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Vortices are topological defects associated with superfluids and superconductors, which, when mobile, dis-
sipate energy destroying the dissipationless nature of the superfluid. The nature of this “quantum dissipation”
is rooted in the quantum physical nature of the problem, which has been the subject of an extensive literature.
However, this has mostly been focused on the measures applicable in weakly interacting systems wherein they
are tractable via conventional methods. Recently, it became possible to address such dynamical quantum thermal-
ization problems in very strongly interacting systems using the holographic duality discovered in string theory,
mapping the quantum problem on a gravitational problem in one higher dimension, having as benefit offering a
more general view on how dissipation emerges from such intricate quantum physical circumstances. We study
here the elementary problem of a single vortex in two space dimensions, set in motion by a sudden quench in
the background superflow formed in a finite-density Reissner-Nordstrom holographic superfluid. This reveals a
number of surprising outcomes addressing questions of principle. By fitting the trajectories unambiguously to
the Hall-Vinen-Iordanskii phenomenological equation of motion we find that these are characterized by a large
inertial mass at low temperature that, however, diminishes upon raising temperature. For a weak drive the drag
is found to increase when temperature is lowered, which reveals a simple shear drag associated with the viscous
metallic vortex cores, supplemented by a conventional normal fluid component at higher temperatures. For a
strong drive we discover a unique dynamical phenomenon: the core of the vortex deforms accompanied by a
large increase of the drag force.

DOI: 10.1103/PhysRevB.107.144511

I. INTRODUCTION

Macroscopic reality is characterized by dissipation, the
fact that work is converted into heat under the governance
of the second law of thermodynamics. In a recent era the
case has been fortified that this is a ramification of many-
body quantum physics. This is best expressed by the notion
of eigenstate thermalization, wherein the stochastic nature of
thermal physics is a corollary of the collapse of the wave
function. Upon attaining the expectation values, the principles
of irreversible thermodynamics emerge from the otherwise
unitary quantum dynamics [1]. In fact, this quantum thermal-
ization notion was already adapted earlier in the triumphant
account of the finite-temperature properties of the conven-
tional quantum liquids in the 1950s: the superfluids and
superconductors and Fermi liquids [2]. Considering that the
nature of the (zero-temperature) quantum states differs from
that encountered in normal (“molecular”) fluids, the thermal
behavior of the quantum fluids is accordingly modified. In
general, the computation of these properties is challenging
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owing to the hardships of nonequilibrium quantum many-
body physics. This classic development exploited the loop
hole that physically relevant cases behave similar to a dilute
gas that can be addressed using quantum kinetic Boltzmann
theory; that is, the Fermi liquid and its BCS superfluid
“derivative” as of relevance to 3He and conventional metals
and superconductors, as well as the weakly interacting Bose
gas described by Bogoliubov theory and physically realized in
the cold-atom laboratories.

A particular intricate affair in this context is the quantum
thermalization behind the dissipative dynamics of vortices,
which are the topological excitations of the superfluid. Their
free movement causes the superfluid to transform into a nor-
mal dissipative fluid. It was particularly scrutinized in the
context of “quantum turbulence” by strongly “stirring” the
superfluids formed from helium or cold atoms to turn them
into a nonequilibrium tangle of vortex lines. It was found that
their dynamical evolutions were reminiscent of hydrodynam-
ical turbulence [3–6].

A related context is found in the electrically charged
(gauged) superconductors realized in the electron systems of
condensed matter physics. Instead of the circulation of the
fluid, the magnetic flux is now quantized by the “fluxoid”
(or Abrikosov, Nielsen-Olesen vortex) topological effect with
a spatial extent set by the London penetration depth. These
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have been intensely studied in the context of the “vortex” (in
fact, fluxoid) fluids formed in external magnetic fields in con-
densed matter systems [7]. Although it is well established how
to encode this gauging holographically [8], we will here focus
entirely on a neutral (superfluid) holographic setup. However,
the specific properties as of central interest in this paper (the
inertial mass, dissipation) are not critically dependent on the
gauging and we will argue in the Conclusion section that
our results may be most relevant for such electronic, in fact,
high-Tc, superconductors.

In this context, there is a confusing semantic circumstance.
Holographic “superconductivity” started historically actually
with the neutral systems that were nevertheless called “holo-
graphic superconductivity.” To avoid any further confusion
of the kind, we will systematically call these holographic
superfluids instead in this paper.

The derivation of dissipative dynamical properties of
vortices from “first-principle” quantum thermalization is a
particularly challenging affair, which has been debated for
decades [9–17]. Inspired by the cold atoms, studies focused
on the Bogoliubov-Bose gas, wherein a certain degree of
consensus was reached. However, the concept of Iordanskii
force (the Magnus force exerted by the finite-temperature final
normal fluid component) remains unresolved [15,17].

Moreover, this mainstream effort remains limited to
“gaseous” circumstances, lacking methods to deal with
strongly interacting quantum systems [18,19]. However, re-
cent developments indicated that holographic duality, or
anti–de Sitter/conformal field theory (AdS/CFT) correspon-
dence, as discovered in the context of quantum gravity in the
string theory community [20–22], can be used as a highly
flexible and accurate tool to compute quantum thermalization
to handle strongly interacting circumstances that may be of
relevance to condensed matter systems [23–25].

This pertains to circumstances that are in a manner op-
posite to the conventional gas limit. It is by now well
understood that the quantum physics described by holog-
raphy is associated with extremely strongly coupled and
densely entangled forms of matter [26,27] that are character-
ized, for instance, by extremely rapid thermalization physics
[28]. Such a quantum system is, through holographic du-
ality, mapped on a classical gravitational physics in one
higher dimension that may be enumerated by solving the
Einstein equations revolving around black holes in the grav-
itational bulk encoding for the finite-temperature physics
[22,29]. A remarkable development is the “fluid-gravity dual-
ity” [30–32], where holography has been used to reconstruct
the hydrodynamical theory describing the finite-temperature
macroscopic physics of such strongly coupled quantum fluids.
This addressed intricate issues such as the structure of higher
gradient hydrodynamics and the radius of convergence of the
hydrodynamic expansion [33–35]. Moreover, a complete dis-
sipative hydrodynamic effective field theory at the boundary
can be successfully obtained by the holographic Keldysh-
Schwinger formalism near critical point, and has recently
been applied to holographic superfluid, which actually gives
a time-dependent Ginzburg-Landau theory near the critical
temperature [36–38].

Superfluidity is part of this agenda in the form of the holo-
graphic superfluids [39–41], as based on this, the two-fluid

phenomenology has been reconstructed in great detail [42,43]
and, recently, holographic superfluid (superconductivity) has
been shown to be accurately described by standard effective
picture [44,45]. However, under certain technical restrictions,
it is comparatively easier to study the dynamical time evolu-
tion of moving vortices, wherein their energy is transferred to
heat. This was already explored in pioneering works address-
ing superfluid turbulence in two dimensions (2D) [46–55]
and studies of the reconnection dynamics of vortex lines in
three dimensions (3D) using holography [56]. Here we will
focus on the most realistic holographic superfluid that can
be handled presently in this context: that is, the finite-density
Reissner-Nordstrom (RN) holographic superfluid.

