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1 Introduction

One of the main insights holography has provided into the physics of strongly correlated
systems is the existence of previously unknown (large N) non-trivial IR fixed points.
These fixed points are characterized by an emergent scaling symmetry of the Lifshitz form
categorized by a dynamical critical exponent z, a hyperscaling exponent θ, and a charge
anomalous dimension ζ.

x→ λ1/zx , t→ λt , F → λ
d−θ
z F , ρ→ λ

d−θ+ζ
z ρ . (1.1)

Here F is the free energy density and ρ the charge density [1–4]. Within these Lifshitz fixed
points those with z =∞ are special. Such theories have energy/temperature scaling with
no corresponding spatial rescaling. These are therefore systems with exact local quantum
criticality. Phenomenologically this energy/temperature scaling without a corresponding
spatial part is observed in high Tc cuprates, heavy fermions and other strange metals, where
this nomenclature originates (see e.g. [5]). In holography z =∞ IR fixed points correspond
to an emergent AdS2 symmetry near the horizon of the extremal black hole. The two most
well-known such solutions are the plain extremal Reissner-Nordström (RN) black hole and
the extremal Gubser-Rocha (GR) black hole [6]. The RN solution of AdS-Einstein-Maxwell
theory has been studied extensively primarily because it is the simplest such model. Its
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simplicity also means it is too constrained to be realistic as a model of observed locally
quantum critical metals. Notably the RN has a non-vanishing ground-state entropy and
emerges from a d > 2-dimensional conformal field theory. The more realistic GR model
arises from a non-conformal strongly correlated theory, where one isolates the leading
irrelevant deformation from the IR fixed point. This “universal” subsector gives it a chance
to be applicable to observed local quantum critical systems. Moreover the groundstate
now has vanishing entropy (to leading order). In the gravitational description this leading
(scalar) (IR)-irrelevant operator is encoded in a dilaton field that couples non-minimally
to both the Einstein-Hilbert action and the Maxwell action. Even with its more realistic
appeal, the more complex nature of the GR dynamics means it has been studied less; some
examples are [7–11].

In the course of these studies of non-minimally coupled Einstein-Maxwell-Dilaton (EMD)
theories, it was noted in particular that the proper holographic interpretation of the
analytical Gubser-Rocha (aGR) black hole solution depends sensitively on the particular
quantization [10, 11]. Within holography, relevant and marginally relevant scalars allow for
different quantization schemes. A relevant operator of dimension d

2 < ∆ < d always has a
conjugate operator of dimension1 d

2 − 1 < ∆conj = d−∆ < d
2 , and one can choose whether

one considers the original operator as the dynamical variable (standard quantization) or the
conjugate operator (alternate quantization) or any intermediate linear combination through
a double-trace deformation [12, 13].

An additional complication results from the fact that the (static and isotropic) aGR
solution is a two-parameter solution depending on T and µ, whereas one expects a third
independent parameter encoding the asymptotic source value of the dilaton field. A low-
energy scalar can have a sourced (or unsourced) vacuum-expectation value; this changes
the energy of the ground-state and hence should contribute to the thermodynamics. For
minimally coupled scalars this was recently elucidated in [14].

In this paper we will show that the correct way to interpret the aGR solution is as a two-
parameter subset of solutions within the three-parameter thermodynamic phase diagram.
For essentially all quantization schemes this constrains the source of the dilaton field in
terms of the temperature and chemical potential of the solution. Crucially this implies that
derivatives of thermodynamic potentials mix the canonical contribution with an additional
contribution from the scalar response. We will show this explicitly in section 3.2. A proper
understanding of the solution requires one to carefully separate out this contribution.

It also turns out, however, that there is a specific quantization scheme where the dilaton
corresponds to an exactly marginal operator in the theory. This was previously noted for
another set of the EMD actions [11].2 In this special quantization choice the aGR solution
corresponds to a solution with no explicit source for the dilaton field. Within this special
quantization scheme one can deform the analytical solution to a nearby solution with a
finite scalar source. We do so in section 4. We conclude with a brief discussion on the
meaning of this newly discovered exactly marginal deformation.

1The upper bound of ∆ would suggest ∆conj > 0 but requiring unitarity of the conjugate theory leads to
a higher bound.

2We thank Blaise Goutéraux for bringing this paper to our attention.
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2 Setup

The GR black hole is a solution to the EMD action

Sbulk = 1
2κ2

∫
d4x
√
−g

[
R− Z(φ)

4 F 2 − 1
2(∂φ)2 − V (φ)

]
, (2.1)

where the potentials are given by Z(φ) = eφ/
√

3 and V (φ) = −6 cosh
(
φ/
√

3
)
.3 This action

is a consistent truncation of d = 11 supergravity compactified on AdS4 × S7 [6]. The
equations of motion for this system are

Rµν = Z(φ)
2

[
Fµ

ρFνρ −
1
4gµνF

2
]

+ 1
2∂µφ∂νφ+ 1

2gµνV (φ) ,

∇µ [Z(φ)Fµν ] = 0 ,

�φ = V ′(φ) + Z ′(φ)
4 F 2 ,

(2.2)

where we used that, on-shell, R = 2V (φ) + 1
2(∂φ)2. The static and isotropic metric ansatz

that is asymptotically AdS is

ds2 = gµνdxµdxµ = 1
z2

[
−f(z)dt2 + g(z)

(
dx2 + dy2

)
+ dz2

f(z)

]
, (2.3)

where the coordinate z is the radial direction with z = 0 the AdS boundary (UV). The
aGR solution [6] is then given by

g(z) = (1 +Qz)3/2 ,

f(z) = 1− z/zh
g(z)

