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ABSTRACT

A key unknown of the Milky Way (MW) satellites is their orbital history, and, in particular, the time they were accreted onto
the MW system since it marks the point where they experience a multitude of environmental processes. We present a new
methodology for determining infall times, namely using a neural network (NN) algorithm. The NN is trained on MW-analogues
in the EAGLE hydrodynamical simulation to predict if a dwarf galaxy is at first infall or a backsplash galaxy and to infer its
infall time. The resulting NN predicts with 85-per cent accuracy if a galaxy currently outside the virial radius is a backsplash
satellite and determines the infall times with a typical 68-per cent confidence interval of 4.4 Gyr. Applying the NN to MW
dwarfs with Gaia EDR3 proper motions, we find that all of the dwarfs within 300 kpc had been inside the Galactic halo. The
overall MW satellite accretion rate agrees well with the theoretical prediction except for late times when the MW shows a second
peak at a lookback time of 1.5 Gyr corresponding to the infall of the LMC and its satellites. We also find that the quenching
times for ultrafaint dwarfs show no significant correlation with infall time and thus supporting the hypothesis that they were
quenched during reionization. In contrast, dwarfs with stellar masses above 10° M, are found to be consistent with environmental

quenching inside the Galactic halo, with star-formation ceasing on average at 0.5 Gyr after infall.
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1 INTRODUCTION

Within the standard Acold dark matter (ACDM) cosmological model
structures form hierarchically though the merger of lower mass
galaxies and haloes. The signature of this process are satellite
galaxies that orbit a typically more massive central galaxy and
the stellar haloes that surround most galaxies. The former are the
remnants of defunct galaxies that either merged with or were tidally
destroyed by their hosts (e.g. the Frenk & White 2012; Zavala &
Frenk 2019 reviews and references within).

The Milky Way (MW) represents the perfect test bed for studying
the hierarchical growth of haloes and galaxies due to its close
proximity and a wealth of very detailed observations. In particular, we
have a census of nearly 50 Galactic satellites and many thousands of
halo stars with full 6D phase—space observations (e.g. McConnachie
& Venn 2020b; Gaia Collaboration et al. 2018, 2021). These have
shown that our Galaxy experienced two massive early mergers, Gaia-
Enceladus-Sausage and Kraken (e.g. Belokurov et al. 2018; Helmi
et al. 2018; Kruijssen et al. 2019a), and the more recent accretion of
the Large Magellanic Cloud (LMC) around 2 Gyr ago (e.g. Besla
et al. 2010; Cautun et al. 2019; Patel et al. 2020). This is the
first step into revealing the MW’s assembly history, with a much
more detailed picture emerging when studying the infall times of all
Galactic satellites.

The MW satellites also offer the most detailed observations of
dwarf galaxies and contain unique signatures on the nature of dark
matter (DM) and galaxy formation processes (e.g. the review of
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Bullock & Boylan-Kolchin 2017). However, to interpret the Galactic
satellite data, we need to know when these objects were accreted onto
the MW halo. For example, this tells us which processes quenched the
star formation of the Galactic satellites, with all MW dwarfs except
LMC and Small Magellanic Cloud (SMC) having no star-forming gas
(Putman et al. 2021). Currently, there are two competing theories for
explaining dwarf galaxy quenching. The reionization of the Universe
is predicted to have removed the gas from low-mass galaxies and
thus stopped star formation (e.g. Bullock, Kravtsov & Weinberg
2000; Benson et al. 2002; Sawala et al. 2010; Simon 2019). This is
expected to be the dominant process for ultra-faint dwarfs (UFD),
with most having stopped forming stars 11-13 Gyr ago (e.g. Brown
et al. 2014; Weisz et al. 2014; Sacchi et al. 2021). On the other hand,
the more massive classical dwarfs probably keep most of their gas
reservoir after the epoch of reionization and thus continued forming
stars. The moment at which they stop forming stars is not so much
dependent on global processes (e.g. reionization), but rather on the
specific history of the individual dwarf galaxies, such as ram-pressure
quenching when they become satellites of a more massive galaxy (e.g.
Gatto et al. 2013; Simpson et al. 2018; Akins et al. 2021). The mass
threshold separating quenching by reionization from environmental
effects is still debated and it represents a key probe of star-formation
processes in the smallest galaxies (e.g. Bose, Deason & Frenk 2018;
Simon 2019; Benitez-Llambay & Frenk 2020).

The Galactic dwarfs are currently one of the most constraining
probes into the nature of DM (e.g. Enzi et al. 2021; Nadler et al.
2021; Newton et al. 2021), and augmenting existing studies with
infall time and orbit information can improve the constraints further
(e.g. Kaplinghat, Valli & Yu 2019). Alternative DM models, such
as warm DM or self-interacting DM, predict differences in the
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number and structure of low-mass galaxies and halos compared to
the standard cold DM model (e.g. Colin, Avila-Reese & Valenzuela
2000; Zavala, Vogelsberger & Walker 2013; Lovell et al. 2014).
These differences depend on the orbital history of the satellites since
dwarfs in alternative DM models, which typically have shallower
DM density profiles and later formation times, experience enhanced
tidal stripping compared to their cold DM counterparts (e.g. Dooley
etal. 2016; Lovell et al. 2021), which emphasizes the importance of
accurate accretion times for the Galactic satellites.

Determining the infall times of the MW satellites is a key question
in cosmology and has been the subject of many previous studies.
These can be grouped in two broad categories. The classical approach
is to integrate the orbits of the satellites backwards in time and
determine when they first crossed the virial radius of their host (e.g.
Besla et al. 2010; Cautun et al. 2019; Patel et al. 2020). However,
this problem is inherently difficult due to the unknown evolution
of the Galactic potential and due to the chaotic nature of satellite—
satellite interactions (e.g. D’Souza & Bell 2022). Studies employing
this approach typically involve many simplified assumptions, such
as neglecting satellite—satellite interactions and assuming a smooth
spherically symmetric and slowly varying MW potential, which
makes it difficult to estimate robust uncertainties in the inferred
satellite accretion times (e.g. Miyoshi & Chiba 2020; Armstrong,
Bekki & Ludlow 2021).

A second approach for determining the infall time is to match the
observed phase—space distribution of observed satellites with those
of satellites in cosmological simulations (e.g. Rocha, Peter & Bullock
2012; Fillingham et al. 2019). This has the advantage of capturing the
many processes that affect satellite orbits since these are included in
the simulation by construction. However, one of the main limitations
arises from the technique used to match observed satellites with their
simulated analogues, since it is not known which satellite properties
are the most important for determining the infall time. Rocha et al.
(2012) have claimed that binding energy is the main predictor of infall
time, however, later simulations have found a large scatter in this
relation, especially for systems that experienced massive accretions
(D’Souza & Bell 2022). Fillingham et al. (2019) further improved
upon this matching procedure by, on top of the binding energy,
matching observations and simulations also in terms of distance and
radial velocity. However, this raises a major difficulty since it unclear
what the ‘closest” means when matching many different physical
variables.

In this research, we present a new approach to determine the infall
time of satellite galaxies using neural networks (NNs). Machine
learning is an excellent solution for the problem of determining
infall times, as it specializes in searching for potential correlations
that cannot be easily seen by researches due to being complex and
involving multidimensional spaces. This new method is similar to
matching observed and simulated satellites in the phase—space with
the major advantage that the machine-learning algorithm takes care of
determining the optimal weights of the different variables internally,
avoiding incorrect assumptions. To train the machine learning, we
make use of the galaxy data from the EAGLE hydrodynamical sim-
ulation (Schaye et al. 2015). EAGLE represents a good compromise
between large volume, which is needed to have many MW-analogues,
and sufficient resolution to resolve tens of satellites for each MW-
mass system. We then calculate the infall time likelihood for 47
Galactic satellites that have 6D phase space data, while accounting for
uncertainties in the MW mass model and in the observed properties
of satellite galaxies.

The paper is structured as follows. First, the simulation data
used for training our machine-learning algorithm as well as the
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observational data for the MW satellites is described in Section 2.
Next, the workings of our adopted algorithm as well as its capabilities
are discussed in Section 3. Our results are given in Section 4, to be
extensively analysed in Section 5. Finally, Section 6 reiterates the
main finds deduced from our results.

2 DATA

Here, we describe the data used to train and test the machine-learning
algorithm (Sections 2.1-2.3) and how we process the data for the MW
satellites such that it can be used by our machine-learning pipeline
(Section 2.4).

2.1 Simulations
2.1.1 EAGLE

The Evolution and Assembly of GaLaxies and their Environments
(EAGLE) project is ‘a suite of hydrodynamical simulations that
follow the formation of galaxies and supermassive black holes
in cosmologically representative volumes of a standard ACDM
universe’ (Schaye et al. 2015). The simulations include a multitude of
processes that are thought to be key for the formation and evolution
of galaxies, such as metal enrichment, energy feedback from star
formation, and the accretion and mergers of supermassive black
holes, and have been shown to reproduce many properties of the
galaxy population (for the details, see Schaye et al. 2015; Crain et al.
2015).