This propagates the study of holographic vortices a step
further compared to this state of the art that revolves around
the “minimal” holographic superfluid [46–56] being only a
good proxy of physical systems at higher temperatures close
to Tc. The RN superfluid is characterized by its own pathol-
ogy, the underlying metallic state with its zero-temperature
entropy, e.g., [27]. In addition, considering the current com-
putational capabilities, it is still impossible to consider the
dynamical modification of the bulk geometry in the presence
of the moving vortex, which is the gravitational backreac-
tion [57,58]. However, this only becomes important at very
low temperatures and the RN superfluid offers a window
to study vortex dissipation of a sufficiently rich physical
toy model over a large range of temperatures, which may
not be necessarily associated with anything existing in the
laboratory.

We focused on the most elementary dynamical issues. Con-
sider a departure from a single-vortex “pancake” at rest in
the two-dimensional finite-temperature superfluid, to a sud-
den switch to a background superflow, and then to following
the trajectory of the vortex in space and time. These tra-
jectories contain all the information required to reconstruct
the effective Hall-Vinen-Iordanskii (HVI) phenomenological
equations of motion (EOM) [3,59]. We determine its dissi-
pative and reactive coefficients and compare these with the
standard Gross-Pitaevskii (GP) based analysis obtained using
the kinetic theory [60–63]. The earlier holographic studies
of vortex dynamics [46–48] were focused on the much more
complicated physics associated with the manner in which the
vortex tangles, that were not forced externally, evolved in
time. This study can be considered as the groundwork, con-
sidering the most elementary dynamical evolution, and thus
shedding light on the ingredients involved in the many-vortex
context.

We find the outcomes of our study of this holographic toy
model revealing in the regard that it offers an alter- native,
broader view on the factors governing vortex dissipation as
rooted in the microscopic physics. Within its limitations, it is a
highly disciplined affair, strictly obeying underlying physical
principles that are still computable given the power of holo-
graphic duality. This perspective, in certain crucial aspects,
differs from and is generalized on the established wisdoms of
the usual kinetic gas circumstances. In summary, these are as
follows:

(a) Is a vortex characterized by a finite inertial mass?
This question has caused considerable confusion and debate
in the past; however, the answer is exquisitely dependent
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on the underlying microscopy. The RN holographic vortex
offers in this regard a vivid illustration, capturing the two
extremes simultaneously. For well-understood reasons, in a
weakly coupled fermionic (BCS) superconductor, this mass
becomes infinitesimal; whereas, a long time ago, it was al-
ready understood that in a dense, strongly interacting boson
superfluid such as 4He, it is of order of the atom mass. Our
holographic superfluid evolved smoothly from the former to
the latter extremes through the simple lowering of temperature
from Tc (Sec. III), with the caveat that this mass was set by
the chemical potential dealing with the ultrarelativistic finite-
density matter of holography.

(b) According to the HVI EOM, the moving vortex dis-
sipates its energy via a drag coefficient. According to the
Bogoliubov theory this drag is nearly entirely caused by its
motion relative to the normal fluid component referring to the
two-fluid phenomenology. In contrast to the “empty” cores
of the bosonic vortices, the RN vortex cores are “filled” with
a “strange metal” fluid characterized by the famous minimal
viscosity. This is not different from the situation encountered
in metallic BCS superconductors. We find that its damping
was now dominated by a simple viscous shear drag associated
with the motion of this “droplet” of normal fluid in case
of a weak drive (Sec. IV A). However, employing a highly
sensitive holographic method revealing the origin of the total
energy dissipation we also identify a component that is like in
the boson case associated with the normal fluid (Sec. IV B).

(c) The vortex was set in motion by the Magnus force
exerted by the superfluid; however, there remains room for
such a force owing to the normal fluid component, that is, the
“Iordanskii” force. The status of this force has been subject of
considerable confusion even in case of the weakly interacting
bosons. It involves an influential claim that it should disappear
altogether. The Iordanskii force can be determined with a
high precision in our setup, and it was found to be finite and
characterized by a surprising temperature independence in the
small drive regime (Sec. IV C).

(d) Further, the flexibility of holography facilitated a
closer inspection into the strong nonequilibrium regime
wherein the strength of the drive was of order of the intrinsic
scales of the system. However, the question is what happens
with the vortex motion when the background superfluid starts
to approach the (Landau) critical velocity, when considering
the present setup. Here, an entertaining physics was obtained.
In the strongly coupled case, the internal structure of the
vortex was deforming in nature. It behaved similar to a speed-
ing boat, thus developing a “bow wave” at its front and a
“wake” at its back (Sec. V A). Consequently, a strong effect
was exerted on the drag, which increased by several orders of
magnitude in case of low temperatures (Sec. V B).

The remainder of this paper is organized as follows. To
render this presentation as self-contained as possible both for
the holographic and vortex communities, the various ingredi-
ents used were reviewed in Sec. II. In addition, a description
of our holographic setup including the HVI equation and the
Gross-Pitaevskii “industry standard” of the cold-atom com-
munity used as comparison have been presented. The bulk
of the paper as described in the above will then unfold, and
we finish with a concluding section putting our findings in a
broader perspective.

II. METHODOLOGY: HOLOGRAPHY,
GROSS-PITAEVSKII, AND THE

IORDANSKII-VINEN-HALL EQUATION
OF MOTION

This section presents the various computational and fitting
methods used in this study. This revolves in the first place
around the holographic description of vortex motion. The
setup used (minimal holographic superfluidity in the Reissner-
Nordstrom background) is a standard one, as is the manner
of numerically solving the dynamical bulk EOM’s employed
in this study. Thereafter, the Gross-Pitaevskii theory that was
used as a template familiar to the study of particularly cold
atoms as a comparison is summarized. This was used to com-
pare the behavior of the holographic vortices. Finally, this
section elucidates the effective equation of motion govern-
ing the dynamics of vortices: the HVI equation. Experts in
quantum turbulence will not find anything new in this part of
this section: this serves in first instance to render this expo-
sition to be self-contained also for the nonexperts in vortex
dynamics.

A. Reissner-Nordstrom holographic superfluidity

The discovery of holographic superconductivity in 2008
[39–41] was crucial in triggering the exploration of hologra-
phy in condensed matter physics. This began with the discov-
ery that the addition of a scalar to a simple Schwarzschild
anti–de Sitter bulk geometry encoding for a zero-density
finite-temperature boundary CFT violates the Breitenlohner-
Friedman (BF) stability bound upon lowering the temperature.
Consequently, the black hole acquires a scalar “hair,” which is
allowed by AdS asymptotes. A response occurs in the bound-
ary in the absence of a source, signaling the spontaneous
breaking of the U(1) symmetry in the boundary.

