
indicating that our inference method is overconfident for both sets of
‘true parameters’. While the inference method is not able to recover
the thermal state [T), y s, the thermal state [Tp, ¥ Jins significantly
improves the outcome of the inference test. These results suggest
that our inference method is able to robustly recover the [T}, ] with
small biases, for simulations that include feedback mechanisms.
The inference tests imply that there exist offsets for the in-
ferred parameters [T, y]ins for IllustrisTNG and Illustris, where
Alog (Ty/K) = —0.022 dex, Ay = 0.064 for IllustrisTNG and
Alog (To/K) = 0.047 dex, Ay = —0.094 for Illustris. However,
these offset are insignificant, with Alog Ty < 0.5015.7,, and Ay <
o, . However, it is unclear whether the observed differences between
[To, y Jins and [Ty, y ] can be attributable to the intrinsic difference
between the Nyx, IllustrisTNG, and Illustris simulations, or if they
arise from potential degeneracy between the IGM thermal state [Ty,
y] and the feedback mechanism implemented in the simulation.
Nevertheless, the latter hypothesis seems to contrast with the results
based on the various statistics of the low-z Ly « forest presented
in Khaire et al. (2024), which suggests that the impacts from
different feedback models are not distinguishable via the Ly « forest
under realistic scenarios, i.e. forward-modelled using the D16 COS
data set. The only exception is the case of the Ly« flux power
spectrum at small scales, where minor deviations are observed in
both simulations(see Khaire et al. 2023, for the dV/dz around massive
haloes). To further explore this problem, we examine the physical
properties of low -z Ly « absorbers in the following section.

4 LOW-z LY x FORESTS AND SIMULATED
ABSORBERS

4.1 Identifying the simulated Ly « absorbers

To understand whether the low-z Ly o forest effectively probes the
WHIM, we attempt to identify the simulated Ly « absorbers, i.e.
the ny; peaks in the simulation skewers, that give rise to the Ly
a lines detected in the mock spectra. This approach allows us to
directly examine the physical properties (7, A, and ny;) of these
simulated Ly « absorbers and draw a direct correspondence between
them and the line parameters ({b, Ny,}) of their corresponding Ly
o lines detected in the mock spectra. In this section, we chose to
focus on the simulated Ly « absorbers in the Nyx simulation at z =
0.1 (with default thermal history, i.e. Tp = 3.612, and y = 1.588 at
z =0.1). For clarification, within the context of this study, the ‘terms
simulated Ly « absorbers’ or ‘simply simulated absorbers’ are used
to denote the ny, peaks that give rise to the Ly o absorption lines in
the mock spectra detected by VPFIT.

Our approach for identifying simulated Ly o absorbers works
as follows. First, we include the physical properties, including
temperature 7, overdensity A, velocity along LOS vy, and the
neutral fraction xy, in our skewers and stitch them in the forward-
modelling procedure (see Section 2.4). We interpolate the stitched
skewer on to the forward-modelled wavelength grid, and calculated
the neutral hydrogen density ny,; for each simulation cell, based
on the neutral fraction xy,, overdensity A, and the mean hydrogen
density i1y5. Subsequently, we scan the stitched skewers (in real space)
for ny, peaks, and classify these with ny; > 10~ 2em™3 as potential
simulated Ly « absorbers. The minimal peak H I density is derived
from both the minimal H I column density for the detected lines
Ntimin = 10"*%cm™ (see Section 2.4) and the maximal length for
simulated absorbers lyps, max = 0.5 Mpc h~!, which is consistent with
previous studies that attempt to characterize the structures giving rise
tothe Ly o forest at z = 0.1 (Bolton et al. 2022b; Tillman et al. 2023b).
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Figure 13. Marginalized coverage probability Pj,r for inference tests using IllustrisTNG (left) and Illustris (right) simulations as mock observational data. The
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Given these two parameters, the requisite minimum H I peak density
for simulated absorbers to yield observable Ly « absorption lines is
computed as ny;, min = % = % ~ 10~'2 cm—3, which
effectively filters out ny, peaks that give rise to Ly « absorption
lines below our sensitivity. We then determine the physical size
for each potential simulated absorber along the LOS, Iy, using a
threshold at which ny; drops below 1 percent of its peak value,
while restricting the maximal size to be /s, max = 0.5 Mpc/h. We
calculate the H I column densities of the simulated Ly « absorbers,
Nuisim, by integrating the ny; over the ranges set by aforementioned
threshold. We observed that the resulting Ny, is not particularly
sensitive to [y, because the ny; peak is so narrow that the majority
of the neutral hydrogen comes from the peak region (see Fig. 14).

