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We investigate numerically and analytically the effects of hydrodynamics on the dynamics of topological
defects in p-atic liquid crystals, i.e., two-dimensional liquid crystals with p-fold rotational symmetry.
Importantly, we find that hydrodynamics fuels a generic passive self-propulsion mechanism for defects of
winding number s ¼ ðp − 1Þ=p and arbitrary p. Strikingly, we discover that hydrodynamics always
accelerates the annihilation dynamics of pairs of�1=p defects and that, contrary to expectations, this effect
increases with p. Our Letter paves the way toward understanding cell intercalation and other remodeling
events in epithelial layers.
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The physics of topological defects in liquid crystals have
experienced in the past decade a tremendous revival, thanks
to a wealth of exciting discoveries at the interface between
soft condensed matter and biological physics [1–9]. The
most common class of liquid crystal defects, known as
disclinations, consists of point or line singularities around
which the average orientation of the anisotropic building
blocks undergoes one or more complete revolutions,
thereby disrupting the local orientational order [10–15].
In p-atic liquid crystals—two-dimensional liquid crystals
with p-fold rotational symmetry, among which nematics
(p ¼ 2) and hexatics (p ¼ 6) are the best known examples
—defects can be classified in terms of their winding
number or strength s, that is, the number of revolutions
of the orientation field along an arbitrary loop enclosing the
defect core, i.e., s ¼ �1=p;�2=p, etc. [16–19].
Although the equilibrium physics of liquid crystal

defects represents a mature topic across several areas of
physics—from cosmology [20] down to condensed matter
[11,21] and particle physics [22–24]—our understanding of
their dynamics is still in a phase of accelerated expansion,
especially in the realm of biological matter, where defects
have been suggested to accomplish various vital functions.
These include driving the extrusion of apoptotic cells in
epithelial layers [25,26], coordinating large-scale cellular
flows during wound healing and morphogenetic events
[27,28], and seeding the development of nonplanar fea-
tures, such as tentacles and protrusion in simple organisms,
such as Hydra [29–32].
While the biochemical aspects of these processes are

mostly understood, less is known about the role of physical
interactions. Their origin, nevertheless, can be single-
handedly ascribed to the existence of a hydrodynamic
phenomenon known as backflow—the hydrodynamic flow
resulting from spatial variations of the average microscopic
orientation [33–38]. In passive liquid crystals, departure
from the uniformly oriented equilibrium configuration is

generally transient and often originates from a sudden
change in the environmental conditions, such as the abrupt
variation of an external electric or magnetic field in optical
devices [39,40]. Conversely, in active systems, distortions
occur spontaneously as a consequence of the internal
stresses collectively exerted by the active subunits [1,4,41].
Whether passive or active, backflow significantly affects

the static and dynamical behavior of topological defects. In
passive nematic liquid crystals, for instance, this effect is
known to affect the annihilation dynamics of neutral pairs
of elementary disclinations [42–49]. In active nematics—
such as in vitromixture of cytoskeletal filaments and motor
proteins [1,2,50,51] or certain types of prokaryotic [52,53]
and eukaryotic [25,54] cells—backflow drives the propul-
sion of s ¼ 1=2 defects and influences the hydrodynamic
stability of active layers with respect to nonplanar defor-
mations [2,55–57]. Yet, a hydrodynamic theory that cap-
tures backflow effects in liquid crystalline systems with
generic p-atic symmetry was developed only recently
[58,59]. Hence, the current understanding of defect dynam-
ics in such systems is still in its infancy.
In this Letter, we bridge this gap. Employing the theory