[
1 + (1 + 3Qzh) z

zh
+
(
1 + 3Qzh + 3Q2z2

h

)( z

zh

)2
]
,

At(z) = µj(z) =
√

3Qzh(1 +Qzh)
zh

1− z/zh
1 +Qz

,

φ(z) =
√

3
2 log [1 +Qz] ,

(2.4)

where zh is the horizon of this non-extremal black hole. From hereon we choose units where
2κ2 = 16πG = 1, such that the temperature, chemical potential and entropy-density of the
GR-black hole are

T = −f
′(z)
4π

∣∣∣∣
z=zh

= 3
√

1 +Qzh
4πzh

, s = 4πah = 4π (1 +Qzh)3/2

z2
h

,

µ = At(z = 0) =
√

3Qzh(1 +Qzh)/zh ,

(2.5)

where ah =
√
gxx(zh)gyy(zh) is the area density of the horizon. Expressed in terms of the

temperature, it is easy to see that the entropy vanishes linearly s = 16π2

3
√

3 µT + . . . at low

3Note that the dilaton has dimension zero.
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temperatures with no remnant ground state entropy. Important in the remainder is (1) to
recall that both the temperature and the entropy can be read off from the near-horizon
behavior of the metric alone. As local properties of the black hole they do not depend on
the boundary conditions. (2) The analytic solution depends on two parameters Q and zh.
And (3) note that the metric gauge choice is not of the Fefferman-Graham (FG) type in
that the change in metric functions starts at order z and not z3.

3 Regularization, boundary terms and choice of quantization

3.1 Boundary action

We must add to the gravitational action (2.1) a boundary action. This is to regularize its
on-shell value as well as to make the variational principle well-defined. In the case of the
scalar it also prescribes the quantization of the scalar field. We will be using in this work a
standard multi-trace deformation of the Neumann boundary theory, which were generally
described in [12, 13, 15] and more specifically in EMD theories [11], with a boundary action
of the form

Sbdy = −
∫
z=ε

d3x
√
−γ

[
2K + 4 + (3)Rγ

]
+ Sbdy,φ . (3.1)

Here Nµ = −
√
gzz(0, 0, 0, 1) is an outward pointing spacelike unit normal vector defining

the hypersurface z = ε� zh and γµν = gµν −NµNν is the induced metric on the surface.
Furthermore K ≡ γijKij is the trace of the extrinsic curvature Kij ≡ −γµi γνj∇(µNν) and
(3)Rγ the Ricci scalar curvature of the hypersurface (Latin symbols correspond to coordinates
on the hypersurface while the greek symbols are those of the original manifold). The first
three terms correspond to the usual Gibbons-Hawking-York counterterms necessary to
make the variational principle for the metric well-defined and also to regularize the Einstein-
Hilbert-Cosmological Constant part of the action on shell. In our coordinatization eq. (2.3)
the induced metric is flat on-shell. The scalar part of the boundary term Sbdy,φ can take
two forms depending on whether we consider the standard quantization boundary theory
where only the φ2 regularization term appears

S
(SQ)
bdy,φ =

∫
z=ε

d3x
√
−γΛφ

2 φ2 , Λφ = −1 , (3.2)

— here the value of Λφ is set to regularize the boundary term arising from varying the bulk
action — or whether we consider a multi-trace deformation of the alternate quantization
boundary theory

S
(MT)
bdy,φ =

∫
z=ε

d3x
√
−γ

[Λφ
2 φ2 + φNµ∂µφ

]
+ SF , Λφ = 1 . (3.3)

The φNµ∂µφ is a Legendre transform from Dirichlet to Neumann boundary conditions,
which also diverges at leading order and is the reason for the shift in Λφ as we will see.4

4Strictly speaking φNµ∂µφ is a combination of a true Legendre transform JO = zλ−−λ+−1φ∂nz
−λ−φ

(see eq. (3.7)) and counterterms.
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The multi-trace deformation SF is a finite contribution to the boundary action and will be
described when the asymptotics of the solution are analysed. We will continue the derivation
with the choice Sbdy,φ = S

(MT)
bdy,φ while keeping in mind that a similar derivation can easily

be done using instead Sbdy,φ = S
(SQ)
bdy,φ, and we will invoke those results when necessary.

Varying the total action S = Sbulk + Sbdy to first order, a proper holographic interpre-
tation demands that one obtains a variation of the form [16]

δS =
∫
z=ε

d3x
√
−γ

[1
2Tµνδγ

µν + JµδAµ +Oϕδϕ
]
, (3.4)

where the terms multiplying the EMD fields are interpreted as the operators in the boundary
CFT where Tµν is the boundary stress tensor, Jµ the boundary current associated with
the U(1) charge, and Oϕ the operator dual to a scalar which may be a non-linear function
of the dilaton field. The important point is that the action evaluated on the black hole
solution is equated with (minus) its Gibbs free energy density. The variation of the action
(restricted to preserve isotropy) thus includes thermodynamic variations. The expression
above makes clear that in addition to the temperature and the chemical potential there
ought to be a dependence of the Gibbs free energy on an external (source) variation of (the
boundary value of) the scalar field [14].