All training data for the machine learning in this research is
taken from the main EAGLE simulation that is labelled as ‘Ref-
LO100N1504’. This is the largest of the EAGLE project simulations
and corresponds to a cube with side-lengths of 100 Mpc that contains
an equal number of 1504° DM and gas particles of mass 9.6 and
1.8 x 10°Mg, respectively. This simulation is ideal for obtaining a
large number of MW-analogues systems and their satellites that can
be used to train our machine-learning pipeline.

2.1.2 Auriga

We also want to test to what extent our machine-learning predictions
are sensitive to the use of one specific simulation. For example,
artefacts could arise from the use of one specific galaxy formation
model as well as from the rather limited numerical resolution with
which satellite galaxies are resolved in EAGLE (e.g. Lacey & Cole
1993; Guo et al. 2010; van den Bosch & Ogiya 2018). As such, we
make use of a second suite of 30 MW-mass zoom-in hydrodynamical
simulations that have been run as a part of the Auriga project (Grand
et al. 2017). These simulations employ a different galaxy formation
model that is similar to that used in the Illustris-TNG (Pillepich
et al. 2018) and have a 30 times better mass resolution than the main
EAGLE run (for more details see Grand et al. 2017). Due to its
size, the Auriga data is too small to properly train a NN. As such,
we will use the Auriga satellite galaxies to test the accuracy of our
machine-learning method that has been trained only on the EAGLE
data.

2.2 Sample selection

The data set used to train the machine-learning algorithm serves
as a model prior for the MW and thus we should select systems
that best resemble our galaxy and its environments. We define a
MW analogue as a system whose total mass is comparable to that
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of our own galaxy, which is around 10'>My (e.g. Cautun et al.
2020; Wang et al. 2020). Furthermore, the dynamics of the satellites
should be dominated by one large galaxy, in our case the MW. The
closest massive neighbour to the MW with more than half of its mass
is the Andromeda galaxy at about 770 kpc (McConnachie 2012).
This corresponds to a distance of roughly 3.5 Ry from our galaxy,
where Ry is defined as the distance from the Galaxy Centre where
the average enclosed density is 200 times the critical density. Most
studies refer to Galactic satellites as all the galaxies within 300 kpc
from the Galactic Centre (e.g. Bullock & Boylan-Kolchin 2017;
Shao, Cautun & Frenk 2019), which corresponds to a distance of
~1.5 Rgoo.

Other properties of the MW are also thought to affect the infall
times of its satellites, such as the accretion of massive satellites, halo
growth history, and local environment (e.g. Fakhouri & Ma 2009;
Deasonetal. 2015; Bose etal. 2020; D’Souza & Bell 2021). Including
one or more of these criteria can result in closer MW-analogues,
however, we choose not to since we do not want to be overly
restrictive in our sample selection. This is motivated by the goal
of having a large training sample, of testing the predictions against
higher resolution simulations that contain only a small number of
MW-mass hosts, and of not imposing our own potentially incorrect
biases. Nevertheless, increasing the number of MW selection criteria
can reduce halo-to-halo scatter and could lead to a more accurate
measurement of satellite infall times.

More specifically, the following two criteria were used to select
present-day MW-analogues:

(1) The host galaxy has a mass Mogo! in the range [0.5, 2.0] x
102,

(i1) The host galaxy has no massive neighbour, that is another
galaxy within 2 R,y whose total mass is larger than 0.5 M.

Our satellite sample consists of all subhalos found within a distance
of 2 Ry from the centre of the host galaxy. We include all subhalos,
not only luminous ones (i.e. with stars), since due to the limited
resolution of the EAGLE simulation, the lowest stellar mass of an
object is 10° M. However, some MW satellites have stellar masses
as low as ~10° M. Many of the subhalos hosting such faint galaxies
are resolved as DM only substructures in EAGLE, which is why we
consider all subhalos when finding satellites. Furthermore, normally
satellites are taken as the galaxies within Ryg9, however, many so-
called Galactic satellites are found at larger distance (see discussion
above) and thus we choose a larger radius to identify satellites. Even
if some galaxies are found outside Ry at present day, they could
have been inside the virial radius of the host at earlier times (so-called
backsplash galaxies; e.g. Wetzel et al. 2014; Simpson et al. 2018).

These selection criteria have resulted in 1628 present-day MW-
analogues that contain a total 70 468 satellites above the resolution
limit of the main EAGLE run. To simplify the calculation of the
infall time (see Section 2.2.1), we further removed all galaxies, both
centrals and satellites, that since formation have crossed an edge of
the simulation box (i.e. if one of their positional coordinates jumped
from ~100 to ~0 Mpc). This left a final sample of 1590 hosts and
63 402 satellites.

Once all present-day galaxies were selected, they were traced back
in time using the galaxy merger-tree available on the EAGLE public
data base (McAlpine et al. 2016). This consists of the most massive
progenitor branch of the merger tree. We stored the data for all

'The mass contained in a sphere of radius Ry, the radius at which the average
density is equal to 200 times the critical density.
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snapshots in which both the central and the satellite galaxy exists
(EAGLE sometimes loses track of a galaxy in a snapshot, for it to
reappear in the following ones).

We further limit the satellite population to the ones that are
expected to host the majority of luminous galaxies. A multitude of
galaxy formation prescriptions, such as the semi-analytical models
(e.g. Wang, Frenk & Cooper 2013), very high-resolution hydrody-
namical simulations (e.g. Sawala et al. 2016; Wheeler et al. 2019;
Applebaum et al. 2021; Grand et al. 2021) and theoretical models
on how gas cools and fragments to form stars (Benitez-Llambay &
Frenk 2020), suggest that most galaxies form in haloes of total mass
larger than ~10° M. We implement this selection as a threshold
on the peak maximum circular velocity,2 which we denote as Viea,
since the stellar mass has been shown to have a tighter correlation
with Vpeai than with halo mass (e.g. Matthee et al. 2017; Fattahi et al.
2018; Garrison-Kimmel et al. 2019).

We define our satellite sample as the subhaloes with Vpeq >
25 kms~!. This is motivated two-fold. First, as we just discussed,
most galaxies form in massive haloes and the Vpex = 25 kms™
corresponds to the sweet spot where we expect that around half of
those haloes to contain a galaxy (Sawala et al. 2016; Jahn et al. 2022).
Secondly, low-mass satellites are close to the resolution limit of the
simulation and their internal structure is not well-resolved, which
can introduce numerical artefacts in their orbital evolution, such as
premature tidal disruption (e.g. see van den Bosch & Ogiya 2018;
Grand et al. 2021). These numerical artefacts would preferentially
affect early accreted substructures, since these spend more time
within the virial radius of the host, and thus could bias the distribution
of infall times. Based on the Boylan-Kolchin et al. (2010, see also
Hellwing et al. 2016) analysis of halo structure in the Millennium
II simulations, whose mass resolution is very close to that of the
main EAGLE simulation, EAGLE resolves robustly only halos with
Voeak = 25 km s~!. When imposing this Vpeak selection, which affects
only the satellite sample, we are left with 30 515 satellites.

We have used the same exact selection criteria also for the Auriga
sample. All 30 Auriga systems pass our MW-analogue selection
since all of them were chosen to be isolated halos with total masses
in the range, M»y € [1.0, 2.0] x 10'2 Mg (see Grand et al. 2017).
The satellite sample consisted of all subhalos within a distance of
2 Rypp of each MW-analogue that have a peak maximum velocity,
Vpeak > 25 kms™!.

2.2.1 Infall time determination

We define the infall time to be the moment at which a satellite for the
first time crosses the virial radius, Ry, of its present-day MW-mass
host. Many of these satellites were isolated dwarfs before accretion
onto their z = 0 hosts (Shao et al. 2018a). However, some of them
would have been accreted as part of a group, that is, they are so-
called satellites-of-satellites (Deason et al. 2015; Wetzel, Deason &
Garrison-Kimmel 2015; Jahn et al. 2022). We do not distinguish
between the two, except when discussing in Section 5.3 this aspect
in relation to the satellites brought in the MW by the LMC.

As the simulation has a discrete number of snapshots (with a
typical time interval between snapshots of ~0.2 Gyr at early times
and ~1 Gyr at late times), determining the exact infall time requires
interpolation between snapshots. As we will discuss in Section 4, the

2We determine Vpeak as the peak of the maximum circular velocity, Vinax, for
the most massive progenitor branch. For satellites, Vpeax is typically given by
the value of Vi« just before infall onto the host halo.
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Figure 1. Example of an orbit of a satellite around a MW-mass host. It shows
the proper separation between satellite and host as a function of time. This
is measured at multiple snapshots, shown as orange dots, and, for clarity, the
blue line shows a spline interpolation between these points. The dotted line
shows the radius Ryop of the host, which again is a spline interpolation between
snapshots. The infall time is defined as the first time the satellite enters the
virial radius of its present-day host and it is indicated on the figure by a red
Cross.
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Figure 2. Distribution of the infall times for satellites of MW-mass hosts
in the EAGLE simulation. We present results for three samples: galaxies
with stellar mass above 10° M, and subhaloes with peak maximum circular
velocity, Vpeak > 30 and 25 km s~!. All samples have roughly the same
distribution of infall times. The PDFs include all satellites found within a
distance of 2 Ry from the host halo at z = 0.

typical uncertainty on the inferred infall time is much higher than the
time difference between snapshots, which makes linear interpolation
sufficient. That is, the infall time is given by:

r1—Ra0,1
R200,1

j(b — 1), (D

linfall = 11 + —;
R200,1 R00,2

with #;, t, the time of the snapshot before and after infall, r; the
comoving distance at time #; of the satellite with respect to the central
galaxy, and Ry ; the radius of the host at #;. This procedure is
illustrated in Fig. 1, which shows the orbit of a random satellite. The
figure also shows that satellites can go in and out of the virial radius
of their host multiple times (while outside Ry they are referred to as
backsplash objects) and also that host Ry does not always increase
smoothly with time, with rapid increases and decreases taking place
when another massive halo is accreted or flies by (e.g. see bump in
Ry at a lookback time of 2 Gyr).