of Refs. [58,59], we make essential steps toward solving
the critical problem of passive p-atic defect dynamics,
whose understanding is imperative for a complete and
consistent description of any p-atic liquid crystalline
system. First, accounting for arbitrary p-fold symmetry,
we calculate the velocity field of arbitrary p-atic disclina-
tions leveraging on recent progress toward generalizing the
classic hydrodynamic theory of hexatic liquid crystals
[60,61]. Strikingly, we find that backflow fuels a generic
passive self-propulsion mechanism for defects of winding
number s ¼ ðp − 1Þ=p and arbitrary p values. Although
this mechanism is not unique to nematics, we find that
nematics are the only p-atic liquid crystals in which passive
self-propulsion is thermodynamically stable. Furthermore,
we analyze the effect of hydrodynamics on the annihilation
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of neutral elementary defect pairs s ¼ �1=p. Crucially, we
discover that backflow always accelerates their annihilation
dynamics and that, contrary to expectations, becomes
increasingly more relevant as p increases. Finally, we
uncover that, surprisingly, the source of this acceleration
is generically different than that of self-propulsion, which
becomes equally important only in the case of nematics.
We consider an incompressible p-atic liquid crystal,

whose microscopic orientation is characterized by the unit
vector ν ¼ cos ϑ ex þ sin ϑ ey and physical properties are
invariant under rotations by 2π=p. For p ¼ 2, ν is the
direction of the rodlike building blocks comprising nematic
liquid crystals; for p ¼ 3, ν is one of the three equi-
valent directions depicted by the legs of a tristar, etc.—
see Fig. 1.
At length scales larger than the size of the building

blocks, and yet infinitesimal compared to the system size,
p-atic order can be conveniently described in terms of the
tensor order parameterQp ¼ Qi1i2…ipei1 ⊗ ei2 ⊗ � � � ⊗ eip,
where in ¼ fx; yg and n ¼ 1; 2…p, constructed upon
averaging the p-fold tensorial power of the local orientation
ν [58,59]. The fluid dynamics is, in turn, governed by the
following set of hydrodynamic equations for momentum
density ρv and Qp:

ρ
Dv
Dt

¼ ∇ · σ; ð1aÞ

DQp

Dt
¼ ΓpHp þ p⟦Qp · ω⟧þ λp⟦∇⊗ðp−2Þu⟧

þ λ̄ptrðuÞQp þ νp⟦∇⊗ðp mod 2Þu⊗bp=2c⟧; ð1bÞ

with D=Dt ¼ ∂t þ v · ∇ the material derivative, ρ a con-
stant density, v the incompressible velocity field
(∇ · v ¼ 0), and σ the total stress tensor. Because of
incompressibility, trðuÞ ¼ ∇ · v ¼ 0, and, hence, the term
λ̄ptrðuÞQp in Eq. (1b) vanishes. The tensors u ¼ ½∇vþ
ð∇vÞT �=2 and ω ¼ ½∇v − ð∇vÞT �=2, with T indicating
transposition, are, respectively, the strain rate and vorticity
fields and entail the coupling between p-atic order and
flow, with λp and νp material constants. The operator ⟦ � � � ⟧
renders its argument traceless, while the dot product
indicates the contraction between the last index of Qp

and the first index of ω, ð∇⊗nÞi1i2…in ¼ ∂i1∂i2…∂in ,
whereas b� � �c denotes the floor function; p mod 2 ¼ p −
2bp=2c is zero for even p values and one for odd p values.
Hp ¼ −δF=δQp is the p-atic analog of the molecular
tensor, dictating the relaxation dynamics of the order para-
meter tensor toward the minimum of the orientational free
energy F¼ R

dAðLp=2j∇Qpj2þAp=2jQpj2þBp=4jQpj4Þ,
where j � � � j2 is the Euclidean norm and is such that
jQpj2 ¼ jΨpj2=2. The constant Lp is the order parameter
stiffness, while Ap and Bp are phenomenological constants
setting the magnitude of the coarse-grained complex order

parameter at equilibrium: jΨpj ¼ jΨð0Þ
p j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Ap=Bp

p
,

when Hi1i2…ip ¼ 0.
We customarily decompose the total stress σ into a static

and a dynamic contribution: σ ¼ σðsÞ þ σðdÞ. The static
stress tensor is given by σðsÞ ¼ −P1þ σðeÞ, where P is the

pressure and σðeÞij ¼ −Lp∂iQp ⊙ ∂jQp the elastic stress
resulting from a static distortion of the p-atic orientation;
the symbol ⊙ indicates a contraction of all matching
indices of the two operands yielding a tensor whose rank
equates the number of unmatched indices (two in this case).
We further decompose the dynamic stress into a viscous or
energy-dissipating part and a reactive or energy-preserving
part: σðdÞ ¼ σðvÞ þσðrÞ. The former is given by σðvÞ ¼ 2η⟦u⟧,
with η the shear viscosity, while the latter takes the form