Performing this variation on eqs. (2.1) plus (3.1), we can write it as a bulk integral of
an integrand proportional to the equations of motion (2.2), that vanishes on-shell, and a
remaining boundary part. In the boundary part the normal derivatives of δγµν cancel due
to the Gibbons-Hawking-York term; there are no normal derivatives in Aµ. Restricting to
boundary indices we have5

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij
[
φN z∂zφ+ Λφφ2/2

]
+ TFij ,

Ji = −Z(φ)N zFzi ,
(3.5)

where TFij is the contribution from SF . The expression for Oϕ requires a more detailed
discussion. Focusing on the variation in the dilaton φ in (3.4), we have

δSφ =
∫
z=ε

d3x
√
−γ [Λφφδφ+ φN z∂zδφ] + δSF . (3.6)

From its linearized equation of motion the dilaton has the following expansion in the
near-boundary region

φ(z) = αzλ− + βzλ+ +O(z3) , (3.7)

where λ± = 3
2 ±

1
2
√

9 + 4m2 and m is the effective mass. In the GR model the effective
mass equals

m2 = ∂

∂φ2

[
V (φ) + Z(φ)

4 F 2
]∣∣∣∣
φ=0,z→0

= −2 . (3.8)

This value of the mass −9
4 < m2 < 1 − 9

4 = −5
4 is in the regime where two different

quantizations are allowed, i.e. for this value of m both λ± > 0 and either α (standard)
5The radial components of Tµν and Jµ vanish due to the projection on the hypersurface.
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or β (alternate) can be chosen as the source for the dual CFT operator with the other
the response. One can also choose a mixture of the two, corresponding to a multi trace
deformation, as we shall elucidate below.

The proper holographic normalization is most conveniently performed in a FG ansatz
for the metric

ds2 = 1
z2

[
−Htt(z)dt2 +Hxx(z)dx2 +Hyy(z)dy2 + dz2

]
, (3.9)

where we require Anti-deSitter (AdS) aymptotics Hµν(z = 0) = 1 and use the equations of
motion (2.2) to constrain the near-boundary expansion of Hµν in terms of a small subset
of degrees of freedom. We will use this ansatz for the remainder of this section. Using
that N z(z) = −z, and substituting (3.7) into (3.6), we can expand the variation w.r.t. the
dilaton as

δSφ =
∫
z=ε

d3x

[Λφ − 1
ε

αδα+ αδβ(Λφ − 2) + βδα(Λφ − 1) +O(ε)
]

+ δSF . (3.10)

As we claimed in (3.3), we must remove the leading divergence by imposing Λφ = 1, leaving
a finite contribution

δSφ =
∫
z=ε

d3x [−αδβ +O(ε)] + δSF . (3.11)

For the standard quantization term (3.2), it is easy to see that a similar derivation leads to
Λφ = −1.

One can modify the quantization by the addition of a multitrace deformation. This can
in general be encoded in the boundary action SF . Following [11, 15, 17], we choose SF =∫

d3x
√
−γεdF(α) such that, ignoring the metric variation, δSF =

∫
d3x
√
−γεdF ′(α)δα.

Without loss of generality we choose F of the form F(α) = a
2α

2 + b
3α

3 from here on. The
variation of the boundary action then becomes

δSφ =
∫
z=ε

d3xα [−δβ + (a+ bα)δα] . (3.12)

We can therefore identify the VEV of the boundary scalar operator as Oϕ = α while the
source of the operator is

JMT = −β + aα+ b

2α
2 . (3.13)

Once again, had we chosen the standard quantization boundary term, then we would have
δSφ =

∫
d3xβδα such that Oϕ = β and ϕ = α leading to the boundary condition JSQ = α.

We have now almost all the ingredients to compute the scalar contribution to the
stress tensor, but we still need to derive the variation of SF w.r.t. the leading order of the
boundary metric in order to compute the term TFij , as was done before in [11]. Doing so,
one simply finds TFij = γijε

dF(α). It is interesting to note that the contribution SF can
also be absorbed into corrections to the φ2 term as well as a φ3 term as

Sbdy =
∫
z=ε

d3x
√
−γ

[
−(2K + 4 + (3)Rγ) + Λφ + εa

2 φ2 + φNµ∂µφ+ b

3φ
3
]
, (3.14)

where Λφ + εa is a renormalized φ2 coupling which will reproduce the α2 contribution of
F , as was done in e.g. [12, 18]. The φ3 coupling on the other end will reproduce the α3
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contribution of F . This way of writing the boundary action highlights why we concentrated
on F of the form F(α) = a

2α
2 + b

3α
3. Lower order in α terms are constant shifts variationally

and can be absorbed in a field redefinition — they are tadpoles. Any term αn for n > d

would lead to vanishing contributions εn−d in the action — they are irrelevant deformations.
The equality Λφ = 1 remains true in order to regularize δS.

In the presence of such a boundary action, the contribution TFij in the expression (3.5)
simply includes the φ2, φ3 contributions and leads to

Tij = 2Kij − 2
(
dRγ,ij

)
− 2(K + 2)γij + γij

[
φN z∂zφ+ Λφ + εa

2 φ2 + b

3φ
3
]
. (3.15)

We recognize the F -dependent part of the stress tensor which agrees with the direct method.
It is then immediate to compute the trace of the stress tensor

Ti
i = α

2
(
3aα+ 2bα2 − 4β

)
= −α2 (aα− 4JMT) , (3.16)

where in the last equality we used the boundary condition (3.13). This result points to the
existence of a line of critical points with a = 0 where the sourceless (JMT = 0 equivalent
to the boundary condition −β + aα + b

2α
2 = 0) deformation F is just marginal. This is

equivalent to only deforming the boundary theory through a φ3 term which indeed has
dimension d and should therefore be marginal.

For completeness we mention that in the case of the standard quantization the trace of
the stress tensor is simply Tii = αβ = βJSQ.

3.2 Choice of quantization and thermodynamics

In this subsection, we will derive the thermodynamics of a black hole solution in a general
compatible quantization choice. This goes beyond the analyses in [10, 11] where only the
thermodynamics of a marginal scalar were considered, i.e. the case of alternate quantization
with a multitrace deformation such that the stress tensor remains traceless. In view of
extending the choice of possible theories to non-marginal ones, we will show that the
thermodynamics space is extended from a 2-parameter to a 3-parameter space, as also
emphasized for Einstein-Scalar theory in [14].