After identifying the potential Ly « absorbers, we extract their
LOS velocity from the simulation cells, and compute the central
wavelength of the expected absorption lines in redshift space,
accounting for the redshift caused by its LOS velocity. For each
anticipated absorption line originating from an ny, peak, we check
whether its central wavelength lies within &= 50 km s~! of the central
wavelength of any Ly « lines detected in the mock spectrum. If so,
we confirm the identification of a simulated Ly « absorber, and take
the T and A at the ny, peak as its values, which is valid since the ny,
peak is so narrow that the majority of the Ny, comes from the region
close to the peak. While theoretically, the Ly « lines are expected to
be caused by multiple ny, peaks in real space (Garzilli, Theuns &
Schaye 2015), we discover that at z = 0.1, each Ly « line detected in
the mock spectra with 12.5 < log(Ny;/cm~2) < 14.5 predominantly
originates from one single ny; peak in the simulation. It is not a
resolution effect, since the simulation (Nyx) has a grid length ~ 0.02
Mpch~!, while the simulated absorbers have sizes ~ 0.5 Mpch™!.
As such, we only consider the ny, peak with the highest ny, value
if multiple ny, peaks contribute to the same detected absorption
line.

Fig. 14 showcases examples of the simulated Ly o absorbers,
alongside their corresponding absorption lines in the mock spectra
and the related simulation skewers. The top panel depicts the flux
(black), noise vector (green), and the model fitted by VPFIT (blue).
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The central wavelength of Ly « lines identified by VPFIT are
indicated by orange vertical lines, and the corresponding simulated
absorbers are indicated by orange dashed lines in the second panel
(and all other panels below). The log Ny, b reported by VPFIT
are given in the annotation, together with the 10g Ny sim, Pthermar cal-
culated based on the simulation, whereas the byerma = (kT /m;)'/?
is the thermal component of the b-parameters computed based on the
T of the simulated Ly o absorbers (see equation 5). The second panel
depicts the neutral hydrogen density ny,, while the shaded regions
represent the identified Ly « absorbers along LOS, which are used as
the integral ranges while computing the Ny, 4m. The orange vertical
dashed lines show the ny, peaks of the confirmed simulated Ly o
absorbers, while the purple vertical dashed lines show the potential
simulated Ly « absorbers that do not cause detectable Ly « lines. The
grey horizontal dashed line represents the minimal H 1 peak density,
NLmin = 10712 cm™3. The third, fourth and fifth panels show the
overdensity A, temperature log 7, and LOS velocity v}, (black solid
lines). The brown horizontal dashed line in the fourth panel stands for
T = 10° K, which divides the cool diffuse Ly o gas and the WHIM.
The left-hand panel shows a simulated Ly o absorber in the diffuse
Ly o phase, while the right left-hand panel shows a simulated Ly «
absorber arising from the WHIM phase.

‘We perform the identification procedure for all 1000 mock spectra,
discovering 34 011 potential simulated Ly « absorbers,i.e. ny, peaks,
among which 10510 are identified as simulated Ly o absorbers and
matched to their respective absorption lines identified by VPFIT.
The discrepancy between potential and confirmed Ly « absorbers
is due to the inclusion of minor ny, peaks, that are too weak to
cause any detectable Ly « line, which is indicated by purple vertical
lines in the left panel of Fig. 14. Lastly, approximately 2 per cent of
the lines detected by VPFIT could not be matched to any simulated
Ly « absorber. These anomalies could potentially result from false
identification of the VPFIT induced by noise. None the less, given
the rarity of these cases, omitting them should not influence our
statistical results or conclusions.

