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Computationally intractable tasks are often encountered in physics and optimization. They usually comprise
a cost function to be optimized over a so-called feasible set, which is specified by a set of constraints. This
may yield, in general, to difficult and nonconvex optimization tasks. A number of standard methods are used to
tackle such problems: variational approaches focus on parametrizing a subclass of solutions within the feasible
set. In contrast, relaxation techniques have been proposed to approximate it from outside, thus complementing
the variational approach to provide ultimate bounds to the global optimal solution. In this paper, we propose
a novel approach combining the power of relaxation techniques with deep reinforcement learning in order to
find the best possible bounds within a limited computational budget. We illustrate the viability of the method in
two paradigmatic problems in quantum physics and quantum information processing: finding the ground state
energy of many-body quantum systems, and building energy-based entanglement witnesses of quantum local
Hamiltonians. We benchmark our approach against other classical optimization algorithms such as breadth-first
search or Monte Carlo, and we characterize the effect of transfer learning. We find the latter may be indicative
of phase transitions with a completely autonomous approach. Finally, we provide tools to tackle other common
applications in the field of quantum information processing with our method.

DOI: 10.1103/PhysRevResearch.5.013097

I. INTRODUCTION

In physics, we often encounter optimization tasks that are
computationally intractable. These are often related to the
characterization of complex systems that entail poorly scaling
problems. For instance, in quantum physics, the complexity of
characterizing many-body systems scales exponentially with
the system size, rapidly becoming an intractable task. In such
cases, we often rely on methods that provide an accurate
approximation to the actual solution. There exist two main
paradigmatic approaches: the variational ansatz and relaxation
methods (see Fig. 1).

On the one hand, the variational ansatz consists in
parametrizing a family of solutions with the hope that it
contains a good approximation to the optimal one. In the
context of quantum sciences, it has found tremendous success
in areas so diverse as quantum chemistry [1–7], condensed
matter [8–13], and quantum machine learning [14,15], and it
is the main pillar upon which many modern quantum algo-
rithms rest [13,16–25]. However, variational approaches are
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suboptimal by construction and only yield an upper bound (in
a minimization problem) to the optimal solution. Increasing
the complexity of the ansatz may result in a better approxima-
tion at the price of increasing the overall computational cost.
Furthermore, the distance between the obtained solution and
the optimal one is unknown, in general. Even when we obtain
it, we need additional methods to prove it is indeed the case.

On the other hand, we find relaxation methods. Any op-
timization task is characterized by the problem’s constraints.
All the points that fulfill them define the feasible set, which
may be hard to optimize over in many cases. Therefore, to
ease the optimization process, we may consider relaxing some
of the constraints, obtaining a relaxed larger set. However, the
minimum over a larger set can only be less or equal than the
original one, thus resulting in a lower bound to the problem.
Hence, the combination of the two approaches, variational and
relaxations, yields an upper and lower bound that conform an
uncertainty interval around the optimal solution, as illustrated
in Fig. 1(b).

Relaxation techniques have been widely used in quantum
information processing since its dawn. In this field, semidef-
inite programming (SdP) has been a successful and recurrent
tool to build relaxations [26–28]. Perhaps, the most paradig-
matic example in the context of entanglement theory is the
Peres criterion, which is a relaxation from the set of separable
states to the set of states that are positive under partial transpo-
sition (PPT) [29]. The membership problem in the separable
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FIG. 1. Interpretation of exact solutions and bounds obtained through variational and relaxation methods. (a) Schematic representation
of an optimization task. The goal is to optimize a function over a hard to characterize set (yellow set). The variational approach allows us
to parametrize subsets within the one of interest (different red sets). Different parametrizations yield different subsets that are more or less
convenient depending on the task. Relaxation techniques can efficiently represent larger sets than the one of interest (different blue sets)
exploiting, for instance, convexity or linearity. Neither different variational approaches nor different relaxations need to be contained into one
another, so the sets they represent are, in general, incomparable; (b) Values of the objective function. In black, the optimal unknown value. In
red, the different minima obtained by variational methods. The smaller the value, the better the bound. In blue, different minima obtained by
relaxation techniques. The greater the value, the more accurate their associated certificate. In grey, the uncertainty region where the optimal
solution lies, given by the best variational and the best certificate obtained so far.

set is NP-hard [30], whereas checking the PPT criterion is
very simple. Relaxation techniques also play a major role in
the device-independent version of quantum information pro-
cessing [31]. For instance, in cryptographic security proofs,
we need to consider all possible quantum attacks, which are
hard to characterize, motivating research for supraquantum
theories that are analytically tractable [32,33]. In the quest to
characterize the set of quantum correlations [34], several op-
erationally simple, outer approximations have been proposed
[35–42], as well as systematic relaxations via SdP [27,43,44].
Additionally, relaxation methods have found a wide range of
applications in quantum physics and chemistry [45–54]. A
recurrent theme is to find solutions that are simple enough to
be understandable and computationally tractable, while being
as accurate as possible.

Strongly relaxed problems may be easier to solve, although
they may also yield looser bounds. At the same time, some
relaxations may be more elegant/smarter than others, yielding
better bounds while using similar computational resources.
These generally exploit useful properties of the system, such
as the existence of symmetries. However, without any prior
knowledge about the problem at hand, or whenever it lacks
such appealing properties, efficient relaxations may be highly
elusive. Hence, it is crucial to devise methods to find, among
all possible relaxations of the original problem, the best trade-
off between accuracy and simplicity. Finding such optimal
relaxation is a complex combinatorial optimization problem
whose solution can reveal relevant properties of the underly-
ing system.

To find it, we propose to harness the power of machine
learning (ML). In the past decade, there has been an outstand-
ing rise of the ML field, achieving remarkable feats [55–57]

with deep implications in industry and academia. In physics,
all kinds of ML techniques have been used to tackle multiple
challenging problems in the field [58,59]. For instance, in
condensed matter, different models have been used to identify
quantum phases of matter [60–62] and have been combined
with existing variational methods to characterize complex
Hamiltonians [63–65]. Closer to the problem we tackle in this
paper, ML techniques have shown great success at dealing
with combinatorial problems [66]. There have been proposed
various approaches, from supervised learning of neural net-
works [67] to unsupervised methods over graphs [68] and, in
particular, reinforcement learning (RL) [69]. While traditional
algorithms rely on heuristics and specific insight about the
problem, ML approaches are able to solve many of them faster
and without any prior knowledge or assumption.

RL techniques [70] are responsible for some of the biggest
breakthroughs in the ML field. Many of these relate to the ef-
ficient exploration of vast state spaces, leading to superhuman
skills in games [55,71] or major advances in protein-structure
prediction [72]. In physics, RL has been widely used for
similar tasks, such as the design and control of quantum
experiments [73,74], the preparation of quantum states [75],
or the optimization of quantum error correction codes [76],
which all feature broad combinatorial spaces akin to the task
presented here.

Therefore, in this paper, we combine RL techniques with
SdP-based relaxations to systematically search for optimal
relaxations within a given computational budget. In the pro-
posed scheme, an RL agent has access to a black box that
computes the relaxation of the problem by solving an SdP
[see Fig. 3(a)]. The agent can increase or decrease the relax-
ation level and observe an output that depends on both the
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FIG. 2. Poset structure of the constraint space. The different cir-
cles represent �C for different C ⊆ P ([n]). The arrows represent
the partial order relation �, so that �C � �C′ is represented by an
arrow from �C to �C′ . Only the arrows relative to the central node
are drawn. Dashed arrows indicate that there exist many more �C′′

arriving/departing from the central node that are simply not drawn.
The orange-dashed line separates those �C that fall into the allowed
computational budget (green, blue, and pink nodes) from those that
are too costly (red). Moving vertically up into the diagram provides
better certificates, but at a higher cost. Since � is a partial order
relation, some nodes (e.g., the three at the bottom) are incomparable.

associated computational cost and the quality of the obtained
bound. We illustrate the procedure in tackling two paradig-
matic problems in quantum physics and quantum information:
finding the ground-state energy of local many-body Hamilto-
nians and building energy-based entanglement witnesses. We
first show our results on the first problem in which, even for
very simple scenarios, we find counterintuitive optimal relax-
ations. Then, we compare our RL approach to other classical
optimization algorithms and we show how to use transfer
learning to explore the phase diagram of the Hamiltonians in
an autonomous way. Finally, we present our results in the sec-
ond problem tackling two different examples. Applying RL
to obtain useful relaxations can be seen as a meta-algorithm
with a wide range of applicability. Here, we present it in two
different cases of study without hindering its more general
flavor. In Sec. VII we discuss how the same principles apply
to diverse areas of quantum information processing.

The paper is structured as follows: In Sec. II, we describe
the mathematical formalism to build relaxations for our cases
of study. In Sec. III, we introduce the constraint space over
which the RL agent operates, and we introduce the optimiza-
tion framework in Sec. IV. We present our main results in
Sec. V and Sec. VI. Then, we discuss how our framework
naturally applies to various relevant problems in quantum
information in Sec. VII. Finally, we conclude in Sec. VIII.

II. BUILDING RELAXATIONS

In this section, we introduce the methods to systematically
build relaxations, which we consider throughout the paper.
These relaxations are based on a semidefinite program (SdP),
whose optimal solution constitutes a certificate, as we detail
in the section right below. We incorporate this methodology
in the RL framework, introduced in Sec. IV, as a black box
module with which an RL agent can interact. The agent can
define the set of constraints to consider in the SdP, although
it is agnostic to the calculation of the certificate and it only
receives a reward at the end. Then, the agent can decide to
tighten or loosen the relaxation by modifying the constraints.
Here, we thoroughly present the mathematical formalism of
the different steps involved in the process.

In the interest of simplicity, we introduce the main concepts
of our methodology applied to the optimization tasks that we
tackle throughout this paper: finding the ground-state energy
of quantum local Hamiltonians and building energy-based
entanglement witnesses. While these do not restrict the ap-
plicability of our paper to other areas in quantum information
(see Sec. VII), it shall certainly ease the exposition. The math-
ematical formalism of the second task is an extension of the
first one. Hence, we show here how to relax the ground state
energy problem and, then, we extend it to the entanglement
witnessing in Sec. VI A.

A. Finding the ground-state energy

Consider the optimization task to find the ground-state
energy E0 of a quantum local Hamiltonian

H =
m∑

i=1

Hi. (1)

The Hamiltonian H acts on n qubits, and it is a sum of terms
Hi, each of which acts on at most k = O(1) qubits. The sum
Eq. (1) has therefore m = O(poly(n)) terms. The support of
Hi, denoted supp(Hi ) is the set of qubits where Hi acts non-
trivially. The supports of the different Hi may overlap; i.e.,
supp(Hi ) ∩ supp(Hj ) may not be empty.

To find E0, a possibility is to directly construct a quantum
state that has E0 energy with respect to H . Therefore, a first
possible approach is to parametrize a family of quantum states
|ψ (θ)〉 exploiting some known properties of H . We can safely
assume the parametrization yields a valid ( i.e., normalized)
quantum state for any value of the parameters θ. Additionally,
by construction, 〈ψ (θ)| H |ψ (θ)〉 � E0 for all θ. Let us denote

γ = min
θ

〈ψ (θ)| H |ψ (θ)〉 , (2)

which satisfies γ � E0 by construction. An example of such
a parametrization would be to describe |ψ (θ)〉 as a tensor
network contraction, which exploits the locality properties
of H , limiting the entanglement present in its ground state
[12,77–80].

