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A B S T R A C T 

A key unknown of the Milky Way (MW) satellites is their orbital history, and, in particular, the time they were accreted onto 

the MW system since it marks the point where they experience a multitude of environmental processes. We present a new 

methodology for determining infall times, namely using a neural network (NN) algorithm. The NN is trained on MW-analogues 
in the EAGLE hydrodynamical simulation to predict if a dwarf galaxy is at first infall or a backsplash galaxy and to infer its 
infall time. The resulting NN predicts with 85-per cent accuracy if a galaxy currently outside the virial radius is a backsplash 

satellite and determines the infall times with a typical 68-per cent confidence interval of 4.4 Gyr. Applying the NN to MW 

dwarfs with Gaia EDR3 proper motions, we find that all of the dwarfs within 300 kpc had been inside the Galactic halo. The 
o v erall MW satellite accretion rate agrees well with the theoretical prediction except for late times when the MW shows a second 

peak at a lookback time of 1.5 Gyr corresponding to the infall of the LMC and its satellites. We also find that the quenching 

times for ultrafaint dwarfs show no significant correlation with infall time and thus supporting the hypothesis that they were 
quenched during reionization. In contrast, dwarfs with stellar masses abo v e 10 

5 M � are found to be consistent with environmental 
quenching inside the Galactic halo, with star-formation ceasing on average at 0 . 5 

+ 0 . 9 
−1 . 2 Gyr after infall. 

Key words: Galaxy: formation – Galaxy: halo – galaxies: dwarf – galaxies: interactions – cosmology: theory. 
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 I N T RO D U C T I O N  

ithin the standard λcold dark matter ( � CDM) cosmological model
tructures form hierarchically though the merger of lower mass
alaxies and haloes. The signature of this process are satellite
alaxies that orbit a typically more massive central galaxy and
he stellar haloes that surround most galaxies. The former are the
emnants of defunct galaxies that either merged with or were tidally
estroyed by their hosts (e.g. the Frenk & White 2012 ; Zavala &
renk 2019 re vie ws and references within). 
The Milky Way (MW) represents the perfect test bed for studying

he hierarchical growth of haloes and galaxies due to its close
roximity and a wealth of very detailed observations. In particular, we
ave a census of nearly 50 Galactic satellites and many thousands of
alo stars with full 6D phase–space observations (e.g. McConnachie
 Venn 2020b ; Gaia Collaboration et al. 2018 , 2021 ). These have

hown that our Galaxy experienced two massive early mergers, Gaia-
nceladus-Sausage and Kraken (e.g. Belokurov et al. 2018 ; Helmi
t al. 2018 ; Kruijssen et al. 2019a ), and the more recent accretion of
he Large Magellanic Cloud (LMC) around 2 Gyr ago (e.g. Besla
t al. 2010 ; Cautun et al. 2019 ; Patel et al. 2020 ). This is the
rst step into revealing the MW’s assembly history, with a much
ore detailed picture emerging when studying the infall times of all
alactic satellites. 
The MW satellites also offer the most detailed observations of

warf galaxies and contain unique signatures on the nature of dark
atter (DM) and galaxy formation processes (e.g. the re vie w of
 E-mail: marius.cautun@gmail.com 
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ullock & Boylan-Kolchin 2017 ). Ho we ver, to interpret the Galactic
atellite data, we need to know when these objects were accreted onto
he MW halo. For example, this tells us which processes quenched the
tar formation of the Galactic satellites, with all MW dwarfs except
MC and Small Magellanic Cloud (SMC) having no star-forming gas

Putman et al. 2021 ). Currently, there are two competing theories for
xplaining dwarf galaxy quenching. The reionization of the Universe
s predicted to have removed the gas from low-mass galaxies and
hus stopped star formation (e.g. Bullock, Kravtsov & Weinberg
000 ; Benson et al. 2002 ; Sawala et al. 2010 ; Simon 2019 ). This is
xpected to be the dominant process for ultra-faint dwarfs (UFD),
ith most having stopped forming stars 11–13 Gyr ago (e.g. Brown

t al. 2014 ; Weisz et al. 2014 ; Sacchi et al. 2021 ). On the other hand,
he more massive classical dwarfs probably keep most of their gas
eservoir after the epoch of reionization and thus continued forming
tars. The moment at which they stop forming stars is not so much
ependent on global processes (e.g. reionization), but rather on the
pecific history of the individual dwarf galaxies, such as ram-pressure
uenching when they become satellites of a more massive galaxy (e.g.
atto et al. 2013 ; Simpson et al. 2018 ; Akins et al. 2021 ). The mass

hreshold separating quenching by reionization from environmental
ffects is still debated and it represents a key probe of star-formation
rocesses in the smallest galaxies (e.g. Bose, Deason & Frenk 2018 ;
imon 2019 ; Benitez-Llambay & Frenk 2020 ). 
The Galactic dwarfs are currently one of the most constraining

robes into the nature of DM (e.g. Enzi et al. 2021 ; Nadler et al.
021 ; Newton et al. 2021 ), and augmenting existing studies with
nfall time and orbit information can impro v e the constraints further
e.g. Kaplinghat, V alli & Y u 2019 ). Alternative DM models, such
s warm DM or self-interacting DM, predict differences in the
© 2023 The Author(s) 
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umber and structure of low-mass galaxies and halos compared to 
he standard cold DM model (e.g. Col ́ın, Avila-Reese & Valenzuela 
000 ; Zavala, Vogelsberger & Walker 2013 ; Lo v ell et al. 2014 ).
hese differences depend on the orbital history of the satellites since 
warfs in alternative DM models, which typically have shallower 
M density profiles and later formation times, experience enhanced 

idal stripping compared to their cold DM counterparts (e.g. Dooley 
t al. 2016 ; Lo v ell et al. 2021 ), which emphasizes the importance of
ccurate accretion times for the Galactic satellites. 

Determining the infall times of the MW satellites is a key question
n cosmology and has been the subject of many previous studies.
hese can be grouped in two broad categories. The classical approach 

s to integrate the orbits of the satellites backwards in time and
etermine when they first crossed the virial radius of their host (e.g.
esla et al. 2010 ; Cautun et al. 2019 ; Patel et al. 2020 ). Ho we ver,

his problem is inherently difficult due to the unknown evolution 
f the Galactic potential and due to the chaotic nature of satellite–
atellite interactions (e.g. D’Souza & Bell 2022 ). Studies employing 
his approach typically involve many simplified assumptions, such 
s neglecting satellite–satellite interactions and assuming a smooth 
pherically symmetric and slowly varying MW potential, which 
akes it difficult to estimate robust uncertainties in the inferred 

atellite accretion times (e.g. Miyoshi & Chiba 2020 ; Armstrong, 
ekki & Ludlow 2021 ). 
A second approach for determining the infall time is to match the

bserved phase–space distribution of observed satellites with those 
f satellites in cosmological simulations (e.g. Rocha, Peter & Bullock 
012 ; Fillingham et al. 2019 ). This has the advantage of capturing the
any processes that affect satellite orbits since these are included in 

he simulation by construction. Ho we ver, one of the main limitations
rises from the technique used to match observed satellites with their 
imulated analogues, since it is not known which satellite properties 
re the most important for determining the infall time. Rocha et al.
 2012 ) have claimed that binding energy is the main predictor of infall
ime, ho we ver, later simulations have found a large scatter in this
elation, especially for systems that experienced massive accretions 
D’Souza & Bell 2022 ). Fillingham et al. ( 2019 ) further impro v ed
pon this matching procedure by, on top of the binding energy, 
atching observations and simulations also in terms of distance and 

adial velocity. Ho we ver, this raises a major difficulty since it unclear
hat the ‘closest’ means when matching many different physical 
ariables. 

In this research, we present a new approach to determine the infall
ime of satellite galaxies using neural networks (NNs). Machine 
earning is an excellent solution for the problem of determining 
nfall times, as it specializes in searching for potential correlations 
hat cannot be easily seen by researches due to being complex and
nvolving multidimensional spaces. This new method is similar to 
atching observed and simulated satellites in the phase–space with 

he major advantage that the machine-learning algorithm takes care of 
etermining the optimal weights of the dif ferent v ariables internally, 
 v oiding incorrect assumptions. To train the machine learning, we 
ake use of the galaxy data from the EAGLE hydrodynamical sim-

lation (Schaye et al. 2015 ). EAGLE represents a good compromise 
etween large volume, which is needed to have many MW-analogues, 
nd sufficient resolution to resolve tens of satellites for each MW- 
ass system. We then calculate the infall time likelihood for 47 
alactic satellites that have 6D phase space data, while accounting for 
ncertainties in the MW mass model and in the observed properties 
f satellite galaxies. 
The paper is structured as follows. First, the simulation data 

sed for training our machine-learning algorithm as well as the 
bservational data for the MW satellites is described in Section 2 .
ext, the workings of our adopted algorithm as well as its capabilities

re discussed in Section 3 . Our results are given in Section 4 , to be
 xtensiv ely analysed in Section 5 . Finally, Section 6 reiterates the
ain finds deduced from our results. 

 DATA  

ere, we describe the data used to train and test the machine-learning
lgorithm (Sections 2.1 –2.3 ) and how we process the data for the MW
atellites such that it can be used by our machine-learning pipeline
Section 2.4 ). 

.1 Simulations 

.1.1 EAGLE 

he Evolution and Assembly of GaLaxies and their Environments 
EAGLE) project is ‘a suite of hydrodynamical simulations that 
ollow the formation of galaxies and supermassive black holes 
n cosmologically representative volumes of a standard � CDM 

niverse’ (Schaye et al. 2015 ). The simulations include a multitude of
rocesses that are thought to be key for the formation and evolution
f galaxies, such as metal enrichment, energy feedback from star 
ormation, and the accretion and mergers of supermassive black 
oles, and have been shown to reproduce many properties of the
alaxy population (for the details, see Schaye et al. 2015 ; Crain et al.
015 ). 
All training data for the machine learning in this research is

aken from the main EAGLE simulation that is labelled as ‘Ref-
0100N1504’. This is the largest of the EAGLE project simulations 
nd corresponds to a cube with side-lengths of 100 Mpc that contains
n equal number of 1504 3 DM and gas particles of mass 9.6 and
.8 × 10 6 M �, respectively. This simulation is ideal for obtaining a
arge number of MW-analogues systems and their satellites that can 
e used to train our machine-learning pipeline. 