This triggered an extensive followup literature, exploring
and systematically improving on this “minimal” construction.
The first step was to depart from a finite-density normal
metallic state in its simplest incarnation, in the form of the
dual to the simple charged black hole with Einstein-Maxwell
gravity in the bulk. This was the “Reissner-Nordstrom” (RN)
strange metal. Its space-time metric in Eddington-Finkelstein
coordinates was ds2 = L

z2 [− f (z)dt2 − 2 dt dz + dx2
i ], where

f (z) = 1 + Q2(z/zh)4 − (1 + Q2)(z/zh)3 and z is the (extra)
radial dimension of the bulk. Further, Q = μzh

2 is the charac-
teristic parameter associated with the chemical potential μ and
the Hawking temperature is expressed as T = (3 − Q2)/4π ,
thus setting the temperature in the boundary [64–66]. The ex-
tremal case with Q2 = 3 was the dual to the zero-temperature
boundary, that has been intensely studied in the early era of
the condensed matter applications [23–25].

An attractive feature is that the boundary is of the
(quasi)local quantum criticality that appears to be observed in
the strange metals realized in cuprate high-Tc superconductors
[26,27]. However, it is also pathologically characterized by a
finite horizon area at an extremum, implying a temperature-
independent entropy for T/μ � 1 that is finite at zero
temperature. Similar to all holographic fluids, its macroscopic
behavior at finite temperature is governed by hydrodynamics
characterized by the “minimal viscosity” η = 1/(4π )(h̄/kB)s
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where s is the entropy density. It becomes temperature inde-
pendent as well at low temperature. A crucial aspect is that
such a fluid resides inside the vortex cores formed in this
finite-density holographic superfluid.

To realize such a boundary condensate, a complex scalar
field � is added to the bulk Einstein-Maxwell action, which
is expressed as

S = 1

16πGN

∫
d4x

√−g[LEH − Lmatter] (1)

LEH = R + 6/L2, (2)

Lmatter = 1

4
FμνFμν + |∂μ� − iqAμ�|2 + V (|�|2), (3)

where LEH = R + 6/L2 is the Einstein-Hilbert action with
cosmological constant 6/L2 wiring in the asymptotic AdS
geometry. Further, Fμν is the Maxwell field strength with
vector potential Aμ, that is coupled minimally to the scalar
involving the charge q. Pending the form of the potential
V , when the temperature is lowered, the BF bound of the
scalar may be violated such that the hair emerges; according
to the dictionary, the complex scalar field �(r, z) is dual to
a complex scalar operator ψ (r) representing the superfluid
order parameter on the boundary. Here, the boundary has two
spatial dimensions x and y, plus dimension in the holographic
direction to make up the space of the bulk.

The bulk field forms asymptotes near the boundary as
� = φz + ψz2 + O(z3) whereas the gauge field AM (r, z) is
dual to a conserved U(1) current, forms asymptotes such
as Aμ = aμ + bμz + O(z2). In the presence of the hair, in
case of ψ (r), a response in the absence of a source φ(r)
was observed. This signals the condensation of the complex
scalar. In the superfluid regime ax = ay = 0 were set as the
Dirichlet boundary conditions for Ax and Ay at z = 0 [67].
It is well established that this reconstructs impeccably the
phenomenology of the superfluid state, including the Landau
order-parameter theory but also the two-fluid phenomenology
on the linear response level.

Close to the transition temperature the geometry con- tin-
ues to be the RN-AdS one in the presence of the hair, but upon
lowering temperature it starts to backreact on this geometry.
At zero temperature the horizon disappears completely, and
depending upon the details of the scalar potential and the
charge q, various other geometries may be realized [68,69].
However, handling of the nonstationary and inhomogeneous
vortices remains technically impossible owing to difficulties
in keeping track of this gravitational backreaction and we are
forced to ignore it.

Technically, this can be rigorously imposed by considering
the large-q limit that suppresses the backreaction. However,
these backreaction effects become important for large q only
at the lowest temperatures that we will avoid. Another as-
pect is that generically holographic superfluid reconstructs
the Landau-Tisza two-fluid hydrodynamical phenomenology,
characterized by a normal fluid component in addition to the
superfluid with a density ρn(T ) that decreases with reduction
in temperature. When ignoring the backreaction, the normal
fluid behaves as though it is pinned (motionless), acting as a
perfect heat bath.

FIG. 1. Order-parameter evolution as a function of temperature,
characterizing the “minimal” Reissner-Nordstrom holographic su-
perfluid while ignoring the gravitational backreaction. Close to the
critical temperature, it shows the characteristic ∼(1 − T/Tc )β with
critical exponent β = 1

2 , the behavior associated with the Landau
mean field.

This study expressed the potential V considering the “min-
imal” form V (|�|2) = m2|�|2 with m2 = −2. The outcome
for the temperature evolution of the boundary order for this
potential was in the form shown in Fig. 1. As we already
stressed it encodes for the two-fluid phenomenology, while
the normal fluid density ρn ∼ T 1.26 [70] is well below Tc.

Vortices are the ubiquitous topological excitations of a
complex scalar order parameter and these were thoroughly
explored in holographic superconductivity and superfluidity
[67,71–78]. A crucial property is that their cores “punch a
hole” in the scalar hair, which exposes the black-hole horizon;
that is, holographic vortices are characterized by a “strange”
metallic core that is dissipative. This core dissipation was
identified as a crucial factor by Chesler et al. [46]. It was
claimed that it was the reversal of the “inverted cascade” of 2D
hydrodynamical turbulence when entering the superfluid state.
These “metallic cores” will be focused upon in the remainder
of this study.

Holographic superconductivity is associated with pairing
as a BCS superconductor. A property of this particular setup
is that it converts at a low temperature in a “strongly cou-
pled” superconductor similar to a BCS-BEC crossover, that
is, the coherence length (“pair size”) shrinks to microscopic
dimensions and at low temperature it can be considered as
a dense, strongly interacting “local pair” bosonic system
(like 4He) [23,27,79,80]. This can be illustrated by the tem-
perature evolution of static vortices. Their core size is set
by the coherence length and Fig. 2 shows the computed
outcome.

It conformed to the expectations of Landau mean field
implying that ξ ∼ (1 − T/Tc)−1/2. However, the microscopic
cutoff length was set by ξ = 4/μ and it was observed that
at low temperatures it saturated at this value. This is con-
sistent with the gap � to Tc ratio being 2�/Tc ∼ 8.4 and
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FIG. 2. Radius of the core of the static vortex corresponding with
the coherence length in units of 1/μ as a function of temperature
for the minimal RN holographic superfluid. The red circles are the
numerical results and the black line is the fitted curve that is precisely
obtained according to the Landau mean-field expectation. Notice
that at low temperature this indicates a strongly coupled “local pair”
similar to a superconductor as ξ → 4/μ.

was much larger than the weak coupling BCS value ∼3.4,
while Tc � μ/4. The chemical potential exhibited a similar
role here as the Fermi energy [27] indicating that the pair-
ing scale was of the order of the Fermi-degeneracy scale.
However, upon raising temperature, ξ increases, and close
to Tc it becomes like a weakly coupled BCS supercon-
ductor. We will find that this reflects in a very interesting
manner in the temperature dependence of the vortex inertial
mass (Sec. III).