Complexity theory results (in particular, QMA-hardness)
strongly suggest that finding, or even approximating, the
ground state energy of a local Hamiltonian is a hard task, even
for a quantum computer [81–83]. Furthermore, this hardness
persists in physically relevant instances [84]. Notice that, even
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FIG. 3. (a) Schematic representation of the reinforcement learning framework. First, the agent observes the state: a one-hot encoding of the
active constraints. Given the observation, it estimates the Q-values associated to the possible actions with a deep Q-network. Then, it decides
which action to take according to an ε-greedy policy, bringing the agent to a new state. Finally, the black box solves the SdP associated to the
new state, providing the agent with a reward, whose parts from Eq. (9) are illustrated in (b).

if we found the actual solution |ψ (θ)〉, we cannot prove, solely
from that, that it is the global minimum [85].

It is therefore highly desirable to obtain a bound from the
other side; i.e., a value β for which one can prove E0 � β.
This would guarantee E0 ∈ [β, γ ] and, thus, help determine
whether it is worth to refine the search depending on |γ −
β| < ε. However, for a proof of the type E0 � β, constructing
an example |ψ (θ)〉 is not good enough. We need a proof that is
satisfied by all valid quantum states and, possibly, a larger set,
as long as it makes the proof simpler. Such a proof is referred
to as a certificate, and it is typically obtained by numerical
means. SdP is a natural tool to obtain such certificates upon
which we capitalize in our paper. The optimality of the SdP
solution or, at least, a valid bound for a certificate follows
from strong or weak duality properties, respectively (see Ap-
pendix A).

B. Building a trivial relaxation

A common technique to build a relaxation for the local
Hamiltonian problem is via the triangle inequality [45,86–88],

min
ρ

Tr[ρH] �
∑

i

min
ρi

Tr[ρiĤi], (3)

where ρ and ρi are density matrices acting on the support of H
and Hi respectively. Note that i refers to a Hamiltonian term
and it has nothing to do with the i-th party. Furthermore, in
Eq. (3), the Ĥi are sums of some local terms Hj of Eq. (1),
grouped so that supp(Ĥi ) is as large as possible while still al-
lowing for computation of their minimal eigenvalue. This size
obviously depends on the available computational resources.

Let us observe that the right-hand side in Eq. (3) is a sum
of minima, where each minimization is carried out indepen-
dently. Due to this independence, in general, it is not the case
that different ρi are mutually compatible; i.e., that there exists
a global state ρ such that each ρi is the corresponding partial
trace of ρ. The converse is true; however, every valid quantum
state ρ has an associated set of partial traces ρi, but given a

set of ρi, a global ρ may not exist. This is what proves the
inequality Eq. (3).

The minimization of the right-hand side of Eq. (3) is equiv-
alent to solving the following SdP (cf. Appendix A):

β∅ := min{ρi}
∑

i Tr[ρiĤi]
s.t. ρi 	 0

Tr[ρi] = 1.

(4)

Since there is no mutual compatibility enforced among the
ρi, and each is treated independently, the triangle inequal-
ity Eq. (3) constitutes a trivial relaxation. A natural way to
strengthen the relaxation is to impose further restrictions on
the collection of possible ρi, in such a way that any quan-
tum state would also satisfy them. The strongest restriction
possible is to directly ask that {ρi} come from a global quan-
tum state. Unfortunately, this would be equivalent to finding
the value of E0, which is QMA-complete. Furthermore, it is
strongly connected to solving the so-called quantum marginal
problem (QMP), which is also QMA-complete [81–83]. The
QMP has been solved completely in very rare instances, such
as the global state being symmetric [89] or for the case of
one-body marginals [90–92]. Nevertheless, the SdP based for-
mulation Eq. (4) motivates a hierarchy of relaxations based on
solving the QMP up to some degree of compatibility.

C. Building tighter relaxations

In order to build relaxations that yield a tighter bound than
that of the triangle inequality, our first observation is that
the set {ρi} does not need to fulfill any mutual compatibility
constraint. It would be natural to expect that, at least, the
partial traces on different supports’ intersection match. This
will reduce the space of solutions, provided that {ρi} must
fulfill additional conditions. Therefore, since the minimization
is over a smaller set, its result can only be a tighter bound.

Hence, the first level of compatibility we might want to ask
for is that ρi and ρ j yield the same reduced density matrix
(RDM) on their common support, which we shall denote ρi∧ j ,

Trsupp(ρ j )c [ρi] = Trsupp(ρi )c [ρ j] ≡ ρi∧ j . (5)
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Here, the partial trace TrS (·) denotes that we eliminate subsys-
tem S and the superindex c indicates the complementary set.
Thus, TrSc produces the RDM acting on the subsystem S. Note
that the partial trace condition is linear in ρi. Therefore, it can
be naturally imported into Eq. (4) and still be formulated in
terms of a SdP,

β1 := min{ρi}
∑

i Tr[ρiĤi]
s.t. ρi 	 0

Tr[ρi] = 1
Trsupp(ρ j )c [ρi] = ρi∧ j .

(6)

Given that the sets of {ρi} that satisfy the constraints of
Eq. (6) also satisfy the constraints of Eq. (4), we have β∅ �
β1 � E0, by construction.

The certificates obtained from Eq. (6) can be further
strengthened by adding virtual RDMs. For instance, even if
H is 2 − local, we might want to ask, e.g., that the two-body
RDMs acting on Alice − Bob and Bob − Charlie are such
that they both come from a virtual three-body density matrix
acting on Alice − Bob − Charlie. The latter is not strictly
necessary in order to compute the energy, for 2 − body den-
sity matrices suffice, but this compatibility condition further
restricts the set {ρi}, therefore improving the bound. In math-
ematical jargon, this method is known as representing the
feasible set as a projected spectrahedra [93]. Hence, instead of
solely asking that ρi and ρ j yield the same RDM on their in-
tersection, now we might impose a stronger constraint, which
is that ρi and ρ j come from a valid density matrix ρi∨ j defined
on the union of their supports,

β2 := min{ρi∨ j}
∑

i Tr[ρiĤi]
s.t. ρi∨ j 	 0

Tr[ρi∨ j] = 1
Trsupp(ρi )c [ρi∨ j] = ρi.

(7)

We observe that the constraints imposed in Eq. (7) automati-
cally imply those of Eq. (6), so we have omitted their writing,
as they became redundant.

We also observe that, although now we have β∅ � β1 �
β2 � E0, the cost of solving Eq. (7) is substantially higher
than that of Eq. (6), because the SdP variables ρi∨ j act on more
qubits than ρi and the cost of representing them grows expo-

nentially in the number of qubits. Similarly, the relaxations
from Eq. (7) can be further strengthened by considering com-
patibility with more regions, yielding a chain of inequalities
β∅ � β1 � β2 � . . . � E0.

In Eq. (7) the compatibility constraints are enforced on
all possible pairs (i, j). However, not all the constraints
are equally useful. In an extreme case, when supp(ρi ) ∩
supp(ρ j ) = ∅, adding the variable ρi∨ j with its respective con-
straints makes no difference. Indeed, since Tr[ρiĤi + ρ j Ĥ j] =
Tr[(ρi ⊗ ρ j )(Ĥi ⊗ 1 j + 1i ⊗ Ĥj )], the choice ρi∨ j = ρi ⊗ ρ j

is always possible, as it satisfies the rest of constraints, there-
fore not changing β2. We remark this tensor product choice
is possible because the supports do not intersect. However,
if we define ρi∨ j as a variable in Eq. (7), we increase its
computational complexity without improving the bound, thus
yielding a worse certificate.

In Appendix A we give details on the basics of SdP and
how to obtain mathematical proofs from their solutions.

III. THE CONSTRAINT SPACE

Following the methodology presented in the previous sec-
tion, we combine it with the RL formalism in order to create
a suitable environment with well defined actions, states, re-
wards, and their respective relationships, which constitute the
fundamental elements of any RL problem. With this goal,
we propose to use the space of constraints, which induces an
underlying structure for the action and state spaces that the RL
agent will explore, as we explain in Sec. IV. In this section, we
present the constraint space and study its structure.

Continuing with our example, let us consider a set
of n qubits, labeled from 0 to n − 1, and denote
[n] = {0, . . . , n − 1}. Let P ([n]) = {∅, {0}, {1}, . . . , {n − 1},
{0, 1}, {0, 2}, . . . , [n]} denote the parts of [n]; i.e., the set of
all subsets of [n], thus containing 2n elements.

Notice that we can associate a certificate to every subset
C ⊆ P ([n]) in the following way: for each element S ∈ C,
corresponding to a subset of [n], we consider the RDM acting
on the qubits labeled by the elements in S, which we denote
ρS . Let us denote �C := {ρS}S∈C the collection of RDMs as-
sociated to C. By enforcing compatibility on their overlapping
supports, we can define the SdP

βC := min�C

∑
i〈Hi〉

s.t. ρS 	 0 ∀S ∈ C
Tr[ρS] = 1

TrRc [ρS] = TrRc [ρS′ ] ∀R ⊆ S ∩ S′, S, S′ ∈ C,

(8)

where the partial trace over the whole system is set to
one by convention Tr[n][ρ] = 1. We have written the objec-
tive function as

∑
i〈Hi〉 for the following reasons: first, C

could be small enough so that there is no S ∈ C such that
supp(Hi ) ⊆ S. If this is the case, then we substitute 〈Hi〉 by
the minimal eigenvalue of Hi, in the same spirit as the trivial
relaxation from Eq. (4). Hence, if C = ∅, the cost function
of Eq. (8) amounts to the sum of the minimal eigenvalue
of each Hi. Otherwise, if �C contains a density matrix ρi

whose support contains the support of Hi, we simply compute

〈Hi〉 = Tr[ρiHi]. Note that, in case that multiple density ma-
trices from �C could be used to compute 〈Hi〉, the last
constraint of Eq. (8) guarantees the result is well defined;
i.e., independent of the choice ρi ∈ �C . In practice, the last
constraint of Eq. (8) rarely needs to be imposed over all
the subsets of the intersection, and it is enough to take R =
S ∩ S′ for all pairs S, S′ ∈ C. In Appendix B we discuss these
implications in a detailed way. Regardless of the constraint
implementation of Eq. (8), the SdP yields a valid lower
bound.

013097-5



BORJA REQUENA et al. PHYSICAL REVIEW RESEARCH 5, 013097 (2023)

Furthermore, given a set of constraints C ⊆ P ([n]), it is
not necessary to define Eq. (8) over all the variables contained
in �C . If some S ∈ C is contained in another S′ ∈ C, such
that S ⊆ S′, we can simply use ρS′ , as it contains all the
information on ρS . This choice is well-defined due to the
constraints in Eq. (8) and it naturally defines a simplification
function s : �C �→ s(�C ), which allows to simplify the SdP
by removing redundant variables.

One of the main motivations of this paper is to optimize
the quality of the lower bound within a limited computational
budget. The asymptotic complexity of an SdP with m variables
of matrix size n depends on the method that it is used to solve
it. A rough estimate is O(m2n2), but iteration costs of the
algorithm are not factored in [94]. There exist interior-point
methods, which are faster than the ellipsoid method [95],
e.g., Alizadeh’s algorithm runs in Õ(

√
m(m + n3)L) time,

where L is an input parameter and the Õ notation is used to
suppress polylog(mn/ε) terms, where ε is the required preci-
sion [96,97]. In our case, we use the self-dual minimization
method SeDuMi [98], which has a complexity Õ(m2n5/2 +
n7/2) for large-scale instances, although there are algorithms
of Õ(nm3), suitable for small matrix sizes [99]. Interestingly,
quantum algorithms have been proposed to solve SdP [100],
and ML methods have been studied to aid the SdP solver
[101].

In light of the whole zoo of algorithms for SdP and their
various complexities, it is clear the time complexity of an SdP
instance is highly dependent on the solver used. Nevertheless,
for our case study it is important that a given computational
budget will determine a set of maximal (m, n) that are al-
lowed, which we estimate by effectively limiting the size and
contents of � (cf. Sec. V B).