The resulting infall time distribution is shown in Fig. 2, with
the fiducial sample results being shown by the red curve. We find
that the infall time probability distribution function (PDF) has a
pronounced peak at a lookback time of 9 Gyr ago, a sharp cut-off
at earlier times and a more gradual decreases towards present day,

Satellite infall times using NNs 1707

being roughly flat for the last 6 Gyr. The oldest surviving satellites of
our MW-analogues have been accreted 12 Gyr ago. The infall time
distribution is shaped by two competing effects, which are clearly
illustrated in Fattahi et al. (2020, see their figs 2 to 4). First, the
satellite accretion rate is largest at early times when the universe was
smaller and when halos grow very fast, typically through mergers.
Secondly, the survival rate of satellites is inversely correlated with
the time they orbit inside their host. The more time they spend as
satellites (i.e. the earlier they were accreted), the lower is their chance
to survive to present day.

As we have discussed in Section 2.2, our satellite population
is selected as the objects with Ve > 25 km s~!. In Fig. 2, we
also investigate if this selection biases the infall time distribution
compared to a stellar mass selection or to using another Vpeux
threshold. We find that the infall time PDF is approximately the
same for all three selections. This was to be expected since previous
studies have shown that the distribution of infall times for satellites of
MW-mass hosts is largely independent of their stellar mass except for
the most massive objects with M, > 108 M, (e.g. Shao et al. 2018b;
Fattahi et al. 2020, see also bottom right-hand panel in Fig. 3).
For the massive satellites, due to their high total mass, dynamical
friction plays an important role and thus high stellar mass satellites
have typically more recent accretion times.

2.3 Feature selection

Our goal is to estimate the infall time using the orbital phase space
information of satellite galaxies that has recently become available
for a large number of MW dwarfs (e.g. McConnachie & Venn
2020b; Battaglia et al. 2022). As such, to train our machine-learning
framework, we will use the 3D position and velocity of the satellite
with respect to the host centre, which we summarize in terms of:
(i) distance from the host, (ii) total velocity magnitude, (iii) radial
velocity component, and (iv) specific angular momentum.

Based on earlier studies, e.g. Rocha et al. (2012), we expect that
there is a strong correlation between satellite orbital energy and infall
time. The specific energy of a satellite is the fifth feature used as
input to our machine-learning method. This is the sum of the relative
kinetic energy per unit mass and the gravitational potential of the
satellite. To calculate the latter, we need the mass profile of the host.
For the EAGLE sample, we make use of the four-component fit to
the total density profile of EAGLE galaxies introduced by Schaller
et al. (2015) and calculate the gravitational potential at the position
of each satellite using equation (21) in that paper. The Schaller et al.
functional form has a greater flexibility than the typical Navarro,
Frenk, and White (NFW; Navarro, Frenk & White 1996) profile
used to described halos in DM only simulations and gives a much
better fit to the total density profile in hydrodynamical simulations
that include, beside a dark halo, a central stellar component, and an
extended hot gas distribution.

We have studied using other galaxy observables as input for infall
time determination, however, we decided against including them
in our fiducial model. One such feature is a satellite’s stellar mass
since, for example, more massive satellites needed longer to grow
and thus would be accreted on average later. Due to the limited
resolution of the EAGLE simulation, whose star particles have a
mass of ~10° My, it would mean that either the majority of satellites
would have a missing stellar mass value or, if we would have limited
the study to satellites with well-determined stellar masses (e.g. at
least 10 stellar particles), would severely reduce our training sample
and its applicability to the MW satellites. Similar reasons motivated
not using other observables such as galaxy colours.

MNRAS 520, 1704-1720 (2023)
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Figure 3. Infall times as a function of the five input features used to train the machine-learning algorithm (the bottom right-hand quantity, Vpeak, Was not
used as input and is shown here only for illustrative purposes). The input features are as follows: distance, velocity magnitude, radial velocity, specific angular
momentum, and specific orbital energy, and are scaled by the host properties to make them invariant to the mass of their host (see main text for details). The
blue crosses show the median infall times for each bin and the grey areas show the 16 to 84 percentiles in each bin.

2.3.1 Parameter scaling

The satellites in EAGLE orbit a wide range of host galaxies. Satellite
observables such as position and velocity depend on the size and
mass distribution of their host (Callingham et al. 2019; Rodriguez
Wimberly et al. 2022). This dependence can be almost fully removed
by scaling with the properties of the host galaxy, since the satellite
systems have a similar structure across a wide range of host halo
masses (Callingham et al. 2019; Li et al. 2017, 2020).

To train the machine-learning algorithm, we use scaled satellite
properties since this way we can eliminate the host mass as one
of the input features. Distances and positions were scaled using
the host radius, that is, we use the quantity /R, where r is the
satellite distance from the host. We scaled the velocity magnitude
and its components using the circular velocity at the halo radius,
Voo = 4/ %. The specific angular momentum was scaled by the
angular momentum an object on a circular orbit with velocity Vs at
a distance Rypo. Finally, the energy was scaled by the specific kinetic
energy of an object on a circular orbit at Ry, whose value equals
% Vao-

The correlation between each machine-learning input feature and
the satellite infall time is shown in Fig. 3. To better illustrate these
trends, we split the data in bins of the property shown along the
x-axis and we show the median and the 16 to 84 percentiles of the
tinran distribution in that bin. Two results are made clear by the plots
in Fig. 3.
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First, the infall time depends more strongly on some parameters
than on others. For example, the infall time shows the strongest
dependence on energy (as was previously observed in, for example,
Rocha et al. 2012), especially when reaching to higher, less bound
energies. At the same time, the two velocity features show almost no
correlation with infall time. One should keep in mind, however, that
when considering the dependence on multiple parameters simulta-
neously, some of the now flat correlations might turn out to play an
important role.

Secondly, the distribution of infall times for fixed values of any of
the five input features is rather wide. Even for the specific energy,
the width of the conditional #,¢,; PDF is at least 6 Gyr or larger. This
emphasizes the complexity of determining infall times from current
day observables and gives an indication of the typical uncertainties
which should be expected for the machine-learning prediction.

2.3.2 The impact of numerical resolution on subhalo infall time

In the bottom right-hand panel of Fig. 3, we see that the median
tinran decreases slowly with decreasing subhalo peak circular velocity
until around Ve = 35km s~!, after which the trend reverses. This
non-monotonic relation indicates that the infall times of subhalos
with Ve < 35km s~! are likely affected by the finite resolution of
the simulation and that this threshold is somewhat larger than the
25kms~! value found when analysing the convergence of subhalo
internal properties (e.g. Boylan-Kolchin et al. 2010).
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This numerically-induced artificial tidal disruption becomes more
important the smaller the number of particles with which a subhalo
is resolved. This raises the question of determining an optimal Ve
threshold such that we include as many subhalos as possible while
mitigating any biases arising from artificial disruption. For our study,
the quantity of interest is the f,¢y PDF of all the subhalos that will
be used to train the NN since any bias in the PDF will result in biased
predictions. This is why we have studied how the #,rn PDF changes
as we include lower mass (i.e. lower V) subhaloes in our sample.
As we decrease the Ve, threshold and include ever more subhalos,
we find that the #,pn PDF is largely insensitive to the value of the
threshold as long as we limit to Ve > 25km s~!. For example,
this is illustrated in Fig. 2, which shows only small differences
between the fini PDF of subhalos with Viey > 25kms™" and
of those with Vjeax > 30km s~!. Once we decrease this threshold
further (not shown here), we find a rapid change in the f,z; PDF
indicating that artificial subhalo disruption plays a very important
role.

The fact that the tj,¢; PDF does not change strongly with subhalo
Vpeak 1s the outcome of two competing effects. As we study smaller
subhalos, we expect a small preference towards earlier infall times.
Once we analyse small enough subhalos, numerical effects kick
in and lead to an opposite trend: a tendency for later infall times.
For the EAGLE simulation, the two effects balance each other at
Vpeak~30km s~!. This means that choosing a slightly lower Vpeak
selection limit, let us say 25 kms~!, leads to equally accurate results
as a higher value, e.g. 35kms™!, but has the added benefit of
including a considerable larger population of subhalos.

2.4 Observational data

For the 47 MW satellites with 6D phase—space data, we adopt the
distance, position, and radial velocity from McConnachie (2012),
which is a compilation of various measurements of nearby dwarf
galaxies. The proper motions are taken from McConnachie &
Venn (2020a), where Gaia EDR3 proper motions for individ-
ual stars were combined with a photometric and radial veloc-
ity analysis. That study, which is based on the method intro-
duced in McConnachie & Venn (2020b), has used a Bayesian
formalism to identify likely dwarf galaxy member stars that
were then used to calculate the average proper motions of each
dwarf. In general, the inferred proper motions are in good agree-
ment with previous results using HS7, Gaia DR2, and stud-
ies using spectroscopically confirmed dwarf member stars, but
have smaller uncertainties (see comparison in Battaglia et al.
2022).