Upon ignoring the backreaction, full nonequilibrium, dy-
namical evolution of the vortex system in the boundary can
be easily tracked by numerically solving the remaining equa-
tions of motion in the bulk system. The bulk equilibrium
geometry EOM of the bulk gauge and scalar fields can be
written as

dνFμν = Jμ = iq(�Dμ� − �Dμ�),

DμDμ� − m2� = 0. (4)

Upon imposing the holographic periodic boundary con-
ditions, these can be solved numerically. Mainly, high-order
Runga-Kutta methods following Ref. [46] were employed,
the Chebyshev method is used in the z direction and the
Fourier method in the x, y direction when dealing with the
boundary conditions. This has proven to be considerably
powerful, even capable of handling significantly complex
situations such as tracking the quantum turbulence evolu-
tion of an initially dense vortex tangle that is annealing
away as function of time. Here, a single two- (space-)

dimensional “vortex pancake” was focused upon. We pre-
pared the initial static vortex structure using the super-
position phase method, wherein a phase factor exp(iφ) =
exp(i arctan[(y − yi )/(x − xi )]) was multiplied with the global
bulk scalar field �(z) = ψ (z)eiφ to evolve it over time, and
finally annealing into a stationary vortex [81]. Subsequently,
an otherwise homogeneous superflow was imposed on the
boundary by assigning a finite value to the bulk ay field that
was dual to the supercurrent, to track the time evolution of the
system.

B. Reference: The Gross-Pitaevskii equation of the cold atoms

In particular, when dealing with the weakly interacting
Bose-Einstein gas realized in cold-atom systems, there ap-
pears to be a community consensus that the nonequilibrium
time evolutions, such as our vortex-acceleration setup, are
governed by the effective Gross-Pitaevskii (GP) equation of
motion [18,19,62,63,82–84]. Thus, this study attempted to
reproduce the expectations of the motion of such vortex ac-
cording to this consensus in the particular dynamical setting
considered. This was implemented for comparison purposes.

The GP equation describes damped motion associated with
a relaxing Landau order parameter. Departing from the order-
parameter (ψ) free energy of form −μ|ψ |2 + g|ψ |4 where
μ ∼ (1 − T/Tc)1/2, the EOM is postulated to be

(i − γ )h̄∂tψ (r, t )

=
[

− h̄2

2m
∇2 + g|ψ (r, t )|2 − μ − u · p

]
ψ (r, t ). (5)

Here γ is a phenomenally dissipative parameter, u · p is the
external flow term, where u the velocity [82].

The crucial assertion that is not self-evident is that the
dissipation can be captured by a simple dissipative parameter
γ damping the order parameter. A substantial literature has
evolved, aimed at determining this parameter based on mi-
croscopics, while considering the quantum kinetic gas theory.
This is then associated with the particle exchange with the
normal fluid that acts as a heat bath and it was found that
γ = 6a2

πq2 kBT [18,19,63,84], where a is the s-wave scattering
length of the atoms and q is a time-independent variational
parameter.

In addition, the temperature evolution of the superfluid
density is required as an input in our setup. However, this is
easy considering the Landau mean-field theory underneath,
such that the superfluid density ρs = |ψ |2 = μ/(2g). The
highest dissipation parameter that can be achieved was se-
lected as the critical temperature. Through comparisons of
different temperatures, this study obtained the parameters of
the HVI equation through the vortex motion. The outcomes
for the dissipative parameters governing the vortex motion
(HVI equation) are shown in Fig. 6 and these are usually
interpreted as reflecting the temperature dependence of the
normal fluid density that is responsible for the damping of the
vortex motion in the weakly interacting boson gas.

The GP dynamical system was studied following a similar
methodology as in case of the holographic system. The super-
position phase method was used to generate a single-vortex
pancake to then quench an external background superflow
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u · p = u · (−ih̄∇). Subsequently, the system was integrated
as a function of time.

C. Forcing a vortex: The parameters of the
Hall-Vinen-Iordanskii (HVI) equation

A vortex in isolation is characterized by a conserved topo-
logical charge and it behaves similar to a particle in two
dimensions, or a string in three dimensions. The question of
the manner in which such an object reacts to external and
internal forces is therefore well defined. Based on general
considerations Hall, Vinen, and Iordanskii [3,59] reported a
generic equation of motion.

In three dimensions, vortices form lines, and for every
line element a normal velocity component is defined. For
simplicity, this study specialized to two dimensions, where the
vortex was simply a “particle” moving with a velocity vL. The
physics being considered employed of the same principle in
case of 2D and 3D.

This HVI equation is highly phenomenological although
quite general. In fact, it appears that the only crucial assump-
tion for its validity is that the moving vortex behaves as a rigid
object lacking internal degrees of freedom. Section (10) shows
that according to holography, there exists a transient regime
that opens up at strong drives even when this was not the case
and the vortex was actually deforming. However, it was also
found that at the short times where the vortex began to ac-
celerate (Sec. III) and the longer time drag dominated steady
flow regime (Fig. 8, Sec. V B) this HVI equation could ac-
curately fit the computed trajectories even under these strong
nonequilibrium circumstances.

The point of departure of the HVI equation is the two-fluid
phenomenology: the vortex coexists and interacts both with
the superfluid and the normal fluid components characterized
by their velocities vs and vn and temperature-dependent den-
sities ρs and ρn, respectively. In principle, the dissipationless
superflow exerts a purely reactive Magnus force F(S) on the
vortex. This is proportional to the difference vL − vs, with
a magnitude set by the quantum of circulation k = ẑh/m
(in nonrelativistic units) and the superfluid density ρs. How-
ever, the normal component may also exert such a Magnus
force with a strength set by the unknown coefficient D′ (the
“Iordanskii force”). In addition, there should be a dissipative
drag force that is only proportional to the velocity differ-
ence vn − vL and a strength set by the coefficient D. Finally,
the vortex may have an inertial mass Mv and combining these
aspects results in the HVI equation of motion for the vortex
particle,

Mv

dvL

dt
= F(S) + F(N ),

F(S) = ρs(vs − vL ) × k,

F(N ) = −D′(vn − vL ) × k + D(vn − vL ). (6)

This equation has been subjected to intense experimental and
theoretical study as it was reported a long time ago; for exam-
ple, see Refs. [14–16,83,85–91].