The space of constraints forms a partially ordered set
(poset) with respect to the following partial order relation.
Given C,C′ ∈ P ([n]), we say C � C′ if, and only if, for each
S ∈ C there exists a S′ ∈ C′ such that S ⊆ S′. The motivation
of the partial order relation � is that C � C′ implies βC � βC′

by construction: every density matrix in �C can be obtained
by tracing out some elements of another density matrix in �C′ ,
and the constraints in Eq. (8) enforce mutual compatibility
among all the elements in �C and �C′ . In Fig. 2 we illustrate
such structure, which motivates the definition of the RL for-
malism in Sec. IV.

IV. CONSTRAINT OPTIMIZATION WITH
REINFORCEMENT LEARNING

In this section, we propose a method to obtain the best
possible certificate within a certain computational cost by
exploring the constraint space described in Sec. III. Due to
the high amount of structure in this extensive combinatorial
space, we propose to use reinforcement learning (RL) [70]
with function approximation. In our proposed framework, it
naturally favors lower cost solutions and can optimize the
exploration strategy based on previous experiences. In such
spaces, experience in one region may be useful in others, e.g.,
in periodic systems, actions in one domain should be identical
to actions in another, which further allows for easy transfer
of learning without explicit analysis of the model parameters
(see Sec. V C).

To this end, we frame the optimization problem as a
Markov decision process (MDP). The MDP is defined through
a state space, an action space, a transition function between
states given an action, and a reward function, which associates
a value to each state-action-state tuple. We detail all these
elements below. A learning agent, as the learning program
is called in RL terminology, explores the constraint space
with the goal to find the set of constraints C∗ ⊆ P ([n]) that
provides the best possible certificate within a limited com-
putational budget, while using the least amount of resources.
In algorithmic terms, we distinguish two main independent
parts:

(i) An environment that hosts the constraint space re-
stricted by the computational budget, as in Fig. 2. It also
contains a black box that takes a set of constraints C as input,
computes βC by solving the associated SdP [Eq. (8)] and
outputs a reward.

(ii) A learning agent that navigates the environment’s con-
straint space (i). At every point in the space, it inputs the
corresponding set of constraints C into the black box. The
agent can choose to strengthen or loosen the constraints, ef-
fectively exploring the constraint space with its actions. In
doing so, the agent obtains different rewards that guide it
towards finding the optimal relaxation. Note that the agent
is completely agnostic about the actual physical problem at
hand.

We aim to understand up to which extent such a fully
automated approach may help in studying physical systems.
In the following, we connect the MDP components to our
running example. See Fig. 3(a) for a schematic depiction.

State space. The state space corresponds to the constraint
space introduced in Sec. III, in which each state is a set of
constraints C ⊆ P ([n]) and it is bound by the computational
budget, as illustrated in Fig. 2. We represent the states by one-
hot encoding of the active constraints S ∈ C: considering a set
of 2n-dimensional canonical vectors with only a nonzero unit
element, each representing an element S ∈ P ([n]), a state vec-
tor is the sum of the vectors that encode the components S ∈
C. Equivalently, it identifies the set �C = {ρS}S∈C of RDMs
that enter as variables in Eq. (8). As shown in the leftmost
part of Fig. 3(a), the RDMs ρS are ordered according to their
dimension in the state vector. Out of the 2n possible variables,
we need only consider poly(n) of them, effectively reducing
the state vector size: we can ignore the 1-body constraints as
well as those ρS whose sole contribution to the cost of solving
the associated SdP would exceed the computational budget.
With a computational budget B, this leaves nO( log(B)) available
RDMs to construct the certificate. If no S ∈ C is such that
i ∈ S, the 1-body constraint corresponding to ρ{i} is added by
default. Therefore, the smallest set of constraints that we allow
for is C = {{0}, . . . , {n − 1}}, represented by a state vector of
zeros. We take it as the initial state of the MDP unless stated
otherwise.

Actions. An action a consists of either adding or removing
a constraint, driving the agent from one state to another. In
practice, actions flip bits in the state vector corresponding to
the encoded constraints. The agent is free to add a constraint
of any size, as long as the cost associated to the resulting set
is within the computational budget. For instance, the agent
can start by adding a 4-body constraint, e.g., ρ0123, to the
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initial state. In contrast, removing a constraint has a different
effect. In order to keep the state space exploration consis-
tent, removing a constraint splits it into its most immediate
components of a lower degree. For instance, in 1D, removing
ρ0123 would result in ρ012 and ρ123. Note that a valid action
always corresponds to an arrow (in both directions) in the
poset depicted in Fig. 2, remaining within the boundary (not
crossing the orange dashed line).

Transition function. The transition function is a simple
deterministic function implicitly defined above: T (C|a,C′) is
a Kronecker delta, attaining unit value if the constraint con-
figuration C is reached by adding or removing the constraint
specified by the action a from the set of constraints C′.

Reward. We define the reward function to match the overall
optimization goal, provided that the learning agent aims to
maximize the obtained reward. The reward associated to a
state C depends on: (1) the energy bound βC , obtained solving
its associated SdP [Eq. (8)], and (2) its computational cost.
In practice, we take the amount of free parameters in the
SdP, which we denote by p, as a representation of the com-
putational cost. Note that, in general, given an optimization
problem, we have no prior knowledge about the optimal β∗
and its cost p∗. Therefore, in order to compute the reward,
we rely on a set of references that are updated as the agent
explores. More precisely, we keep track of the best and worst
bounds obtained, βmax and βmin respectively, and the best
and worst set of parameters with which the best bound βmax

has been observed, denoted pbest and pworst respectively. We
compute the reward associated to a state by comparing its
corresponding β and p to the reference values,

R(β, p) = pbest

pworst
·
⎧⎨
⎩

pworst

p if β = βmax(
β−βmin

βmax−βmin

)d
otherwise,

(9)

where d is a fixed exponent that controls the shape of the line
(β − βmin)/(βmax − βmin). We introduce this exponent to pro-
vide better discrimination among the higher bounds, typically
d = 5. Notice that pworst � pbest and, therefore, pworst/p � 1.
Thus, the prefactor pbest/pworst � 1 ensures that R(β, p) ∈
[0, 1], ∀ β, p. Figure 3(b) shows a schematic of the reward
function. In summary, the reward function mainly focuses
on the resulting bound β, unless various states provide the
maximum possible bound βmax. In this case, those with higher
computational costs are penalized.

The agent. Within the proposed framework, we can per-
form the constraint optimization with various methods. As
mentioned before, we propose to use RL with function ap-
proximation. The learning program or agent specifies the
policy by which actions are taken with the ultimate goal
of maximizing the obtained reward. More precisely, we use
double deep Q learning [102–104] with an ε-greedy policy π .
At each state C, the agent estimates the Q values Qπ (C, a)
of each possible action a, a measure of the expected rewards
associated with taking each action and then following the
policy π . The ε-greedy policy dictates that actions are taken
according to

π (C) =
{

arg maxaQπ (C, a), with probability (1 − ε)

uniform random a, with probability ε.

(10)

Figure 3(a) shows a schematic representation of the whole
process. In Sec. V we show that such an approach leads
to the optimal relaxation faster compared to other classical
optimization methods and, sometimes, it is able to find it even
where the other methods fail.

V. GROUND-STATE ENERGY BOUNDS FOR THE
HEISENBERG XX MODEL

We apply the method described in the previous sections to
find lower bounds to the ground-state energy of quantum
local Hamiltonians. To illustrate the process, we focus on a
paradigmatic condensed matter model: the anti-ferromagnetic
1D quantum Heisenberg XX model [105], described by the
Hamiltonian

H =
n−1∑
i=0

Ji
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

) +
n−1∑
i=0

Biσ
z
i , (11)

where σα, α = x, y, z, are the Pauli matrices, Ji is the antifer-
romagnetic exchange interaction between spins, and Bi is the
strength of the external magnetic field. We consider periodic
boundary conditions, such that σα

n = σα
0 . In the homogeneous

case, i.e., Ji = J, Bi = B ∀i, the model presents a quantum
phase transition at B = 2J [106] between an antiferromag-
netic and a paramagnetic phase, in which the entanglement
vanishes [107–109], see also [110]. We will hence refer to
these phases as entangled and unentangled, respectively. Al-
though the 1D XX model Eq. (11) is efficiently solvable
via the Jordan-Wigner transformation [111], corresponding
to a quadratic fermionic Hamiltonian [112–114], the agent is
oblivious to such information. We emphasize that the points
in the search space have no semantics to the agent, which,
moreover, is not provided with any information about the
Hamiltonian in any explicit way. This guarantees that our
approach is as generally applicable as possible.

A. Optimal relaxations

Here, we present the results applying the RL method to
the homogeneous version of the aforementioned Hamiltonian.
For this case, we consider a computational budget that allows
for the allocation of up to half of all the possible 3-body con-
straints. With these conditions, we find the best approximation
to the ground state across the whole phase diagram of the
Hamiltonian.

Unentangled phase (B/J � 2). In the unentangled phase,
the ground state can be perfectly described by the set of
independent 1-body RDMs. Therefore, we would expect the
optimal set of constraints to be the minimum that the agent can
consider C = {{0}, . . . , {n − 1}}. Nevertheless, this is only
true in the extreme case of J = 0. In a general scenario, with
0 < 2J � B, the optimal set of constraints is made out of 2-
body RDMs, as shown in Fig. 4(d). This is to provide support
for the 2-body terms of the local Hamiltonian. Recall that, in
our implementation, whenever a term Hi of the Hamiltonian is
not supported by the set of RDMs �C = {ρS}S∈C , we take 〈Hi〉
to be its minimal eigenvalue min(σ (Hi )) = −J . With 2-body
constraints, the resulting RDMs are rank-1 projectors, which
correspond to pure states such that 〈Hi〉 = 0 for the 2-body
terms, thus yielding a better energy bound. Increasing the size
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FIG. 4. Illustrative representation of the optimal constraints C∗ that yield the best ground-state energy bound with minimal cost for the
homogeneous Heisenberg XX model in 1D [Eq. (11)]. Each color represents the support of an RDM (S ∈ C∗) and we impose compatibility
constraints over the overlapping areas. The results are obtained with a budget that allows for the allocation of up to half of the 3-body RDMs
and n = 6 spins (black circles). For this case, the RL algorithm finds four different optimal solutions across the phase diagram. Interestingly,
the entangled phase (B/J < 2) shows two intermediate solutions: (c) and (b), before the expected one (a) at B/J < 3/4.

of the constraints any further does not improve the energy
bound at all.

Entangled phase (B/J < 2). In the case of the entan-
gled ground state, its exact energy can only be obtained by
considering the system as a whole, corresponding to C =
{[n]}. Therefore, the agent can only provide the best pos-
sible approximation to the exact energy within the allowed
computational budget. Just like in the previous case, it may
seem reasonable to expect the optimal set of constraints to be
unique for the whole phase. Nevertheless, the agent finds three
separate regimes as depicted in Fig. 4:

(i) Close to the phase transition, the optimal relaxation
is obtained by alternating 2-body and 3-body constraints, as
shown in Fig. 4(c). The resulting certificate has a lower com-
putational cost than (a) and (b), but its energy bound is higher
than (a) and the same as (b).

(ii) In an intermediate regime, as shown in Fig. 4(b), the
best possible certificate is obtained combining the overlap of
some of the largest possible constraints with the inclusion of
smaller constraints. It has the same computational cost as (a)
but it provides a higher energy bound.

(iii) Deep into the phase, as shown in Fig. 4(a), the best
possible certificate is obtained by evenly distributing all the
largest possible constraints throughout the system. A priori,
we would expect this to be the optimal solution throughout
the whole phase.