σðrÞ ¼ λpð−1Þp−1∇⊗p−2 ⊙ Hp þ
p
2
ðQp ·Hp −Hp · QpÞ:

ð2Þ

Both terms describe a departure from the lowest free energy
state and, together with the elastic stress σðeÞ, can drive
backflow (see, e.g., Ref. [63]). To investigate the role of
backflow in the dynamics of topological defects, we first
study isolated disclinations of strength s ¼ �1=p;�2=p…

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIG. 1. Elementary s ¼ 1=p (red, left column) and s ¼ −1=p
(blue, right column) defects and their associated backflow (black
and white) for p ¼ 2; 3…6. Streamlines are obtained from the
analytical solutions for the flow field, whose explicit expression
is given in Eq. (S10) [62].
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at the origin of an unbounded domain and take the phase of
the coarse-grained complex order parameter θ ¼ sϕþ θ0,
withϕ ¼ arctanðy=xÞ. The constant angle θ0 determines the
overall orientation of the defect [64] and can be set to zero
without loss of generality. jΨpj is assumed uniformly equal

to its equilibrium value jΨð0Þ
p j outside the core of the defects

—i.e., for jrj > a with a ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lp=jApj

p Þ the defect core
radius—and zero inside it. Following Refs. [65,66], we
assume flow alignment effects to be negligible and compute
the stationary solution of Eq. (1a). Interestingly, of the three
backflow-driving terms in the total stress tensor, only the
first term in Eq. (2) contributes to the flow surrounding the
defect: the flow alignment stress. By contrast, the second
term—the antisymmetric stress—which originates from the
corotational derivative of the tensor order parameter, is
proportional to∇2θwhen jΨpj ¼ const (see, e.g., Ref. [59])
and, hence, vanishes identically. The elastic stress, on the
other hand, yields the isotropic force density ∇ · σðeÞ ¼
ðpsjΨpjÞ2Lpr=ð2jrj4Þ, which, in turn, leads to a local
pressure variation P → P − ðpsjΨpjÞ2Lp=ð2jrj2Þ, without
influencing the flow.
To obtain the backflow sourced by isolated defects, we

convolute the two-dimensional Oseen-Green tensor [62]
with the body force f ¼ ∇ · σðrÞ ¼ cp=jrjpþ1½cosðnϕÞexþ
sinðnϕÞey�, where cp and n are given, respectively, by

cp ¼ ð−1ÞpðpsÞ2λpLp

2p=2

Yp−1
k¼1

½ps − 2ðp − kÞ�; ð3aÞ

n ¼ pðs − 1Þ þ 1: ð3bÞ

The resulting flow field surrounding the defects is given
in Eq. (S10) [62]. Our solutions for the flow field hold for
arbitrary p values and, thus, include nematics.
We plot the backflow of the thermodynamically stable

defects s ¼ �1=p for p ¼ 2; 3…6 in Fig. 1. The backflow
of defects of all s inherits the ðjnj þ 1Þ-fold rotational
symmetry of the driving force f , with n found in Eq. (3b).
Thus, s ¼ 1=2 disclinations in nematics source a typical
Stokeslet-like flow consisting of two counterrotating vor-
tices meeting along the defect’s longitudinal direction (i.e.,
the x direction in this case), yielding a net momentum
current, whose effect is to propel the defect forward. By
contrast, s ¼ −1=2 give rise to a threefold symmetric flow
consisting of six vortices with alternating positive and
negative vorticity. Similarly, s ¼ 1=3 (s ¼ −1=3) disclina-
tions in triatics drive a twofold (fourfold) symmetric flow,
etc. Because of this rotational symmetry, these flows stir the
fluid around a defect and trap the core at the central
stagnation point, for all p-atic defects with n ≠ 0.
For n ¼ 0, on the other hand, defects propel under the

effect of their associated backflow. This leads to self-
propulsion condition that is valid of all p values: i.e., s ¼
ðp − 1Þ=p with p even [Figs. 2(a)–2(c)]. For odd p values,

on the other hand, cp ¼ 0when n ¼ 0 and the driving force
f vanishes [Fig. 2(d)]. The speed of self-propelled defects
is readily found upon integrating the velocity field v
[Eq. (S10) in Ref. [62] ] along the defect core. This gives

vd ¼ μpR1−p
�
pþ 1þ

�
a
R

�
1−p

�
3p− 1

2
þðp− 1Þ log a

R

��
;