To account for measurement errors in Galactic satellite properties,
we use Monte Carlo (MC) sampling. For each satellite, we created
1000 random samples in observed space, i.e. distance modulus, radial
velocity, and proper motions, assuming that the measurements are
described by a Gaussian distribution whose centre is the measured
value and whose width is given by the measurement errors. These
values are then transformed to a Galactocentric reference frame
using the following values for the solar position and motion:
Sun’s distance from the Galactic Centre, Ry = (8.178 = 0.022) kpc
(Gravity Collaboration 2019), circular velocity at the Sun’s position,
Veire = (234.7 & 1.7) kms~! (Nitschai et al. 2021), and the Sun’s
motion with respect to the local standard of rest, (U, V, W)=
(11.10 £ 0.72, 12.24 4 0.47,7.25 £ 0.37) kms~! (Schénrich, Bin-
ney & Dehnen 2010).

To determine the specific energy of each Galactic satellite, we
model the MW systems as a central stellar component and an
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NFW DM halo (e.g. see Cautun et al. 2019). For simplicity, the
stellar component was modelled as a point mass distribution, as
most satellites are far enough from the stellar disc such that this
approximation is justified. The potential of the NFW DM halo was
taken as

GM?OI(\)/I 10g(1 4 Cr/Rz()())
r log(l4+c¢)—c/(1+0c)’

with ¢ the concentration parameter, r the distance from the Galactic
Centre, MOM the DM halo mass, and Ry the halo radius of the
MW. These values have been taken from the Cautun et al. (2020)
study, with MRM = 0.9710% x 102 Mg, ¢ = 9.47)7, and stellar
mass M, = 6.24708 x 10'° Mg, To account for uncertainties in the
Galactic mass profile, we generated 1000 MC realizations of the total
mass and concentration assuming log-normal distributions for these
quantities whose mean and width are given by the values quoted
above. Finally, we calculate the five machine-learning input features
and scale them using the procedure described in Section 2.3.

Dpatp = — ()

3 METHODS

In this work, we are interested to predict the infall time likelihood
function for each satellite using the minimum number of assumptions
on the shape of the likelihood (as it will become obvious later, in
many cases, the likelihood is multipeaked and is not easily modelled
as a simple function such as a Gaussian). To achieve this goal,
we split the range of infall times into multiple bins and cast the
inference problem into estimating what is the probability that any
given satellite was accreted in the time interval corresponding to a
tinfan bin. This now becomes a multilabel classification problem,
with the number of classes determined by the number of f#py
bins.

To predict the infall times, we use the MultiLayer Perceptron
(Rosenblatt 1958; MLP from here on), which is one type of deep
NN. Typical use cases for MLP algorithms are binary- and multilabel
classification tasks, such as fraud detection or determining hand
written digits (for further details and use cases, we refer the reader
to Haykin 1994 and Géron 2019).

We have chosen 50 equidistant infall time bins that span the time
interval from the Big Bang up to today. Each bin corresponds to a
time interval slightly less than 0.3 Gyr. The bin width was chosen
such that it is considerably smaller than the typical uncertainties in the
predicted infall times (as will be shown later in this section), yet large
enough to avoid multiple bins containing very few satellites (which
would lead to inadequate statistics). We have tested and doubling
the number of bins (i.e. halving the bin width) does not affect our
predictions, however, increasing the number of bins much more does
lead to higher uncertainties in our predictions.

The goal is to apply the fiypy inference method to all the MW
satellites within 300 kpc from the Galactic Centre. Some of these
satellites are outside the MW’s radius, Ryo9, whose value is ~220 kpc,
which raises the question if such dwarfs are at first infall (i.e. are yet
to enter the MW'’s Ry radius) or are backsplash galaxies (i.e. have
been inside R, at a previous time). To answer this question, we build
another MLP network whose task is to predict the accretion status of
a galaxy outside Ry, that is the likelihood that a satellite is at first
infall or a backsplash galaxy. The technical details of this network
as well as the one used to infer #,p, are specified in Appendix A.

In the rest of this section, we investigate the performance of the
two NNs on the EAGLE test sample (we used a 60:20:20 split for
the training, evaluation, and test steps) and on the Auriga sample of
satellites.
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Table 1. Quantifying the success of the NN to clas-
sify galaxies outside the host’s virial radius, Rpgp, into
backsplash or first infall galaxies. The results are for the
EAGLE test sample.

Sample Completeness Purity
(per cent) (per cent)
All satellites 85.3 86.1
Backsplash 91.1 88.7
First infall 79.5 83.4

3.1 Performance of the ‘accretion status’ NN

Determining the accretion status (i.e. first infall versus backsplash)
of a dwarf whose present day distance from the central galaxy is
larger than Ry is a binary classification problem. For each dwarf,
the NN outputs the likelihood that the galaxy is at first infall or is
a backsplash object. We then assign to that dwarf the label with
the largest likelihood, and measure the performance of the NN by
calculating the completeness and purity measures for our prediction.
The completeness is defined as the percentage of satellites with true
label A that are identified by the NN as having label A. The purity is
the percentage of all dwarfs predicted as having label A whose true
label is also A.

The completeness and purity of the accretion status NN are given
in Table 1. We find rather large values, ~80 per cent or higher,
for both quantities indicating that the network is rather successful
in distinguishing between backsplash and first infall dwarfs. Both
the completeness and purity show that the NN is slightly better at
identifying backsplash satellites, which can be partly explained by
the fact that the training sample of satellites that are outside their
host radius is split 65-35 per cent between backsplash and first infall
galaxies, so that most of the training data consists of previously
accreted satellites.

3.2 Performance of the ‘infall time’ NN

The goal of this NN is to estimate the fi,gy likelihood for each
satellite. It does so by estimating the likelihood in 50 #,¢ equal
bins, and, from this, we construct a PDF by linearly interpolating the
values of the likelihood which we take to be defined at the middle of
each bin. The resulting likelihoods can have a small bin-to-bin noise
associated to them since ultimately only a rather limited subset of
the training sample is used to estimate the infall time likelihood for a
given satellite (this subset can be thought of as the training samples
that the NN estimates as being close in phase—space to the target
satellite). We removed this bin-to-bin variation by further smoothing
the likelihood using a Gaussian kernel with dispersion equal to twice
the fihran bin width, i.e. ~0.6 Gyr. As we discuss shortly, this kernel
width is considerably smaller than the typical confidence intervals
(CI) and thus does not have a large impact on the inferred errors.
We determine the infall time as the maximum likelihood value
and calculate CI using the Fillingham et al. (2019) procedure,
namely by integrating the likelihood curve (starting at the maximum
likelihood value) until the area it covers equal 68 per cent. Averaging
over all satellites in the EAGLE test sample, our NN predicts the
infall time with a 68-per cent CI of size 4.4 Gyr (i.e. if the CI
had been symmetric, this would correspond to standard deviation
o = 2.2 Gyr). The obtained uncertainties are more than one order
of magnitude larger than the bin width use to estimate the fiyy
likelihood, whose value is 0.3 Gyr, and thus our choice of bin widths
is small enough to not significantly impact the inferred likelihood.
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Table 2. Testing the accuracy of the NN for predicting the infall time, fipfan,
for satellites in the EAGLE test sample and in the Auriga suite of MW-mass
simulations. The two columns gives the fraction of satellites whose true infall
times, as measured in the simulations, are respectively within the 68- and
95-per cent confidence interval (CI) of the infall time inferred by the NN
architecture. For Auriga, we show results for all satellites for those found at
distances larger than 0.75 Raqo from their host. The discrepancy between the
EAGLE and Auriga results are due to differences in their mass profiles (see
discussion in the main text). These results indicate that the NN estimates are
realistic CI for fipfay.

tinfa"lrue within tinfa"true within
Sample 68-per cent CI 95-per cent CI
(per cent) (per cent)
EAGLE 69.0 94.7
Auriga all 57.7 89.0
Auriga r > 0.75R200 66.6 94.4

The #ina uncertainties represent a considerable fraction of the age of
the Universe of ~13.8 Gyr and this further indicates the difficulty of
estimating accurate infall times of satellite galaxies.

Our NN-based inference technique uses five features to determine
a satellite’s infall time and raises the question of how it fares against
simpler methods, such as those based on single satellite properties.
To keep the comparison simple, we have applied the same exact
framework with the exception that we have trained the MLP using
only one single feature at a time as input. We have found that the MLP
using the specific energy performs the best of all the single-feature
approaches, which should not be surprising given the discussion in
Sections 1 and 2.3. The specific energy can determine infall times
with a 68-per cent CI of width 5.8 Gyr, which is considerably larger
than the 4.4 Gyr uncertainty when using the full set of five features.
Significantly larger uncertainties are found when employing the
MLPs that use just one of our other four features as their single
input. We also have found that applying the MLP to three input
features that combine the specific energy and distance with a velocity-
based feature (e.g. total or radial velocity) gives equally accurate
predictions as our full five-feature model. This is to be expected
since many of the input features are correlated and thus contain
redundant information.