In the entangled phase, the two intermediate optimal re-
laxations (b) and (c) provide better bounds than the set of
constraints (a) in Fig. 4, even with (c) being a significantly
stronger relaxation than the others. In fact, (c) yields the
exact same energy bound as (b) in the 1 � B/J < 2 regime,
as we show in Appendix C, and its therefore optimal due
to its significantly lower computational cost. Similarly, in
the entangled phase, they all yield the same bound and thus
the optimal is the simplest one, (d). This simple scenario
shows that evaluating the quality of a relaxation beforehand
is not a trivial task and it becomes even less straightforward
when considering arbitrary Hamiltonians and computational
budgets. Additionally, the given budget may also allow the
allocation of a few 4-body RDMs, which we take into account
in the optimization. However, the agent finds that it is better to

combine several 3-body and 2-body RDMs rather than using
a limited amount of 4-body ones.

Already in such a simple scenario, the agent is able to
find a rich set of intermediate solutions, which may, at first
glance, seem counterintuitive. The solutions are, nevertheless,
closely related to the actual entanglement structure of the
ground state of the system [108]. This shows that the agent is
able to capture physical properties of the system, even when
various possible solutions are very close in terms of cost and
quality.

In Fig. 4 we show the solution of a small system of
n = 6 sites for illustrative purposes. In larger systems, we
observe that the same optimal patterns remain consistent,
suggesting that the qualitative solutions obtained in small
systems can be used for larger ones with similar properties.
In Appendix C, we provide further details about the quality
of the obtained certificates throughout the phase space and
show that the optimal sets of constraints do remain optimal
across different system sizes. Furthermore, in Appendix D
we compare the resulting energy bounds with other state-
of-the-art techniques to lower bound quantum Hamiltonians.
We show that the proposed SdP formulation [Eq. (8)] pro-
vides a generic approach which includes some of the existing
methods as particular cases and, therefore, achieving equal or
better results by construction. Moreover, the main principles
of other works, such as enforcing symmetries [54], can also
be incorporated into our framework introducing by additional
constraints. Nonetheless, the presented approach does not rely
on such symmetric constraint, hence allowing us to tackle
Hamiltonians of arbitrary properties.

As a final remark, notice that the ground state of the
unentangled phase is a product state, meaning that the ex-
act solution lies within the budget with which the agent is
provided. In contrast, in the entangled one, the ground state
can only be exactly described by its full density matrix,
meaning that the exact solution falls outside of the compu-
tational budget. With the framework we here present, when
the agent is far from using the whole budget, it may be seen
as a strong indication that the provided result is exact. In
Appendix E, we discuss some of these particular cases of
interest.
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FIG. 5. Schematic representation of the inhomogeneous XX Hamiltonian (11) with its optimal set of constraints for the cases of n = 6, 7, 8
spins. The external magnetic field is fixed, Bi = 1 ∀i, and the interaction strength between spins, Ji = i mod 3, is represented by the intensity
of the black line: solid (Ji = 2), transparent (Ji = 1) and no line (Ji = 0). The support of the RDMs that constitute the optimal relaxation are
depicted in different colours, as in Fig. 4

B. Comparison with other optimization methods

As we briefly mention at the end of Sec. IV, the proposed
framework allows for the straightforward application of sev-
eral optimization algorithms besides RL. In this section, we
evaluate the quality of the RL results in comparison to two
informative points of reference: breadth first search (BFS)
[115] and Monte Carlo (MC) optimization [116].

For the comparison, we consider an inhomogeneous ver-
sion of the XX Heisenberg model from Eq. (11) in which we
keep a constant magnetic field Bi = 1 ∀i and tune the inter-
action strength Ji = i mod 3. This provides us with isolated
groups of three interacting sites. Note that, depending on the
system size, there may be exclusively triplets, triplets and an
isolated site or triplets and a pair, as we show in Fig. 5 for the
cases of n = 6, 7, and 8, respectively.

Such model allows us to determine the optimal set of
constraints beforehand while posing one of the hardest opti-
mization instances, as it is a unique point in the constraint
space. This way, we can compare the performance of the
different algorithms with respect to the optimal solution. As
performance metric, we compute the rewards, as in Eq. (9),
with full knowledge of βmax, βmin, pbest, pworst. This provides
a measure of distance/similarity to the optimal configuration,
obtaining reward 1 when reaching it.

Note that the algorithms have different ways to explore the
state space. Hence, in order to compare them in the fairest
way, we do not take into account repeated visits to the states.
Contrary to the BFS, both the RL and the MC agents can go
back and forth revisiting the same states. Given that the main
computational cost comes from solving the SdPs, we keep a
memory of the solutions obtained during the exploration, so
that revisiting a state implies a negligible computational cost.

Consequently, we evaluate the overall performance track-
ing the best obtained reward for every new visited state. In
Fig. 6, we depict the amount of new states visited by fifty
agents before they reach a reward of 0.95 on average. We
repeat the process for several system sizes, with which the
constraint space increases exponentially. We tune the hyper-
parameters for the RL and MC optimizations at a system size
of n = 10 and we keep them throughout the whole process
(see Appendix F).

First, we compare the agent performance with a budget
that allows the agents to allocate half of all the available
3-body constraints. We show the results in Fig. 6(a). For small
systems, there are no substantial differences in performance,
given that the state space is reduced. Already at n = 11, the
BFS is not able to find the optimal bound within a reasonable
time. While the MC optimization provides better results for
small systems, it is out performed by the RL agent at n = 16.
We hypothesize that, at this size, the overhead of learning is
overcome by the increasing complexity of the state space.

In order to test this hypothesis, we conduct the same
experiment with a larger computational budget that allows
the agents to allocate all the 3-body constraints. With this,
for the same system sizes, the agents encounter significantly
larger constraint spaces (see Appendix F 3). We show the
results in Fig. 6(b). In this case, the differences between the
MC and RL optimizations are relatively smaller for smaller
systems and the RL agents outperform the MC optimization
earlier on. This means that, for large state spaces, the learn-
ing cost involved in the RL optimization pays off, making
it better than following a simple MC heuristic. In addition,
unlike the RL, the MC shows a strong dependency on a
proper hyperparametrization, e.g., choosing an appropriate
inverse temperature, provided that, as soon as the parameters
are not optimised for the specific problem, the performance
is dramatically affected. Proper parameter tuning is, in it-
self, a computationally costly task, given the constraint-space
size. The RL scheme, being quite resilient to its hyper-
parametrization, provides a significant advantage in this sense,
allowing us to tune it in reduced systems.

C. Analysis with transfer learning across the phase space

An interesting feature of the proposed framework is that
none of its parts require prior information about the actual
problem. This suggests the possibility of exploring a given
constraint optimization problem and its underlying system in
a completely autonomous way. One way to take advantage
of this feature is by performing transfer learning (TL) [117].
In order to do so, we start by training an agent to solve a
system under the action of a Hamiltonian. Then, we leverage
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FIG. 6. Benchmark of the performance of the three optimization algorithms: Breadth first search (BFS), Monte Carlo (MC), and deep
reinforcement learning (RL). The algorithms are evaluated in two scenarios: allowing up to (a) half of all the 3-body constraints and (b) all the
3-body constraints. The dashed vertical lines indicate the system size beyond which the overlapping algorithm was unable to find the optimal
state in less than 4000 visited states.

the experience obtained by the agent in the initial task using it
as the initial condition to solve a new problem with a similar
Hamiltonian.

For this task, we consider an homogeneous version of the
Heisenberg XX model [Eq. (11)]. As we have seen, while this
Hamiltonian presents a unique quantum phase transition at
B/J = 2, it has four different optimal relaxations across the
phase diagram (see Sec. V A). We train an agent to find the
optimal constraints deep in one phase, with B/J = 5. Then,
we use the resulting trained agent to find the optimal relax-
ations for the rest of the phase space. In Fig. 7 we show the
ratio between the time it takes the algorithm to converge with
TL tT L and the time it takes with a cold start t0, i.e., starting
from scratch. Hence, with tT L/t0 < 1 there is favorable TL
and with tT L/t0 > 1 there is negative transfer. We obtain the
convergence time averaging the training results of fifty inde-
pendent agents, shown on the right panel of Fig. 7 (see also
[118]).

We observe that TL in the same phase is significantly
favorable. Indeed, for this particular problem, the optimal set
of constraints is the same across the whole phase, including
the critical point [cases (d) and (c) in Fig. 7, respectively].
When applied across phases, the advantage of TL dimin-

ishes sharply. Close to the phase transition [case (b)], there
appears a local minimum in which some agents get stuck
and, under the given conditions, it takes them hundreds of
training episodes to correct it. In this regime, the TL still
provides an advantage regarding convergence, although it
does not help avoiding the sub-optimal relaxation. Deep into
the opposite phase [case (a)], even though TL barely affects
the performance, as tT L/t0 � 1, it has a slightly negative
impact.

The vertical lines of Fig. 7 show the phase transition (solid)
and the intermediate points in which the optimal set of con-
straints changes (dashed). The results suggest that losing the
convergence advantage from TL can be indicative of changes
in the ground state of the system, such as phase transitions.
Hence, this approach can be used to infer properties of the
physical system in a completely autonomous way by exploit-
ing the failure of the method, such as in [119,120].

VI. ENTANGLEMENT WITNESSES FROM THE
HEISENBERG XX MODEL

Here, we show how to apply the presented framework in
the context of entanglement detection [121]. In particular,

FIG. 7. Transfer learning results for an ensemble of fifty independent agents. (Left) Convergence time ratio between transfer learning and
cold start as function of the parameter B/J [recall Eq. (11)]. The pretrained models are taken from B/J = 5 and they are used as starting point
in the optimization for different values of the parameter. The vertical lines indicate qualitative changes in the optimal solution, with the solid
line corresponding to the phase transition. (Right) Average reward obtained at the final state of an evaluation episode, performed after each
training episode, with transfer learning (TL) and cold start (CS).
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FIG. 8. Separability bounds obtained for the Heisenberg XX model.

we address the task of building energy-based entanglement
witnesses from local Hamiltonians [122,123], a paradigmatic
problem in quantum information processing. We illustrate
how our constraint optimization framework benefits from be-
ing agnostic to the problem it is solving, as we only need to
adapt the black box module that handles the SdP optimization
from Eq. (8). Once we have that, we can readily apply the
entire pipeline to the new problem.

A. Energy-based entanglement witnesses from local
Hamiltonians

Entanglement is a fundamental property of quantum me-
chanics and it plays a key role in quantum information
processing applications. However, characterizing or detecting
entanglement in experimental applications can be hard due
to the limited available information about the quantum state.
A way to detect entanglement is through entanglement wit-
nesses, which are observables whose expectation value can
certify whether the state measured is entangled.

We can construct entanglement witnesses by choosing the
observable to be the Hamiltonian itself. Let �E = 〈H〉 − Esep

be our witness, where 〈H〉 is the expected energy of our state

and Esep is the minimum energy of the Hamiltonian in the
set of separable states. This way, if �E < 0, the quantum
state lies outside of the separable set and, thus, it is entan-
gled. Note, however, that if �E � 0, the witness does not
decide.

To find Esep, we need to solve a global optimization task
of 〈H〉 over the set of separable states. The search can be
restricted to pure product states via a convex roof argument,
although that does not simplify the complexity of the op-
timization. Therefore, we need to enforce that the global
quantum state ρ is fully separable in Eq. (8). Nonethe-
less, even though the RDMs of a fully separable ρ are
also separable, deciding membership to the set of separable
quantum states is NP hard [30], even in simpler instances
[124–126].