ð4Þ

where μp ¼ ð−1Þpþ1πλpLp=ð2p=2þ1ηÞQp−1
k¼1ðk − p − 1Þ.

With the exception of p ¼ 2, however, none of these
self-propelled defects feature an elementary winding num-
ber s ¼ �1=p and, when allowed to evolve rapidly, split
into p − 1 elementary defects. We note that the fact that
self-propulsion is solely driven by the flow alignment stress
has not been previously identified even for nematics, where
self-propulsion has been a subject of thorough investigation
[42,43,49,67–69]. In fact, the proportionality between the
speed of isolated s ¼ 1=2 disclinations and the flow
alignment parameter brings to light an exciting opportunity
for estimating the flow alignment parameter λ2—a noto-
riously elusive material parameter in liquid crystals (see,
e.g., Ref. [70])—from measurements of the self-propulsion
speed of elementary nematic defects.
To obtain an exhaustive understanding of how backflow

affects defect dynamics, we must examine how it affects
their interactions. Hence, we study the annihilation dynam-
ics of neutral elementary defect pairs, s ¼ �1=p. In the
absence of hydrodynamic effects, two-dimensional discli-
nations of opposite strength are known to attract via a
Coulomb-like force and eventually annihilate [71]. In
nematics, Tóth, Denniston, and Yeomans showed that
hydrodynamics affects this process in a twofold way
[42]: First, advection by backflow causes defects to move
faster, thereby speeding up their annihilation dynamics.

(d)

(a) (b) (c)

FIG. 2. (a)Motile defects with s ¼ 1=2, 3=4, and 5=6. (b) Speed
of the defect core for 0 ≤ s ≤ 1. Notice that the speed is zero for all
defects of strength s ¼ 1=p apart from nematics, where s ¼ 1=2.
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Subsequently, the different configuration of the velocity
field surrounding positive and negative defects introduces
an asymmetry in the annihilation trajectory, which is then
no longer symmetric about the midplane separating the
defects at t ¼ 0. Although tempting to explain this phe-
nomena in light of the aforementioned passive self-
propulsion, in what follows we uncover that, surprisingly,
both effects are primarily fueled by the antisymmetric part
of the dynamic stress, i.e., the second term in Eq. (2).
To demonstrate this, we meticulously analyze the power

P ¼ R
dA½∇ · σ� · v delivered by each and every contribu-

tion to the total stress before, during, and after an
annihilation event (Fig. 3) [72,73]. Data are generated
by numerical integration of Eqs. (1a) and (1b) on a periodic
square domain, with the initial configuration consisting of a
neutral pair of elementary p-atic defects [8,62]. Our
analysis reveals that, for all p values, the annihilation
dynamics is dominated by the antisymmetric part of the
stress tensor (yellow tones). This converts the energy stored
in the distorted configuration of the p-atic director into
kinetic energy, which is, in turn, dissipated by viscous
stresses (magenta tones). By contrast, stresses originating
from flow alignment, sourcing the propulsion of isolated
defects, contribute to the annihilation dynamics only for
p ¼ 2 (Fig. 3, inset), i.e., when the second and third terms
in Eq. (2) have the same differential order.
Beyond revealing the origin of the hydrodynamic

enhancement of pair annihilation, we illustrate yet another
striking result in Fig. 4: Annihilation occurs more rapidly as
p increases. To elucidate this phenomenon, we focus on
trajectories of annihilating defects, with and without

backflow [Fig. 4(a)]. In the presence of hydrodynamics,
the positive defect moves faster toward the positive x
direction, and annihilation occurs in the half-plane initially
occupied by the negative defect [Figs. 4(b) and 4(c)]. Most
surprisingly, this phenomenon becomes more prominent
for hexatics, consistently with our observation that anni-
hilation occurs more rapidly as p increases. Comparing the
annihilation trajectories of all p values in the range
p ¼ 2; 3…6, however, we find that, even though the
annihilation time ta decreases with p, it does so at a
decreasing rate [Fig. 4(c)]. This behavior can be rational-
ized from simple force balance. Calling x� the positions of
the defects along the x axis, this implies