To validate our identification method, we compare the observed
line parameters, reported by VPFIT, with the values calculated from
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Figure 14. Illustration of a segment of one of the forward-modelled mock spectra (top panel) with the absorption lines detected by VPFIT and the corresponding
skewer. The top panel depicts the flux (black), noise vector (green), and the model fitted by VPFIT (blue). The central wavelength of Ly « lines identified by
VPFIT are indicated by orange vertical lines, and the corresponding simulated absorbers are indicated by orange dashed lines in the second panel (and all other
panels below). The log Ny g, bsi reported by VPFIT are given in the annotation, together with the log Ny sim, Pthermal calculated based on the simulation.
The second panel depicts the neutral hydrogen density ny, while the shaded regions represent the identified Ly o absorbers along LOS, which are used as the
integral ranges while computing the Ny im. The orange vertical dashed lines show the ny; peaks of the confirmed simulated Ly « absorbers, while the purple
vertical dashed lines show the potential simulated Ly o absorbers that do not cause detectable Ly « lines. The grey horizontal dashed line represents the minimal
H 1 peak density, nHmin = 1072 ¢cm~3. The third, fourth and fifth panels show the overdensity A, temperature 7, and LOS velocity vjos. The brown horizontal
dashed line in the fourth panel stands for 7= 103 K. left: A Ly o absorbers in the diffuse Ly o phase. right: A Ly « absorbers in the WHIM phase.

the simulation. In Fig. 15, we showcase the Ny, (left) and bg
(right) for all Ly « lines fitted by VPFIT, compared with the Ny im
and bpermar, respectively, both calculated from the corresponding
simulated Ly « absorbers identified in the Nyx simulation. The left-
hand panel indicates a strong correlation between the fitted Ny g,
and the Nyism calculated from the simulation, implying that the
ny; peaks identified by our method are indeed the simulated Ly o

absorbers responsible for the Ly « lines detected in the mock spectra.
The right panel demonstrates that the bulk of by, lies above the dashed
line representing bg; = bipermar- This result aligns with the nature of
the b-parameter, as given by

b= \/ lzhermal + bleotherm’ (5)
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Figure 15. The observed variables Ny s, bf fitted by VPFIT compared with the physical quantities Ny gim and bpermar of the simulated absorbers identified
in the simulation skewers, where the Ny sim is calculated by integrating the ny, of the absorbers along the LOS, and the byhermal is computed by assuming the
broadening of the Ly « lines are pure thermal. Left: Ny versus Nuisim. Right: bg¢ versus bihermal. The dashed—dotted line in the right-hand panel represents

the b-parameter resulting from the combination of the thermal component bherma and a turbulence in the IGM with byotherm = 20 kms™.

where the bpomerm 15 the non-thermal component of the b-parameter
resulting from combinations of Hubble flow, peculiar velocities and
turbulence in the IGM. Equation (5) demonstrates that the byerma 1S
the lower limit of the b-parameter, which corresponds to the lower
right cutoff of the b—Ny, distribution (see the colour maps in Figs 8§
and 11 as examples. More discussions on this topic can be found in
Schaye et al. 1999, Rudie, Steidel & Pettini 2012, Bolton et al. 2014,
and Hu22). Furthermore, the right-hand panel of Fig. 15 gives arough
correlation between the bg, and byerma and provides an approximate
estimation of the strength of the non-thermal broadening of the Ly
o lines at z = 0.1. It suggests that for the Nyx simulation, the
non-thermal contribution to the b-parameter can be modelled by a
‘turbulent’ motion in the IGM with byoherm ~ 20 kms™! (indicated
by the black dashed—dotted line in Fig. 15).