We can relax this problem by considering the set of states
that are positive under partial transposition (PPT), which con-
tains the set of separable states. These states are easy to
characterize, as membership in the PPT set can be checked
efficiently. However, they include some entangled states, thus
being a relaxation of the set of separable states. Hence, we
can modify Eq. (8), including the PPT constraints, to yield a
lower bound on the separability bound of a local Hamiltonian
H ,

β
full−sep
C := min�C

∑
i〈Hi〉

s.t. ρS 	 0 ∀S ∈ C
ρ

A
S 	 0 ∀A ⊆ S

Tr[ρS] = 1
TrRc [ρS] = TrRc [ρS′ ] ∀R ⊆ S ∩ S′, S, S′ ∈ C,

(12)

where the superscript A indicates that the partial transposi-
tion (1Ac ⊗ TA) is applied to the elements of S = A ∪ Ac. Note
that this is a linear operation since it simply permutes elements
of ρS . Thus, any quantum state satisfying Tr[ρH] < β

full−sep
C

must contain some entanglement.
We can further tighten the optimization in Eq. (12) in

several directions. For instance, we can consider symmetric

extensions [26] to improve the approximation of the PPT
set to the separable set. In some cases, we can ask that the
bound detects a higher degree of entanglement, yielding a
k-producibility bound. In this direction, there have been pro-
posed device-independent witnesses of entanglement depth
[127,128], based on relaxations of the quantum marginal
problem via an SdP. In these cases, we can tighten the
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FIG. 9. Pictorial representation of the results obtained with a random Hamiltonian. (a) Representation of the random Hamiltonian
parameters. The line transparency and the circle radius respectively indicate the relative values of Ji and Bi. (b) Representation of the best
constraints found by the agents. Each color represent the support of an RDM considered in the relaxation, as in Fig. 4. (c) Histogram of the
terms contained in the best constraints of the top ten performing agents. The line transparency represents the term frequency normalized by
the maximum.

relaxation by imposing compatibility with larger quantum
states.

B. Optimal separability bounds

We start by considering an homogeneous version of the
Heisenberg XX model in 1D, as in Sec. V A. In this case, there
is an analytical expression for the separability bound, which
corresponds to the mean-field ground-state energy for nega-
tive J in cubic lattices [129]. We use this case as reference to
validate our results. With the RL method, we find that we can
recover the exact separability bound using exclusively 2-body
RDMs, as we show in Fig. 8(a). Notice that the separability
bound in the unentangled phase (B/J � 2) coincides with
the exact ground-state energy that we show in Appendix C
and Appendix D, proving that the ground state is, indeed,
separable.

Then, we consider an heterogeneous version of the
Hamiltonian in a graph with random parameters, Ji, Bi ∼
uniform[0, 1). In Fig. 9(a), we show a schematic represen-
tation of the system. Unlike in the homogeneous case, here,
there are no apparent properties of the system that we can
exploit to obtain an expression for the separability bound.
Furthermore, we cannot even devise a strategy to build an
efficient relaxation, as we do in Sec. V B.

We search for the optimal relaxation with fifty independent
RL agents with three different budgets: allowing seven, eight,
and nine 3-body constraints. We show the results in Fig. 8(b),
where we see that we reach a higher bounds with every addi-
tional 3-body RDM. However, as the constraint space grows,
it takes longer to reach the best configuration.

We depict the best obtained relaxation in Fig. 9(b), where
we can see that the agent has significantly favoured some
regions in detriment of others, e.g., using a 2-body RDM
in sites 3 and 7 despite having enough budget to span the
whole system with 3-body RDMs. To see this more clearly,
in Fig. 9(c), we represent the frequency with which each
connection in the graph appears in the best constraints found
by the top ten performing agents. This result highlights a few
clear key elements to obtain better bounds, even though some

of them may not seem relevant a priori given the Hamilto-
nian, such as the {2, 5} term, which has a weak interaction
with strong fields on both sites. Looking further into these
agents we found that the 3-body terms {0, 1, 2}, {2, 5, 8}, and
{3, 4, 5} are significantly overrepresented with respect to the
rest, as they span the regions with the strongest interactions in
the system.

VII. APPLICATION TO OTHER PROBLEMS

The framework we presented here applies to the meta-
problem of obtaining the best certificates given a computa-
tional budget by finding the most suitable convex relaxation.
Although we have focused on two applications centered in
lower-bounding energies of local Hamiltonians, our method-
ology can be directly applied to many other tasks. The only
requirement is to adapt the black box routine from Eq. (8) to
the new tasks, as we do in Sec. VI A, and appropriately map
the constraint space to the new problem. Once it is done, its
implementation to the new tasks is straightforward, provided
that the optimization framework is entirely agnostic to the
actual problem.

Convex sets arise naturally in quantum information in
many flavors. An efficient way to characterize them is through
linear witnesses. Among those, witnesses that can be easily
measured are clearly preferred. This property means, in prac-
tice, that they consist of an O(poly(n)) number of terms. An
important subclass of them is that in which these terms are
local; i.e., acting on O(1) parties at most. In Appendix G
we thoroughly discuss how to perform the SdP formaliza-
tion of some relevant problems in quantum information. In
Appendix G 1, we discuss how our approach can be used
to optimize outer approximations to the set of quantum cor-
relations, in Appendix G 2, we consider the more general
problem of finding better sum-of-squares representations of
multivariate polynomials and, in Appendix G 3, we discuss
how our method can be applied in problems that are amenable
to linear programming, such as finding outer approximations
to projections of the set of correlations that satisfy the no-
signalling principle.
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VIII. CONCLUSIONS

In this paper, we have introduced a novel approach to
construct optimal relaxations to obtain certificates of quantum
many-body properties. We have proposed a machine learning
approach, based on deep reinforcement learning, to find such
certificates given a finite computational budget. Throughout
this paper, we have showcased its properties in the context
of approximating the ground state energy and the separability
bounds of quantum local Hamiltonians.

With the proposed framework, an RL agent is able to find
the best possible certificate with the lowest computational
cost within the computational budget. We have studied the
validity of the method in the well-known Heisenberg XX
model, showing that the agent is able to correctly characterize
the ground state across the phase diagram without any kind
of information about the physical system at hand. Indeed, we
have shown how the certificates found by the agent change
according to the ground state, as the structure of the con-
straints that suffice for a good approximation correlates with
the system’s phase and the entanglement properties of the
ground state. Nonetheless, unravelling their precise relation
is a matter deserving future investigation.

Already in small systems, we observe that the agent can
capture the complexity of the system of study and go beyond
more trivial relaxations, even when these are close in terms
of the objective function. We have also shown that the agent
is able to solve the opposite case, in which simpler certifi-
cates provide better bounds than more complex ones. Besides,
we have shown that the qualitative relaxations obtained in
reduced systems can be generalized to larger ones, as these
remain consistent for any size. Hence, the constraint optimiza-
tion can be performed in a reduced version of the original
problem in order to minimize the computational workload.

Additionally, we have shown that the reinforcement
learning approach handles large optimization spaces rather
successfully, strongly outperforming other classical optimiza-
tion algorithms. Furthermore, we have shown how to take
advantage of transfer learning, positively impacting scala-
bility. Moreover, we have characterized its behavior to find
that it may be indicative of variations in the nature of the
ground state of the system of study, some of which due to
phase transitions. Hence, constituting an autonomous method
to explore the system’s phase diagram.

Finally, we have applied our framework in the context
of entanglement detection. We have shown that we can effi-
ciently recover the analytical solutions for simple cases and,
as a final result, we apply our method to the case of a random
Hamiltonian, to which there is no easy solution. Then, we pro-
vide the tools to generalize the framework to other common
tasks such as optimizing outer approximations to the set of
quantum correlations. Actually, the presented framework can
be readily extended to other tasks in quantum information that
are based on finding good outer approximations of convex sets
that are hard to describe.

As future work, it remains open the question of which
properties of the Hamiltonian have led to better bounds with
simpler certificates. Furthermore, transfer learning can be
used to analyze common patterns between different Hamilto-
nians. Besides, the architecture of the reinforcement learning

agent can be adapted to allow for the transfer learning between
problems of different sizes. As an additional step, it would
be interesting to study how introducing explicit information
about the Hamiltonian may affect the optimization process.
For instance, whether a RL agent can help in designing better
adiabatic schedules [130] or whether better certificates can be
built by combining RL following an adiabatic path.

IX. CODE AVAILABILITY

We provide the source code for the method proposed in
this paper as a Python library in Ref. [131], with tools and
extended explanations to reproduce the presented results and
to use the method in various scenarios beyond the ones we
consider throughout this paper.
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APPENDIX A: SDP-BASED CERTIFICATES

In this section we discuss the details on how a proof is
obtained via a semidefinite program (SdP). To this end, let
us recall the (primal) form of a SdP in canonical form

minX 〈C, X 〉
s.t. 〈Ai, X 〉 = bi

X 	 0.

(A1)

To each primal SdP one can associate a dual SdP, which is the
following optimization problem:

maxy yt b
C − ∑

i yiAi 	 0.
(A2)

Although the primal SdP Eq. (A1) and the dual SdP Eq. (A2)
are different optimization problems any two X and y that
satisfy their respective problem constraints obey the weak
duality relation

〈C, X 〉 � yt b. (A3)

This means that a feasible solution X of Eq. (A1) upper
bounds the value of the objective function of Eq. (A2) (in par-
ticular, its maximum value). Conversely, any feasible solution
y of Eq. (A2) lower bounds the value of the objective function
of Eq. (A1) (in particular, its minimum value). Therefore, one
can construct a mathematical proof for a bound E0 � β by
transforming the SdP into primal canonical form Eq. (A1),
constructing its dual problem and finding a dual feasible so-
lution of the latter Eq. (A2). In practice, this transformation
is taken care of automatically with SdP parsers such as cvx
[132,133] or yalmip [134] and an SdP solver (e.g., [98,135])
numerically finds the values of the optimal X and y of both
problems. Furthermore, Eq. (A3) typically becomes tight at
optimality of both Eq. (A1) and Eq. (A2) under reasonable
regularity conditions, such as strict feasibility [93].

APPENDIX B: PATHOLOGICAL CASES

It might appear that a more natural way to define Eq. (8)
would be as follows:

βC := min�C

∑
i〈Hi〉

s.t. ρS 	 0 ∀S ∈ C
Tr[ρS] = 1

TrRc [ρS] = TrRc [ρS′ ], where R = S ∩ S′, ∀S, S′ ∈ C.

(B1)

In other words, Eq. (B1) enforces that reduced states
are equal in every pairwise intersection of constraints. Both
Eq. (8) and Eq. (B1) yield valid certificates, but Eq. (B1) might
not implement all the compatibility conditions that one would
naively expect, in some pathological cases. Here we discuss
an example (see Fig. 10). Consider a system of 4 qubits in
a 1 − D geometry on a ring, i.e., with periodic boundary
conditions. Consider furthermore that our set of constraints
is C = {{0, 1, 2}, {1, 2, 3}, {2, 3, 0}, {3, 0, 1}}. Equation (B1)
would require that the SdP takes into account the variables
ρ0,1, ρ0,2, ρ0,3, ρ1,2, ρ1,3, and ρ2,3. These come from the 6
ways to choose 2 elements from a 4-element set, like C. Note,

FIG. 10. A pathological case for Eq. (B1).

however, that the SdP does not enforce conditions that one
would naturally expect, such as

ρ3 ≡ Tr2[ρ23] = Tr0[ρ03] = Tr1[ρ13].

In other words, the two-body reduced density matrices stem-
ming from Eq. (B1) do not need, a priori, to have compatible
supports in their intersections. This caveat is resolved in the
formulation of Eq. (8). In practice, however, pathological
cases such as the one depicted in Fig. 10 are quite rare.
For instance, the same scheme with a three-body constraint
centered at each site, but for a number of parties larger than 4
would automatically generate all the single-body terms.

APPENDIX C: OPTIMAL CONSTRAINTS ACROSS
SYSTEM SIZES

In Sec. V A we presented the result of applying the pro-
posed method to the XX Heisenberg model Eq. (11) with a
computational budget that allowed the agent to allocate up
to half of the 3-body constraints. Here, we explore in further
detail how the different sets depicted in Fig. 4 vary in energy
throughout the phase space. Moreover, we show that even for
bigger system sizes the same qualitative relaxations remain
optimal across the different sizes. In particular, we will study
systems of sizes n = 6, 12, 24, 36.
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FIG. 11. Energy bounds obtained for system sizes of n = 6, 12, 24, 36 with the sets of constraints that are optimal in some region of the
phase space. The labels (a), (b), (c), (d) refer to the qualitative relaxations of Fig. 4, followed by the number of triplets (T) and pairs (P)
constituting the RDMs and, in brackets, the cost associated to solving the associated SdP in terms of the number of free variables in the SdP.
The shaded background indicates the color of the set of constraints that is optimal within the range.