Let us start with the constraint that a choice of solution imposes on the possible
quantization schemes. Indeed, while the choice of boundary terms in the action and
therefore of the boundary deformation is a priori agnostic of a given solution to the bulk
equations of motion, we have seen that the multi-trace deformation leads to a specific choice
of boundary condition on the scalar (3.13). Not every solution to the bulk equations of
motion (2.2) are compatible with every possible boundary condition, as was noted in [11, 19].
In the case of the metric corresponding to the aGR solution (2.4), the scalar φ has the
following falloffs

φ ∼ αz + (β − f ′(0)α/2)z2 = αz + (β − 3Qα/4)z2 , (3.17)

where we have related the values of φ′(0), φ′′(0) to the falloffs α, β in the FG ansatz (3.9).
This matching is made explicit in section B. Comparing with the full solution (2.4), we
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can therefore equate α =
√

3Q/2 and β =
√

3Q2/8. Consider then alternate quantization
deformed by an arbitrary (relevant and marginal) multitrace deformation. In that case the
source equals

JMT(Q) =
√

3Q
8

(
4a+ (

√
3b− 1)Q

)
. (3.18)

From this equation, we see there are a few distinct cases to consider

(i) a = 0, b = baGR ≡ 1/
√

3: every instance of the 2-parameter aGR solution (2.4) is
compatible with this choice and is sourceless J = 0. This is the sourceless marginal
deformation we previously mentioned and which was studied in [10, 11, 19]. From
eq. (3.16), we see that this boundary theory has Tii = 0.

(ii) a = 0, b = 0: the quantization procedure is conventional alternate quantization. In
this case, since the solution (2.4) is not sourceless, we must impose a Neumann
boundary condition β = −J with fine-tuned source J(Q) = −

√
3Q2/8. The explicit

source leads to an explicitly broken conformal symmetry in the boundary. (A similar
argument holds for standard quantization with a Dirichlet boundary condition α = J .
One would then need to consider the boundary term Sbdy,φ = S

(SQ)
bdy,φ instead, and a

fine-tuned source J(Q) =
√

3Q/2. Also here the explicit source leads to an explicitly
broken conformal symmetry in the boundary.)

(iii) For all the other cases, one can look for explicitly sourced solutions J = J(Q, a, b)
defined in eq. (3.18).6 This case is fundamentally similar to the case (ii), with the
explicit sourcing leading to a non-zero trace of the boundary stress-tensor.

In the end, we see that the only natural sourceless description we have of the solutions (2.4)
corresponds to the marginal multi-trace deformation, case (i). The other cases, (ii) and (iii),
are better understood as explicitly sourced deformations where the source is fine-tuned to
select a certain subset of solutions at a fixed Q.

An important aspect is that even though a bulk solution may have different interpre-
tations depending on the quantization choices set out above, the thermodynamics does
know about the quantization choice. Let us consider the free energy of the solutions (2.4).
Substituting the solution into the action, the free energy density Ω of the aGR black hole
solution with compatible boundary condition is given by

Sregularized
on−shell = −

∫
d3xΩ , so Ω = −

( 1
zh

+Q

)3
+ Q2

8
(
Q(1−

√
3b)− 3a

)
. (3.19)

Furthermore, the holographic dictionary tells us that the chemical potential and the
temperature of the boundary theory are given by (2.5). One might be inclined to use this to

6If we insist on looking for solutions with J = 0, one of the couplings a or b must be fine-tuned e.g.,
b(Q) = 1√

3 (1− 4a/Q). As it was noted in [19], this means that fixing a, b to some constant will restrict the
space of solutions to those for which Q = 4a

1−
√

3b . Allowing for a finite, albeit fine-tuned, source J = J(Q)
leads to the same result and we will choose this more natural point of view.
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deduce a variation of Ω in the 2-parameter grand canonical ensemble dΩ = −s1dT − ρ1dµ
and derive from it the thermodynamic entropy and charge density of the theory

s1 = −
(
∂Ω
∂T

)
µ
, ρ1 = −

(
∂Ω
∂µ

)
T

. (3.20)

However, we have seen from eq. (3.4) that the free energy variation in the presence of an
explicit source should be corrected by a scalar contribution of the form (see also [14])

dΩ = −s2dT − ρ2dµ−OϕdJ . (3.21)

This is the full 3-parameter thermodynamics of the system. The fact that the free en-
ergy (3.19) of the aGR solution only depends on T and µ, and not on the value of the scalar
source means that the aGR solution should be seen as a 2-parameter constrained solution
within this 3-parameter space. This family of solutions is only a subset of all the possible
ones for any given compatible quantization scheme. A direct corollary is that to explore
only this analytical set of solutions, variations of J, T, µ are not independent. Denoting J
as the dependent variable, i.e. it is not independent but is a function of both T and µ, then
the grand canonical potential varies as

dΩ = −
(
s2 +Oϕ

∂J(T, µ)
∂T

)
dT −

(
ρ2 +Oϕ

∂J(T, µ)
∂µ

)
dµ (3.22)

if one constrains one’s considerations to aGR solutions only.
The precise relation of the VEV Oϕ and the source J to the fall-off of the dilaton

depends on the quantization scheme as we have just reviewed. A choice of quantization
is not a canonical transformation, as shown by [14] in the standard quantization case for
Einstein-Scalar theories. Therefore the value of the free energy will depend on this choice.
This is evident in the dependence on a, b in eq. (3.19). In the full 3-parameter space of
solutions this quantization choice dependence would only appear in the dilaton contribution
part. In the constrained 2-parameter space of solutions, it would appear to imply that now
also the thermodynamic entropy s1 and charge density ρ1 deduced from eq. (3.20) depend
on the quantization, as

s1 = 4π (1 +Qzh)3/2

z2
h

[
1 + Q2z3

h

8(1 +Qzh)3

(
Q(1−

√
3b)− 2a

)]
,

ρ1 = µ
1 +Qzh
zh

[
1− Qz2

h(2 +Qzh)
8(1 +Qzh)3

(
Q(1−

√
3b)− 2a

)]
.