.1.2 Auriga 

e also want to test to what extent our machine-learning predictions
re sensitive to the use of one specific simulation. For example,
rtefacts could arise from the use of one specific galaxy formation
odel as well as from the rather limited numerical resolution with
hich satellite galaxies are resolved in EAGLE (e.g. Lacey & Cole
993 ; Guo et al. 2010 ; van den Bosch & Ogiya 2018 ). As such, we
ake use of a second suite of 30 MW-mass zoom-in hydrodynamical 

imulations that have been run as a part of the Auriga project (Grand
t al. 2017 ). These simulations employ a different galaxy formation
odel that is similar to that used in the Illustris-TNG (Pillepich

t al. 2018 ) and have a 30 times better mass resolution than the main
AGLE run (for more details see Grand et al. 2017 ). Due to its
ize, the Auriga data is too small to properly train a NN. As such,
e will use the Auriga satellite galaxies to test the accuracy of our
achine-learning method that has been trained only on the EAGLE 

ata. 

.2 Sample selection 

he data set used to train the machine-learning algorithm serves 
s a model prior for the MW and thus we should select systems
hat best resemble our galaxy and its environments. We define a

W analogue as a system whose total mass is comparable to that
MNRAS 520, 1704–1720 (2023) 
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f our own galaxy, which is around 10 12 M � (e.g. Cautun et al.
020 ; Wang et al. 2020 ). Furthermore, the dynamics of the satellites
hould be dominated by one large galaxy, in our case the MW. The
losest massive neighbour to the MW with more than half of its mass
s the Andromeda galaxy at about 770 kpc (McConnachie 2012 ).
his corresponds to a distance of roughly 3.5 R 200 from our galaxy,
here R 200 is defined as the distance from the Galaxy Centre where

he average enclosed density is 200 times the critical density. Most
tudies refer to Galactic satellites as all the galaxies within 300 kpc
rom the Galactic Centre (e.g. Bullock & Boylan-Kolchin 2017 ;
hao, Cautun & Frenk 2019 ), which corresponds to a distance of
1.5 R 2 00 . 
Other properties of the MW are also thought to affect the infall

imes of its satellites, such as the accretion of massive satellites, halo
rowth history, and local environment (e.g. Fakhouri & Ma 2009 ;
eason et al. 2015 ; Bose et al. 2020 ; D’Souza & Bell 2021 ). Including
ne or more of these criteria can result in closer MW-analogues,
o we ver, we choose not to since we do not want to be o v erly
estrictive in our sample selection. This is moti v ated by the goal
f having a large training sample, of testing the predictions against
igher resolution simulations that contain only a small number of
W-mass hosts, and of not imposing our own potentially incorrect

iases. Nevertheless, increasing the number of MW selection criteria
an reduce halo-to-halo scatter and could lead to a more accurate
easurement of satellite infall times. 
More specifically, the following two criteria were used to select

resent-day MW-analogues: 

(i) The host galaxy has a mass M 200 
1 in the range [0.5, 2.0] ×

0 12 . 
(ii) The host galaxy has no massive neighbour, that is another

alaxy within 2 R 200 whose total mass is larger than 0.5 M 200 . 

Our satellite sample consists of all subhalos found within a distance
f 2 R 200 from the centre of the host galaxy. We include all subhalos,
ot only luminous ones (i.e. with stars), since due to the limited
esolution of the EAGLE simulation, the lowest stellar mass of an
bject is 10 6 M �. Ho we v er, some MW satellites hav e stellar masses
s low as ∼10 3 M �. Many of the subhalos hosting such faint galaxies
re resolved as DM only substructures in EAGLE, which is why we
onsider all subhalos when finding satellites. Furthermore, normally
atellites are taken as the galaxies within R 200 , ho we v er, man y so-
alled Galactic satellites are found at larger distance (see discussion
bo v e) and thus we choose a larger radius to identify satellites. Even
f some galaxies are found outside R 200 at present day, they could
ave been inside the virial radius of the host at earlier times (so-called
acksplash galaxies; e.g. Wetzel et al. 2014 ; Simpson et al. 2018 ). 
These selection criteria have resulted in 1628 present-day MW-

nalogues that contain a total 70 468 satellites abo v e the resolution
imit of the main EAGLE run. To simplify the calculation of the
nfall time (see Section 2.2.1 ), we further remo v ed all galaxies, both
entrals and satellites, that since formation have crossed an edge of
he simulation box (i.e. if one of their positional coordinates jumped
rom ∼100 to ∼0 Mpc). This left a final sample of 1590 hosts and
3 402 satellites. 
Once all present-day galaxies were selected, they were traced back

n time using the galaxy merger -tree a vailable on the EAGLE public
ata base (McAlpine et al. 2016 ). This consists of the most massive
rogenitor branch of the merger tree. We stored the data for all
NRAS 520, 1704–1720 (2023) 

 The mass contained in a sphere of radius R 200 , the radius at which the average 
ensity is equal to 200 times the critical density. 
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t
t

napshots in which both the central and the satellite galaxy exists
EAGLE sometimes loses track of a galaxy in a snapshot, for it to
eappear in the following ones). 

We further limit the satellite population to the ones that are
xpected to host the majority of luminous galaxies. A multitude of
alaxy formation prescriptions, such as the semi-analytical models
e.g. Wang, Frenk & Cooper 2013 ), very high-resolution hydrody-
amical simulations (e.g. Sawala et al. 2016 ; Wheeler et al. 2019 ;
pplebaum et al. 2021 ; Grand et al. 2021 ) and theoretical models
n how gas cools and fragments to form stars (Benitez-Llambay &
renk 2020 ), suggest that most galaxies form in haloes of total mass

arger than ∼10 9 M �. We implement this selection as a threshold
n the peak maximum circular velocity, 2 which we denote as V peak ,
ince the stellar mass has been shown to have a tighter correlation
ith V peak than with halo mass (e.g. Matthee et al. 2017 ; Fattahi et al.
018 ; Garrison-Kimmel et al. 2019 ). 
We define our satellite sample as the subhaloes with V peak ≥

5 km s −1 . This is moti v ated two-fold. First, as we just discussed,
ost galaxies form in massive haloes and the V peak = 25 km s −1 

orresponds to the sweet spot where we expect that around half of
hose haloes to contain a galaxy (Sawala et al. 2016 ; Jahn et al. 2022 ).
econdly, low-mass satellites are close to the resolution limit of the
imulation and their internal structure is not well-resolved, which
an introduce numerical artefacts in their orbital evolution, such as
remature tidal disruption (e.g. see van den Bosch & Ogiya 2018 ;
rand et al. 2021 ). These numerical artefacts would preferentially

ffect early accreted substructures, since these spend more time
ithin the virial radius of the host, and thus could bias the distribution
f infall times. Based on the Boylan-Kolchin et al. ( 2010 , see also
ellwing et al. 2016 ) analysis of halo structure in the Millennium

I simulations, whose mass resolution is very close to that of the
ain EA GLE simulation, EA GLE resolves robustly only halos with
 peak ≥ 25 km s −1 . When imposing this V peak selection, which affects
nly the satellite sample, we are left with 30 515 satellites. 
We have used the same exact selection criteria also for the Auriga

ample. All 30 Auriga systems pass our MW-analogue selection
ince all of them were chosen to be isolated halos with total masses
n the range, M 200 ∈ [1.0, 2.0] × 10 12 M � (see Grand et al. 2017 ).
he satellite sample consisted of all subhalos within a distance of
 R 200 of each MW-analogue that have a peak maximum velocity,
 peak ≥ 25 km s −1 . 

.2.1 Infall time determination 

e define the infall time to be the moment at which a satellite for the
rst time crosses the virial radius, R 200 , of its present-day MW-mass
ost. Many of these satellites were isolated dwarfs before accretion
nto their z = 0 hosts (Shao et al. 2018a ). Ho we ver, some of them
ould have been accreted as part of a group, that is, they are so-

alled satellites-of-satellites (Deason et al. 2015 ; Wetzel, Deason &
arrison-Kimmel 2015 ; Jahn et al. 2022 ). We do not distinguish
etween the two, except when discussing in Section 5.3 this aspect
n relation to the satellites brought in the MW by the LMC. 

As the simulation has a discrete number of snapshots (with a
ypical time interval between snapshots of ∼0.2 Gyr at early times
nd ∼1 Gyr at late times), determining the exact infall time requires
nterpolation between snapshots. As we will discuss in Section 4 , the
 We determine V peak as the peak of the maximum circular velocity, V max , for 
he most massive progenitor branch. For satellites, V peak is typically given by 
he value of V max just before infall onto the host halo. 
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Figure 1. Example of an orbit of a satellite around a MW-mass host. It shows 
the proper separation between satellite and host as a function of time. This 
is measured at multiple snapshots, shown as orange dots, and, for clarity, the 
blue line shows a spline interpolation between these points. The dotted line 
shows the radius R 200 of the host, which again is a spline interpolation between 
snapshots. The infall time is defined as the first time the satellite enters the 
virial radius of its present-day host and it is indicated on the figure by a red 
cross. 

Figure 2. Distribution of the infall times for satellites of MW-mass hosts 
in the EAGLE simulation. We present results for three samples: galaxies 
with stellar mass abo v e 10 6 M �, and subhaloes with peak maximum circular 
velocity, V peak > 30 and 25 km s −1 . All samples have roughly the same 
distribution of infall times. The PDFs include all satellites found within a 
distance of 2 R 200 from the host halo at z = 0. 
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ypical uncertainty on the inferred infall time is much higher than the
ime difference between snapshots, which makes linear interpolation 
ufficient. That is, the infall time is given by: 

 infall = t 1 + 

r 1 −R 200 , 1 
R 200 , 1 

r 1 
R 200 , 1 

− r 2 
R 200 , 2 

( t 2 − t 1 ) , (1) 

ith t 1 , t 2 the time of the snapshot before and after infall, r i the
omoving distance at time t i of the satellite with respect to the central
alaxy, and R 200, i the radius of the host at t i . This procedure is
llustrated in Fig. 1 , which shows the orbit of a random satellite. The
gure also shows that satellites can go in and out of the virial radius
f their host multiple times (while outside R 200 they are referred to as
acksplash objects) and also that host R 200 does not al w ays increase
moothly with time, with rapid increases and decreases taking place 
hen another massive halo is accreted or flies by (e.g. see bump in
 200 at a lookback time of 2 Gyr). 
The resulting infall time distribution is shown in Fig. 2 , with

he fiducial sample results being shown by the red curve. We find
hat the infall time probability distribution function (PDF) has a 
ronounced peak at a lookback time of 9 Gyr ago, a sharp cut-off
t earlier times and a more gradual decreases towards present day, 
eing roughly flat for the last 6 Gyr . The oldest surviving satellites of
ur MW-analogues have been accreted 12 Gyr ago. The infall time 
istribution is shaped by two competing effects, which are clearly 
llustrated in Fattahi et al. ( 2020 , see their figs 2 to 4). First, the
atellite accretion rate is largest at early times when the universe was
maller and when halos grow very fast, typically through mergers. 
econdly, the survi v al rate of satellites is inversely correlated with

he time they orbit inside their host. The more time they spend as
atellites (i.e. the earlier they were accreted), the lower is their chance
o survive to present day. 