Let us first address what we mean by qualitative relaxations
and how these are generalized to different sizes. The optimal
sets of constraints shown in Fig. 4 can be seen as patterns of
reduced density matrices (RDMs) that span the system and
can therefore be reproduced at any size. This way, sets of
constraints made out of the same RDM pattern may constitute
the same qualitative relaxation. Let us describe these patterns
and provide some examples:

(a) Span the system with evenly distributed 3-body
RDMs.

(i) n = 6: C = {{0, 1, 2}, {2, 3, 4}, {4, 5, 0}},
C = {{1, 2, 3}, {3, 4, 5}, {5, 0, 1}},

(ii) n = 12: C = {{0, 1, 2}, {2, 3, 4}, {4, 5, 6},
{6, 7, 8}, {8, 9, 10}, {10, 11, 0}}.

(b) Span the system with 3-body RDMs, including an
additional 2-body RDM by overlapping two of the
3-body ones. This is the least straightforward pattern
to generalize, provided that it can either be interpreted
as having only one extra 2-body RDM, or including
some additional 2-body RDMs every few sites. We
have found that, for the considered system sizes, the
optimal set of constraints is found by including these
2-body RDMs every 6 sites, i.e., spanning the system
by repetition of the 6-body pattern.

(i) n = 6: C = {{0, 1, 2}, {2, 3, 4}, {3, 4, 5},
{5, 0}}, C = {{0, 1, 2}, {2, 3}, {3, 4, 5}, {4, 5, 0}},

(ii) n = 12: C = {{0, 1, 2}, {2, 3, 4}, {3, 4, 5},
{5, 6}, {6, 7, 8}, {8, 9, 10}, {9, 10, 11}, {11, 0}}.

(c) Span the system alternating 3-body and 2-body RDMs.
(i) n = 6: C = {{0, 1, 2}, {2, 3}, {3, 4, 5}, {5, 0}},

C = {{0, 1}, {1, 2, 3}, {3, 4}, {4, 5, 0}},
(ii) n = 12: C = {{0, 1, 2}, {2, 3}, {3, 4, 5},

{5, 6}, {6, 7, 8}, {8, 9}, {9, 10, 11}, {11, 0}}.
(d) Span the system with 2-body RDMs.

(i) n = 6: C = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5},
{5, 0}}, C = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 0}},

(ii) n = 12: C = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5},
{5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11},
{11, 0}}.

In Fig. 11 we show the energy bounds obtained by all
the sets of constraints that, at some point along the phase
diagram, are optimal. Indeed, we find that the optimal sets
of constraints at different system sizes represent the same
qualitative relaxations and the regimes under which these are
optimal are all the same. This suggests that a reduced version
of the original problem can be used in order to find the optimal
set of constraints, significantly reducing the computational
cost of the optimization.

Additionally, we see that the relaxation (c), in some regions
of the phase space, provides the same energy bound as (b)
and, even more, yields a better bound than (a), while being a
much simpler certificate that involves 20% less SdP variables
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FIG. 12. Comparison between the Anderson bound [45], the
method from [54] imposing TI symmetry and our SdP formulation
Eq. (8) to lower bound the ground state energy of the homogeneous
XX Heisenberg model Eq. (11). We consider 5-body RDMs for all
methods and three instances of our method with increasing overlap
between them. In the extreme case of B/J = 0, the Anderson bound
is equivalent to considering 1-body overlaps between the RDMs in
our method. On the other hand, the symmetry-based method yields a
bound between what we obtain with a 2-body and a 3-body overlap.
With increasing B/J , both methods are quickly outperformed by our
approach, even with the least possible overlap.

than (a) and (b). Overall, the relative behavior of each set of
constraints is the same across system sizes and they all con-
verge to the same value at B/J = 2, where the phase transition
happens.

APPENDIX D: LOWER BOUND METHODS

In this Appendix, we provide an overview of known tech-
niques specific for our case of study: obtaining lower energy
bounds to quantum Hamiltonians. Additionally, we compare
the performance of some of them with our method based
on semidefinite programming (SdP). Since the early 1950s,
with the introduction of Anderson’s method [45], several other
methods to lower bound the ground state energy of quantum
many-body Hamiltonians have been developed. Anderson’s
method corresponds to the triangle inequality Eq. (3): one
splits the local Hamiltonian into a sum of operators that act
on as many qubits as computational resources allow for ex-
act diagonalization. Then, one independently combines their
ground-state energies without imposing any kind of compati-
bility amongst the different ground states. Below, we briefly
survey some recent papers that improve upon this idea by
imposing restrictions onto the feasible set, e.g., in the form
of a symmetry [54], and compare their performance with our
proposed SdP formulation Eq. (8). The comparison results are
showcased in Fig. 12.

(i) Reference [46] proposes a slight generalization of
Anderson’s method, based on the following eigenvalue in-
equality: if f0 denotes the minimal eigenvalue of a linear
operator f acting on a finite-dimensional Hilbert space,
then ( f + g)0 � f0 + g0 for all f and g acting on a finite-
dimensional Hilbert space. By applying this principle to a
Hamiltonian H with translationally invariant symmetry, one
obtains H0 � mh0, where H is expressed as a sum of m terms
of the form h0 acting on different qubits. The h0 terms can be

viewed as fundamental cells of a tiling of a 1D or 2D lattice.
Hence, this procedure is equivalent to applying Anderson’s
method m times, with translational invariant (TI) symmetry as
an essential ingredient. Moreover, it can only produce solu-
tions with the same TI symmetry, by construction. In general,
optimal solutions of symmetric problems may not possess the
same symmetry as the original problem, but rather there will
be an orbit of solutions according to that symmetry, as we have
shown in Fig. 4 for a TI system.

(ii) Reference [50] proposes a method specifically de-
veloped for 1D quantum spin systems. It is based on
the Golden-Thompson inequality Tr[eA+B] � Tr[eAeB], with
which one divides the Hamiltonian H into two parts H =
A + B, for which the matrix exponentials can be easily calcu-
lated. In order to fulfill such condition, both the decomposition
in Eq. (6) from [50] and the following derivation rely on the
matrix-product-state-like structure given by the 1D geometry.
One may either group spins into larger-dimensional sites,
analogously to taking larger reduced density matrices (RDMs)
in our method, or group them differently in order to obtain
lower minimal eigenvalues locally, as the agent would do by
exploring the constraint space. Importantly, the contraction of
tensors necessary for the method in [50] can only be done
efficiently in 1D geometries or, more generally, in constant
treewidth graphs. Contrarily, the method we propose in Eq. (8)
is not bound to such restrictions.

(iii) Reference [136] proposes a moment method, de-
veloped in the same spirit to those of the NPA-hierarchy
discussed in Appendix G 1. One starts by defining a family
of Hermitian operators {Ok}1�k�L and considers any linear
combination of them Oα := ∑

k αkOk . Then, by construction,
Tr[O†

αOαρ] � 0 for any density matrix ρ and for any α ∈ CL,
but the converse is not necessarily true. One can construct
a moment matrix X with entries Xkl := 〈O†

kOl〉, which is
positive semidefinite by construction. Indeed, for any α ∈ CL

we have that α†Xα = Tr[O†
αOαρ] � 0. But that alone does

not guarantee that ρ is a valid density matrix. Therefore, the
following inequality holds:

min
ρ	0,Tr[ρ]=1

〈H, ρ〉 � min
X	0,〈Ai,X 〉=bi

〈H, ρ〉, (D1)

where the objective function in the right-hand side can be
expressed as a linear combination of the terms Xkl if the set
{Ok}k is sufficiently rich. Additionally, equality constraints
between the Xkl terms can be imposed as part of a SdP of
variable size, e.g., normalization. Here, the quality of the
solution highly depends on identifying meaningful operators
Ok (cf. Appendix G 1) and, as acknowledged by the authors in
[136], the choice of the set {Ok}k is not unique and the optimal
choice is not obvious, which further motivates our RL-based
approach.

(iv) Reference [54] considers a general symmetry onto
the system and its solution, which translates into a system
of equations involving the RDMs used to compute the en-
ergy. Positivity is imposed by the reparametrization of the
density matrices ρ = τ †τ/Tr[τ †τ ] and symmetry on the clus-
ters’ RDM is imposed manually. Then one must carry on
a numerical minimization on the resulting parameter space,
which is nonlinear due to the squaring of the trace. Moreover,
one must consider that the local minima found is a global
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minimum in order to obtain a certificate. In our case, the
certificate always follows from SdP’s weak duality (see Ap-
pendix A). The local minima problems, positivity constraints
and symmetry conditions in the RDMs challenges in [54]
could be easily circumvented via a SdP formulation in the
RDMs, although one would still be looking for a solution that
satisfies a given symmetry. Furthermore, symmetries can be
incorporated in SdP programs in natural ways, usually through
block-diagonalizations in the SdP variables induced by the
symmetries [137–139].

As we have discussed, most existing methods focus on
cases that intensively exploit properties such as TI symmetries
and/or 1D geometries. Remarkably, it is not clear how to
extend existing methods to cases that do not have these restric-
tions. The method proposed in Eq. (8) does not require either.
In order to provide a benchmark against existing methods, we
have focused on those that rely explicitly on the collection
of RDMs [45,54] rather than on moment methods [136], for
which we would need to change the agent’s black box in
order to give a fair comparison. Despite our method could
be further improved in efficiency by exploiting symmetries in
the problem [139], we have kept the general case and used a
symmetric problem for the benchmark.

We perform the comparison using the homogeneous ver-
sion of the XX Heisenberg model Eq. (11), with Ji = 1, Bi =
B, ∀i and we vary B. We take 5-body RDMs in all methods
and, in our approach, we control the compatibility constraints
with the amount of overlap between RDMs (more overlap
means more constraints). This way, we can choose from over-
lapping a single spin in consecutive RDMs up to four spins.
The resulting bounds are shown in Fig. 12, where we ob-
serve that, in the extreme case of no external field B = 0, the
Anderson bound is equivalent to a 1-body overlap relaxation
and the symmetry-based method lies between the 2-body and
3-body overlap ones. As B/J increases, our method quickly
outperforms the others, even with the simplest possible re-
laxation. Notice that we could still obtain an even higher
bound with 4-body overlaps. In agreement with what we see
in Fig. 11 from Appendix C, the bounds provided by our
method converge to the same value at B/J = 2, corresponding
to the phase transition, beyond which the result is the exact
ground state energy. Similarly, the symmetry-based method
and the Anderson bound eventually converge to the same
energy values, but well below the exact energy.

These results show that our SdP formulation Eq. (8) can
outperform the other approaches without making any assump-
tion about the symmetries of the system nor any ad hoc
parametrization, which makes it applicable to any problem.
Naturally, we can decrease our computational cost by im-
posing symmetries that are known beforehand as additional
constraints in the SdP besides the compatibility ones, which
allows for tighter bounds within the given computational bud-
get.

APPENDIX E: PARTICULAR CASES

Here we analyze some cases where the local Hamiltonian
Eq. (1) enjoys desirable properties that make a certificate
easier to obtain.