(3.23)

This is strange, as the Bekenstein-Hawking entropy and the charge density — the VEV of
the sourced gauged field — are properties of the black hole solution and do not depend on
the boundary action which sets the quantization. Indeed they can be read off directly from
the geometry as

s2 = 4π
√
gxx(zh)gyy(zh) = 4π(1 +Qzh)3/2

z2
h

the area of the horizon of the black hole,

ρ2 = −∂zAt(z → 0) = µ
(1 +Qzh)

zh
the global U(1) charge.

(3.24)
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The solution is of course that in the constrained system s1 and ρ1 are not the true entropy
and charge density, as they include the artificial contribution from varying J(T, µ) following
from the constraint to stay within the 2-parameter aGR solution space. It is then a rather
straightforward computation to connect eqs. (3.23) and (3.24) through the variation of J
expressed in eq. (3.21). To that end, we can remember that the source J is constrained
by the boundary condition (3.18) and that in our choice of quantization, we always have
Oϕ = α. In summary, the geometric expressions for the entropy and charge of the aGR
solution are always the correct ones. The difference from the quantities computed from
the Gibbs potential can be attributed to the fact that one considers a constrained system:
the expression s1 = −

(
∂Ω
∂T

)
µ

= −
(
∂Ω
∂T

)
µ
−Oϕ

(
∂J
∂T

)
µ
contains a term that is absent in the

correct definition of the entropy s2 = −
(
∂Ω
∂T

)
µ,J

, and similarly for ρ.

There is, however, the special case (i). When the deformation is purely marginal and
sourceless — a = 0 and b = 1√

3 — we can immediately infer that the variations of J = 0 will
be trivial. In that case, we will have s1 = s2 and ρ1 = ρ2. The way to understand this is that
within the 3-parameter space of possible solutions quantified by (T, µ, J) the 2-parameter
aGR solution spans a different subspace depending on the quantization choice for the
dual boundary theory. Figure 1, illustrates how this difference of boundary interpretation
between the alternate quantization with sourceless marginal deformation of case (i) and the
standard quantization of case (ii) changes the shape of the aGR solution manifold inside the
thermodynamic space of sources {T, µ, J}. This visualization allows us to see at a glance
how the sourceless marginal deformation reduces to a 2-charge thermodynamic space where
2-parameters of the solution naturally coincide with T, µ while the standard quantization
interpretation of the aGR solution induces some non-trivial projection when varying the
Gibbs free energy w.r.t. T, µ. For the sourceless marginal deformation the thermodynamics
of the boundary thus simplifies greatly and will behave in a similar fashion to the conformal
fluid dual to the RN black hole solution.

To complete the argument above we shall construct numerical solutions to the equations
of motion (2.2) in the next section that differ from the aGR solution in that they explore
the third direction orthogonal to T, µ and analyse their various boundary interpretations.

4 Deformed Gubser-Rocha black holes

4.1 Numerically constructed solutions

The solutions that generically differ from (2.4) correspond to setting different boundary
conditions for the dilaton field. However, for each such new solution, its interpretation
depends on the quantization one considers, i.e. what the on-shell value of the action including
boundary terms reads.

We will solve the GR equations of motion (2.2) numerically using the following
parametrization

φ =
√

3
2 z ψ(z) , At(z) = µ j(z)at(z) , (4.1)
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Figure 1. aGR solution manifold in the thermodynamic parameter space of source {T, µ, J} for
two specific choices of boundary interpretations (cases (i) and (ii)). The sourceless marginal case
has trivial source and is by itself a 2-charge submanifold while the standard quantization case has a
constrained source which leads to the non-trivial corrections in s1, ρ1.

and with metric ansatz

ds2 = 1
z2

[
−f(z)Gtt(z)dt2 + dz2

f(z)Gzz(z) + g(z)G(z)
(

dx2 + dy2
)]

, (4.2)

where f(z), g(z), j(z) are held fixed to their expressions in the aGR solution (2.4) and
ψ, at, Gtt, Gzz, G are the dynamical fields. The radial coordinate z spans the range from the
boundary at z = 0 to the outer horizon at z = zh. The IR boundary conditions are chosen
to have a single zero horizon corresponding to a non-extremal black hole and to impose
regularity at the horizon for other fields (see e.g., [20]).7 The UV boundary conditions are
chosen to impose AdS asymptotics for the metric components and At(0) = µ. Parametrizing
µ =

√
3Qzh(1 +Qzh)/zh as in the aGR solution, the scalar boundary condition (3.13) can

be rewritten in terms of the falloffs of ψ as

ψ′(0) = − 2J√
3

+
(
a− 3Q

4

)
ψ(0) +

√
3b
4 ψ(0)2 . (4.3)

For simplicity, we will choose zh = 1 and the temperature of the solutions will therefore be
encoded by Q = 3µ2

16π2T 2 . In holography, we would usually first fix the boundary theory of
7The boundary conditions from regularity imply in particular that Gtt(zh) = Gzz(zh). This conveniently

allows us to set the temperature with the parameters Q and zh just like in the aGR solution in eq. (2.5), as
the temperature of this generalised model is given by T = TGR

√
Gtt(zh)/Gzz(zh) = 3

√
1 +Qzh/4πzh.
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interest by choosing a, b. Then every solution to the equations of motion would be labeled
by (T, µ, J) imposed through the boundary conditions. However in this section, we will be
interested in how a given set of solutions, labeled by (T, µ, ψ(0)), behaves in the various
compatible boundary theories. This is possible because the boundary condition we impose
on the scalar is simply a way to parametrize how we choose a bulk solution constrained to
have a black hole in the interior. Every boundary theory determined by a, b and the value
of sourcing J compatible with the condition (4.3) will provide a valid boundary description.
We will focus on the boundary interpretations in the next subsection. In many holographic
studies ψ(0) is often used interchangeably with the source J , but this is of course only true
in standard quantization. We shall, however, be careful to distinguish between the boundary
value ψ(0) of the AdS scalar field and the source J of the operator in the quantization
choice dependent dual field theory.