We summarize the (A, 7) for the ensemble of simulated Ly o
absorbers identified in the Nyx simulation in Fig. 16. Considering
that we have established one-to-one correspondence between the
simulated absorbers and observed (mock) absorption lines, we
employ a consistent filter to both sets, which selects Ly o lines
with, 12.5 < log(NHI/crn_z) < 14.5 and 0.5 < log (b/km sTh<25s
(see Section 2.4). In the upper panels, we plot the volume-weighted
1D marginal distributions of A and T for all simulation grid cells,
juxtaposed with the 1D distributions of A and T for the simulated Ly
o absorbers, showing that the simulated Ly « absorbers, in general,
have higher temperature and overdensity, compared with the full
simulation. The peaks of the A and T distributions of the simulated
Ly o absorber highlight the specific range of A and T to which the
Ly « forest is sensitive at z = 0.1. More specifically, the Ly « forest
is most sensitive to the IGM characterized by log A = 0.92 and T =
10*?7 K. It is worth mentioning that, as mentioned in Section 2.3,
the Ly « optical depth 71, is dependent on I'y;. Consequently, the
regions to which the Ly « forest is sensitive also depend on I'y;. This
point will be fully discussed later in Section 4.3.

The bottom left panel of Fig. 16 shows the (volume-weighted) 7—
A distributions for simulated Ly « absorbers (left), and all grid cells
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1

in the simulation (right), while the volume-weighted gas fractions’
are given in annotations for simulated absorbers and the whole
simulation in the left-hand and the right-hand panel, respectively.
The black contours in both panels illustrate the 1o and 30 (68 and
99.7 per cent) contours for the 7-A distribution of the simulated Ly
o absorbers. The T-A distribution of the simulated Ly o absorbers
appears to be scattered at low-z, extending into the WHIM phase,
due to the pervasive effects of shock heating. As per the gas phase
fractions of the Ly « absorbers shown in the bottom left panel,
approximately 7 per cent of the absorbers originate from the WHIM
phase, suggesting that the low-z Ly « forest does probe the WHIM
(see the right panel of Fig. 14 as an example), although its sensitivity
is notably limited given the small fraction of lines arising from this
phase. Such a result aligns with Tepper-Garcia et al. (2012) regarding
the detectability of the Broad Ly o Absorbers (BLAs) at low-z under
realistic conditions.

4.2 Simulated Ly « absorbers in IllustrisTNG and Illustirs

To further study the effects of the feedback mechanisms on the
Ly o forest at z = 0.1, we identify the simulated Ly « absorbers
in both the IllustrisTNG and Illustris simulations, and pair them
to the corresponding absorption lines present in the mock spectra,
following the method outlined in Section 4.1. For each simulation,
we carry out the identification process across 1000 mock spectra and

9 As previously mentioned, for each simulated Ly & absorber, we use the 7and
A at its ny; peak, which dominates the Ly o absorption. To this end, when
calculating the volume-weighted gas fractions, we do not take the physical
size into account, but instead, only consider the one simulation cell where the
ny; reaches its maximum. This is reasonable since typical ny; peaks seen in
this study are so narrow that most of the Ny comes from the peak cell. As
a result, the so-called volume-weighted gas fractions for simulated absorbers
are effectively unweighted. This approach is used for all gas fractions related
to simulated Ly « absorbers throughout this paper.
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Figure 16. Distributions of A and 7T of the simulated Ly « absorbers in the Nyx simulation, compared with the full simulation. The ensemble consists of 10510
absorbers, all obtained from the 1000 spectra discussed in Section 4.1. The top panels show the 1D distributions of 7(right) and A(left) for the whole simulation
(green) compared with simulated Ly « absorbers (blue). The medians of the 7 and A for the simulated absorbers are indicated by dashed black lines. The bottom
panels plot the 2d 7-A distributions for the Ly « absorbers(left) and for the whole simulation(right), while the contours for 1o, 30 (68 and 99.7 per cent) of the
T-A distribution of the absorbers are shown in both panels. The volume-weighted gas phases for absorbers and the whole simulation are given in the left-hand
panel and the right-hand panel, respectively. The best-fitting power-law 7—A relationships are given in the bottom panels as comparisons.

summarize the physical properties of the simulated absorbers. It is
worth mentioning that here the IllustrisTNG and Illustris simulations
are tuned to have identical dN/dz, which requires different 'y, values
(see Section 2.5).