As we have discussed in Section 2.2 , our satellite population
s selected as the objects with V peak ≥ 25 km s −1 . In Fig. 2 , we
lso investigate if this selection biases the infall time distribution 
ompared to a stellar mass selection or to using another V peak 

hreshold. We find that the infall time PDF is approximately the
ame for all three selections. This was to be expected since previous
tudies have shown that the distribution of infall times for satellites of

W-mass hosts is largely independent of their stellar mass except for
he most massive objects with M � ≥ 10 8 M � (e.g. Shao et al. 2018b ;
attahi et al. 2020 , see also bottom right-hand panel in Fig. 3 ).
or the massive satellites, due to their high total mass, dynamical
riction plays an important role and thus high stellar mass satellites
ave typically more recent accretion times. 

.3 Feature selection 

ur goal is to estimate the infall time using the orbital phase space
nformation of satellite galaxies that has recently become available 
or a large number of MW dwarfs (e.g. McConnachie & Venn
020b ; Battaglia et al. 2022 ). As such, to train our machine-learning
ramework, we will use the 3D position and velocity of the satellite
ith respect to the host centre, which we summarize in terms of:

i) distance from the host, (ii) total velocity magnitude, (iii) radial
elocity component, and (iv) specific angular momentum. 

Based on earlier studies, e.g. Rocha et al. ( 2012 ), we expect that
here is a strong correlation between satellite orbital energy and infall
ime. The specific energy of a satellite is the fifth feature used as
nput to our machine-learning method. This is the sum of the relative
inetic energy per unit mass and the gravitational potential of the
atellite. To calculate the latter, we need the mass profile of the host.
or the EAGLE sample, we make use of the four-component fit to

he total density profile of EAGLE galaxies introduced by Schaller 
t al. ( 2015 ) and calculate the gravitational potential at the position
f each satellite using equation (21) in that paper. The Schaller et al.
unctional form has a greater flexibility than the typical Navarro, 
renk, and White (NFW; Navarro, Frenk & White 1996 ) profile
sed to described halos in DM only simulations and gives a much
etter fit to the total density profile in hydrodynamical simulations 
hat include, beside a dark halo, a central stellar component, and an
xtended hot gas distribution. 

We have studied using other galaxy observables as input for infall
ime determination, ho we ver, we decided against including them 

n our fiducial model. One such feature is a satellite’s stellar mass
ince, for example, more massive satellites needed longer to grow 

nd thus would be accreted on average later. Due to the limited
esolution of the EAGLE simulation, whose star particles have a 
ass of ∼10 6 M �, it would mean that either the majority of satellites
ould have a missing stellar mass value or, if we would have limited

he study to satellites with well-determined stellar masses (e.g. at 
east 10 stellar particles), would severely reduce our training sample 
nd its applicability to the MW satellites. Similar reasons moti v ated
ot using other observables such as galaxy colours. 
MNRAS 520, 1704–1720 (2023) 
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Figure 3. Infall times as a function of the five input features used to train the machine-learning algorithm (the bottom right-hand quantity, V peak , was not 
used as input and is shown here only for illustrative purposes). The input features are as follows: distance, velocity magnitude, radial velocity, specific angular 
momentum, and specific orbital energy, and are scaled by the host properties to make them invariant to the mass of their host (see main text for details). The 
blue crosses show the median infall times for each bin and the grey areas show the 16 to 84 percentiles in each bin. 
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.3.1 Parameter scaling 

he satellites in EAGLE orbit a wide range of host galaxies. Satellite
bservables such as position and velocity depend on the size and
ass distribution of their host (Callingham et al. 2019 ; Rodriguez
imberly et al. 2022 ). This dependence can be almost fully remo v ed

y scaling with the properties of the host galaxy, since the satellite
ystems have a similar structure across a wide range of host halo
asses (Callingham et al. 2019 ; Li et al. 2017 , 2020 ). 
To train the machine-learning algorithm, we use scaled satellite

roperties since this way we can eliminate the host mass as one
f the input features. Distances and positions were scaled using
he host radius, that is, we use the quantity r / R 200 , where r is the
atellite distance from the host. We scaled the velocity magnitude
nd its components using the circular velocity at the halo radius,

 200 = 

√ 

GM 200 
R 200 

. The specific angular momentum was scaled by the

ngular momentum an object on a circular orbit with velocity V 200 at
 distance R 200 . Finally, the energy was scaled by the specific kinetic
nergy of an object on a circular orbit at R 200 , whose value equals

1 
2 V 

2 
200 . 
The correlation between each machine-learning input feature and

he satellite infall time is shown in Fig. 3 . To better illustrate these
rends, we split the data in bins of the property shown along the
 -axis and we show the median and the 16 to 84 percentiles of the
 infall distribution in that bin. Two results are made clear by the plots
n Fig. 3 . 
NRAS 520, 1704–1720 (2023) 
First, the infall time depends more strongly on some parameters
han on others. For example, the infall time shows the strongest
ependence on energy (as was previously observed in, for example,
ocha et al. 2012 ), especially when reaching to higher, less bound
nergies. At the same time, the two velocity features show almost no
orrelation with infall time. One should keep in mind, ho we ver, that
hen considering the dependence on multiple parameters simulta-
eously, some of the now flat correlations might turn out to play an
mportant role. 

Secondly, the distribution of infall times for fixed values of any of
he five input features is rather wide. Even for the specific energy,
he width of the conditional t infall PDF is at least 6 Gyr or larger. This
mphasizes the complexity of determining infall times from current
ay observables and gives an indication of the typical uncertainties
hich should be expected for the machine-learning prediction. 

.3.2 The impact of numerical resolution on subhalo infall time 

n the bottom right-hand panel of Fig. 3 , we see that the median
 infall decreases slowly with decreasing subhalo peak circular velocity
ntil around V peak = 35 km s −1 , after which the trend reverses. This
on-monotonic relation indicates that the infall times of subhalos
ith V peak < 35 km s −1 are likely affected by the finite resolution of

he simulation and that this threshold is somewhat larger than the
5 km s −1 value found when analysing the convergence of subhalo
nternal properties (e.g. Boylan-Kolchin et al. 2010 ). 
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This numerically-induced artificial tidal disruption becomes more 
mportant the smaller the number of particles with which a subhalo 
s resolved. This raises the question of determining an optimal V peak 

hreshold such that we include as many subhalos as possible while 
itigating any biases arising from artificial disruption. For our study, 

he quantity of interest is the t infall PDF of all the subhalos that will
e used to train the NN since any bias in the PDF will result in biased
redictions. This is why we have studied how the t infall PDF changes
s we include lower mass (i.e. lower V peak ) subhaloes in our sample.
s we decrease the V peak threshold and include ever more subhalos, 
e find that the t infall PDF is largely insensitive to the value of the

hreshold as long as we limit to V peak > 25 km s −1 . For example,
his is illustrated in Fig. 2 , which shows only small differences
etween the t infall PDF of subhalos with V peak > 25 km s −1 and 
f those with V peak > 30 km s −1 . Once we decrease this threshold
urther (not shown here), we find a rapid change in the t infall PDF
ndicating that artificial subhalo disruption plays a very important 
ole. 

The fact that the t infall PDF does not change strongly with subhalo
 peak is the outcome of two competing effects. As we study smaller
ubhalos, we expect a small preference towards earlier infall times. 
nce we analyse small enough subhalos, numerical effects kick 

n and lead to an opposite trend: a tendency for later infall times.
or the EAGLE simulation, the two effects balance each other at 
 peak ∼30 km s −1 . This means that choosing a slightly lower V peak 

election limit, let us say 25 km s −1 , leads to equally accurate results
s a higher value, e.g. 35 km s −1 , but has the added benefit of
ncluding a considerable larger population of subhalos. 

.4 Obser v ational data 

or the 47 MW satellites with 6D phase–space data, we adopt the
istance, position, and radial velocity from McConnachie ( 2012 ), 
hich is a compilation of various measurements of nearby dwarf 
alaxies. The proper motions are taken from McConnachie & 

enn ( 2020a ), where Gaia EDR3 proper motions for individ- 
al stars were combined with a photometric and radial veloc- 
ty analysis. That study, which is based on the method intro-
uced in McConnachie & Venn ( 2020b ), has used a Bayesian
ormalism to identify likely dwarf galaxy member stars that 
ere then used to calculate the average proper motions of each 
warf. In general, the inferred proper motions are in good agree- 
ent with previous results using HST , Gaia DR2, and stud-

es using spectroscopically confirmed dwarf member stars, but 
ave smaller uncertainties (see comparison in Battaglia et al. 
022 ). 
To account for measurement errors in Galactic satellite properties, 

e use Monte Carlo (MC) sampling. For each satellite, we created 
000 random samples in observed space, i.e. distance modulus, radial 
elocity, and proper motions, assuming that the measurements are 
escribed by a Gaussian distribution whose centre is the measured 
alue and whose width is given by the measurement errors. These 
alues are then transformed to a Galactocentric reference frame 
sing the following values for the solar position and motion: 
un’s distance from the Galactic Centre, R � = (8 . 178 ± 0 . 022) kpc
Gravity Collaboration 2019 ), circular velocity at the Sun’s position, 
 circ = (234 . 7 ± 1 . 7) km s −1 (Nitschai et al. 2021 ), and the Sun’s
otion with respect to the local standard of rest, ( U, V , W ) =

11 . 10 ± 0 . 72 , 12 . 24 ± 0 . 47 , 7 . 25 ± 0 . 37) km s −1 (Sch ̈onrich, Bin-
ey & Dehnen 2010 ). 
To determine the specific energy of each Galactic satellite, we 
odel the MW systems as a central stellar component and an 
FW DM halo (e.g. see Cautun et al. 2019 ). For simplicity, the
tellar component was modelled as a point mass distribution, as 
ost satellites are far enough from the stellar disc such that this

pproximation is justified. The potential of the NFW DM halo was
aken as 

 halo = −GM 

DM 

200 

r 

log ( 1 + cr/R 200 ) 

log (1 + c) − c/ (1 + c) 
, (2) 

ith c the concentration parameter, r the distance from the Galactic
entre, M 

DM 

200 the DM halo mass, and R 200 the halo radius of the
W. These values have been taken from the Cautun et al. ( 2020 )

tudy, with M 

DM 

200 = 0 . 97 + 0 . 24 
−0 . 19 × 10 12 M �, c = 9 . 4 + 1 . 9 

−2 . 6 , and stellar
ass M � = 6 . 24 + 0 . 43 

−0 . 52 × 10 10 M �. To account for uncertainties in the
alactic mass profile, we generated 1000 MC realizations of the total
ass and concentration assuming log-normal distributions for these 

uantities whose mean and width are given by the values quoted
bo v e. Finally, we calculate the five machine-learning input features
nd scale them using the procedure described in Section 2.3 . 