ς

�
dx�
dt

− v�

�
¼ −

Ds2

x� − x∓
: ð5Þ

The left-hand side of the equation denotes the effective drag
force experienced by the defects, with v� ∼ p the speed of
the propelling backflow and ς ∼ s2 a drag coefficient [74].
The right-hand side arises from the elastic Coulomb
attraction between defects, with D ∼ ΓpLp a rotational
diffusion coefficient independent of p. To compute the
annihilation time ta we solve Eq. (5) by imposing Δv ¼
vþ − v− ≥ 0 and xþðtaÞ ¼ x−ðtaÞ, yielding

FIG. 3. PowerP delivered by each and every contribution to the
total stress, for p ¼ 2; 3…6. The dominant contribution to the
backflow (yellow tones) is sourced by the antisymmetric com-
ponent of the stress and dissipated by the viscous stress (magenta
tones). Inset: P delivered by all components of the stress close to
the annihilation time for nematic defects. Only in this case, P
arising from the first term in Eq. (2) (blue) is comparable in
magnitude to the antisymmetric stress’s dominant contribution; P
has been rescaled by P0 ¼ Lp=τ, with τ ¼ a2=ðΓpLpÞ.

(c)

(a) (b)

FIG. 4. (a) Flow field surrounding a �1=p pair obtained from
numerical integration of Eqs. (1a) and (1b). Red (left) and blue
(right) dots denote the defects’ position. (b) The annihilation time
ta decreases with p, in a decreasing rate. (c) Trajectories of
annihilating defects in time. The asymmetry in the trajectories
increases until it reaches its maximum value. The continuous and
dashed lines denote the trajectories of the positive and negative
defects, respectively.
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ta ¼
jΔxð0Þj
Δv

−
2Ds2=ς
Δv2

log

�
1þ jΔxð0Þj

2Ds2=ς
Δv

�
; ð6Þ

whereΔxð0Þ ¼ xþð0Þ − x−ð0Þ. In the absence of backflow,
Δv ¼ 0 and Eq. (6) reduces to ta ¼ jΔxð0Þj2=ð4Ds2=ςÞ.
For finite Δv values, on the other hand, ta decreases
monotonically with Δv and approaches ta ≈ jΔxð0Þj=Δv
for largeΔv values. In turn,Δv increases with p for small p
values [62] but vanishes for p → ∞ when isotropy is
restored at the macroscopic scale and the defects them-
selves disappear: i.e., s ¼ �1=p → 0.
In conclusion, we have demonstrated that backflow

profoundly affects p-atic defect dynamics in two principal
ways, as well as identified the origins of its effects. First, we
showed that backflow fuels a generic self-propulsion
mechanism for all defects with winding number s ¼
ðp − 1Þ=p, which is, however, thermodynamically stable
only in nematics. Second, we discovered that backflow
always accelerates the dynamics of neutral elementary
defect pairs s ¼ �1=p and, contrary to expectations,
becomes increasingly more relevant as p increases. The
latter is readily amenable to experimental scrutiny, for
instance, in suspensions of lithographically printed colloi-
dal polygons [75]. Furthermore, for space-filling polygons
(p > 3), faster pair annihilation can enhance the coarsening
dynamics during crystallization, with important potential
applications to fabrication of ordered monolayers for
biomedicine, optics, etc. [76]. Finally, our Letter paves
the way toward understanding cell intercalation and other
remodeling events [25,28,54,56,77,78] in epithelial layers,
where small-scale hexatic order (p ¼ 6) has been recently
discovered [79,80].
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