3.2.1 Robustness of predictions

We checked the robustness of our CI by determining the fraction
of the data for which the 68- and 95-per cent CI contain the true
infall time, #(5,. Ideally these percentages should be around 68 and
95 per cent. The results are given in Table 2, and for the EAGLE test
sample, we find very similar fractions to the expected ones, making
us confident in our estimated uncertainties.

To quantify the robustness of our results, we also test the NN
predictions against a satellite galaxy sample from the Auriga suite of
MW-mass zoom-in simulations. The Auriga project has better mass
resolution than EAGLE and uses a different galaxy formation model.
We find that around 58 per cent of Auriga satellites have 7y, within
the 68-per cent CI, which is somewhat lower than we would expect
from purely statistical considerations. This indicates that the NN,
which was trained on EAGLE data, performs somewhat worse when
applied to the Auriga data.

This discrepancy is due to small systematic biases in the predicted
infall time for the Auriga galaxies, which our NN predicts to have
somewhat later infall times than actually measured in the Auriga
simulations. This can be appreciated from Fig. 4, which compares

20z Aienigad Lz uo Jasn QNN - Usple NalisIonun Aq | 858669/0. L/2/0ZS/2101HE/SIU/WOD dNO"dlWspEd.//:SA)Y WOI) PAPEOJUMOQ



14

=
N
T

)
o
T

oo
T

|

1

|

1

Predicted Lookback Infall time (Gyr)

N
L
i

O ] 6 10 12 14

True Lookback Infall time (Gyr)

=)
N
IN

Figure 4. Comparison between the infall times predicted by the NN, tﬁgn,
and the distribution of true infall times, ti‘;‘ffn, for 50 random samples from
the Auriga sample. The blue filled circles show the maximum likelihood

estimates and the errorbars show our inferred 68-per cent CI.

the NN inferred versus true infall times for a random subset of Auriga
satellites. While most NN estimates agree with ¢/t within the shown
68-per cent CI, we find that on average it is more likely for the true
infall time to be higher than the NN inferred maximum likelihood
value. This can be seen in Fig. 4 by noticing that more of the inferred
maximum likelihood values, which are shown as filled blue circles,
are below the one-to-one diagonal line shown in dashed grey.

The small discrepancy between the actual Auriga infall times
and the ones predicted by the EAGLE-trained NN are driven by
differences in the halo mass profile predicted by the two projects.
First, while MW-mass halos in EAGLE loose a considerable fraction
of their baryons due to strong supernovae feedback (Schaller et al.
2015), this effect is considerably reduced in the Auriga galaxy
formation model (Lovell et al. 2018). Secondly, EAGLE forms
roughly a factor of two fewer stars in MW-mass halos compared
to the Auriga predictions (Schaye et al. 2015; Grand et al. 2017),
which is due to the former model undershooting the stellar-to-halo-
mass relation while the latter overshoots the same relation (see Kelly
et al. 2022 for a more detailed discussion of the differences between
the EAGLE and Auriga galaxy formation models). Both these effects
lead to EAGLE halos having a shallower potential than their Auriga
counterparts. This means that a satellite accreted at the same time
in the two models ends up having different energies and, since the
energy shows one of the strongest correlation to fiy¢, it explains why
our NN shows a small systematic bias when applied to the Auriga
data. One potential solution would be to use orbital action instead of
energy, which has been shown to be a better orbital invariant under
slow changes in the potential (e.g. Callingham et al. 2020, although
such an approach will not mitigate all the differences between the
two simulations, such as the different tidal disruption strengths due to
the different stellar masses of the central galaxies, e.g. see Richings
et al. 2020).

The gravitational potential differences between the EAGLE and
Auriga systems are largest close to the centre of haloes (which is
where early accreted satellites have spent the most time) and decrease
towards the outskirts. We find a similar trend when analysing the
accuracy of the Auriga fi, estimate. Farther satellites from the
centre experience less systematic bias when inferring fiygy. For
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example, the fraction of satellites that have i, within the 68-

per cent Clis 62.6 and 66.6 per cent for satellites with 7 > 0.5R,0p and
r > 0.75R,, respectively, which reconciles the Auriga and EAGLE
values.

In summary, our comparison between the EAGLE and Auriga
samples shows that satellite infall time determinations can also be
affected by systematic uncertainties that arise from mismatches in
the host’s gravitational potential and central galaxy stellar mass. This
effect is most pronounced for satellites close to the centre, which
corresponds on average to the earliest accreted satellites (e.g. see top
left-hand panel in Fig. 3).

4 RESULTS FOR THE MW SATELLITES

We now apply our two NNs to the observational data of the MW
satellites. An important difference between determining infall times
in simulations and doing so on real galaxies, is that we very precisely
can determine the satellite properties in the former. However, in
observations, these properties have uncertainties. To obtain accurate
CI, these uncertainties need to be taken into account. We do so by
creating a sample of 1000 MC realizations for the 6D phase—space
coordinates of each observed satellite, as well as for the MW potential
(see Section 2.4 for details). All our predictions account for these
uncertainties by averaging over the MC realizations and for some
satellites, we find that the observational uncertainties, in particular
proper motion errors, can induce considerable further uncertainties
on the infall time determination (for more details, see Appendix B).

4.1 Satellites at first infall

From the 47 MW satellites considered in this research, 44 have
observed Galactocentric distances that are well within the MW halo
radius, Ry, even after accounting for uncertainties in the MW mass
profile. This means that most of the satellites in our sample can a
priori be classified as already having been accreted by the MW, and
thus subjected to environmental processes inside the MW halo.

When considering all the MC samples, there are six satellites
that have MC realizations that lie outside of the MW halo. Theses
are, in order of decreasing mean distance, Leo I, Leo II, Canes
Venatici I, Leo V, Columba I, and Pisces II, and their mean distances
from the Galactic Centre are 256, 234, 215, 194, 186, and 181 kpc,
respectively (compare these with the MW halo radius, whose mean
value is 218 kpc; Cautun et al. 2020). The predicted probabilities
that these satellites have already been inside the MW radius are, in
the same order as above, 82, 94, 98, 92, 88, and 97 per cent. Note
that despite having a larger mean distance, Canes Venatici I has a
larger accretion probability than Leo V and Columba I. The fact that
all of the accretion probabilities are far above the 50-per cent mark,
justifies the statement that all the satellites considered in this research
have most likely already been accreted, even though there still is a
significant probability (especially for Leo I and Columba I) that they
might be at first infall.

This close to 100-per cent accretion score might raise questions
on whether the observational data is correct, as for the EAGLE
sample, a substantially lower score (about two-thirds) was found.
Most of the dichotomy can be explained by the fact that MW satellite
surveys are still brightness limited and that previous Galactic surveys
could only detect UFD, which account for most of the satellite
population, if they were well within the halo of the MW. Recent
studies predict that we have observed only half of the total MW
satellites and that the yet-to-be-detected ultra-faint Galactic dwarfs
are to be found predominantly in the outer regions of the Galactic
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halo (e.g. Newton et al. 2018; Drlica-Wagner et al. 2020). It is only
with future generation telescopes that we should expect to find these
faint and distant MW satellites, many of which will most likely not
have been accreted yet.

4.2 Accretion time

Based on the assumption that indeed all the satellites are accreted,
we proceed to determine their infall time distribution. The resulting
PDFs are shown in Appendix B and the most likely estimates and
the 68 and 95-per cent CI are summarized in Table 3. We advise a
note of caution when interpreting these values: most of the inferred
tinran likelihoods are highly asymmetrical and many show two or
more peaks, such as Sextans and Leo II (see Fig. B1). Moreover,
a considerable fraction of satellites, such as Carina II, Hydrus I,
and Hercules, have fiyrn likelihoods that show a high and narrow
peak at recent lookback times and a long tail (and even a second
peak) towards earlier infall times. Keeping the above in mind, one
should always have a look at the actual inferred likelihoods when
interpreting the size of the CI or when comparing our infall times
with other measurements.

5 DISCUSSION

We now proceed to interpret the infall times we inferred for the
Galactic satellites. We will focus on a few questions, ranging from
how typical are the accretion times of MW satellites when compared
with theoretical predictions for MW-sized systems to what are the
implications for determining the star formation quenching time-scale
in the Galactic halo.

5.1 Comparing Galactic infall times to theoretical predictions

The first question raised by our results is how do the accretion times
of Galactic satellites compare to theoretical expectations. For the
former, we combine the f;,py likelihoods from each of the 47 MW
dwarf studied here to obtain the f;,g) likelihood for the population
of observed MW satellites, which is shown in Fig. 5. We remind
the reader that the observed MW dwarfs are an incomplete radially
biased sample since they are found in brightness limited surveys. In
Fig. 3, we show that the infall time shows a weak correlation with
the present-day radial distance, with the median #,¢, increasing by
~2 Gyr between dwarfs at 0.2R, and those at Ry. This suggests
that the observed dwarfs might be biased towards earlier infall times
compared to the full population of Galactic satellites.