 M E T H O D S  

n this work, we are interested to predict the infall time likelihood
unction for each satellite using the minimum number of assumptions 
n the shape of the likelihood (as it will become obvious later, in
any cases, the likelihood is multipeaked and is not easily modelled

s a simple function such as a Gaussian). To achieve this goal,
e split the range of infall times into multiple bins and cast the

nference problem into estimating what is the probability that any 
iven satellite was accreted in the time interval corresponding to a
 infall bin. This now becomes a multilabel classification problem, 
ith the number of classes determined by the number of t infall 

ins. 
To predict the infall times, we use the MultiLayer Perceptron 

Rosenblatt 1958 ; MLP from here on), which is one type of deep
N. Typical use cases for MLP algorithms are binary- and multilabel

lassification tasks, such as fraud detection or determining hand 
ritten digits (for further details and use cases, we refer the reader

o Haykin 1994 and G ́eron 2019 ). 
We have chosen 50 equidistant infall time bins that span the time

nterval from the Big Bang up to today. Each bin corresponds to a
ime interval slightly less than 0 . 3 Gyr . The bin width was chosen
uch that it is considerably smaller than the typical uncertainties in the 
redicted infall times (as will be shown later in this section), yet large
nough to a v oid multiple bins containing very few satellites (which
ould lead to inadequate statistics). We have tested and doubling 

he number of bins (i.e. halving the bin width) does not affect our
redictions, ho we ver, increasing the number of bins much more does
ead to higher uncertainties in our predictions. 

The goal is to apply the t infall inference method to all the MW
atellites within 300 kpc from the Galactic Centre. Some of these 
atellites are outside the MW’s radius, R 200 , whose value is ∼220 kpc ,
hich raises the question if such dwarfs are at first infall (i.e. are yet

o enter the MW’s R 200 radius) or are backsplash galaxies (i.e. have
een inside R 200 at a previous time). To answer this question, we build
nother MLP network whose task is to predict the accretion status of
 galaxy outside R 200 , that is the likelihood that a satellite is at first
nfall or a backsplash galaxy. The technical details of this network
s well as the one used to infer t infall are specified in Appendix A . 

In the rest of this section, we investigate the performance of the
wo NNs on the EAGLE test sample (we used a 60:20:20 split for
he training, e v aluation, and test steps) and on the Auriga sample of
atellites. 
MNRAS 520, 1704–1720 (2023) 
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Table 1. Quantifying the success of the NN to clas- 
sify galaxies outside the host’s virial radius, R 200 , into 
backsplash or first infall galaxies. The results are for the 
EAGLE test sample. 

Sample Completeness Purity 
(per cent) (per cent) 

All satellites 85.3 86.1 
Backsplash 91.1 88.7 
First infall 79.5 83.4 
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Table 2. Testing the accuracy of the NN for predicting the infall time, t infall , 
for satellites in the EAGLE test sample and in the Auriga suite of MW-mass 
simulations. The two columns gives the fraction of satellites whose true infall 
times, as measured in the simulations, are respectively within the 68- and 
95-per cent confidence interval (CI) of the infall time inferred by the NN 

architecture. For Auriga, we show results for all satellites for those found at 
distances larger than 0.75 R 200 from their host. The discrepancy between the 
EAGLE and Auriga results are due to differences in their mass profiles (see 
discussion in the main text). These results indicate that the NN estimates are 
realistic CI for t infall . 

Sample 
t infall 

true within 
68-per cent CI 

t infall 
true within 

95-per cent CI 
(per cent) (per cent) 

EAGLE 69.0 94.7 
Auriga all 57.7 89.0 
Auriga r > 0.75 R 200 66.6 94.4 
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.1 Performance of the ‘accretion status’ NN 

etermining the accretion status (i.e. first infall versus backsplash)
f a dwarf whose present day distance from the central galaxy is
arger than R 200 is a binary classification problem. For each dwarf,
he NN outputs the likelihood that the galaxy is at first infall or is
 backsplash object. We then assign to that dwarf the label with
he largest likelihood, and measure the performance of the NN by
alculating the completeness and purity measures for our prediction.
he completeness is defined as the percentage of satellites with true

abel A that are identified by the NN as having label A . The purity is
he percentage of all dwarfs predicted as having label A whose true
abel is also A . 

The completeness and purity of the accretion status NN are given
n Table 1 . We find rather large values, ∼80 per cent or higher,
or both quantities indicating that the network is rather successful
n distinguishing between backsplash and first infall dwarfs. Both
he completeness and purity show that the NN is slightly better at
dentifying backsplash satellites, which can be partly explained by
he fact that the training sample of satellites that are outside their
ost radius is split 65–35 per cent between backsplash and first infall
alaxies, so that most of the training data consists of previously
ccreted satellites. 

.2 Performance of the ‘infall time’ NN 

he goal of this NN is to estimate the t infall likelihood for each
atellite. It does so by estimating the likelihood in 50 t infall equal
ins, and, from this, we construct a PDF by linearly interpolating the
alues of the likelihood which we take to be defined at the middle of
ach bin. The resulting likelihoods can have a small bin-to-bin noise
ssociated to them since ultimately only a rather limited subset of
he training sample is used to estimate the infall time likelihood for a
iven satellite (this subset can be thought of as the training samples
hat the NN estimates as being close in phase–space to the target
atellite). We remo v ed this bin-to-bin variation by further smoothing
he likelihood using a Gaussian kernel with dispersion equal to twice
he t infall bin width, i.e. ∼0 . 6 Gyr . As we discuss shortly, this kernel
idth is considerably smaller than the typical confidence intervals

CI) and thus does not have a large impact on the inferred errors. 
We determine the infall time as the maximum likelihood value

nd calculate CI using the Fillingham et al. ( 2019 ) procedure,
amely by integrating the likelihood curve (starting at the maximum
ikelihood value) until the area it co v ers equal 68 per cent. Averaging
 v er all satellites in the EAGLE test sample, our NN predicts the
nfall time with a 68-per cent CI of size 4 . 4 Gyr (i.e. if the CI
ad been symmetric, this would correspond to standard deviation
= 2 . 2 Gyr ). The obtained uncertainties are more than one order

f magnitude larger than the bin width use to estimate the t infall 

ikelihood, whose value is 0 . 3 Gyr , and thus our choice of bin widths
s small enough to not significantly impact the inferred likelihood.
NRAS 520, 1704–1720 (2023) 
he t infall uncertainties represent a considerable fraction of the age of
he Universe of ∼13 . 8 Gyr and this further indicates the difficulty of
stimating accurate infall times of satellite galaxies. 

Our NN-based inference technique uses five features to determine
 satellite’s infall time and raises the question of how it fares against
impler methods, such as those based on single satellite properties.
o keep the comparison simple, we have applied the same exact
ramework with the exception that we have trained the MLP using
nly one single feature at a time as input. We have found that the MLP
sing the specific energy performs the best of all the single-feature
pproaches, which should not be surprising given the discussion in
ections 1 and 2.3 . The specific energy can determine infall times
ith a 68-per cent CI of width 5 . 8 Gyr , which is considerably larger

han the 4 . 4 Gyr uncertainty when using the full set of five features.
ignificantly larger uncertainties are found when employing the
LPs that use just one of our other four features as their single

nput. We also have found that applying the MLP to three input
eatures that combine the specific energy and distance with a velocity-
ased feature (e.g. total or radial velocity) gives equally accurate
redictions as our full five-feature model. This is to be expected
ince many of the input features are correlated and thus contain
edundant information. 

.2.1 Robustness of predictions 

e checked the robustness of our CI by determining the fraction
f the data for which the 68- and 95-per cent CI contain the true
nfall time, t true 

infall . Ideally these percentages should be around 68 and
5 per cent. The results are given in Table 2 , and for the EAGLE test
ample, we find very similar fractions to the expected ones, making
s confident in our estimated uncertainties. 
To quantify the robustness of our results, we also test the NN

redictions against a satellite galaxy sample from the Auriga suite of
W-mass zoom-in simulations. The Auriga project has better mass

esolution than EAGLE and uses a different galaxy formation model.
e find that around 58 per cent of Auriga satellites have t true 

infall within
he 68-per cent CI, which is somewhat lower than we would expect
rom purely statistical considerations. This indicates that the NN,
hich was trained on EAGLE data, performs somewhat worse when

pplied to the Auriga data. 
This discrepancy is due to small systematic biases in the predicted

nfall time for the Aurig a g alaxies, which our NN predicts to have
omewhat later infall times than actually measured in the Auriga
imulations. This can be appreciated from Fig. 4 , which compares
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Figure 4. Comparison between the infall times predicted by the NN, t NN 
infall , 

and the distribution of true infall times, t true 
infall , for 50 random samples from 

the Auriga sample. The blue filled circles show the maximum likelihood 
estimates and the errorbars show our inferred 68-per cent CI. 
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he NN inferred versus true infall times for a random subset of Auriga
atellites. While most NN estimates agree with t true 

infall within the shown 
8-per cent CI, we find that on average it is more likely for the true
nfall time to be higher than the NN inferred maximum likelihood 
alue. This can be seen in Fig. 4 by noticing that more of the inferred
aximum likelihood values, which are shown as filled blue circles, 

re below the one-to-one diagonal line shown in dashed grey. 
The small discrepancy between the actual Auriga infall times 

nd the ones predicted by the EAGLE-trained NN are driven by 
ifferences in the halo mass profile predicted by the two projects. 
irst, while MW-mass halos in EAGLE loose a considerable fraction 
f their baryons due to strong supernovae feedback (Schaller et al. 
015 ), this effect is considerably reduced in the Auriga galaxy 
ormation model (Lo v ell et al. 2018 ). Secondly, EAGLE forms
oughly a factor of two fewer stars in MW-mass halos compared 
o the Auriga predictions (Schaye et al. 2015 ; Grand et al. 2017 ),
hich is due to the former model undershooting the stellar-to-halo- 
ass relation while the latter o v ershoots the same relation (see Kelly

t al. 2022 for a more detailed discussion of the differences between
he EAGLE and Auriga galaxy formation models). Both these effects 
ead to EAGLE halos having a shallower potential than their Auriga 
ounterparts. This means that a satellite accreted at the same time 
n the two models ends up having different energies and, since the
nergy shows one of the strongest correlation to t infall , it explains why
ur NN shows a small systematic bias when applied to the Auriga
ata. One potential solution would be to use orbital action instead of
nergy, which has been shown to be a better orbital invariant under
low changes in the potential (e.g. Callingham et al. 2020 , although
uch an approach will not mitigate all the differences between the 
wo simulations, such as the different tidal disruption strengths due to 
he different stellar masses of the central galaxies, e.g. see Richings
t al. 2020 ). 