Let us now briefly describe the effect of changing ψ(0) without referring to any specific
boundary theory. By looking at the aGR solution (2.4), we see that ψ(0) = Q ∼ (T/µ)−2

for this family. Therefore, increasing ψ(0) is akin to lowering the temperature and vice
versa. To confirm our intuition, we can compare solutions at fixed Q0 ∼ (T0/µ)−2, and
varying ψ(0), to aGR solutions with ψ(0) = Q 6= Q0 i.e., at different T/µ 6= T0/µ. We will
choose to focus on the gauge field At(z) and more specifically the component at(z) defined
in (4.1). Formally, at(z) = At(z)/(µj(z, T0/µ)) for a fixed T0/µ. Since the aGR solution at
a different temperature T/µ will have a gauge field At(z) = µj(z, T/µ), the correct field to
compare with will be aψ(0)=Q

t (z, T/µ 6= T0/µ) = j(z, T/µ)/j(z, T0/µ). We plot the profiles
a
ψ(0) 6=Q0
t (z, T0/µ) in figure 2 and compare these to aψ(0)=Q

t (z, T/µ > T0/µ) (purple) and
a
ψ(0)=Q
t (z, T/µ < T0/µ) (red). We see that indeed, starting from ψ(0) = Q0, as we increase

(decrease) ψ(0) with Q0 fixed, the solution becomes similar to the aGR solution at lower
(higher) T/µ.

4.2 The holographic dual of the one-parameter family of solutions in different
quantization choices

Having numerically constructed instances of this one-parameter deformation of fixed T/µ GR
black holes, each instance in turn has multiple holographic dual interpretations depending
on the quantization scheme. These are constrained by the compatibility condition (4.3).
We will focus on three specific choices:

1. the conformal symmetry preserving quantization a, J = 0 boundary theory for which
we can then label our solutions by b(ψ(0)) = 4√

3ψ(0)2

(
ψ′(0) + 3Q

4 ψ(0)
)
,

2. the standard quantization boundary theory with the label J = α = 3
2ψ(0),

3. the alternate quantization boundary theory with a, b = 0 for which the label is now
J = −β = −3

2ψ
′(0)− 3

√
3Q
8 ψ(0).

Using eq. (3.5) we can compute the energy and the pressure of a solution in a specific
quantization scheme and construct the trace of the stress tensor Tii = −ε + 2P for each
of these solutions. For the choice 1, as we can see in figure 3, the stress tensor remains
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Figure 2. Gauge field component at(z) as defined in (4.1) at T0/µ = 0.15 and for various values of
ψ(0). We compare with the equivalent function aψ(0)=Q

t of the aGR solution at different temperatures
T/µ = 0.16 (purple) and T/µ = 0.14 (red). This illustrates that qualitatively the effect of changing
the dilaton boundary value has similarities to changing the ratio T/µ.

traceless for any value of b(ψ(0)), confirming the analytic result eq. (3.16). This is what we
expect from a CFT deformed by a marginal operator. On the other hand, for the choice 2,
we see that generically conformality is broken and the stress tensor acquires a non zero
trace. In this quantization scheme, this is also true for the aGR solution, as we described in
the case (ii). There are two exceptions: the first one is when J = 0 (but Oϕ 6= 0) — which
is reminiscent of a Z2 spontaneously symmetry breaking solution but here, the finite charge
of the black hole actually always leads to an explicitly symmetry broken (ESB) solution
φ(z) 6= 0. This case is outside the range of the plot figure 3. The second solution would
happen around J/Q ≈ 1.4 such that Oϕ = 0. These are consistent with what we would
have expected from Ti

i = αβ.
Each one of these new black hole solutions has a different thermodynamics compared

to the aGR solution. A clean way to exhibit this is to show the boundary charge density
ρ2, which for the choice 1 is the same as the variation of the Gibbs free energy w.r.t. the
chemical potential, i.e. in that case ρ2 = ρ1. In figure 4, we plot the charge density as a
function of temperature for various values of the marginal coupling b. It is clear from this
figure that the charge density as a function of T/µ is dependent on the choice of boundary
theory and the deformed solution describes a different state, even if the change is small.

To reiterate this last point, let us remember that a priori, the true charge density of
the theory ρ2, as well as the true entropy of the theory s2, only depend on the bulk solution
— they are geometric quantities. Yet we now argue that different boundary theories have
different thermodynamics. The resolution of this apparent contradiction is that while the
entropy and charge density of a black hole solution only really depend on the bulk solution,
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Standard quantization