Fig. 5 shows that most of the currently observed Galactic satellites
were accreted at early times, with a broad peak around 8 Gyr ago (i.e.
redshift z = 1), with the oldest satellite having orbited in the MW
halo for around 11 Gyr. The MW satellite accretion rate decreases
towards present time except for a high and narrow peak at 1.5 Gyr
ago. This second peak is due to the accretion of the LMC, which is
currently at its first infall onto the MW (e.g. Besla et al. 2007; Cautun
et al. 2019). Due to its relatively large mass, the LMC also hosts its
own satellite galaxies (e.g. Jethwa, Erkal & Belokurov 2016; Patel
et al. 2020). It is therefore a reassuring sight that our results shows
a peak in infall probability around the 1.5-Gyr mark, which is when
the LMC would have entered the MW halo (see Fig. B1), together
with its satellites. We discuss the LMC satellites in more details in
Section 5.3.

To compare with theoretical expectations, we calculate the infall
time distribution for the EAGLE and Auriga satellites of MW-
analogues, which we limit to satellites within 1.4 R,y which
corresponds to objects within 300 kpc for the fiducial MW halo
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Table 3. The infall time, fisfan, and star formation quenching time, #g;90,
of the MW satellites. The uncertainty ranges correspond to the 68- and the
95-per cent confidence limits; the latter is only given for finfa1. The quenching
time denotes when those galaxies formed 90% of their stars and are taken
from: (1) Fillingham et al. (2019) and (2) Sacchi et al. (2021) (see ‘Reference’
column). The last column gives the typical difference At 9o between the infall
and quenching times of Galactic satellites. The Atq.99 values for satellites
with stellar mass, M, > 10>Mg,, are highlighted in light-grey since those are
consistent with environmental quenching (see Fig. 7).

Name Finfall 14:90 Reference Atg;9060
(Gyn) (Gyn) Gyn)
Sagittarius I 8.52:;‘:f$:‘5‘ 3448 (1 4.8%0%
LMC 0.755%03 - - B
SMC 0.7257 0% - - -
Draco | 943:2:?:3 9.173% M —Latig
Ursa Minor 9.5 10213 M —155
Sculptor 8~7t§:é:t3:8 10.6733 () =303
Sextans L0 - B B
Carina I 85745103 22%3 M 471358
Fornax 82537473 - B -
Leo I 24557000 64T M 1315
Leol Rar o R WA M 05555
Antlia IT 8955751 - - -
Aquarius IT 8712243 - - -
Bootes I 87555788 12,611 () 31533
Bootes 1T 075503 - - -
Canes Venatici I 7.7Jj§:?:fzj§ 8.312 (1) —1.6747
Canes Venatici IT 8.8 38 a2 12.75}¢ (D 33140
Carina IT 0-7t8:§:t3:; - - B
Carina 1T 0.60¢ 66 - - -
Columba I 0~0t8:8:t3:8 - - -
Coma Berenices | 8.2t§;§;f3;3 13.0ﬂf§ ) 74'74:‘2‘:;
Crater IT 895018 - B B
Draco 11 7-4t§:§t;:g - - -
Grus T 04754708 - B -
Grus II 84737754 - - -
Hercules L0 118773 M 11355
Horologium I 843;1—;2 11572 2 -3.1739
Horologium IT 8.93:;1@:2 - - N
Hydra IT 84150738 2.2193 1) 6.839
Hydrus I 0-7f3231f3j§ - - -
Leo IV 89535120 122714 (1 37119
Leo V 755357533 - - -
Phoenix T 0.654406 125t @ 11548
Pisces IT 01550 - - -
Reticulum II 813:‘2‘:1—2:2 12374 @ —5.13:;
Reticulum II 897337 - - -
Sagittarius 1T 0875 o8 - - -
Segue I 8~2t§:é:t3:§ - - -
Segue I 175555 - B R
Triangulum II 8~2t§:g:ﬁ:$ 12'9t3:§ @ 74'93:2
Tucana IT 07765705 12.8%5% @ 12553
Tucana III 36ﬂ:i:j:é - - B
Tucana IV 8254188 - B -
Tucana V 82755433 - B -
Ursa Major 1 9442:2:1—%:3 11.2713 (D —-3.153%
Ursa Major II 8.2f§;31f31§ - - B
Willman 1 89ti;t§g B B _
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Figure 5. Combined infall time likelihood for all the MW satellites (black
line). This is compared with the fijnry distribution for the population of
satellites of MW analogues in EAGLE (blue) and Auriga (green). For the
simulations, we show infall time for z = 0 satellites found within 1.4 Ryqg
from the host, which is equivalent to within a distance of 300 kpc for a system
with MW’s total mass.

mass. Fig. 5 shows the resulting distributions for the two galaxy
formation models. Overall, we find good agreement between the
tinfa1 PDF measured in EAGLE and Auriga, although some small
discrepancies are present that are likely due to the differences in host
potential that we discussed in Section 3.2. The tiyg PDF is bimodal,
with a second peak at around 2 Gyr lookback time. The second peak
is due to the fact that many satellites accreted around 4 Gyr ago
are presently found at distances larger than the 1.4Ryy threshold
value used in Fig. 5. Increasing this distance to 2R,y nearly removes
the second peak (see Fig. 2) by mostly adding satellites with infall
times, tinen € [2, 6] Gyr (see Simpson et al. 2018 for a more detailed
analysis).

At early times, we find good agreement in the #,py likelihood
between the MW and theoretical prediction indicating that the early
accretion of dwarfs onto the MW is typical of ACDM predictions.
It is only around 3 Gyr lookback time that the MW curve starts to
deviate strongly, first below the EAGLE and Auriga predictions and
then increasing to a sharp and high peak, which we interpreted as the
accretion of the LMC and its satellites.

The MW is predicted to have had a few more massive satellite
accretions besides the LMC (e.g. Kruijssen et al. 2020; Callingham
et al. 2022), and each such massive accretion is expected to bring at
the same time a surplus of satellites (D’Souza & Bell 2021). Two
such events are the Gaia-Enceladus-Sausage (Belokurov et al. 2018;
Helmi et al. 2018) and Kraken (Kruijssen et al. 2019b, 2020), which,
while uncertain, are believed to have had stellar masses nearly as
high as the LMC one and to have been accreted 8 — 11 Gyr ago.
However, the MW t;,¢1 PDF does not show one or more significant
peaks at early times except the main and very broad peak at 8 Gyr ago
that is nearly the same as when averaging over all MW-analogues
in the EAGLE and Auriga samples. The broadness of the peak
rather suggests a more steady accretion of multiple small satellites,
a theory for which hints were found by Kim et al. (2021). The reader
should recall however that, as discussed in Section 3.2, early fyzan
determinations are also the most uncertain and that could potentially
dampen any early massive accretion peaks.

5.2 Comparing with previous infall time determinations

We now compare the infall times found in this work to earlier studies.
As mentioned in the introduction, Fillingham et al. (2019) determined
the infall times for a sample of the MW satellites by comparing
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orbital properties, in particular the satellite energy, to satellites in
simulations. They found infall times for 37 satellites, all of which
are also considered in this work. The comparison with the Fillingham
et al. results is shown in left-hand panel of Fig. 6.

Before discussing the results, one should realize that there are
multiple differences in both data, simulations, and methodology
between our work and the Fillingham et al. one. Most importantly, our
work uses the updated satellite proper motions from McConnachie
& Venn (2020b), whereas Fillingham et al. have relied on more
uncertain proper motions from Fritz et al. (2018) based on Gaia DR2.
Secondly, Fillingham et al. employ DM only simulations, while we
use hydrodynamic ones that include models for most of the processes
thought to be important for galaxy formation. In particular, such
processes can lead to change in the gravitational potential of the host
halo, which affect both the infall time and orbits of satellites, as well
as the tidal disruption of satellites, which is enhanced in simulations
containing stellar discs (e.g. Sawala et al. 2017; Richings et al. 2020;
Green, van den Bosch & Jiang 2022).

Keeping the above in mind, a couple of conclusions can be inferred
when comparing our results with the Fillingham et al. ones. First,
while the majority of the infall times agree within the 68-per cent CI
(23 out of 37, which represents 62 per cent of the common sample),
a sizeable minority (clustered in the top left-hand corner of the
figure) is in rather stark disagreement. It can be said that from the
current LMC accretion onto the MW (see Section 5.3), one would
expect a relatively large group of satellites at recent infall times. The
disagreeing cluster would agree with this group in our results, while
only a hand full of the satellites in Fillingham et al. show such recent
infall times. The lack of such recent infall times in Fillingham et al.
might be explained by the fact that the 12 high-resolution simulations
used by the authors did not contain any LMC-size satellite. This can
be determined from fig. 2 in Kelley et al. (2019), which shows that no
subhaloes have V¢ > 40 km s7h Noting that the LMC has a stellar
mass well above 10° Mg, (McConnachie 2012), its Vpeak value would
be closer to 70 — 90 km s~! (Fattahi et al. 2018). In addition, the lack
of stellar disc disruption in the DM only simulations employed by
Fillingham et al. leads to subhaloes in the inner regions of their host
surviving for longer and thus will also lead to more satellites with
early infall times.

Secondly, almost all the data points in the plot lie above the one-
to-one line, even when not considering the top left-hand cluster.
This means that the infall times found by the NN are almost always
slightly more recent than those from Fillingham et al.. The most
likely explanation for this observation has already been discussed in
Section 3.2, namely that the NN predictions tend towards the mean
value when the predictions are highly uncertain. This will inevitably
bias the maximum likelihood estimates (but not the CI) slightly
towards more recent infall times, i.e. above the one-to-one line in the
figure.