The gravitational potential differences between the EAGLE and 
uriga systems are largest close to the centre of haloes (which is
here early accreted satellites have spent the most time) and decrease 

owards the outskirts. We find a similar trend when analysing the 
ccuracy of the Auriga t infall estimate. Farther satellites from the 
entre experience less systematic bias when inferring t infall . For 
xample, the fraction of satellites that have t true 
infall within the 68-

er cent CI is 62.6 and 66.6 per cent for satellites with r > 0.5 R 200 and
 > 0.75 R 200 , respectively, which reconciles the Auriga and EAGLE
alues. 

In summary, our comparison between the EAGLE and Auriga 
amples shows that satellite infall time determinations can also be 
ffected by systematic uncertainties that arise from mismatches in 
he host’s gravitational potential and central galaxy stellar mass. This 
ffect is most pronounced for satellites close to the centre, which
orresponds on average to the earliest accreted satellites (e.g. see top
eft-hand panel in Fig. 3 ). 

 RESULTS  F O R  T H E  MW  SATELLITES  

e now apply our two NNs to the observational data of the MW
atellites. An important difference between determining infall times 
n simulations and doing so on real galaxies, is that we very precisely
an determine the satellite properties in the former. Ho we ver, in
bservations, these properties have uncertainties. To obtain accurate 
I, these uncertainties need to be taken into account. We do so by
reating a sample of 1000 MC realizations for the 6D phase–space
oordinates of each observed satellite, as well as for the MW potential 
see Section 2.4 for details). All our predictions account for these
ncertainties by av eraging o v er the MC realizations and for some
atellites, we find that the observational uncertainties, in particular 
roper motion errors, can induce considerable further uncertainties 
n the infall time determination (for more details, see Appendix B ). 

.1 Satellites at first infall 

rom the 47 MW satellites considered in this research, 44 have
bserved Galactocentric distances that are well within the MW halo 
adius, R 200 , even after accounting for uncertainties in the MW mass
rofile. This means that most of the satellites in our sample can a
riori be classified as already having been accreted by the MW, and
hus subjected to environmental processes inside the MW halo. 

When considering all the MC samples, there are six satellites 
hat have MC realizations that lie outside of the MW halo. Theses
re, in order of decreasing mean distance, Leo I, Leo II, Canes
enatici I, Leo V, Columba I, and Pisces II, and their mean distances

rom the Galactic Centre are 256, 234, 215, 194, 186, and 181 kpc ,
espectively (compare these with the MW halo radius, whose mean 
alue is 218 kpc ; Cautun et al. 2020 ). The predicted probabilities
hat these satellites have already been inside the MW radius are, in
he same order as abo v e, 82, 94, 98, 92, 88, and 97 per cent. Note
hat despite having a larger mean distance, Canes Venatici I has a
arger accretion probability than Leo V and Columba I. The fact that
ll of the accretion probabilities are far abo v e the 50-per cent mark,
ustifies the statement that all the satellites considered in this research
ave most likely already been accreted, even though there still is a
ignificant probability (especially for Leo I and Columba I) that they
ight be at first infall. 
This close to 100-per cent accretion score might raise questions 

n whether the observational data is correct, as for the EAGLE
ample, a substantially lower score (about two-thirds) was found. 

ost of the dichotomy can be explained by the fact that MW satellite
urv e ys are still brightness limited and that previous Galactic surv e ys
ould only detect UFD, which account for most of the satellite
opulation, if they were well within the halo of the MW. Recent
tudies predict that we hav e observ ed only half of the total MW
atellites and that the yet-to-be-detected ultra-faint Galactic dwarfs 
re to be found predominantly in the outer regions of the Galactic
MNRAS 520, 1704–1720 (2023) 
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Table 3. The infall time, t infall , and star formation quenching time, t q; 90 , 
of the MW satellites. The uncertainty ranges correspond to the 68- and the 
95-per cent confidence limits; the latter is only given for t infall . The quenching 
time denotes when those galaxies formed 90% of their stars and are taken 
from: (1) Fillingham et al. ( 2019 ) and (2) Sacchi et al. ( 2021 ) (see ‘Reference’ 
column). The last column gives the typical difference � t q; 90 between the infall 
and quenching times of Galactic satellites. The � t q; 90 values for satellites 
with stellar mass, M � ≥ 10 5 M �, are highlighted in light-grey since those are 
consistent with environmental quenching (see Fig. 7 ). 

Name t infall t q; 90 Reference � t q; 90 60 
(Gyr) (Gyr) (Gyr) 

Sagittarius I 8.5 + 1 . 4 , + 3 . 4 −4 . 3 , −7 . 5 3.4 + 1 . 8 −0 . 3 (1) 4.8 + 1 . 4 −4 . 9 

LMC 0.7 + 5 . 6 , + 9 . 2 −0 . 7 , −0 . 7 – – –

SMC 0.7 + 7 . 7 , + 10 . 1 
−0 . 7 , −0 . 7 – – –

Draco I 9.4 + 2 . 0 , + 2 . 9 −2 . 4 , −6 . 7 9.1 + 1 . 6 −3 . 3 (1) −1.4 + 4 . 6 −2 . 4 

Ursa Minor 9.5 + 1 . 7 , + 2 . 7 −2 . 5 , −6 . 7 10.2 + 1 . 5 −2 . 5 (1) −1.5 + 2 . 7 −3 . 1 

Sculptor 8.7 + 2 . 1 , + 3 . 6 −2 . 2 , −7 . 0 10.6 + 1 . 3 −3 . 5 (1) −3.0 + 3 . 6 −3 . 0 

Sextans 1.0 + 7 . 0 , + 9 . 2 −1 . 0 , −1 . 0 – – –

Carina I 8.5 + 1 . 8 , + 3 . 5 −3 . 4 , −7 . 8 2.2 + 1 . 5 −0 . 0 (1) 4.7 + 3 . 2 −2 . 6 

Fornax 8.2 + 2 . 2 , + 3 . 5 −2 . 7 , −7 . 7 – – –

Leo II 2.4 + 5 . 4 , + 7 . 8 −1 . 4 , −1 . 4 6.4 + 0 . 8 −0 . 6 (1) 1.3 + 3 . 3 −4 . 4 

Leo I 1.7 + 0 . 7 , + 6 . 3 −0 . 7 , −1 . 7 1.7 + 0 . 2 −0 . 1 (1) −0.5 + 0 . 8 −0 . 7 

Antlia II 8.9 + 1 . 5 , + 3 . 2 −2 . 5 , −7 . 1 – – –

Aquarius II 8.7 + 2 . 2 , + 3 . 5 −3 . 2 , −8 . 1 – – –

Bootes I 8.7 + 2 . 5 , + 3 . 6 −2 . 2 , −6 . 6 12.6 + 1 . 1 −1 . 0 (1) −3.1 + 1 . 3 −3 . 7 

Bootes II 0.7 + 5 . 9 , + 9 . 4 −0 . 7 , −0 . 7 – – –

Canes Venatici I 7.7 + 2 . 8 , + 3 . 6 −2 . 1 , −6 . 3 8.3 + 1 . 2 −2 . 0 (1) −1.6 + 4 . 7 −2 . 2 

Canes Venatici II 8.8 + 1 . 8 , + 3 . 2 −2 . 4 , −6 . 6 12.7 + 1 . 6 −1 . 6 (1) −3.3 + 1 . 0 −3 . 6 

Carina II 0.7 + 0 . 8 , + 8 . 1 −0 . 7 , −0 . 7 – – –

Carina III 0.6 + 0 . 7 , + 8 . 0 −0 . 6 , −0 . 6 – – –

Columba I 0.0 + 6 . 3 , + 9 . 6 −0 . 0 , −0 . 0 – – –

Coma Berenices I 8.2 + 2 . 9 , + 3 . 9 −3 . 6 , −7 . 8 13.0 + 1 . 3 −1 . 2 (1) −4.7 + 2 . 8 −4 . 2 

Crater II 8.9 + 2 . 0 , + 3 . 2 −2 . 2 , −6 . 6 – – –

Draco II 7.4 + 2 . 2 , + 3 . 9 −3 . 8 , −7 . 0 – – –

Grus I 0.4 + 7 . 1 , + 9 . 6 −0 . 4 , −0 . 4 – – –

Grus II 8.4 + 2 . 9 , + 3 . 5 −2 . 7 , −6 . 6 – – –

Hercules 1.0 + 5 . 9 , + 8 . 8 −1 . 0 , −1 . 0 11.8 + 1 . 4 −1 . 3 (1) −11.3 + 5 . 9 −1 . 9 

Horologium I 8.4 + 2 . 7 , + 3 . 8 −2 . 8 , −7 . 8 11.5 + 1 . 2 −1 . 1 (2) −3.1 + 3 . 0 −3 . 3 

Horologium II 8.9 + 2 . 1 , + 2 . 9 −3 . 8 , −8 . 5 – – –

Hydra II 8.4 + 2 . 7 , + 3 . 5 −3 . 6 , −8 . 0 2.2 + 0 . 3 −0 . 2 (1) 6.8 + 1 . 9 −3 . 9 