As a simplifying circumstance, both in GP and the holo-
graphic case the normal fluid is by construction always at a
standstill. This implies that vn = 0. Consequently, the EOM
is further simplified into a form that was used to fit the vortex

trajectories:

Mv

dvL

dt
= F(S) + F(N ),

F(S) = ρs(vs − vL ) × k,

F(N ) = D′vL × k − DvL. (7)

Our study is unique with regard to employing a minimal
dynamical protocol. We depart from a single-vortex pancake
annealed to equilibrium. At time t = 0, the background su-
perfluid was made to flow with a velocity vs in the y direction.
According to the F (S) term, this superflow exerted a “side-
wise” Magnus force on the vortex; and assuming its inertial
mass was finite it began to accelerate in the x direction. This
motion was damped by the drag ∼D and at long times the
vortex entered a stationary flow regime. Consequently, the
HVI equations were converted to those for EOM, for the x
and y components of the vortex velocity,

Mv

dvLx

dt
= ρskvs − (ρs − D′)kvLy − DvLx,

Mv

dvLy

dt
= (ρs − D′)kvLx − DvLy. (8)

This particular “current quench” setup employed in this
study was convenient for the extraction of the parameters from
the actual trajectories that were numerically computed. The
next section focuses on the determination of the inertial mass
in the short time regime. Departing from vL = 0, the initial
trajectory will merely reflect the accelerating vortex in the x
direction where the Magnus force is exerted according to

Mv

dvLx

dt
= max = ρskvs. (9)

However, in the drag-dominated stationary regime at long
times, D and D′ can be directly deduced from the “terminal” x
and y velocity components of the vortex according to Eqs. (15)
and (16).

III. SHORT TIME REGIME AND THE VORTEX MASS

Let us now turn to the results of our holographic sim-
ulations, contrasting them with the community-standard GP
results. Once again, using the kinetic equation (4), at
t = 0 a superflow was switched on in the y direction char-
acterized by a velocity vs. As inferred previously, this exerted
a Magnus force on the vortex and the nonequilibrium realms
were entered into. However, this implies yet another control
parameter: the degree of nonequilibrium, which is dependent
on the magnitude of vs. However, the question is the manner
in which this influence can be normalized.

The relevant quantity is the Landau-Tisza critical velocity.
For an increasing superflow the superfluid order parameter
decreases to diminish completely at the critical velocity vc,
where the system turns normal. It is well known how to deter-
mine this for holographic superfluid [41]: the critical velocity
of the homogeneous case is determined by the point where
the order parameter disappears, and the outcome is shown
in Fig. 3. This shows a reasonable behavior that is similar
as to what is found in conventional superfluids: the critical
velocity tracks the order parameter to a degree, vanishing at Tc
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FIG. 3. Plot of the critical velocity vc of the holographic super-
fluid versus temperature. Near the critical temperature, it satisfies
the mean-field relation vc ∼ (1 − T/Tc )2/3. Away from the critical
regime near Tc, it crosses over to ∼(1 − T/Tc ) upon lowering tem-
perature, to saturate at ∼40% of the natural velocity scale set by μ.

to increase in a mean-field fashion as in experiment according
to vc ∼ (1 − T/Tc)2/3 [92]. Upon further lowering of temper-
ature it crossed over to a linear rise to reach a maximum at
T = 0 [93].

The magnitude of the drive with regard to where the real
nonequilibrium phenomena are expected to appear is therefore
associated with the ratio vs/vc. When this ratio is very small
the “near-equilibrium” regime will be explored, which is the
subject of this section. However, when the ratio becomes
“of order unity,” strong nonequilibrium effects that appear as
highlighted in Sec. V should be considered. Moreover, these
realms can always be entered into when close to Tc. This is
because vc → 0. However, as a helpful circumstance, it was
found that according to our holographic setup, such genuine
dynamical phenomena require low temperature (explained
later).

As a reminder, according to the EOM (7) a typical tra-
jectory appears as follows. The Magnus force encoded by
F(S) will yield a force in the orthogonal x direction of the
form FM = ρsvsy × k that will accelerate the vortex according
to Mv

dvLx
dt = FM . At later times, the forces encoded by F(N )

will take over, both modifying the overall Magnus force and
compensating for the drag. The vortex “pancake” is similar to
a particle subjected to an external force and when its inertial
mass is finite, it can be deduced from the short time trajectory
according to Eq. (9).

A typical outcome is shown for the trajectories in Fig. 4.
In the GP case (right panel), it is a straight line; however,
this is of course expected. It is assumed at the onset that
the vortex is devoid of inertial mass and the acceleration to
the terminal velocity is instantaneous. This may appear to

FIG. 4. The trajectory of vortex motion in the x direction per-
pendicular to the external superflow in the y direction with a velocity
vs/μ = 0.0025. In the left panel the holographic result is shown for
T = 0.5Tc (black dots) as well as the fit to the HVI equation of
motion (red line); the curvature signals the finiteness of the iner-
tial mass of the vortex. The right figure shows the result for the
Gross-Pitaevskii model with dissipation rate γ = 0.2 showing the
instantaneous acceleration associated with the vanishing mass hard
wired in this construction.

be unphysical; however, this is the actual mechanism in the
“gaseous” weakly coupled (BCS, Bogoliubov) systems where
vortices are extremely light. In contrast, an excellent fit of
the trajectory was obtained using the HVI equation for the
holographic case. It can be discerned from the figure that a
curvature of the trajectory at short times x ∼ t2 signaled a
finite inertial mass that also affected the trajectory at longer
times in a manner consistent with a finite-mass Iordanskii
equation.

To determine this mass in absolute units, the manner in
which the various quantities are defined when dealing with the
(ultra)relativistic must be inspected, with zero rest mass mat-
ter determining the UV of the holographic system. According
to Eq. (9), its mass follows from the initial time evolution as
Mv = k ρsvs

ax
, where k is the quantized circulation of the vortex

superflow. In a system characterized by a mass m, the quantum
of circulation is universally set by k = ẑh/m; however, the
remains with regard to what can be considered for k, when the
rest mass m is zero. In this finite-density holographic system,
the only scale is the chemical potential.

The quantum of circulation is of course also a universal
topological number in this relativistic fluid, and it can be
deduced as follows. In the nonrelativistic setting, k = h/m is
rooted in the dimensional factor transforming the gradient of
the phase into velocity vφ = h̄

m ∇φ:∮
l dvφ = h̄

m

∮
dl ∇φ = 2π h̄

m
n = h

m
n. (10)

The phase velocity of our holographic superfluid has been de-
termined by Herzog and Yarom [42,43] in their computation
of fourth sound,

v2
φ = ρs

μ
∂ρs

∂μ

c2. (11)
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FIG. 5. Red full line: the inertial mass of the holographic vortex
in units of the chemical potential μ (see the main text) as function
of temperature, determined by fitting its trajectories to the HVI
equation as in Fig. 4. The comparison with the Baym-Chandler mass
computed using Eq. (14) (black dotted line) demonstrates that at low
temperature the holographic superfluid is “local pair” like, crossing
over to the vanishing mass BCS-type behavior upon approaching Tc.