Another observation is that there is a dearth of satellites with
lookback infall times between roughly 2 and 8 Gyr in both samples.
While it could be argued from Fig. 5 that the theoretical predictions
for the probability of infall in this time range is somewhat lower than
at earlier times, none the less this range should contain a significant
fraction of satellites. One possible explanation is the existence of an
observational bias: many galaxies falling in during this time frame
are currently around their first or second apocentre (D’Souza & Bell
2021), making them harder to observe and thus less likely to be
present in the MW sample of satellites which is magnitude limited.

In the right-hand side panel of Fig. 6, we compare our results with
those of Miyoshi & Chiba (2020), which have used a very different
method for determining infall times. That study has employed
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Figure 6. Left-hand panel: comparison between the infall times found in this work and the infall times found in Fillingham et al. (2019). The diagonal dotted
line is the one-to-one line. Right-hand panel: same as left-hand panel, but now with the infall times as found in Miyoshi & Chiba (2020) instead of Fillingham

et al. (2019).

backwards integration of the satellites in a time dependent MW
potential. As the numbers are not present in the paper, a request for
the infall time data from Miyoshi & Chiba was sent out to the paper’s
authors, who kindly provided us their data.

On first glance, the agreement is a lot better here: the outlying top
left cluster found in the comparison with the Fillingham et al. results
is mostly gone, and the infall times of only 5 out of 16 (31 per cent)
satellites do not agree within the 68-per cent CI. Some notes of
caution are necessary however. The Miyoshi & Chiba sample is
smaller and includes only 16 of the 37 satellites from the Fillingham
et al. study, with the other objects being excluded due to either
being potential LMC satellites or due to having large proper motion
uncertainties. Out of the 14 satellites showing a large disagreement
between our and the Fillingham et al. results, only three are present
in the Miyoshi & Chiba sample, and 2 out of these 3 also disagree
with our results within the 68-per cent CI.

Arguably the most important take away from the comparison of
our fipy results with those of previous studies is that determining
infall times for satellites remains a far from easy task. Typical CI for
all studies are large at almost half the age of the Universe and the
agreement between contemporary studies is poor.

5.3 The Magellanic satellites

As discussed before, some of the satellites considered in this research
are thought to have been LMC satellites when they were accreted onto
the MW (e.g. Jethwa et al. 2016; Kallivayalil et al. 2018; Patel et al.
2020; Jahn et al. 2022). While by no means definitive, the infall time
distribution can be a valuable indicator to determine the likelihood of
the association between satellites and the LMC. According to Patel
etal. (2020), long-term LMC satellites are the SMC, Carina II, Carina
III, Horologium I, and Hydrus I, while Phoenix II and Reticulum
II are recently accreted by the LMC. The first four were already
proposed in an earlier work (Kallivayalil et al. 2018), which also
mentions Reticulum II, Draco II, Tucana II, Hydra II, and Grus I as
less likely companions. These satellites are indicated in Appendix B,
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where we give the individual #,¢; PDF of each satellite, by having
their name in red for the most probable and in orange for the less
probable ones.

Three of the most likely LMC companions, Carina II, Carina III,
and Hydrus I, have infall time distributions with a similar shape to that
of the LMC and with a considerable likelihood to have been accreted
around 1.5 Gyr ago. The other two likely LMC satellites, SMC
and Horologium I, also have a likelihood peak at fpe = 1.5 Gyr,
however, the NN predicts that they are more likely to have been
accreted earlier, around e 2~ 8 Gyr. We suspect this discrepancy is
due to notincluding the LMC potential when modelling the MW, with
the LMC thought to have been rather massive at infall (Pefiarrubia
et al. 2016; Cautun et al. 2019) and even today having a considerable
total mass (Erkal et al. 2019; Garavito-Camargo et al. 2019) that
can have a large impact on the motion of dwarfs close to the LMC
such as the SMC and Horologium I (e.g. see Patel et al. 2020, and
also Erkal et al. 2019 for example of Galactic streams). We obtain
a similar picture when studying the less likely LMC satellites, with
Phoenix II, Tucana II, and Grus I having ti,en PDFs very similar to
that of the LMC, while Reticulum II, Draco II, and Hydra II show
more uncertain g determinations with a large probability of early
infall too.

It is reassuring to find that our NN predicts that many probable
LMC satellites have similar infall times as the LMC. This is a non-
trivial results since our MW model does not include information
about the potential of the LMC or the distance of the satellites from
the LMC. This result suggests that, as expected, for most satellites
the MW potential is the dominant one and that the LMC contribution
can be neglected to a first approximation. However, this is not the
case for dwarfs close to the LMC, such as the SMC and Horologium
I (Garavito-Camargo et al. 2021).

A potential improvement to this work would be to add the LMC
potential, or, more generally, the potential of massive satellites. In
doing so, we would further solidify the infall time distributions
of especially the satellites that currently are close to the MC'’s,
allowing for more robust claims on LMC and SMC association.
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Figure 7. Quenching time versus infall time for 20 MW satellites. The infall times are as determined in this research, the quenching times are from Fillingham
etal. (2019) and Sacchi et al. (2021). The Galactic dwarfs are split into two according to their stellar mass, with M, < 10° Mg (i.e. UFDs) shown in the left-hand
panel and M, > 10° Mg, (i.e. classical dwarfs) shown in the right-hand panel. The end of reionization at z =~ 6 (a lookback time of 12.9 Gyr) is indicated by a
horizontal dotted line. The diagonal dotted line is the one-to-one line. In the right-hand panel, the grey shaded region is the 68-per cent confidence interval on
the average quenching time-scale (#;,r — 4, 90), With the black solid line the maximum likelihood estimate.

One simple approach to do so within our current NN framework
would be to constrain our sample to host galaxies that have an LMC
analogue. However, LMC mass satellites are quite rare for MW like
hosts (e.g. Shao et al. 2018b). Besides the resulting drop in sample
size, another difficulty would be to define when a satellite can be
considered an LMC analogue. Mass and distance from the host are
two important criteria, but potentially many more such as the orbit
and the number of pericentre passages. Due to their limited volume,
current hydrodynamical simulations such as EAGLE do not allow for
sufficient MW and LMC analogue pairs to extend the NN framework
to also include the LMC potential.

5.4 Quenching time-scale

Most environmental star formation quenching studies follow a
statistical approach that connect the fraction of quiescent galaxies
with the mean accretion history of satellites to obtain an average
quenching time (e.g. Wetzel et al. 2013, 2014; Slater & Bell 2014;
Fillingham et al. 2015). However, the wealth of Galactic data,
where we can determine star formation histories and infall times
for individual satellites, allows for the complementary approach of
studying the correlation between quenching and accretion for each
satellite (e.g. Fillingham et al. 2019). Here, we follow this latter
approach and analyse the relation between our inferred infall times
and the quenching times for 20 Galactic satellites as provided in
Fillingham et al. (2019) and Sacchi et al. (2021). This dependence is
shown in Fig. 7.

For each Galactic satellite with available data we calculate the
quenching timescales, Afy90 = finral —1q;90, Where ;90 is the time
when a galaxy formed 90 per cent of its present-day stars. To
determine the Aty 99 uncertainties, we use an MC approach. For
tinta, We take the MC samples that are outputted by our analysis.
For 14,90, we only have access to the MLE and the 68-per cent CI

(see third column in Table 3) and, since the CI is not symmetric
around the MLE, to generate the MC samples, we approximate the
tq;90 likelihood as the composite of two Gaussians. One Gaussian
describes the distribution of f4,99 values below the MLE, with
the mean and dispersion of this distribution being given by the
MLE and the absolute difference between the lower end of the
68-per cent CI and the MLE. The second Gaussian models the
likelihood of 74,99 values above the MLE, with mean equal to the
MLE and dispersion given by the difference between the upper
end of the 68 per cent CI and the MLE. The resulting quenching
time-scales and their 68-per cent CI are given in the last column of
Table 3.

As discussed at length in Section 1, we expect a dichotomy in
the quenching processes between massive dwarfs, with stellar mass
M, > 10° Mg, and lower mass ones, with M, < 10° M. Motivated
by this theoretical expectation, we separate Fig. 7 into two panels
that show the f;,g,) versus quenching time relation for low M, (left-
hand panel) and high M, (right-hand panel) Galactic dwarfs. We find
that the ultrafaint dwarfs show no clear correlation between infall
time and quenching time. This is to be expected from a scenario in
which quenching due to reionization is dominant (Okamoto, Gao &
Theuns 2008; Bose et al. 2018) since reionization, which happened
at z > 6 (Planck Collaboration et al. 2016), took place before all
present-day surviving MW satellites were satellites of another halo
(Wetzel et al. 2015). The left-hand panel of Fig. 7 shows that within
uncertainties all low stellar mass dwarfs are consistent with having
been quenched at roughly the same time about 12 — 13 Gyr ago.
None of the ultrafaint dwarfs have a quenching time more recent
than their infall time, even when accounting for the 68-per cent CI
(see the At 99 values in Table 3).

