Early results from investigating protostellar accretion across the mass spectrum (IPA) with JWST Federman, S.; Megeath, S.T.; Tobin, J.; Watson, D.; Evans, N.; Gutermuth, R.; ...; Muzerolle, J. ## Citation Federman, S., Megeath, S. T., Tobin, J., Watson, D., Evans, N., Gutermuth, R., ... Muzerolle, J. (2023). Early results from investigating protostellar accretion across the mass spectrum (IPA) with JWST. *Bulletin Of The American Astronomical Society*, 273.09. Retrieved from https://hdl.handle.net/1887/3718900 Version: Publisher's Version License: <u>Creative Commons CC BY 4.0 license</u> Downloaded from: <u>https://hdl.handle.net/1887/3718900</u> **Note:** To cite this publication please use the final published version (if applicable). **Bulletin of the AAS • Vol. 55, Issue 2 (AAS241 Abstracts)** ## Early Results from Investigating Protostellar Accretion Across the Mass Spectrum (IPA) with JWST Samuel Federman¹ S. Thomas Megeath¹ John Tobin² Dan Watson³ Neal Evans⁴ Robert Gutermuth⁵ Tyler Bourke⁶ William Fischer⁷ Elise Furlan⁸ Joel Green⁷ Nolan Habel⁹ Riwaj Pokhrel¹ Patrick Sheehan¹⁰ Prabhani Atnagulov¹ Lee Hartmann¹¹ Nicole Karnath¹² Leslie Looney¹³ Mayra Osorio¹⁴ Judith Pipher³ Rohan Rahatgaonkar¹ Amelia Stutz¹⁵ Ewine van Dishoeck¹⁶ Scott Wolk¹⁷ Yao-Lun Yang¹⁸ James Muzerolle⁷ The non-AAS members of the IPA team Published on: Jan 31, 2023 URL: https://baas.aas.org/pub/2023n2i273p09 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) ¹University of Toledo, ²National Radio Astronomy Observatoy, ³University of Rochester, ⁴University of Texas, Austin, ⁵University of Massachusetts, Amherst, ⁶SKA Observatory, ⁷Space Telescope Science Institute, ⁸IPAC, Caltech, ⁹The University of Toledo, $^{^{10}}$ National Radio Astronomy Observatory, 11 University of Michigan, Ann Arbor, 12 SOFIA/USRA, ¹³University of Illinois, Urbana-Champaign, ¹⁴Instituto de Astrofisica de Andalucia CSIC, ¹⁵Universidad de Concepcion, ¹⁶Sterrewacht Leiden, ¹⁷SAO, ¹⁸Riken We overview Investigating Protostellar Accretion (IPA), a JWST Cycle 1 program to study accretion and accretion driven feedback using the NIRSpec and MIRI MRS IFUs of JWST. IPA is targeting five protostars with luminosities of 0.2 to 10,000 Lsun, stellar masses of 0.1 to 12 Msun, and distances of 150 pc to 1.6 kpc. Each shows a disk + outflow cavity morphology, is in its primary accretion phase, is deeply embedded, and requires observations at > 3 microns. With JWST's combination of sensitivity, angular resolution, and spectral resolution, IPA is observing each protostar in the 2.9-28 micron range and mapping ionic, atomic, molecular and continuum emission at spatial resolutions of 30 AU (for the lowest mass sources) to 300 AU (for the highest mass source). IPA is searching for spectroscopic signatures of disk accretion to measure the rate and mode of mass accretion, and to measure how accretion scales with stellar mass. It is also observing jets and the wide angle winds carving cavities into the protostellar envelopes. In total, IPA is resolving in unprecedented detail the coupled accretion and feedback that plays a central role in determining the masses of stars and the efficiency of star formation. In this poster, we overview the results of the NIRSpec 2.9-5 micron data of our entire sample. Focusing on the detection and spatial distribution of atomic and molecular hydrogen, forbidden iron, and carbon monoxide lines, we identify jet, wind, and accretion tracers in the data cubes.