Hydrus I 0.7 + 5 . 9 , + 9 . 2 −0 . 7 , −0 . 7 – – –

Leo IV 8.9 + 1 . 5 , + 2 . 9 −2 . 9 , −7 . 7 12.2 + 1 . 4 −1 . 5 (1) −3.7 + 1 . 9 −3 . 2 

Leo V 7.5 + 3 . 4 , + 3 . 8 −2 . 7 , −7 . 3 – – –

Phoenix II 0.6 + 6 . 4 , + 9 . 6 −0 . 6 , −0 . 6 12.5 + 1 . 1 −1 . 1 (2) −11.5 + 1 . 6 −0 . 7 

Pisces II 0.1 + 8 . 1 , + 10 . 5 
−0 . 1 , −0 . 1 – – –

Reticulum II 8.1 + 2 . 4 , + 3 . 5 −4 . 2 , −6 . 6 12.3 + 1 . 8 −1 . 8 (2) −5.1 + 3 . 1 −3 . 5 

Reticulum III 8.9 + 2 . 1 , + 3 . 2 −3 . 2 , −8 . 4 – – –

Sagittarius II 0.8 + 7 . 4 , + 9 . 8 −0 . 8 , −0 . 8 – – –

Segue I 8.2 + 2 . 1 , + 3 . 6 −3 . 8 , −7 . 3 – – –

Segue II 7.7 + 2 . 5 , + 3 . 6 −3 . 4 , −5 . 7 – – –

Triangulum II 8.2 + 1 . 8 , + 3 . 6 −3 . 9 , −7 . 7 12.9 + 0 . 5 −0 . 8 (2) −4.9 + 2 . 2 −3 . 6 

Tucana II 0.7 + 6 . 6 , + 9 . 6 −0 . 7 , −0 . 7 12.8 + 0 . 9 −0 . 8 (2) −12.5 + 6 . 6 −1 . 3 

Tucana III 3.6 + 4 . 3 , + 7 . 4 −1 . 4 , −2 . 0 – – –

Tucana IV 8.2 + 2 . 8 , + 3 . 6 −3 . 4 , −6 . 8 – – –

Tucana V 8.2 + 2 . 7 , + 3 . 5 −3 . 9 , −7 . 8 – – –

Ursa Major I 9.4 + 1 . 8 , + 2 . 9 −2 . 4 , −7 . 0 11.2 + 1 . 3 −1 . 2 (1) −3.1 + 2 . 8 −2 . 1 

Ursa Major II 8.2 + 2 . 9 , + 3 . 6 −3 . 9 , −7 . 8 – – –

Willman 1 8.9 + 1 . 3 , + 2 . 5 −4 . 5 , −7 . 0 – – –
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alo (e.g. Newton et al. 2018 ; Drlica-Wagner et al. 2020 ). It is only
ith future generation telescopes that we should expect to find these

aint and distant MW satellites, many of which will most likely not
ave been accreted yet. 

.2 Accretion time 

ased on the assumption that indeed all the satellites are accreted,
e proceed to determine their infall time distribution. The resulting
DFs are shown in Appendix B and the most likely estimates and

he 68 and 95-per cent CI are summarized in Table 3 . We advise a
ote of caution when interpreting these values: most of the inferred
 infall likelihoods are highly asymmetrical and many show two or
ore peaks, such as Sextans and Leo II (see Fig. B1 ). Moreo v er,
 considerable fraction of satellites, such as Carina II, Hydrus I,
nd Hercules, have t infall likelihoods that show a high and narrow
eak at recent lookback times and a long tail (and even a second
eak) towards earlier infall times. Keeping the abo v e in mind, one
hould al w ays have a look at the actual inferred likelihoods when
nterpreting the size of the CI or when comparing our infall times
ith other measurements. 

 DISCUSSION  

e now proceed to interpret the infall times we inferred for the
alactic satellites. We will focus on a few questions, ranging from
ow typical are the accretion times of MW satellites when compared
ith theoretical predictions for MW-sized systems to what are the

mplications for determining the star formation quenching time-scale
n the Galactic halo. 

.1 Comparing Galactic infall times to theoretical predictions 

he first question raised by our results is how do the accretion times
f Galactic satellites compare to theoretical e xpectations. F or the
ormer, we combine the t infall likelihoods from each of the 47 MW
warf studied here to obtain the t infall likelihood for the population
f observed MW satellites, which is shown in Fig. 5 . We remind
he reader that the observed MW dwarfs are an incomplete radially
iased sample since they are found in brightness limited surv e ys. In
ig. 3 , we show that the infall time shows a weak correlation with

he present-day radial distance, with the median t infall increasing by
2 Gyr between dwarfs at 0.2 R 200 and those at R 200 . This suggests

hat the observed dwarfs might be biased towards earlier infall times
ompared to the full population of Galactic satellites. 

Fig. 5 shows that most of the currently observed Galactic satellites
ere accreted at early times, with a broad peak around 8 Gyr ago (i.e.

edshift z = 1), with the oldest satellite having orbited in the MW
alo for around 11 Gyr . The MW satellite accretion rate decreases
owards present time except for a high and narrow peak at 1 . 5 Gyr
go. This second peak is due to the accretion of the LMC, which is
urrently at its first infall onto the MW (e.g. Besla et al. 2007 ; Cautun
t al. 2019 ). Due to its relatively large mass, the LMC also hosts its
wn satellite galaxies (e.g. Jethwa, Erkal & Belokurov 2016 ; Patel
t al. 2020 ). It is therefore a reassuring sight that our results shows
 peak in infall probability around the 1.5-Gyr mark, which is when
he LMC would have entered the MW halo (see Fig. B1 ), together
ith its satellites. We discuss the LMC satellites in more details in
ection 5.3 . 
To compare with theoretical expectations, we calculate the infall

ime distribution for the EAGLE and Auriga satellites of MW-
nalogues, which we limit to satellites within 1.4 R 200 which
orresponds to objects within 300 kpc for the fiducial MW halo
NRAS 520, 1704–1720 (2023) 
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Figure 5. Combined infall time likelihood for all the MW satellites (black 
line). This is compared with the t infall distribution for the population of 
satellites of MW analogues in EAGLE (blue) and Auriga (green). For the 
simulations, we show infall time for z = 0 satellites found within 1.4 R 200 

from the host, which is equi v alent to within a distance of 300 kpc for a system 

with MW’s total mass. 
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ass. Fig. 5 shows the resulting distributions for the two galaxy 
ormation models. Overall, we find good agreement between the 
 infall PDF measured in EAGLE and Auriga, although some small 
iscrepancies are present that are likely due to the differences in host
otential that we discussed in Section 3.2 . The t infall PDF is bimodal,
ith a second peak at around 2 Gyr lookback time. The second peak

s due to the fact that many satellites accreted around 4 Gyr ago
re presently found at distances larger than the 1.4 R 200 threshold 
alue used in Fig. 5 . Increasing this distance to 2 R 200 nearly remo v es
he second peak (see Fig. 2 ) by mostly adding satellites with infall
imes, t infall ∈ [2 , 6] Gyr (see Simpson et al. 2018 for a more detailed
nalysis). 

At early times, we find good agreement in the t infall likelihood 
etween the MW and theoretical prediction indicating that the early 
ccretion of dwarfs onto the MW is typical of � CDM predictions.
t is only around 3 Gyr lookback time that the MW curve starts to
eviate strongly, first below the EAGLE and Auriga predictions and 
hen increasing to a sharp and high peak, which we interpreted as the
ccretion of the LMC and its satellites. 

The MW is predicted to have had a few more massive satellite
ccretions besides the LMC (e.g. Kruijssen et al. 2020 ; Callingham 

t al. 2022 ), and each such massive accretion is expected to bring at
he same time a surplus of satellites (D’Souza & Bell 2021 ). Two
uch events are the Gaia-Enceladus-Sausage (Belokurov et al. 2018 ; 
elmi et al. 2018 ) and Kraken (Kruijssen et al. 2019b , 2020 ), which,
hile uncertain, are believed to have had stellar masses nearly as
igh as the LMC one and to have been accreted 8 − 11 Gyr ago.
o we ver, the MW t infall PDF does not show one or more significant
eaks at early times except the main and very broad peak at 8 Gyr ago
hat is nearly the same as when averaging over all MW-analogues 
n the EAGLE and Auriga samples. The broadness of the peak 
ather suggests a more steady accretion of multiple small satellites, 
 theory for which hints were found by Kim et al. ( 2021 ). The reader
hould recall ho we ver that, as discussed in Section 3.2 , early t infall 

eterminations are also the most uncertain and that could potentially 
ampen any early massive accretion peaks. 

.2 Comparing with previous infall time determinations 

e now compare the infall times found in this work to earlier studies.
s mentioned in the introduction, Fillingham et al. ( 2019 ) determined 

he infall times for a sample of the MW satellites by comparing
rbital properties, in particular the satellite energy, to satellites in 
imulations. They found infall times for 37 satellites, all of which
re also considered in this work. The comparison with the Fillingham
t al. results is shown in left-hand panel of Fig. 6 . 

Before discussing the results, one should realize that there are 
ultiple differences in both data, simulations, and methodology 

etween our work and the Fillingham et al. one. Most importantly, our 
ork uses the updated satellite proper motions from McConnachie 
 Venn ( 2020b ), whereas Fillingham et al. have relied on more

ncertain proper motions from Fritz et al. ( 2018 ) based on Gaia DR2.
econdly, Fillingham et al. employ DM only simulations, while we 
se hydrodynamic ones that include models for most of the processes
hought to be important for galaxy formation. In particular, such 
rocesses can lead to change in the gravitational potential of the host
alo, which affect both the infall time and orbits of satellites, as well
s the tidal disruption of satellites, which is enhanced in simulations
ontaining stellar discs (e.g. Sawala et al. 2017 ; Richings et al. 2020 ;
reen, van den Bosch & Jiang 2022 ). 
Keeping the abo v e in mind, a couple of conclusions can be inferred

hen comparing our results with the Fillingham et al. ones. First,
hile the majority of the infall times agree within the 68-per cent CI

23 out of 37, which represents 62 per cent of the common sample),
 sizeable minority (clustered in the top left-hand corner of the
gure) is in rather stark disagreement. It can be said that from the
urrent LMC accretion onto the MW (see Section 5.3 ), one would
 xpect a relativ ely large group of satellites at recent infall times. The
isagreeing cluster would agree with this group in our results, while
nly a hand full of the satellites in Fillingham et al. show such recent
nfall times. The lack of such recent infall times in Fillingham et al.
ight be explained by the fact that the 12 high-resolution simulations

sed by the authors did not contain any LMC-size satellite. This can
e determined from fig. 2 in Kelley et al. ( 2019 ), which shows that no
ubhaloes have V peak > 40 km s −1 . Noting that the LMC has a stellar
ass well abo v e 10 9 M � (McConnachie 2012 ), its V peak value would

e closer to 70 − 90 km s −1 (Fattahi et al. 2018 ). In addition, the lack
f stellar disc disruption in the DM only simulations employed by
illingham et al. leads to subhaloes in the inner regions of their host
urviving for longer and thus will also lead to more satellites with
arly infall times. 