Frustration-free. If H is a frustration-free Hamiltonian, its
lowest energy eigenstate coincides with a lowest energy state
of each of the individual terms Hi. In other words, global
ground states correspond to local ground states. In this case,
let |ψ〉 be the ground state of H . It is also a ground state of
every Hi and it defines a set of RDMs ρi = Trsupp(Hi )c |ψ〉 〈ψ |.
Note that frustration-freeness guarantees that the contribu-
tion of each term equals its algebraic minimum Tr[ρiHi] =
min σ (Hi ). Hence, the minimal set of constraints C∅ [cf.
Eq. (4)] already reproduces the ground-state energy. On the
one hand, given a term Hi, there is no ρi that yields a smaller
value than min σ (Hi ). On the other hand, the set of RDMs that
correspond to the actual ground state satisfy this condition.
This implies that strengthening the constraints in Eq. (8) to
any C � C∅ will be of no effect in increasing βC .

A couple of comments are in order:
(i) Obtaining a set of constraints �C , which recovers an

exact lower bound βC = E0 does not automatically imply that
we can recover the ground state configuration, even if the
problem is fully classical. For instance, even if H corresponds
to a classical 3-SAT problem: H can be written in the com-
putational basis as a sum of projectors �i that act nontrivially
on 3 variables xi1 , xi2 and xi3 . Since �i 	 0 and there exists a
satisfiable instance, we obtain βC = 0 for any relaxation. By
inspecting the values of the ρi that the SdP Eq. (8) outputs, it
does not need to be the case that ρi is a rank-1 projector onto
the solution state |xi1 xi2 xi3〉 and thus directly interpretable as
part of the solution to 3 − SAT.

(ii) Frustration-free Hamiltonians constitute an impor-
tant class of models. The ground state of short-range,
gapped Hamiltonians can be well approximated by that of
a frustration-free Hamiltonian by increasing their locality to
be O( log(n)) [140]. Frustration-free Hamiltonians comprise
notable models, both commuting and anticommuting: On the
one hand, frustration-free, commuting models include the
toric code [141,142], Levin-Wen models [143] and quantum
error correcting codes [144]. Importantly, graph states [145]
or, more generally, stabilizer states such as the cluster state
[146] are included in this class. Graph states can be ap-
proximated as ground states of two-body Hamiltonians [147],
although it has been shown for spin-1/2 that this approxima-
tion cannot be made exact (ground states of frustration-free
2-local qubit Hamiltonians are unentangled [148,149]), even
if we drop the frustration-freeness condition [150,151]. On the
other hand, frustration-free, noncommuting models include
the Affleck-Kennedy-Lieb-Tasaki (AKLT) [152], Rokhsar-
Kivelson models [153,154] and parent Hamiltonians that are
defined from injective projected entangled-pair states (PEPS)
[78,155–158]. Sufficient conditions on when a Hamiltonian
must be frustration-free have been studied in [159].

Mutually commuting terms. If H is a sum of mutually com-
muting terms, its eigenstates correspond to eigenstates of each
of the Hi. Note, however, that the order of the eigenenergies
in H needs not correspond to the order of the eigenenergies
in Hi. For instance, changing Hi to −Hi reverses the order
of the eigenstates, but leaves commutativity untouched. The
simplest example of a commuting, nonfrustration-free Hamil-
tonian is to consider H = ∑

<i, j>∈E σ (i)
z ⊗ σ

( j)
z , where E are

the edges of a triangle. In this case, tightening the constraints
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in Eq. (8) helps in better capturing the frustration in the model,
thus improving βC , as a larger number of sites is considered.

APPENDIX F: OPTIMIZATION DETAILS

In this section, we provide a brief description of the opti-
mization methods with details about the specific parameters
we have used to obtain the results shown in Fig. 6. The im-
plementation details can also be found in the open repository
in Ref. [131] hosting the source code with extended explana-
tions. Furthermore, we show the scaling of the combinatorial
space over which the optimizations are carried over.

1. Reinforcement learning parameters

The RL optimization has several hyper-parameters that
dictate both the deep Q-network architecture [103] and the
learning procedure of the RL agent. Given that the size of the
state vectors depends on the size of the actual problem (see
Sec. IV), the RL agent must be adapted to each system size.
This way, we define many of the parameters as a function of
the system size n, the state vector size s, and the number of
possible actions a = s + 1, as the agent is allowed to remain
in the same state.

The agent architecture has three fully connected hidden
layers with a rectified linear unit (ReLU) activation function.
The input layer has size s, the first layer has size 3s, the second
layer has size 2a, the third layer has size 2a, and the output
layer has size a. This network is copied as a target network
for double Q learning [104].

The learning procedure is structured in learning episodes in
which the agent performs a trajectory through the state space,
always starting from the same initial state, as described at
the beginning of Sec. IV. Throughout the learning episodes,
the agent gathers experience in the form of State-Action-New
State-Reward tuples that are stored in a memory. At the end
of each episode, the agent replays a batch of steps from the
memory to learn.

We set an episode length of the order of the system size
n, modified according to the computational budget. For a low
budget, such as in Fig. 6(a) with half of the 3-body constraints
available, the episode length can be slightly lower than n, e.g.,
0.7n. In contrast, for a high budget, as in Fig. 6(b) with all
the 3-body constraints available, the episode length needs to
be slightly higher than n, e.g., 1.2n. This way, we guarantee
that the agent has enough time to allocate all the possible
constraints with some margin for errors. We set the batch size
for the experience replay to 20 episodes and the agent starts
learning once it has visited as many states as a fifth of the
batch size. We use a learning rate of 5 × 10−3 and we update
the target network every 5 episodes.

Finally, in order to enforce the agent to explore, we vary
the value of ε in the ε − greedy policy throughout the train-
ing process. We start with ε0 = 0.9 and we make it decay
exponentially after every training episode, labeled by e, such
that εe = max{0.1, δeε0} with δ ∈ (0, 1). In the benchmarking
from Fig. 6, we have taken δ = 0.5 for systems n � 7 and
δ = 0.95 for systems n > 7. In small systems, the constraint
space is reduced and the exploration is not needed, while a
proper exploration is critical in larger problems.

2. Baseline optimization methods

Here we describe the methods used to benchmark our
results: breadth first search (BFS) and Monte Carlo (MC)
optimization.

BFS does not have any hyperparameter. Starting from the
initial state, it builds a queue of states to visit by recursively
expanding each state. Expanding a state consists of append-
ing, at the end of the queue, all the possible states that can
be reached from it through valid actions. We have taken ran-
domized orders in the state expansion and we do not consider
states that have already been visited or that are already in the
queue.

The MC optimization has only one hyperparameter, that
is, the effective temperature T . The algorithm consists of
proposing random valid actions to go from one state to
another. Then, the movement is accepted or rejected de-
pending on the reward associated to the old and new
states, Rold, Rnew, with acceptance probability p(Rnew, Rold ) =
min{1, e(Rnew−Rold )/T }. We tune the effective temperature to
obtain a 50% acceptance ratio in a long, well converged,
optimization. The results from Fig. 6(a) are obtained with
T = 0.084 and the results from Fig. 6(b) with T = 0.097.

3. State space scaling

As we mention in the main text, we deal with a vast
combinatorial constraint space. Here, we study its scaling
with respect to the system size n in the 1D case considered
throughout Sec. V. In 1D, we have n constraints of each
size and we mainly consider two budgets that either allow to
allocate up to half of the 3-body constraints or all of them. As
we explain in Sec. IV, the 1-body constraints are implicitly
represented by the lack of active constraints in the state vector,
so we do not need to account for them. Additionally, even
though these budgets also allow the agent to allocate a few
4-body constraints, these add a few additional combinations
of, at most, O(n). Thus, we will not count them for the sake
of simplicity.

Hence, we effectively consider n 2-body constraints and
n 3-body constraints. For example, in the case of n = 4,
we consider all the possible combinations of the constraint
set {{0, 1}, {1, 2}, {2, 3}, {0, 3}, {0, 1, 2}, {1, 2, 3}, {0, 2, 3},
{0, 1, 3}}. The agent can activate any arbitrary number of
2-body constraints yielding a total of ξ2 = ∑n

j=0

(n
j

)
possible

combinations among them. Similarly, we can count the
possible combinations of 3-body constraints ξ3, although it
depends on the budget

ξ3 =
{∑n//2

k=0

(n
k

)
budget for half of the 3-body constraints∑n

k=0

(n
k

)
budget for all of the 3-body constraints,

(F1)

where n//2 denotes the integer half, e.g., 7//2 = 3.
Then, we must consider the possible combinations between

2-body and 3-body constraints. Depending on the over-
lap, every additional 3-body constraint can include between
one or two 2-body ones. For instance {{0, 1, 2}, {1, 2, 3}}
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contain {{0, 1}, {1, 2}, {2, 3}}, while {{0, 1, 2}, {0, 2, 3}} con-
tain {{0, 1}, {1, 2}, {2, 3}, {0, 3}}. Therefore, the amount of
possible combinations of 2- and 3-body constraints strongly
depends on the overlap between the 3-body ones. Hence,
we can build an upper and lower bound to the size of the
constraint space by considering that all states have maximum
and minimum overlaps.

Let us first consider only the cases in which the overlap
between 3-body constraints is minimum, which is the most
likely scenario in the lower budget and greatly simplifies the
calculation. For a case with k 3-body constraints, we have
ξ23 = ∑n−2k

j=0

(n−2k
j

)
possible 2-body constraint combinations.

This way, we obtain a lower bound for the size of the con-
straint space,

|C| =
⎧⎨
⎩

∑n//2
k=0

(n
k

) ∑n−2k
j=0

(n−2k
j

)
budget for half of the 3-body constraints∑n//2

k=0

(n
k

) ∑n−2k
j=0

(n−2k
j

) + ∑n
k=n//2+1

(n
k

)
budget for all of the 3-body constraints.

(F2)

For every possible combination of 3-body constraints ξ3, we consider all the possible 2-body combinations ξ23 considering
minimum overlap between the 3-body terms. The first term of the sum (k = 0) corresponds to ξ2. The additional term in the case
of the larger budget accounts for the possible combinations of 3-body constraints that do not leave room to fit any 2-body term.

Similarly, in the case with maximum overlap, we have ξ23 = ∑n−k−1
j=0

(n−k−1
j

)
possible 2-body combinations for k > 0 3-body

constraints. Thus, we can obtain an upper bound to the size of the constraint space,

|C| =
⎧⎨
⎩

∑n
j=0

(n
j

) + ∑n//2
k=1

(n
k

)∑n−k−1
j=0

(n−k−1
j

)
budget for half of the 3-body constraints

1 + ∑n
j=0

(n
j

) + ∑n−1
k=1

(n
k

)∑n−k−1
j=0 budget for all of the 3-body constraints.

(F3)

The first sum in the first line and second lines correspond to
xi2 for the case of k = 0 3-body constraints. In the second
line, the one is the state with all the possible constraints active
k = n.

In Sec. V B, we consider a problem with a unique optimal
relaxation. The agents need to find them in state spaces of
the order of 102 for n = 5 up to 107 for n = 16, posing an
increasingly harder problem. In Sec. VI B, the constraint space
we consider in the 2D case is of the order of up to 1011 for the
highest budget.

APPENDIX G: GENERALIZATIONS

In Sec. VII, we briefly mention the generalization of the
presented method to other common tasks in the field of quan-
tum information processing, beyond the two examples of
lower bounding the ground-state energy and the separability
bound of local Hamiltonians. We present, here, a nonexhaus-
tive set of examples explicitly showing how to implement the
black box routine from Eq. (8) to such tasks. This allows the
straightforward implementation of the RL framework, pro-
vided that it is entirely agnostic to the actual problem.

1. Outer approximations to the set of quantum correlations

The set of correlations that are produced by quantum me-
chanics is also a convex set [160]. A whole program aiming
at its characterization has obtained several operationally-
motivated characterizations of it [35–42]. Systematic methods
also yield relaxations, which can be made arbitrarily accurate
at a higher computational cost [27,43,44]. In this case, we note
we also have a poset structure that can be exploited to build a
similar constraint space.