We plot the marginalized 1D distributions of the A and T for
both IllustrisTNG (top) and Illustris (bottom) in Fig. 17. The
plots show that the overall distributions of 7 and A for the two
simulations are evidently different due to their different feedback
recipes. For instance, the extreme feedback in Illustris simulation
results in much more WHIM compared with IllustrisTNG, causing
a secondary peak in its T distribution. However, the distributions
of T and A for the absorbers in both simulations are comparable,
with log (Tmea/K) =4.33, log Apea = 0.97 for IustrisTNG, and
log (Thea/K) = 4.16, log Apeq = 0.72 for Illustris. Moreover, we
discover that the differences in log (Tied/K) and log Apeq for the
three simulations are actually caused by the different 'y, values
used for the three simulations. The relevant discussion is presented
in Section 4.3.

The (volume-weighted) 2D 7—A distributions for simulated Ly o
absorbers in both IustrisTNG (top) and Illustris (bottom) simula-
tions are shown in the left column of Fig. 18, whereas the (volume-
weighted) 2D 7—A distributions for the whole simulations are given
in the right column as comparisons. The volume-weighted gas
fractions are given in the annotation for simulated absorbers and full
simulation in the left-hand and the right-hand panels, respectively.
For the simulated Ly o absorbers, 12.2 percent (10.7 percent) of
the Ly o absorbers arise from the WHIM for IllustrisTNG (Illustris),
while the value for Nyx simulation is approximately 7 per cent. The
1o and 30 (68 and 99.7 per cent) contours for the 7-A distributions
for the simulated Ly « absorbers are also given in the Figure, showing
that their 7-A distributions are more scattered compared with these
in Nyx simulation, especially for the WHIM phase absorbers. These
differences are caused by stronger shock heating in IllustrisTNG
and Illustris simulations compared with Nyx simulation, caused by
their feedback mechanisms. However, while the (volume-weighted)
WHIM fractions for the two simulations are remarkably different,
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Figure 17. Marginalized 1D A and 7 distributions of the simulated Ly o« absorbers in the IllustrisTNG (top) and Illustris (bottom) simulation. The medians of
the 7 and A for the simulated absorbers are indicated by dashed black lines. The overall A and T distributions of the full simulations are plotted as comparisons.
The two simulations share the same dN/dz, which is the same value observed in the D16 data set.

9.8 percent for IllustrisTNG and 38.0 percent for Illustris, the
WHIM fractions for the Ly « absorbers are similar, both around
11 percent. Furthermore, in Section 4.3 we demonstrate that the
small difference in WHIM fractions for simulated absorbers in the
two simulations actually arises from the different I'y; values used in
the two simulations. Such a fact implies that the low-z Ly « forest
does not probe the WHIM effectively under realistic conditions,
which is consistent with the conclusion drawn by Khaire et al.
(2024).

4.3 Simulations under the same I'y,

Considering that the calculation of the Ly o optical depth iy,
involves I'y;, and given that the observed absorption feature (i.e.
the Ly a forest) consistently probes regions with 7y, ~ 1, it
follows that the 7 and A of these regions probed by the Ly «
forest, are influenced by the I'y, values. Such an argument can
be qualitatively demonstrated by the fluctuating Gunn—Peterson
approximation (FGPA; see Weinberg et al. 1997)
nIZ_{T—OJ A247—y T2/(y—l)—0.7

TLya X XHINH X e v ) (6)
T Tl Chr
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where the 71y, denotes the Ly a optical depth and the ny is the
hydrogen number density. Since the Ly « forest always probes the
region with 7y, ~ 1, the last two terms in equation (6) suggest that
the I'y; is in positive correlation with A and 7, respectively, given
they ~1.6atz=0.1.