Secondly, almost all the data points in the plot lie abo v e the one-
o-one line, even when not considering the top left-hand cluster. 
his means that the infall times found by the NN are almost al w ays
lightly more recent than those from Fillingham et al.. The most
ikely explanation for this observation has already been discussed in 
ection 3.2 , namely that the NN predictions tend towards the mean
alue when the predictions are highly uncertain. This will inevitably 
ias the maximum likelihood estimates (but not the CI) slightly 
owards more recent infall times, i.e. abo v e the one-to-one line in the
gure. 
Another observation is that there is a dearth of satellites with

ookback infall times between roughly 2 and 8 Gyr in both samples.
hile it could be argued from Fig. 5 that the theoretical predictions

or the probability of infall in this time range is somewhat lower than
t earlier times, none the less this range should contain a significant
raction of satellites. One possible explanation is the existence of an
bservational bias: many galaxies falling in during this time frame 
re currently around their first or second apocentre (D’Souza & Bell
021 ), making them harder to observe and thus less likely to be
resent in the MW sample of satellites which is magnitude limited. 
In the right-hand side panel of Fig. 6 , we compare our results with

hose of Miyoshi & Chiba ( 2020 ), which have used a very different
ethod for determining infall times. That study has employed 
MNRAS 520, 1704–1720 (2023) 
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M

Figure 6. Left-hand panel: comparison between the infall times found in this work and the infall times found in Fillingham et al. ( 2019 ). The diagonal dotted 
line is the one-to-one line. Right-hand panel: same as left-hand panel, but now with the infall times as found in Miyoshi & Chiba ( 2020 ) instead of Fillingham 

et al. ( 2019 ). 
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ackwards integration of the satellites in a time dependent MW
otential. As the numbers are not present in the paper, a request for
he infall time data from Miyoshi & Chiba was sent out to the paper’s
uthors, who kindly provided us their data. 

On first glance, the agreement is a lot better here: the outlying top
eft cluster found in the comparison with the Fillingham et al. results
s mostly gone, and the infall times of only 5 out of 16 (31 per cent)
atellites do not agree within the 68-per cent CI. Some notes of
aution are necessary ho we ver. The Miyoshi & Chiba sample is
maller and includes only 16 of the 37 satellites from the Fillingham
t al. study, with the other objects being excluded due to either
eing potential LMC satellites or due to having large proper motion
ncertainties. Out of the 14 satellites showing a large disagreement
etween our and the Fillingham et al. results, only three are present
n the Miyoshi & Chiba sample, and 2 out of these 3 also disagree
ith our results within the 68-per cent CI. 
Arguably the most important tak e aw ay from the comparison of

ur t infall results with those of previous studies is that determining
nfall times for satellites remains a far from easy task. Typical CI for
ll studies are large at almost half the age of the Universe and the
greement between contemporary studies is poor. 

.3 The Magellanic satellites 

s discussed before, some of the satellites considered in this research
re thought to have been LMC satellites when they were accreted onto
he MW (e.g. Jethwa et al. 2016 ; Kalli v ayalil et al. 2018 ; Patel et al.
020 ; Jahn et al. 2022 ). While by no means definitive, the infall time
istribution can be a valuable indicator to determine the likelihood of
he association between satellites and the LMC. According to Patel
t al. ( 2020 ), long-term LMC satellites are the SMC, Carina II, Carina
II, Horologium I, and Hydrus I, while Phoenix II and Reticulum
I are recently accreted by the LMC. The first four were already
roposed in an earlier work (Kalli v ayalil et al. 2018 ), which also
entions Reticulum II, Draco II, Tucana II, Hydra II, and Grus I as

ess likely companions. These satellites are indicated in Appendix B ,
NRAS 520, 1704–1720 (2023) 
here we give the individual t infall PDF of each satellite, by having
heir name in red for the most probable and in orange for the less
robable ones. 
Three of the most likely LMC companions, Carina II, Carina III,

nd Hydrus I, have infall time distributions with a similar shape to that
f the LMC and with a considerable likelihood to have been accreted
round 1 . 5 Gyr ago. The other two likely LMC satellites, SMC
nd Horologium I, also have a likelihood peak at t infall = 1 . 5 Gyr ,
o we ver, the NN predicts that they are more likely to have been
ccreted earlier, around t infall � 8 Gyr . We suspect this discrepancy is
ue to not including the LMC potential when modelling the MW, with
he LMC thought to have been rather massive at infall (Pe ̃ narrubia
t al. 2016 ; Cautun et al. 2019 ) and even today having a considerable
otal mass (Erkal et al. 2019 ; Garavito-Camargo et al. 2019 ) that
an have a large impact on the motion of dwarfs close to the LMC
uch as the SMC and Horologium I (e.g. see Patel et al. 2020 , and
lso Erkal et al. 2019 for example of Galactic streams). We obtain
 similar picture when studying the less likely LMC satellites, with
hoenix II, Tucana II, and Grus I having t infall PDFs very similar to

hat of the LMC, while Reticulum II, Draco II, and Hydra II show
ore uncertain t infall determinations with a large probability of early

nfall too. 
It is reassuring to find that our NN predicts that many probable

MC satellites have similar infall times as the LMC. This is a non-
rivial results since our MW model does not include information
bout the potential of the LMC or the distance of the satellites from
he LMC. This result suggests that, as expected, for most satellites
he MW potential is the dominant one and that the LMC contribution
an be neglected to a first approximation. Ho we ver, this is not the
ase for dwarfs close to the LMC, such as the SMC and Horologium
 (Garavito-Camargo et al. 2021 ). 

A potential impro v ement to this w ork w ould be to add the LMC
otential, or, more generally, the potential of massive satellites. In
oing so, we would further solidify the infall time distributions
f especially the satellites that currently are close to the MC’s,
llowing for more robust claims on LMC and SMC association.
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Figure 7. Quenching time versus infall time for 20 MW satellites. The infall times are as determined in this research, the quenching times are from Fillingham 

et al. ( 2019 ) and Sacchi et al. ( 2021 ). The Galactic dwarfs are split into two according to their stellar mass, with M � < 10 5 M � (i.e. UFDs) shown in the left-hand 
panel and M � > 10 5 M � (i.e. classical dwarfs) shown in the right-hand panel. The end of reionization at z � 6 (a lookback time of 12 . 9 Gyr ) is indicated by a 
horizontal dotted line. The diagonal dotted line is the one-to-one line. In the right-hand panel, the grey shaded region is the 68-per cent confidence interval on 
the average quenching time-scale ( t inf − t q ; 90 ), with the black solid line the maximum likelihood estimate. 
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ne simple approach to do so within our current NN framework 
ould be to constrain our sample to host galaxies that have an LMC

nalogue. Ho we ver, LMC mass satellites are quite rare for MW like
osts (e.g. Shao et al. 2018b ). Besides the resulting drop in sample
ize, another difficulty would be to define when a satellite can be
onsidered an LMC analogue. Mass and distance from the host are 
wo important criteria, but potentially many more such as the orbit
nd the number of pericentre passages. Due to their limited volume, 
urrent hydrodynamical simulations such as EAGLE do not allow for 
ufficient MW and LMC analogue pairs to extend the NN framework 
o also include the LMC potential. 

.4 Quenching time-scale 

ost environmental star formation quenching studies follow a 
tatistical approach that connect the fraction of quiescent galaxies 
ith the mean accretion history of satellites to obtain an average 
uenching time (e.g. Wetzel et al. 2013 , 2014 ; Slater & Bell 2014 ;
illingham et al. 2015 ). Ho we ver, the wealth of Galactic data,
here we can determine star formation histories and infall times 

or indi vidual satellites, allo ws for the complementary approach of
tudying the correlation between quenching and accretion for each 
atellite (e.g. Fillingham et al. 2019 ). Here, we follow this latter
pproach and analyse the relation between our inferred infall times 
nd the quenching times for 20 Galactic satellites as provided in 
illingham et al. ( 2019 ) and Sacchi et al. ( 2021 ). This dependence is
hown in Fig. 7 . 

For each Galactic satellite with available data we calculate the 
uenching timescales, � t q; 90 = t infall −t q; 90 , where t q; 90 is the time
hen a galaxy formed 90 per cent of its present-day stars. To
etermine the � t q; 90 uncertainties, we use an MC approach. For
 infall , we take the MC samples that are outputted by our analysis.
or t q; 90 , we only have access to the MLE and the 68-per cent CI
see third column in Table 3 ) and, since the CI is not symmetric
round the MLE, to generate the MC samples, we approximate the
 q; 90 likelihood as the composite of two Gaussians. One Gaussian 
escribes the distribution of t q; 90 values below the MLE, with 
he mean and dispersion of this distribution being given by the

LE and the absolute difference between the lower end of the
8-per cent CI and the MLE. The second Gaussian models the
ikelihood of t q; 90 values abo v e the MLE, with mean equal to the

LE and dispersion given by the difference between the upper 
nd of the 68 per cent CI and the MLE. The resulting quenching
ime-scales and their 68-per cent CI are given in the last column of
able 3 . 
As discussed at length in Section 1 , we expect a dichotomy in

he quenching processes between massive dwarfs, with stellar mass 
 � > 10 5 M �, and lower mass ones, with M � < 10 5 M �. Moti v ated

y this theoretical expectation, we separate Fig. 7 into two panels
hat show the t infall versus quenching time relation for low M � (left-
and panel) and high M � (right-hand panel) Galactic dwarfs. We find
hat the ultrafaint dwarfs show no clear correlation between infall 
ime and quenching time. This is to be expected from a scenario in
hich quenching due to reionization is dominant (Okamoto, Gao & 

heuns 2008 ; Bose et al. 2018 ) since reionization, which happened
t z > 6 (Planck Collaboration et al. 2016 ), took place before all
resent-day surviving MW satellites were satellites of another halo 
Wetzel et al. 2015 ). The left-hand panel of Fig. 7 shows that within
ncertainties all low stellar mass dwarfs are consistent with having 
een quenched at roughly the same time about 12 − 13 Gyr ago.
one of the ultraf aint dw arfs have a quenching time more recent

han their infall time, even when accounting for the 68-per cent CI
see the � t q; 90 values in Table 3 ). 