Figure 3. Trace of the boundary stress tensor when varying the Dirichlet boundary condition ψ(0).
This can be interpreted as exploring boundaries with a = 0, J = 0 and varying marginal coupling b
(left) or as changing the source J = α in standard quantization (right). aGR denotes the analytically
known Gubser-Rocha solution. (Left) We see that in this case, Tij remains traceless regardless
of b which is consistent with a marginal deformation and the result (3.16). (Right) In standard
quantization, the trace is generically not zero, but this can happen for specific boundary theories:
sourceless J = 0 — not visible on the graph — and when Oϕ = 0 — which happens at J/Q ' 1.4.
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Figure 4. Boundary charge density as a function of the temperature T/µ when imposing Dirichlet
boundary conditions, which we interpret as varying the boundary theory through b. The charge
density is normalized by Q2 in the left-hand plot and by its aGR value defined in (3.24) in the
right-hand plot. The qualitative behaviour of all these theories is extremely similar to the aGR
solution (left) but quantitatively differs as a function of T/µ (right), showing the theories described
are different.
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Figure 5. Black hole entropy as a function of T/µ when keeping either the alternate quantization
source J = −β fixed (choice 3, orange gradient curves) or when keeping the label b(ψ(0)) fixed
(choice 1, blue gradient curves). The curves meet in pairs at T/µ — indicating identical bulk
solutions — and separate for other temperatures — indicating different black hole solutions.

how we explore the space of solutions is dependent on the choice of quantization. As we
mentioned in section 4, the holographic interpretation of black hole thermodynamics shows
that we should label solutions by their sources {T, µ, J} — and in the case of the sourceless
solutions of the choice 1, b plays the role of the label J . But different boundary theories
have different notion of source J such that varying T and µ at fixed J will mean different
path in the space of bulk solutions labeled by {T, µ, ψ(0)}. In figure 5, we illustrate this
point by looking at the Bekenstein-Hawking entropy s2 as a function of T/µ — all solutions
are normalized by the aGR entropy defined in (3.24). Both choices 1 and 3 are used to label
the solutions when varying the temperature, which can be done by imposing the boundary
condition (4.3) for each of the choices. The values of b(ψ(0)) and J = −β are chosen such
that solutions meet in pair at T/µ = 0.2. Upon lowering the temperature, we see that these
pairs split indicating that the bulk solutions they belong to are not the same anymore.
A path at fixed J = −β is therefore generically different than a path at fixed J = α or
fixed b(ψ(0)).

5 Conclusion

In this paper, we have clarified how the GR black hole thermodynamics works in the context
of holography and the appropriate quantization thereof. The well-known analytical solu-
tion (2.4) of [6] covers only a 2-parameter subspace of the full 3-parameter thermodynamics
of black hole solutions to the action (2.1). The 2-parameter aGR black hole solution has
been used widely as a physically sound version of the z =∞ AdS2 IR critical point that
preserves the quantum critical properties but does so with a vanishing zero temperature
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entropy. It was already pointed out [10] that an unusual quantization choice could preserve
conformal thermodynamics and hence stay within the analytically known 2-parameter family.
This indicates the existence of a marginal operator in this specific quantization scheme [11]
and we have recovered this in our analysis. For other quantization choices, the analytic
solution has a fine tuned value for the source. To prove this point we have numerically
computed the solutions corresponding to different boundary values of the dilaton. This fills
out the full 3-parameter thermodynamic phase space. The filled out phase-space therefore
elucidates that other quantization choices are just as valid as the one we chose to focus
on. This had to be so, but the trade-off that one must make is to properly account for
various scalar contributions to the general thermodynamics of the theory in line with the
findings in [14].

Because the GR action is a consistent truncation of d = 11 supergravity compactified
on AdS4 × S7 and has ABJM theory as its known holographically dual CFT, in principle
one should be able to identify this marginal operator in the CFT. The fact that marginality
is associated with a multitrace deformation makes this not as straightforward as may seem.
In particular as it originates naturally in alternate quantization, it is likely that it is an
operator which is only marginal in the large N limit where the classical gravity description
applies. We leave this for future research.

Our focus and interest is the use of the GR and other EMD models as phenomenological
descriptions of AdS2 fixed points, especially due to its resemblance to the experimental
phenomenology of strange metals. In this comparison, thermodynamic susceptibilities and
(hydrodynamic) transport play an important role. Our result here shows that in EMD
models one must be precise in the choice of boundary conditions and scalar quantization as
they will directly affect the long-wavelength regime of the dual boundary theory as well as
correct the thermodynamics of any extension of the GR model. This is especially true for
any boundary interpretation differing from the pure marginal case of [10, 11], as was shown
by [14] for Einstein-Scalar models and we have shown here for the GR model. A proper
understanding of the boundary conditions is necessary both for the thermodynamics of the
background and the hydrodynamic fluctuations on top of that background.
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A Validity of the boundary action

In a previous version of this paper, we considered the boundary term introduced by [10]
which is of the form

S
(cφ)
bdy,φ =

∫
z=ε

d3x
√
−γ

[Λφ
2 φ2 + cφφN

z∂zφ

]
, Λφ = 2cφ − 1 , (A.1)
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which matches our boundary terms for specific values S(cφ=0)
bdy,φ = S

(SQ)
bdy,φ and S(cφ=1)

bdy,φ = S
(MT)
bdy,φ

for a = 0, b = 0. The claim of [10] is that more general values of cφ are also possible, which
from a renormalization point of view is an acceptable assumption. The only prescription
one has for boundary terms is to choose relevant and marginal ones (the irrelevant boundary
terms contribute as corrections in the cutoff ε and can be truncated) which respect the
symmetries of the action. However, choosing the boundary term (A.1) leads to

δ
(
Sbulk + S

(cφ)
bdy,φ

)
=
∫
z=ε

d3x
√
−γ [(1− cφ)βδα− cφαδβ]

=
∫
z=ε

d3x
√
−γ

(
−cφα1/cφ

)
δ
(
βα1−1/cφ

) (A.2)

which generically differs from our result for the standard quantization or multi-trace
deformation where Oϕ = α or β.