In our analysis, the three simulations are tuned to match dN/dz.
However, due to the degeneracy between 'y, and feedback mech-
anisms, each simulation ends up with a distinct I'y; value (refer to
Section 2.5). As a result, the 7 and A distributions of the simulated
Ly o absorbers in these simulations are influenced not just by the
feedback but also by the varying 'y, values. To isolate and examine
solely the impact of feedback, we post-process the IllustrisTNG and
[lustris simulations to align with the I'y; value used in Nyx, set at
log(T'y;/s~") = —13.093. With this consistent I'yj; across the three
simulations, we re-perform the analysis from the prior section and
summarize the results below. It is worth mentioning that the overall
T-A distributions of simulations are determined by the cooling and
heating processes during their evolution and are not altered by the
post-processing of the I'y;.

We plot the marginalized A and 7 distributions and their median
values for Ly « absorbers in Nyx, [llustrisTNG, and Illustris simu-
lations with the same dN/dz in Fig. 19. Interestingly, for simulations
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relationships are given as comparisons. The two simulations are dN/dz matched.

with the same dN/dz, the T and A for absorbers are correlated with
its I'u;. More specifically, with 'y nusuis < FaiNyx < THulustisTNG
(See Flg 6), we obtain Tmed, Ilustris < Tmed, Nyx < Tmed, MlustrisTNG and
Anmed, Tustris < Amed, Nyx < Anmed, ustrisTNG -

We plot the marginalized A and T distributions and their median
values for Ly o absorbers in the three simulations under the same
'y, in Fig. 20. Under the same I'y,, the T and A distributions for
simulated absorbers in all three simulations become almost identical,
having nearly the same median values for T and A, respectively.
Such a result suggests that while feedback evidently affects the
overall 7-A distributions of the low-z IGM (see Fig. 2), their
impacts on the physical properties of the low-z Ly o forest (i.e.
the 7 and A distributions) are not distinguishable under realistic
conditions.

In Fig. 21, we plot the 2D T-A distributions of the simulated
Ly « absorbers in IllustrisTNG (left) and Illustris (right), under the
same ['y;. While the overall IGM T-A distributions for the two
simulations are evidently different (see Fig. 2), the 7-A distributions
of the simulated Ly « absorbers in these two simulations are similar,
and the gas phase fractions for absorbers in both simulations are

almost identical, suggesting that the small difference in the WHIM
fractions of the simulated absorbers shown in Fig. 18 are caused
by different 'y, values. Such results indicate that the I'y; has
a much stronger impact on the Ly « forest compared with the
feedback mechanisms implemented in IllustrisTNG and Illustris
simulations.

5 SUMMARY AND DISCUSSION

In this paper, we explore the effects of the WHIM, which causes
significant dispersion in the IGM T-A distribution, on the low-z
Ly o forest and the IGM thermal state [Ty, ] measured from it.
We first evaluate the effectiveness of [Ty, y] as IGM parameters
under the inference framework presented in Hu22, and compare its
performance with the photoheating labels [A, B]. We discover that the
thermal state [T}, ] still parametrizes the IGM effectively in spite
of the dispersion in the IGM 7-A distribution. We further apply
the inference method to IllustrisTNG and Illustris simulations which
implement different variants of feedback, potentially making them
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UV background photoionization rate, with I'y; = —13.093.

better approximations to the real Universe. We discover that the [T},
y] of these two simulations can be recovered using the inference
method within reasonable offsets. Considering the inference results
and the huge difference across the three simulations in the IGM
WHIM fractions, we conclude that the Ly o forest does not probe the
WHIM effectively under realistic conditions, and the IGM thermal
state [Ty, y] is not affected by the shock heating caused by AGN
feedback and other astrophysical processes significantly at z =
0.1. To further confirm our conclusion, we identified the Ly o
absorbers in all three simulations at z = 0.1, and pair them to
the corresponding absorption lines identified in the mock spectra.
The physical properties of the simulated Ly o absorbers support
our conclusion that the observable Ly « forest are not affected by
the substantial WHIM in the low-z, and the thermal state [Ty, Y]
measured from the Ly « forest remains solid. In this section, we
summarize our paper and present our discussion as follows.