The right-hand panel in Fig. 7 shows that classical dwarfs show
 strong correlation between infall and quenching times, with all 
ystems being compatible with t infall > t q; 90 within the 68-per cent
MNRAS 520, 1704–1720 (2023) 
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I. 3 We find that for most dwarfs quenching takes place basically at
ccretion, and for three of them, Sagittarius I, Hydra II, and Carina
, at about 5 Gyr after infall, although the t infall uncertainties are
ather large and we cannot exclude a short quenching time-scale also
or these last three dwarfs. Differences in the quenching times of
ndividual satellites are expected for ram-pressure stripping, which
as been proposed as the dominant process (Fillingham et al. 2015 ,
016 ), since the removal of cold gas depends on the balance between
he ram-pressure and the restoring forces, which depend on the orbit
nd total mass of a satellite (Simpson et al. 2018 ). 

When averaging over the results for all the massive dwarfs in
ur sample, the quenching time-scale is found to be 0 . 5 + 0 . 9 

−1 . 2 Gyr
68-per cent CI). This is in good agreement with previous results
hat find �t q; 90 ∼ 0 − 2 Gyr (Slater & Bell 2014 ; Fillingham et al.
015 , 2019 ). This relatively quick quenching further strengthens the
heory of environmental quenching, and means that, at least for dwarf
atellites with mass M � > 10 5 M �, the quenching time is a good proxy
or the infall time. 

 C O N C L U S I O N S  

e hav e dev eloped a NN for inferring the infall time of satellites of
W-mass systems that we have trained using MW-analogues in the

AGLE project, which is a cosmological hydrodynamical simulation
hat reproduces many key properties of galaxies in the observed
niverse. The NN takes as input the phase–space coordinates of

atellites and the specific energy, with the latter showing the largest
orrelation with the infall time (see also Rocha et al. 2012 ). We
urther scale these properties by quantities proportional to the host
alo mass since satellite properties have been shown to be universal
hen scaled appropriately (e.g. Callingham et al. 2019 ). The NN
as been designed to predict the t infall likelihood for each individual
atellite without making assumptions on the shape of this function,
hich we achieve by predicting the likelihood in many equally spaced

ime intervals that span the age of the Universe. 
We have tested the NN prediction using a test subset from the

AGLE project and another independent set from the Auriga suite
f simulations to find that our NN predicts realistic CI. In the latter
ase, we found that our uncertainties were slightly too low, which we
raced back to a small systematic bias in the inferred t infall values for
he Auriga satellite galaxies. This is due to differences in the mass
rofile of the central host, whose potential is shallower in EAGLE
han in Auriga. This means that on top of the statistical errors that
e have quoted, our results are affected also by small systematic
ncertainties that are most pronounced for satellites close to the
entre. To fully quantify these systematic uncertainties, we would
eed to analyse a larger number of galaxy formation models than the
w o emplo yed here. 

We have applied the NN to 47 MW dwarf galaxies with both 3D
ositions and velocities that are found within a distance of 300 kps
rom the Galactic Centre. Since this distance is larger than the Galatic
 200 � 220 kpc , which we take as the extent of the Galactic halo,
e have developed a second NN that predicts if a dwarf found at a
istance larger than R 200 is at first infall or is a backsplash galaxy, i.e.
 satellite that already had a pericentre passage closer than R 200 and
hat is on an extended orbit which takes it outside its host halo.
NRAS 520, 1704–1720 (2023) 

 One could argue that Leo II is an exception, but when looking at the infall 
istribution for Leo II (see Fig. B1 ), we find that its exact infall time is highly 
ncertain, with practically equal probability for 2 or 8 Gyr ago. 

e  

i  

C  

c  

a  

p  
his second NN achieves a better than 85-per cent accuracy of
istinguishing between first infall and backsplash galaxies. 
The main conclusions of our study are as follows: 

(i) Our NN predicts infall times with an average 68-per cent con-
dence interval of size 4.4 Gyr. This uncertainty can be considerably

ower for recently accreted satellites and somewhat larger for early
ccreted ones. 

(ii) All the MW satellites considered in this work are very likely to
ave entered the Galactic halo and thus experienced environmental
f fects, e ven the ones currently found at distances larger than R 200 .
he lowest backsplash probability is 82 per cent for Leo I, and it

s higher than 90 per cent for the other five dwarfs that potentially
ould lie outside the R 200 radius. 

(iii) The infall time distribution of MW satellites follows the
verage predictions of the EAGLE and Auriga models with one
if ference. The MW sho ws a second narrow peak in the t infall 

ikelihood at a 1 . 5 Gyr lookback time that we associate to the
ccretion of the LMC and its satellites. 

(iv) F or man y of the dwarfs that hav e been proposed as LMC
atellites, we find t infall likelihoods very similar to that of the LMC
ven though our Galactic model does not include a massive LMC
omponent. This find illustrates the robustness of our results and that
eglecting the LMC potential is a reasonable first approximation.
o we ver, for the SMC and Horologium I, we find considerably

arlier accretion times than the LMC, indicating that for dwarfs
lose to the LMC, we cannot neglect the potential of this massive
atellite. 

(v) We have compared our t infall determination with the backward
rbital integration of Miyoshi & Chiba ( 2020 ) to find reasonable
greement. The comparison with the Fillingham et al. ( 2019 ) infall
imes showed a mixed picture, with good agreement for a significant
raction of satellites, but large discrepancies with the presumed
MC satellites that Fillingham et al. predicts to have been accreted
onsiderably earlier than the LMC. 

(vi) We have also studied the correlation between infall time and
tar-formation quenching times. These are unrelated for dwarfs with
tellar masses M � < 10 5 M �, indicating that reionization was the
ominant quenching process for these low-mass galaxies. For higher
tellar masses, we find a considerable correlation between accretion
nd quenching, with star formation ending on average very shortly,
 . 5 + 0 . 9 

−1 . 2 Gyr (68-per cent CI), after a satellite crosses the R 200 radius. 

Our work has shown that NN can be used to solve a challenging
osmological problem: how to infer the accretion time of satellites
rom present-day observables? The use of NN has the advantage of
oing beyond simplified models of satellite motions, such as those
mplo yed in backw ards orbit integration, and offers a natural way of
onnecting satellite orbits in observations with their counterparts in
osmological simulations. To further advance this work, one would
eed to add the gravitational potential of massive satellites, such as
he LMC, and possibly use the orbital actions instead of the energy
nd angular momentum as input NN parameters. Orbital actions are
etter conversed than the energy (Callingham et al. 2020 shows this
or actual MW-mass simulations) and potentially would be more
trongly correlated to the infall time, especially for early accretion
vents. Having a larger training sample would also be helpfull in
ncreasing the number of parameters used when training the NN.
urrently, we use only orbital information, but additional information
ould be satellite colours or the quenching time, for which we find
 strong correlation with infall time. Ho we v er, going be yond orbital
arameters should be done with care and only once we have a better
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nderstanding of galaxy formation physics and how it relates to 
alaxy orbits. 
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PPENDI X  A :  N N  A R C H I T E C T U R E  

he tw o MLP netw orks used for this research were built using the
cikit-learn PYTHON package (Pedregosa et al. 2011 ) and used

he cross-entropy as the cost function being minimized during the
raining stage. The cross-entropy measures the difference between
wo distributions and is a widely used loss function for classification

odels. Each NN has three hidden layers with 100, 80, and 60
eurons, respectively, that has been found by testing various NN
rchitectures and choosing the one with the minimum number of
ayers and neurons such that, when increasing this further, does
ot result in an impro v ement in the loss function of the e v aluation
ample. We have used the early stopping option, which means that the
raining was stopped once the validation score did no longer impro v e.

e have made a 60-20-20 per cent split between the training-,
alidation- and test-samples. We have used the adam optimizer
nd tested different learning rates and found that the optimal value
as 0.001; values close to this did not have a large effect on the

ost function, although very large or lo w v alues did lead to worse
redictions. 
Using the architecture described abo v e, we built two MLPs

etworks: (i) one for determining if a satellite is at first infall,
nd (ii) for predicting the infall time likelihood. Choosing the same
rchitecture for both MLPs is justified as it was found that increasing
he numbers of hidden layers and neurons per layer did not impro v e
he prediction for either of the two models, while a considerably
impler network did lead to worse predictions. The first MLP was
uilt to determine whether or not a dwarf galaxy outside the host’s
irial radius is at first infall or actually a backsplash satellite. The
econd MLP was used to determine, assuming that a satellite has
allen in, at what time it fell in. 

PPENDI X  B:  I N D I V I D UA L  I NFA LL  TIME  

I STRI BU TI ONS  

n Figs B1 and B2 , we show the infall time likelihood for each of
he 47 Galactic satellites studied here. The fiducial result is shown
y the solid red curve and includes uncertainties in the measured
osition and velocity of satellites as well as in the MW potential. To
ighlight the effect of observational uncertainties, we also show the
nfall time likelihood inferred using the most likely measure phase–
pace positions of satellites and the most likely MW mass profile (for
ore details see Section 2.4 ). The two PDFs are generally in good

greement with each other (e.g. Sagittarius I, LMC, and Draco I in
ig. B1 ) and indicate the observational errors are not a significant
river of infall time uncertainties, ho we ver, for some satellites adding
he measurement errors makes a significant difference (e.g. Sextans,
ornax, and Grus I in Fig. B1 , Pisces II and Tucana II in B2 ). 
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Figure B1. The the infall time likelihood for 24 MW satellites. The fiducial prediction is shown by the red lines and show the results when accounting for errors 
in the measured properties of Galactic satellites and in the MW mass profile. The vertical red dashed line shows the most likely infall time and the two vertical 
grey dashed lines show the 16 to 84 percentiles. Satellites that are considered to be long-term LMC satellites according to Patel et al. ( 2020 ) and Kalli v ayalil 
et al. ( 2018 ) have their name in red, while those with their names in orange are considered to be recently accreted/less likely LMC satellites (see Section 5.3 ). 
To illustrate the effect of measurement uncertainties, we also show using the blue dash–dotted line the infall time likelihood but now assuming the ML position 
and velocity of satellites and the ML MW mass profile. 
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Figure B2. Same as Fig. B1 , but for the other 23 MW satellites in our sample. 
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