At low temperature ρs � ρ while for a conformal system
ρ ∼ μd−1 (d is the boundary space-time dimension). This
implies in explicit units and given that μ sets the scale,

vφ = h̄c2μ√
d − 1

∇φ. (12)

Using natural units it follows∮
dl vφ = 2πμ√

d − 1
n. (13)

We can read off the answer: the universal value of the
circulation quantum for our massless (2 + 1)D holographic
superfluid is set by the chemical potential as k/μ = √

2π ≈
4.44. Coupled with the availability of ρs in numerical form,
the mass can now be determined in units of μ. This absolute
mass as obtained by fitting the trajectories to the HVI equa-
tion is plotted as function of temperature in Fig. 5.

This revealed a surprise: the inertial mass of the holo-
graphic vortex was strongly temperature dependent, being
large in an absolute sense at low temperatures, to decreased
with increase in temperature and vanished upon approaching
Tc, where it behaved like a GP vortex in this regard.

In fact, this issue of the mass of the vortex has been
subjected to extensive debates. Contradicting claims have
appeared, with one extreme case reported by Baym and Chan-
dler [10] for this mass in 4He. A dense bosonic superfluid,
set by MBC = 1

2ρπξ 2, was considered, where ρ is the mass
density and ξ the coherence length setting the size of the
vortex core. This relied on the correct assertion that in such a
superfluid, the 4He atoms were expelled from the vortex core,
implying MBC to be of order of the He atom mass, that is,
being large.

The other extreme is found in the weakly coupled BCS
theory for fermionic superconductivity and the Bogoliubov
bosons of the GP equation (e.g., [13]) where the mass is
predicted to be very small. The resolution is actually well
known. This mass is a UV sensitive affair that is well un-

derstood in case of conventional BCS-type superconductors.
This involves the ratio of the BCS gap � and the Fermi
energy EF . In the weak coupling regime, only a fraction �
�/EF of the fermions forming the Fermi sea formed Cooper
pairs. Consequently, the coherence length (pair size) was very
large. This involves only states near EF , characterized by an
energy-independent density of states signaling an emergent
charge-conjugation symmetry. This implies that the electronic
density stays homogeneous in the presence of a vortex. Matter
is not accumulated in the vortex core and therefore its mass
will vanish.

However, upon increasing the BCS coupling the gap will
eventually become of order of the Fermi energy and the co-
herence length becomes of order of the interparticle distance,
which are the “local” or “preformed” pair regimes. It is widely
believed that the cuprate high-Tc superconductors may ap-
proach this regime. The physics in this regime is reminiscent
of a dense bosonic superfluid such as 4He, with the local pairs
functioning as the bosons. Most important in this context is
that for � of order of EF , the charge-conjugation asymme-
try is manifested. Consequently, the vortex core is derived
from matter as in 4He and its inertial mass becomes large.
This motive was crucial in the context of the rather strongly
coupled cuprate high-Tc superconductors in terms of model
considerations involving the simple attractive U fermion Hub-
bard model [94]. Moreover, it has been claimed that particular
magnetotransport anomalies in the type II Abrikosov lattice
phase of cuprates are owing to such a net electrical charge
associated with the vortex cores [95].

As already announced in Sec. II A, our holographic su-
perfluid behaves as a fermionic, BCS-type superconductor
with the chemical potential μ taking the role of the Fermi
energy. The “pair susceptibility,” the amplitude dynamical
susceptibility associated with the order parameter, is in the
normal state subjected to “covariant scaling” incorporating a
Fermi degeneracy scale [96] as is also the case in BCS. The
difference is that the marginal scaling dimension associated
with the Fermi gas turns relevant in the RN metal: this was
coined “quantum critical BCS” [79,96]. The ramification is
that at low temperature one is dealing with strong coupling
in the sense of pairing: there is a gap scale that becomes of
order of the chemical potential or degeneracy energy such
that the coherence length shrinks to the UV cutoff (∼1/μ):
the equivalent of the local pair limit in this relativistic system.
The crucial ingredient is, however, that the temperature de-
pendence of the order parameter is strictly Landau mean field,
the thermal fluctuations being completely suppressed in the
large-N limit. In addition, the holographic superfluid has in
common with BCS that the gap scale is just proportional to the
order parameter. This explains the temperature dependence of
the mass that we observe: close to Tc the order parameter and
thereby the gap are small compared to μ and one finds the
massless vortices as in weak coupling BCS. Upon lowering
temperature the gap scale rises to reach �μ at low tempera-
ture, implying the large local pair mass.

The degree of closeness of the vortex approach to the
local pair limit can be examined by estimating the appropriate
Baym-Chandler mass. In this relativistic setting, this mass
is associated with the internal field energy [9,12] Efield =
MBCc2 where Efield = μ�ρ and �ρ is according to Baym and
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Chandler associated with the density deficit at the vortex core
associated with the expulsion of matter from the core,

�ρ =
∫

[ρs − ρ(r)]dr, (14)

where ρ(r) is the radial distribution of the density in the pres-
ence of the vortex as function of the radial coordinate r and ρs

is the uniform density. Owing to complete access to the profile
ρ(r), this can be precisely determined, and the outcome is
shown in Fig. 5 in the form of the black line. As evident, at
temperatures below �0.2Tc, this estimate coincided precisely
with the holographic computation.

In fact, a slight upturn was observed at the lowest temper-
atures in both cases. This was associated with the fact that
the decrease in the area ∼ξ 2 slightly overcompensated the
increase in the density contrast. This is a testimony of the
precision of the Baym-Chandler estimate at low temperature.

The Baym-Chandler vortex mass estimate can also be
determined at higher temperatures, as characterized by the
growth of the coherence length or vortex size. The result, as
shown in Fig. 5, indicates that it is fairly temperature indepen-
dent; it increases slightly, and maintains a large value up to
Tc. This is in strong contrast with the case of the holographic
mass, wherein the mass decreased smoothly and vanished
entirely upon approaching Tc. However, as emphasized, this
is according to the expectation for the “BCS-type” fermionic
pairing underlying the holographic superfluid.

IV. DISSIPATING THE VORTEX MOTION: HOLOGRAPHY
VERSUS GROSS-PITEAVSKII FOR A SMALL DRIVE

Next, consider the dissipative aspects associated with the
vortex motion. As emphasized in the Introduction, this in-
volves quantum thermalization, which is a tall order in general
for conventional approaches. Much of the established tradition
has focused on the weakly interacting Bose gas as captured
by Bogoliubov theory, being tractable through quantum ki-
netic theory. This is also directly applicable to the cold-atom
condensates, and was used as a comparison to highlight the
contrast between this community consensus and the holo-
graphic outcomes. This study focused on near equilibrium,
considering the vortex motion for small vs. As shown later,
in this small drive regime, the HVI equation works very well
capturing the vortex motions. Subsequently, the dissipation is,
in the first instance, captured by the vortex “drag” quantity
D. In addition, at a finite temperature the D′ Iordanskii force
parameter quantifying the Magnus force associated with the
normal fluid must be considered. Although a reactive quantity,
it requires finite temperature and is therefore also part of the
thermalization agenda.