MNRAS 527, 11338-11359 (2024)

(i) We compare the performance of [Ty, ] as neural network
training labels against the photoheating labels [A, B], i.e. the pho-
toheating rate rescaling factors used to generate the Nyx simulation
suite with various thermal histories. Given that the [A, B] parameters
were actually used to generate the simulation outputs, one might
expect that they would serve as a better set of labels than [Ty, y].
However, the inference results show the efficacy of these two sets of
labels are comparable, suggesting that the [T, y ], which parametrize
the power law T—A relationship, still effectively characterize the Ly
o observables at low-z, notwithstanding the dispersion in the 7-A
distribution induced by shock heating at low-z.

(i) We explored the degree to which the presence of feedback
can influence or bias the inference of the IGM thermal state param-
eters from the b—Ny, distribution. In the context of our inference
framework, this question becomes: what would happen if we used
a simulation grid without feedback to infer the thermal state of
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Figure 21. 7—A distributions of the simulated Ly « absorbers in the IllustrisTNG (left) and Illustirs (right) simulations under the same I'yy;. The contours for
1o, 30 (68 and 99.7 per cent) of the 7-A distribution of the absorbers are shown in both panels. The volume-weighted gas phase fractions for absorbers in both

simulations are given, respectively.

a Universe that has strong feedback? Would the feedback lead to
biased inference? To address these questions, we apply our inference
procedure trained on Nyx simulations without feedback to mock data
sets from the IllustrisTNG and Illustris simulations which include
feedback, whereby the latter serve as potential proxies for the real
Universe. We find that the [T, y] of IlustrisTNG and Illustris
can be recovered within small offset, where Alog (7o/K) = —0.022
dex, Ay = 0.064 for IllustrisTNG and Alog (Ty/K) = 0.047 dex,
Ay = —0.094 for Illustris. These offsets are smaller than the typical
precision afforded by a realistic data set, i.e. AlogTy < 0.5 01057,
and Ay So,.

(iil) We developed a method to identify regions in the simulation
responsible for the Ly o absorption lines identified via Voigt-
profile fitting, allowing us to determine their temperature 7' and
overdensity A from the simulation skewers. For the Nyx simulations,
the simulated Ly « absorbers have a median density log A edian =
0.92, a median temperature Tedian = 10*?7K, and about 7 per cent
of the simulated Ly « absorbers have T > 10%, making them outliers
from the power-law T—A relationship. This low fraction is consistent
with the previous study of Tepper-Garcia et al. (2012) on the low-z
BLAs.

(iv) As pointed out in previous work (Bolton et al. 2022a; Khaire
etal. 2024; Tillman et al. 2023a), the Ly « forest is affected by the UV
background, which impacts the dV/dz. Nevertheless, we observe that
the temperature and overdensity of the region probed by the low-z
Ly « forest are also affected by the UV background photoionization
rate 'y, used in the simulation. For dN/dz matched simulations, the
T and A of the simulated Ly o absorbers are correlated with its 'y,
respectively. Specifically, the Ly « forest probes regions with higher
T and A given a higher I'y;. This is because for Ly o absorbers with
Tryq ~1, the fluctuating Gunn—Peterson approximation implies that
Iy o A2777 o TH@=D=07 where y ~ 1.6.

(v) We post-processing the three simulations to share the same
I'uy, allowing us to explore the effects of different mechanisms.
Under the same I'y;, the 7 and A distributions of the simu-
lated Ly o absorbers across all three simulations become almost
indistinguishable, converging to nearly identical median values,
while the overall IGM T-A distributions remain different among
the simulations, due to their distinct feedback mechanisms. For
the WHIM fractions, the volume-weighted WHIM fractions for

IustrisTNG and Illustris stand at 9.8 and 38.0 per cent, respectively,
but the WHIM fractions for the simulated Ly « absorbers in both
simulations are nearly identical, averaging around 11.6 per cent.
This suggests that while feedback significantly alters the low-
z IGM T-A distribution, especially the WHIM phase gas, their
impacts on the low-z Ly « forest is indistinguishable under real-
istic conditions. Such a conclusion aligns with the results derived
from various statistics of the low-z Ly « forest by Khaire et al.
(2024).