The question of the validity of such variational problem as eq. (A.2) was raised before
in e.g. [21] for the simple case of a non-relativistic particle. Consider a particle with
action S1 =

∫ t2
t1

dt(−q̇2/2) to which one adds the total derivative term S2 =
[

1
2qq̇

]t2
t1
. The

variation of the total action on-shell δ(S1 + S2) =
[

1
2qδq̇ −

1
2 q̇δq

]t2
t1

is of a similar form as
the variation (A.2) for cφ = 1/2. The boundary condition required to make the boundary
variation well-defined is then to fix q̇/q = C at t = t1 and t = t2. However, in the case of
S1, this is not a correct boundary condition to impose. Since the bulk equation of motion is
q̈ = 0 with solutions q(t) = At+B and q̇(t) = A, the quantity to fix is q̇

q = A
At+B = 1

t+B/A
which only depends on the ratio B/A. Therefore, fixing it at t1 leaves no freedom to also
fix it at t2. At the same time the two boundary conditions at t1 and t2 do not select a
unique solution. A direct check one can do is whether for other values of the analogous cφ,
this problem remains. Taking for example S2 =

[
1
3qq̇

]t2
t1
, the boundary condition to impose

is now to fix q̇/q2 = A
(At+B)2 . Solving this condition at the boundaries for values C1,2 now

does lead to fully determined solutions, unlike the previous case. However, the solutions
are not unique, because the boundary conditions itself have arbitrary constants C1,2. There
are therefore multiple branches to the system of equations AC1,2 = (At1,2 +B)2.

In holography only the UV boundary conditions are imposed in the exact same manner.
The IR boundary condition in a black hole spacetime is different. We simply require
regularity of the scalar at the event horizon. For cφ = 1/n, n ∈ N∗, the question of whether
the variational problem is well-defined is then whether the UV boundary condition of
fixing β

αn−1 = C is sufficient to pick a unique solution once the IR boundary conditions are
taken into account. It is quite straightforward to show that these are the same boundary
conditions as the usual multi-trace deformation boundary condition (3.18), for J = 0 and
specific choices of monomial Fn = an

n α
n. From (3.13), we see that for n > 1, the sourceless

boundary condition for the deformation associated with Fn is β
αn−1 = an

n−1 so the matching
between boundary theories occurs for C = an

n−1 . Interestingly, choosing the boundary value
C is equivalent to choosing a deformation coupling constant with (single-trace) scalar source
J = 0. This is because the coupling constant an is really the same as a source for the
multi-trace operator On.
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n Boundary condition Analog multi-trace choice
n = 1 β = C a = 0, b = 0, J = −C
n = 2 β

α = C a = C, b = 0, J = 0
n = 3 β

α2 = C a = 0, b = 2C, J = 0
n =∞ α = C a = 0, b = 0, J = C

Table 1. Matching between the boundary conditions obtained from the multi-trace deformation
boundary action (3.3) and those obtained from the boundary term (A.1).

In table 1 we look at n = 1, 2, 3,∞ and what type of multi-trace deformation they
match. For n ≥ 4 the higher order terms in F represent irrelevant operators and we shall
not consider them. The special cases n = 1 and n = ∞ i.e. cφ = 1 and cφ = 0 are the
alternate and standard quantization case of fixing α = J and β = −J . In the previous
version of this article we argued that the aGR solution quantized with boundary term (A.1)
and cφ = 1/3 could be viewed as a marginal deformation with n = 3 and β/α2 = 1

2
√

3 which
according to our mapping is equivalent to the case (i), as expected.

Moreover, and importantly, the on-shell values of the boundary actions (3.3) with
monomial multitrace deformations F = Fn and (A.1) are also equivalent through the
mapping described in table 1. Indeed, we see that the difference between the boundary
terms is

S
(MT)
bdy,φ(F = Fn)− S(cφ)

bdy,φ =
∫
z=ε

[
an
n
αn − (1− cφ)αβ

]
=
∫
z=ε

[an − C(n− 1)] α
n

n
,

(A.3)
where we injected the expansion φ ∼ αz + βz2 and in the second equality, we used the
boundary condition β = Cαn−1 with cφ = 1/n. We see that the difference (A.3) vanishes
for the choice C = an

n−1 and thus the actions are the same through the mapping described
in table 1. We can conclude that as far the two roles of the boundary terms go — setting
the boundary conditions of the variational problem and specifying an on-shell value for the
action — these boundary terms yield the same answer for specific choices of the boundary
theory. This explains how our previous derivation based on (A.1) yielded the same results as
the derivation based on (3.3) for sourceless solutions. The on-shell action equivalence does
not hold in generality, however. The boundary term (A.1) fails to account for polynomial
deformations F and therefore would miss out on the most general theories of case (iii).

B Matching of metric gauge choices

In eq. (3.7) we have expressed our scalar field UV expansion in the FG gauge choice for
the metric (3.9). In this section we will use r to denote this choice of radial coordinate.
However, the aGR solution (2.4) uses a different metric gauge choice (2.3). This means
that the expansion of the scalar field φ = α̂z + β̂z2 + . . . in the (2.3) coordinates is not
directly identical to that given in eq. (3.7). They are related by solving dr2

r2 = dz2

z2f(z) . This
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relation is formally given by

log r(z)− log ε =
∫ z

ε

dx
x
√
f(x)

, with ε→ 0 . (B.1)

In the near-boundary regime, we will only be interested in the leading and subleading
orders of this relation — since we only want to see how the leading and subleading orders
in the scalar expansion mix — and we therefore expand f(z) = 1 + f ′(0)z + . . ., where the
analytical value of f is given in eq. (2.4). Doing so, we find

r(z) ∼ z − 3Qz2

4 +O(z3) . (B.2)

It is then straightforward to input this in the FG UV expansion

φ ∼ αr + βr2 ∼ αz +
(
β − 3Q

4 α

)
z2 , (B.3)

as was claimed in eq. (3.17).
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