The right-hand panel in Fig. 7 shows that classical dwarfs show
a strong correlation between infall and quenching times, with all
systems being compatible with fipra > #g;00 Within the 68-per cent
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CI.?> We find that for most dwarfs quenching takes place basically at
accretion, and for three of them, Sagittarius I, Hydra II, and Carina
I, at about 5 Gyr after infall, although the #,s; uncertainties are
rather large and we cannot exclude a short quenching time-scale also
for these last three dwarfs. Differences in the quenching times of
individual satellites are expected for ram-pressure stripping, which
has been proposed as the dominant process (Fillingham et al. 2015,
2016), since the removal of cold gas depends on the balance between
the ram-pressure and the restoring forces, which depend on the orbit
and total mass of a satellite (Simpson et al. 2018).

When averaging over the results for all the massive dwarfs in
our sample, the quenching time-scale is found to be O.Sf?g Gyr
(68-per cent CI). This is in good agreement with previous results
that find Atg; 99 ~ 0 — 2 Gyr (Slater & Bell 2014; Fillingham et al.
2015, 2019). This relatively quick quenching further strengthens the
theory of environmental quenching, and means that, at least for dwarf
satellites with mass M, > 10° M, the quenching time is a good proxy
for the infall time.

6 CONCLUSIONS

We have developed a NN for inferring the infall time of satellites of
MW-mass systems that we have trained using MW-analogues in the
EAGLE project, which is a cosmological hydrodynamical simulation
that reproduces many key properties of galaxies in the observed
Universe. The NN takes as input the phase—space coordinates of
satellites and the specific energy, with the latter showing the largest
correlation with the infall time (see also Rocha et al. 2012). We
further scale these properties by quantities proportional to the host
halo mass since satellite properties have been shown to be universal
when scaled appropriately (e.g. Callingham et al. 2019). The NN
has been designed to predict the #yrn likelihood for each individual
satellite without making assumptions on the shape of this function,
which we achieve by predicting the likelihood in many equally spaced
time intervals that span the age of the Universe.

We have tested the NN prediction using a test subset from the
EAGLE project and another independent set from the Auriga suite
of simulations to find that our NN predicts realistic CI. In the latter
case, we found that our uncertainties were slightly too low, which we
traced back to a small systematic bias in the inferred t,py values for
the Auriga satellite galaxies. This is due to differences in the mass
profile of the central host, whose potential is shallower in EAGLE
than in Auriga. This means that on top of the statistical errors that
we have quoted, our results are affected also by small systematic
uncertainties that are most pronounced for satellites close to the
centre. To fully quantify these systematic uncertainties, we would
need to analyse a larger number of galaxy formation models than the
two employed here.

We have applied the NN to 47 MW dwarf galaxies with both 3D
positions and velocities that are found within a distance of 300 kps
from the Galactic Centre. Since this distance is larger than the Galatic
Rooo =~ 220 kpe, which we take as the extent of the Galactic halo,
we have developed a second NN that predicts if a dwarf found at a
distance larger than Ry is at first infall or is a backsplash galaxy, i.e.
a satellite that already had a pericentre passage closer than Ry and
that is on an extended orbit which takes it outside its host halo.

30ne could argue that Leo II is an exception, but when looking at the infall
distribution for Leo II (see Fig. B1), we find that its exact infall time is highly
uncertain, with practically equal probability for 2 or 8 Gyr ago.
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This second NN achieves a better than 85-per cent accuracy of
distinguishing between first infall and backsplash galaxies.
The main conclusions of our study are as follows:

(1) Our NN predicts infall times with an average 68-per cent con-
fidence interval of size 4.4 Gyr. This uncertainty can be considerably
lower for recently accreted satellites and somewhat larger for early
accreted ones.

(i1) All the MW satellites considered in this work are very likely to
have entered the Galactic halo and thus experienced environmental
effects, even the ones currently found at distances larger than Rygo.
The lowest backsplash probability is 82 per cent for Leo I, and it
is higher than 90 per cent for the other five dwarfs that potentially
could lie outside the Ry radius.

(iii) The infall time distribution of MW satellites follows the
average predictions of the EAGLE and Auriga models with one
difference. The MW shows a second narrow peak in the fpy
likelihood at a 1.5 Gyr lookback time that we associate to the
accretion of the LMC and its satellites.

(iv) For many of the dwarfs that have been proposed as LMC
satellites, we find iy likelihoods very similar to that of the LMC
even though our Galactic model does not include a massive LMC
component. This find illustrates the robustness of our results and that
neglecting the LMC potential is a reasonable first approximation.
However, for the SMC and Horologium I, we find considerably
earlier accretion times than the LMC, indicating that for dwarfs
close to the LMC, we cannot neglect the potential of this massive
satellite.

(v) We have compared our f;,¢,; determination with the backward
orbital integration of Miyoshi & Chiba (2020) to find reasonable
agreement. The comparison with the Fillingham et al. (2019) infall
times showed a mixed picture, with good agreement for a significant
fraction of satellites, but large discrepancies with the presumed
LMC satellites that Fillingham et al. predicts to have been accreted
considerably earlier than the LMC.

(vi) We have also studied the correlation between infall time and
star-formation quenching times. These are unrelated for dwarfs with
stellar masses M, < 10° My, indicating that reionization was the
dominant quenching process for these low-mass galaxies. For higher
stellar masses, we find a considerable correlation between accretion
and quenching, with star formation ending on average very shortly,
0.51’?3 Gyr (68-per cent CI), after a satellite crosses the Ryg radius.

Our work has shown that NN can be used to solve a challenging
cosmological problem: how to infer the accretion time of satellites
from present-day observables? The use of NN has the advantage of
going beyond simplified models of satellite motions, such as those
employed in backwards orbit integration, and offers a natural way of
connecting satellite orbits in observations with their counterparts in
cosmological simulations. To further advance this work, one would
need to add the gravitational potential of massive satellites, such as
the LMC, and possibly use the orbital actions instead of the energy
and angular momentum as input NN parameters. Orbital actions are
better conversed than the energy (Callingham et al. 2020 shows this
for actual MW-mass simulations) and potentially would be more
strongly correlated to the infall time, especially for early accretion
events. Having a larger training sample would also be helpfull in
increasing the number of parameters used when training the NN.
Currently, we use only orbital information, but additional information
could be satellite colours or the quenching time, for which we find
a strong correlation with infall time. However, going beyond orbital
parameters should be done with care and only once we have a better
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understanding of galaxy formation physics and how it relates to
galaxy orbits.
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APPENDIX A: NN ARCHITECTURE

The two MLP networks used for this research were built using the
scikit-learn PYTHON package (Pedregosa et al. 2011) and used
the cross-entropy as the cost function being minimized during the
training stage. The cross-entropy measures the difference between
two distributions and is a widely used loss function for classification
models. Each NN has three hidden layers with 100, 80, and 60
neurons, respectively, that has been found by testing various NN
architectures and choosing the one with the minimum number of
layers and neurons such that, when increasing this further, does
not result in an improvement in the loss function of the evaluation
sample. We have used the early stopping option, which means that the
training was stopped once the validation score did no longer improve.
We have made a 60-20-20 per cent split between the training-,
validation- and test-samples. We have used the adam optimizer
and tested different learning rates and found that the optimal value
was 0.001; values close to this did not have a large effect on the
cost function, although very large or low values did lead to worse
predictions.

Using the architecture described above, we built two MLPs
networks: (i) one for determining if a satellite is at first infall,
and (ii) for predicting the infall time likelihood. Choosing the same
architecture for both MLPs is justified as it was found that increasing
the numbers of hidden layers and neurons per layer did not improve
the prediction for either of the two models, while a considerably
simpler network did lead to worse predictions. The first MLP was
built to determine whether or not a dwarf galaxy outside the host’s
virial radius is at first infall or actually a backsplash satellite. The
second MLP was used to determine, assuming that a satellite has
fallen in, at what time it fell in.

APPENDIX B: INDIVIDUAL INFALL TIME
DISTRIBUTIONS

In Figs B1 and B2, we show the infall time likelihood for each of
the 47 Galactic satellites studied here. The fiducial result is shown
by the solid red curve and includes uncertainties in the measured
position and velocity of satellites as well as in the MW potential. To
highlight the effect of observational uncertainties, we also show the
infall time likelihood inferred using the most likely measure phase—
space positions of satellites and the most likely MW mass profile (for
more details see Section 2.4). The two PDFs are generally in good
agreement with each other (e.g. Sagittarius I, LMC, and Draco I in
Fig. B1) and indicate the observational errors are not a significant
driver of infall time uncertainties, however, for some satellites adding
the measurement errors makes a significant difference (e.g. Sextans,
Fornax, and Grus I in Fig. B1, Pisces II and Tucana II in B2).
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Figure B1. The the infall time likelihood for 24 MW satellites. The fiducial prediction is shown by the red lines and show the results when accounting for errors
in the measured properties of Galactic satellites and in the MW mass profile. The vertical red dashed line shows the most likely infall time and the two vertical
grey dashed lines show the 16 to 84 percentiles. Satellites that are considered to be long-term LMC satellites according to Patel et al. (2020) and Kallivayalil
et al. (2018) have their name in red, while those with their names in orange are considered to be recently accreted/less likely LMC satellites (see Section 5.3).
To illustrate the effect of measurement uncertainties, we also show using the blue dash—dotted line the infall time likelihood but now assuming the ML position

and velocity of satellites and the ML MW mass profile.
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Figure B2. Same as Fig. B1, but for the other 23 MW satellites in our sample.
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