We have thus far demonstrated the robustness of the thermal state
[Ty, y] as IGM parameters at low-z, in spite of the dispersion in the
T-A distribution induced by shock heating. We also proved that the
Hu22 inference framework can effectively measure the thermal state
[Ty, y] notwithstanding the feedback mechanisms implemented in
the IlustrisTNG and Illustris simulations. Looking ahead, we plan
to apply the Hu22 inference methodology to simulations with more
flexible and sophisticated feedback mechanisms, including EAGLE
(Schaye et al. 2015) and CAMELS suite (Villaescusa-Navarro et al.
2021). The outcomes will provide us with a deeper understanding of
the impact of various feedback processes on low-z IGM. Moreover,
by applying our methodology on archival HST COS and space
telescope imaging spectrograph (STIS) data sets, we expect precise
measurements of the low-z IGM thermal state. These results will
pinpoint the onset of the discrepancy in the b parameters of the low-
z Ly o forest between current simulations and observations, which
is essential for unravelling the underlying physics and acquiring a
comprehensive picture of the IGM thermal evolution at low-z after
the epoch of helium reionization.
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Figure A1. Anexample of posterior obtained by our inference method based
on [T, y, C'Hip]. Projections of the thermal grid used for generating models
are shown as blue dots, while the true model is shown as red dots. The
inner (outer) black contour represents the projected 2D 1(2) o interval.
The parameters of true models are indicated by red lines in the marginal
distributions, while the dashed black lines indicate the 16, 50, and 84
percentile values of the posterior. The true parameters are: A = 1.0 and
B =0.0, log(T'y;/s~") = —13.093.

APPENDIX A: INFERENCE BASED ON THE
PHOTOHEATING LABELS [A, B]

In this section, we present our inference results using the framework
where different Nyx models are labelled by the photoheating param-
eters [A, B] instead of the thermal state [T, y], and the inference
method returns [A, B, log I'y,]. The inference is conducted following
the procedures described in Section 3, based on the DELFI b—Ny,
distribution emulator trained on training data set labelled by [A, B,
log I'y,], which returns P(b, Ny, | A, B, log'y)).

The simulation grid, parametrized by the photoheating labels [A,
B], is given in Fig. A3. An example of the MCMC posterior obtained
based on the aforementioned likelihood function is given in Fig. Al.
The inference method returns A = 1.321 (1.0), B = —0.190 (0.0),
'y = —13.160 (—13.093), whereas the true values are given in the
parentheses. The posterior appears compact, with the medians of
the marginalized posteriors landing within 1o errors for all three
parameters. The b—Ny; distribution recovered from the mock data
set is presented in Fig. A2, which is emulated by our DELFI b—Ny,
distribution emulator based on the inferred parameters.

We perform an inference test following the Section 3.2, in which
we also exclude models that are too close to the parameter boundaries
to avoid the truncation of the resulting posteriors. Specifically, we
only use models with 3.3 <log (79/K) <3.9,1.0<y <2.3, -13.75 <
log(T'y;/s™ ) < —13.0. The result of the inference test is shown in
Fig. 9. The performance looks comparable to the one based on the
thermal state [Ty, y ], suggesting that [Ty, y] are still effective IGM

© The Author(s) 2023.
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parameters at low-z, notwithstanding the substantial dispersion in
the IGM T-A distribution induced by pervasive shock heating at this
redshift.
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Figure A2. The colour map is the full >—Ny; distribution recovered from the
Nyx mock data set, which is emulated by our DELFI emulator based on the
best-fitting parameters (median values of the marginalized MCMC posterior),
where A = 3.695 (1.0) and B = 1.507 (0.0) and log(I'y,/s~!) = —13.237
(—13.093), the true parameters are given in parentheses. Black dots are
the mock data sets we used in the inference. The contours correspond to
cumulative probabilities of 68, 95, and 99.7 per cent. For illustration purposes,
the values of pdf are multiplied by 100 in the colour bar.
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Figure A3. Parameters grid (blue circles) from snapshots of hydrodynamic
simulations of the THERMAL suite at z = 0.1 parametrized by the thermal
state [A, B].
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