In our setup, in the drag-dominated stationary regime the
vortex moved with a constant velocity in both the x and y
directions. As dvL/dt = 0, the HVI equation simplifies to

ρsvsk = (ρs − D′)vLy k + DvLx ,

0 = (ρs − D′)vLx k + DvLy . (15)

The first line expresses that the motion in the x direction is
sourced by the superfluid moving in the y direction. However,
as it moved through the superfluid and normal fluid at rest, the

FIG. 6. Coefficient D (upper panel) and D′ (bottom panel) of the
HVI equation of motion for a vortex driven in a small external flow
vs/μ = 0.0025. The outcome for the holographic vortex is shown
on the left, and for comparison the typical expectation following
from the Gross-Pitaevskii modeling of the Bose gas is shown on the
right. D parametrizes the drag and in case of the holographic vor-
tex, it increases upon lowering of temperature, which is in contrast
with GP. As the comparison with the dimensional analysis estimate
Dshear shows, this is nearly entirely owing to a simple shear drag of
the metallic core, while the small deviation at higher temperatures
reveals the contribution of the normal fluid component (see main
text).

combined Magnus force (ρs − D′) induced a velocity compo-
nent vLy in the supercurrent direction. This further added to the
vx component (second line). Subsequently, both velocity com-
ponents were subjected to a simple drag force ∼D. Solving
Eq. (15) indicates that from the measured vx and vy velocities
the unknown quantities D, D′ are expressed as

D = vsvLx

v2
L

ρsk,

D′ =
(

1 − vsvLy

v2
L

)
ρs, (16)

where v2
L = v2

Lx + v2
Ly. As vs, k, and the temperature depen-

dent ρs are known, the coefficients D and D′ can therefore be
determined in absolute magnitude through simple measure-
ment of 
vL at late times Fig. 6.

A. Drag parameter D and the viscosity of the vortex core

First, consider the GP comparison template. Using the
parametrization introduced in Sec. II B, the temperature de-
pendence of D and D′ for the GP case as determined by fitting
the vortex velocity is shown in the right panels of Fig. 6. This
indicates that D � T [87], and this temperature dependence
is interpreted in the two-fluid phenomenology in terms of the
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vortex experiencing a drag proportional to the normal fluid
fraction ρn [59,63,83,84]. According to this parametrization
the Iordanskii force parameter D′ also increases ∼T . This re-
flects Iordanskii’s original proposal, indicating that this should
be also set by ρn. However, this appears to be controversial to
the present day, with various claims, including a prediction
based on general principles, indicating that it should vanish
[14,17,97].

Next, consider the holographic vortex. Figure 6 shows
that the temperature dependence of the drag parameter D is
entirely different from the GP case. Instead of being propor-
tional to the normal fluid density ρn that disappears at zero
temperature (holographic system), D actually increased upon
lowering of the temperature. It reached a maximum value in
case of T = 0.

This simply reveals that the vortex drag was nearly com-
pletely dominated by the dissipation associated with the
normal “strange metal” core. Moreover, this can be quantified
in terms of an elementary dimensional analysis consideration.
This reveals that to function as a conventional hydrodynamical
shear drag associated with the fact that the normal core be-
haves like a viscous fluid, while the spatially inhomogeneous
nature of the vortex breaks the translational symmetry. It is
similar to the simple Poiseuille flow problem wherein it was
explained based on the resistance of a low Reynolds number
fluid flowing through a pipe while the coherence length was
the pipe diameter.

Consider the shear viscosity η of the fluid. Using rela-
tivistic quantities, this can be converted into the transversal
momentum diffusivity or kinematic viscosity by Dπ =
η/(ε + P), where ε and P are the energy density and pressure
(∼nmc2 in nonrelativistic fluids), respectively. The dimen-
sion was [Dπ ] = m2/s. In the presence of a characteristic
length associated with the translational symmetry breaking,
associated with the vortex size and coherence length ξ , a
characteristic current relaxation rate � = Dπ/ξ 2 is obtained
as [�] = 1/s

Next, consider the HVI equation. Here, [D] = kg/s while
the characteristic mass scale was associated with Mv . Hence,
we conclude that by dimensional analysis,

Dshear = ADMv

η

ε + P

1

ξ 2
= ADDs, (17)

where AD is a dimensionless parameter of order unity.
In holographic systems including the RN metal, the vis-

cosity is governed by the famous “minimal viscosity” formula
η = h̄

4π
s, where s is the entropy density (we are using natural

units, h̄ = 1). Henceforth, Dshear was entirely determined by
thermodynamic factors (s, ε, P) which are available in closed
form for the RN metal, and in addition the known quantities ξ

and Mv .
It was found that this Dshear accurately captured the temper-

ature dependence of D. In Fig. 6, the green line indicates the
Dshear, which owing to fitting yielded AD � 2.2. Future studies
can attempt to investigate why this dimensionless parameter
acquires this value. Qualitatively, the RN metal is famously
pathological considering that in the low-temperature regime,
s is approximately temperature independent and set by the
zero-temperature entropy. Similarly, ε + P � μn + sT , was
also temperature independent [98–100]. The increase in D

with decrease in the temperature is, therefore, in first instance,
caused by the increase in the mass upon lowering T (Fig. 5)
combined with the decrease in the vortex size (Fig. 2), while
also ε + P contributes.

B. Core and the drag of the normal fluid:
Total energy dissipation

From the above the origin of the qualitative behavior of
the drag at low temperature is clear. However, the fit is not
perfect and there is room for more. In fact, as for the GP case
the effective phenomenology described by holography is coin-
cident with the two-fluid hydrodynamics. When temperature
rises, the normal fluid raises its head and should contribute to
the vortex drag as well.

We can now exploit a particular flexibility of holography
to compute a property that is otherwise hard to measure. This
facilitates the monitoring of the core and normal fluid contri-
butions to the vortex drag D as a function of temperature.

It is a famous dictionary entry that the total energy dissi-
pation in the boundary is governed by the falling of metric
perturbations (gravitons) through the horizon in the bulk. The
dissipative energy flux τ can be computed by considering the
covariant conservation of the probe stress tensor T [46] with
bulk EOM,

τ = T z
t |u=1 = 1

2 (F0iF
zi + D0�

∗Dz� + Dz�∗D0�)|u=1.