Let us recall that the so-called Navascués-Pironio-Acín
(NPA) hierarchy [27] chooses a set of operators S =
{1, A0, B0, . . .} from which it builds a moment matrix  =
S†S. Nontrivial relationships among the entries of  are

imposed by the algebra generated by the elements of S:
commutation relations or identities such as A†

i Ai = 1 impose
linear constraints among the entries of . Then, given a Bell
inequality that can be formally represented as I = Tr[C], one
can find a lower bound to its value over the quantum set by
solving

βS
Q := min Tr[C]

s.t.  	 0
00 = 1

Tr[Ci] = 0 ,

(G1)

where C and Ci are real matrices, thus obtaining a quantum
Bell inequality of the form I � βS

Q. Note that C picks the
coefficients of I and the Ci enforces the conditions arising
from the operator algebra. For instance, if the Bell scenario
is such that the outcomes of the measurements are ±1 then
A2

k − 1 = 0. Then Ci picks the entries A2
k and 1 in  with

the appropriate coefficients, imposing the equality constraint.
Similarly, commutation relations such as [Ak, Bl ] = 0 are en-
forced in the same way.

In this case, the poset structure lies in the definition of the
set of operators S. The partial order relation � corresponds to
the inclusion order relation ⊆ between two different sets of
operators and the agent can perform actions in a similar way,
by adding and removing operators.

In analogy to Appendix E, some witnesses for the quantum
set admit a proof for a ver low operator degree in S. The
paradigmatic example is the CHSH Bell inequality [161],
which can be shown to be bounded by 2

√
2,

2
√

21 − (A0B0 + A0B1 + A1B0 − A1B1)

= 1√
2

1∑
i=0

(
Ai − B0 + (−1)iB1√

2

)†

×
(

Ai − B0 + (−1)iB1√
2

)
	 0. (G2)
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On the other hand, inequalities such as the so-called I3322

inequality [162] do not seem to admit a tight proof for their
quantum bound, even in the case that S contains operators
up to degree 5 [137,163]. Having simple certificates such
as those of the form of Eq. (G2) turns out to be extremely
convenient for proofs in device-independent quantum infor-
mation processing protocols, such as self-testing: When βS

Q
is tight, it means that the quantum state and measurements
yield exactly zero expectation value on all the sos terms
[cf. Eq. (G2)]. These equations then impose conditions that al-
low to characterize the states and/or measurements performed
to some extent, solely from their statistics [164–171].

2. Improving sum-of-squares representations
of non-negative polynomials

Semidefinite programming optimization is essentially
equivalent to finding sum-of-squares decompositions [93].
The latter arises naturally when trying to answer the following
question: Given a real polynomial in d variables, does it
take non-negative values for all points in Rd ? This is pre-
cisely Hilbert’s 17th problem [172]. On the one hand, it is
a trivial observation that every polynomial that admits a sum-
of-squares representation is non-negative by construction, and
the latter can be efficiently found via a SdP. Unfortunately, not
every non-negative polynomial admits a sum-of-squares de-
composition in terms of polynomials [173]. In fact, although
Hilbert’s problem was solved by Artin in 1927 [174], who
showed that every non-negative polynomial admits a sum-
of-squares representation in terms of rational functions, the
problem remains NP-hard. By controlling the degree of the
denominator in the rational function sos, one also obtains a
hierarchy.

Interestingly, non-negative polynomials also appear natu-
rally in physics and optimization. For instance, imagine one
wants to find the minimal energy of a classical local Hamilto-
nian. This task appears naturally in the verification of quantum
optimizers [175] or in the context of finding the classical
bound of a Bell inequality with few-body correlators [114].
In these cases, there are some geometric properties imprinted
in the cost function, which one would like that they persist in
the sos decomposition. However, such decompositions are not
unique in general. When the underlying graph that connects
variables that interact directly is chordal, the sparsity in the
objective function percolates to a sparse sos decomposition
[176–179]. However, in the case that the underlying graph has
a complicated chordal extension, it is significantly harder to
obtain good sos decompositions, since there is no systematic
method in this case, making the situation amenable to a RL
agent. It would be interesting to see to which extent a RL
agent recovers a perfect elimination ordering stemming from
a chordal graph and whether it can find effective strategies
when the graph is approximately chordal.

3. Optimization of nonlocality depth witnesses from few-body
Bell inequalities

Here we consider the following multipartite Bell scenario,
where n parties labeled from [n] are space-like separated and
each of them can perform m measurements each yielding

d possible outcomes. At the end of the experiment, parties
have collected enough statistics to estimate the conditional
probability distribution p(a|x), where x is an n-dimensional
vector denoting a collective choice of measurements and a
is also an n-dimensional vector labeling the corresponding
outcomes. Studying Bell nonlocality in such a multipar-
tite scenario easily turns into a highly complex task, even
from the point of view of designing or finding relevant Bell
inequalities [180–184]. Furthermore, in the multipartite sce-
nario, analogously to entanglement [121,123,127,128,185],
Bell nonlocality can come in many flavors, from fully local
models to bilocal models that are only falsified by genuinely
nonlocal correlations. In addition, the multipartite Bell sce-
nario poses the extra challenge of a consistent time ordering
in defining a partially local model, otherwise it could be
self-contradicting [186,187]. This caveat can be avoided by
defining a so-called k-local model, which is a mixture of
models of the form

p(a|x) =
∑

λ

p(λ)
L∏

i=1

p(aSi |xSi , λ), (G3)

where {Si}L
i=1 form a partition of [n] with |Si| � k, the

so-called response functions p(aSi |xSi , λ) satisfy the no-
signalling principle and aS , xS indicate that we select from a or
x, respectively, only those components whose index belongs
to S ⊆ [n]. By mixing models of the form Eq. (G3), one
constructs k-local models, in this case, under no-signalling
constraints.

In [188,189] a way to optimize Bell inequalities for
k-nonlocality depth was proposed for large system sizes,
leveraging on two factors that simplify the problem: designing
Bell inequalities that are (i) permutationally invariant and (ii)
composed of two-body correlators only. As can be inferred
from Eq. (G3), in order to construct these inequalities or
to find their k-local bound given one, one needs to know a
characterization, in terms of extremal points, of the projected
no-signalling polytope for |Si| parties in the relevant Bell
scenario. This way, one can construct the k-local polytope
[182,188,190]. Unfortunately, the polytope of nonsignalling
correlations admits an easy description only in terms of in-
equalities. In terms of vertices, the so-called PR-boxes [35],
it has been shown that finding all PR-boxes is equivalent to
finding all Bell inequalities [191]. Therefore, it seems that
such a daunting task [192,193] could benefit from a relaxation
approach, which we here describe: By allowing for a simpler
characterization of the projected no-signalling polytope, one
can hope to construct k-local models with less extremal points
to be considered.

Let us recall that the no-signalling principle states that the
probability distributions p(a|x), apart from satisfying the rela-
tions

∑
a p(a|x) = 1 for all x and p(a|x) � 0 for every a, x, as

does any mathematically sound probability distribution, they
also satisfy the so-called no-signalling principle, which reads

p(aS|xS ∪ xSc ) = p(aS|xS ∪ x′
Sc ),∀aS, xS, xSc , x′

Sc , S ⊆ [n]
(G4)

where we have split x into those components labeled in S, xS

and those in its complementary set, and p(aS|x) is defined as
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the marginal probability distribution

p(aS|x) =
∑

ai:i∈Sc

p(a|x). (G5)

Note that, operationally, the NS principle imposes that the
marginal probability distribution that a subset S of parties
observe does not depend on the inputs xSc received by the rest
of the parties during the experiment. Hence, the rest of the
parties cannot signal information to the parties in S by choos-
ing a particular set of inputs. Furthermore, the no-signalling
principle tells us that the quantities p(aS|xS ) are well defined.

We can now build the relaxation as follows: The pro-
jected no-signalling polytope, in terms of 2-body correlations,

is given in terms of the marginals p(aS|xS ), where |S| = 2
(we can take particular linear combinations of them to build
symmetric correlators). Each of the p(aS|xS ) stemmed from
a common p(a|x), but at a first relaxation level, this as-
sumption can be dropped. The relaxation hierarchy is then
built by imposing compatibility at larger and larger levels:
for instance, given S,W ⊆ [n], |S| = |W | = 2, |S ∩ W | = 1,
we can impose that there exists a no-signalling three-partite
p(aS∪W |xS∪W ) with appropriate marginals. From the set in-
clusion relation one recovers the same poset structure in
the constraint space. Since now the problem is linear, one
can build outer approximations to the projected no-signalling
polytope by means of a linear programming black box or,
equivalently, a diagonal SdP.
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[170] J. Kaniewski, I. Šupić, J. Tura, F. Baccari, A. Salavrakos,
and R. Augusiak, Maximal nonlocality from maximal en-
tanglement and mutually unbiased bases, and self-testing of
two-qutrit quantum systems, Quantum 3, 198 (2019).

[171] F. Baccari, R. Augusiak, I. Šupić, J. Tura, and A. Acín,
Scalable Bell Inequalities for Qubit Graph States and Robust
Self-Testing, Phys. Rev. Lett. 124, 020402(2020).

[172] D. Hilbert, Mathematical problems, Bull. Am. Math. 8, 437
(1902).

[173] T. S. Motzkin, The arithmetic-geometric inequality, in In-
equalities (Proc. Sympos. Wright-Patterson Air Force Base,
Ohio, 1965) (Academic Press, New York, 1967), pp. 205–224.

[174] E. Artin, Über die zerlegung definiter funktionen in quadrate,
Abh. Math. Semin. Univ. Hambg. 5, 100 (1927).

[175] F. Baccari, C. Gogolin, P. Wittek, and A. Acín, Verifying the
output of quantum optimizers with ground-state energy lower
bounds, Phys. Rev. Res. 2, 043163(2020).

[176] L. Vandenberghe and M. S. Andersen, Chordal graphs and
semidefinite optimization, Found. Trend. Optim. 1, 241
(2015).

[177] D. Cifuentes and P. A. Parrilo, Exploiting chordal structure
in polynomial ideals: A Röbner bases approach, SIAM J.
Discrete Math. 30, 1534 (2016).

[178] D. Cifuentes and P. A. Parrilo, Chordal networks of polyno-
mial ideals, SIAM J. Appl. Algebra Geometry 1, 73 (2017).

[179] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart,
and A. Wynn, Chordal decomposition in operator-splitting

013097-25

https://doi.org/10.1016/j.jpaa.2003.12.011
https://doi.org/10.1103/PhysRevB.73.085115
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1088/1367-2630/16/7/073013
https://doi.org/10.1090/conm/536/10552
https://doi.org/10.1103/PhysRevA.83.050301
https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/10.1103/PhysRevA.77.012301
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1016/j.aop.2005.01.006
https://doi.org/10.5555/2011
https://doi.org/10.5555/20169
https://doi.org/10.1007/s13163-019-00318-x
https://doi.org/10.1073/pnas.1519833113
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/BF02903286
https://doi.org/10.1103/PhysRevA.82.022116
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1103/PhysRevA.91.052111
https://doi.org/10.1038/ncomms15485
https://doi.org/10.1088/1367-2630/aad89b
https://doi.org/10.22331/q-2019-10-24-198
https://doi.org/10.1103/PhysRevLett.124.020402
https://doi.org/10.1090/S0002-9904-1902-00923-3
https://doi.org/10.1007/BF02952513
https://doi.org/10.1103/PhysRevResearch.2.043163
https://doi.org/10.1561/2400000006
https://doi.org/10.1137/151002666
https://doi.org/10.1137/16M106995X


BORJA REQUENA et al. PHYSICAL REVIEW RESEARCH 5, 013097 (2023)

methods for sparse semidefinite programs, Math. Program.
180, 489 (2020).

[180] R. F. Werner and M. M. Wolf, All-multipartite bell-correlation
inequalities for two dichotomic observables per site, Phys.
Rev. A 64, 032112(2001).
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