(18)

The flux T z
t |u=1 through the bulk black-hole horizon at

u = 1 integrated over the spatial manifold represents the
total-energy dissipation. Figure 7 shows a typical result of
the appearance of this energy dissipation for the moving
vortex. Even at the relative high temperature of T = 0.5Tc,
much of the energy dissipation is associated with the core.
“Gravitons falling through the hole in the hair” can be
observed directly. However, beyond the core area (black
circle), there exists certain energy flux associated with the
GP style normal fluid dissipation. Before considering this
aspect, first, this sum-rule-like quantity was used to deter-
mine whether it matched the dissipation implied by the HVI
equation. This represents a high-precision test, wherein it
checked if the HVI captures the motion of the holographic
vortex.

For this purpose we focus on the long time stationary
flow regime where the external Magnus forces exerted by the
background superflow and the drag force were balanced. The
dissipation rate is expressed as the work done by the external
force times the velocity in the direction where this force is
exerted. According to Eq. (7),

P = F(S) × vL = ρs(vs − vL ) × k × vL

= ρsvs × k × vL (19)

= FextvLx. (20)

Consequently, the strength of the external Magnus force
can be defined according to Fext = ρskvs. Now, the steady-
state velocity must be determined in the x direction, which can
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FIG. 7. Real-space images of the time evolution of temperature T = 0.5Tc holographic vortex associated with a small velocity vs/μ =
0.0025 current quench. We depart from the initial state (t = 0, left), where in the middle panel the vortex is still not fully stabilized (t = 20)
and the right panel represents the long time stationary flow (t = 200). The upper panels show the order-parameter amplitude revealing the
vortex core, with a radius indicated by the black circle in the right panel (e.g., Fig. 2). The lower panels show the total dissipative energy flux
as determined in the bulk by the infall through the horizon. As the lower right panel highlights, at this rather low temperature, this is dominated
by the shear drag of the metallic core; however, there is a discernible contribution outside the core area associated with the drag originating
from the normal fluid component.

be obtained from Eq. (15). Through certain simple algebra,

P = vLxFext = F 2
ext

D

D2 + D′2k2 − 2D′k2ρs + k2ρ2
s

. (21)

Using the values for the HVI quantities ρs, D, D′ as we
determined in the above from the trajectories (and ther- mo-
dynamics) we can compute P and compare it with the total
horizon flux computed holographically using Eq. (18). The
outcome is shown in Fig. 8 both for very small (vs = 2.5 ×
10−3μ) and relatively large (vs = 5 × 10−2μ) drives. As evi-
dent, the total horizon flux and the HVI power dissipation P
[Eq. (21), dashed lines] were quite consistent; for the small
drive the numbers became small at low temperature such that
resolution was lost.

How does this power dissipation actually work? We ob-
serve that it decreased with the reduction in temperature; the
HVI expression Eq. (21) can be considered for an explanation.
In a first step, D′ can be ignored because it is numerically very
small (see underneath). Setting D′ = 0,

P = F 2
ext

D
(
1 + ρ2

s k2

D2

) . (22)

This may look unfamiliar. Let us compare it with the famil-
iar Ohmic dissipation where the role of the external force
is taken by the bias Fext → V , the velocity was similar to
the current vLx → I , and the role of the drag coefficient ful-
filled by the resistance D → R. The Ohmic power dissipation

P = V × I = V 2/R → F 2
ext/D. Compared with Eq. (22), it

can be inferred that this simple Ohmic-type dissipation is
recovered when ρsk � D. The regime where ρsk � D ex-
hibited the “anomalous” scaling P � Dv2

s was used instead.
In reality, this is just a ramification of the fact that the Mag-
nus force is set by the difference between the vortex and
“driving” velocities. For large D this does not play a role
and the dissipation is of the usual Ohmic type; whereas,
for small D it implies the seemingly anomalous “P ∼ R”
behavior.

According to Fig. 6, D of the holographic vortex becomes
large at low temperature reflecting the core dissipation, and it
becomes large compared to ρsk. The low-temperature power
dissipation ∼1/D explains why it decreases with decreasing
temperature. However, the “cold-atom” GP outcome is that D
is always small compared to ρsk. Further, counterintuitively,
the P diminished at low temperature; now, it was because of
P ∼ D instead.

Let us now return to the issue of core versus the nonlocal
dissipation associated with the normal fluid. As is obvious
from Fig. 7, we can discriminate a core dissipation associated
with the energy flux in the core region (black circle) from the
“other” contributions outside the core region. The tempera-
ture evolution of these two components is also indicated in
Fig. 8. According to the expectations, at low temperatures,
it was completely dominated by the shear drag associated
with the strange metallic core. Whereas, with increase in the
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FIG. 8. The energy flux through the bulk black-hole horizon
measures the dissipated power of the holographic vortex. The inte-
grated “total” flux (full blue line) as a function of temperature for a
small (vs/μ = 0.0025, upper panel) and large (vs/μ = 0.05, lower
panel) velocity is compared with the power dissipation implied by
the HVI equation (dashed blue line). Using this horizon measure, the
dissipated power can be separated into core (red dashed-dotted) and
other (green dashed-dotted) contributions. This shows that the core
contribution dominated at low temperature, whereas the nonlocal
contribution associated with the normal fluid fraction was dominant
at higher temperatures.

temperature, the noncore contributions gradually took over the
power dissipation.

C. Iordanskii force D′ according to holography

Let us now turn to the Iordanskii force parameter D′. This
was introduced by Iordanskii [59] based on intuition rooted
in the two-fluid phenomenology, where it was insisted upon
that at finite temperature, there exist a normal fluid compo-
nent next to the superfluid. When dealing with the circulating
superflow of the vortex, it may be naively expected that the
normal fluid also exerts a Magnus force of the vortex motion.
This is implicitly hard wired in the GP modeling with its sim-
ple damping parameter γ encoding for the thermal physics.
Accordingly, although smaller by an order of magnitude, the
GP D′ parameter is according to the trajectories tracking the
temperature dependence of the D parameter (Fig. 6). Both
are interpreted as following the temperature dependence of
the normal density ρn(T ).

However, upon closer inspection, it became clear in the
course of time that this is actually a subtle affair. Conflicting
claims appeared in the literature even in the “simple” kinetic

gas context. In the 1990s, Thouless et al. and Wexler [97,101]
argued that D′ should vanish at all temperatures based on
seemingly first-principles arguments that normal fluid cir-
culation must vanish. Further discussions take place in the
two-fluid model [102,103], which considers the dissipative ef-
fects. However, the paradox arises in the circulation of normal
fluids and in the notation of the Iordanskii force. Considering
the effect of perturbed quasiparticle interactions, the result is
obtained that the normal fluid circulation is in the opposite
sense to the superfluid circulation, while the Iordanskii force
acts in the same direction as the superfluid Magnus force,
which is consistent with the sign of the force produced by scat-
tering analyses [59,103–105]. Several results based on explicit
calculations appeared with different outcomes, as discussed
in [17] and references therein. This remains an unresolved
problem.

What does holography indicate regarding this affair? Ac-
cording to the second line of Eq. (16), we can determine D′
with very high sensitivity as it is directly proportional to vLy .
This velocity component was found to be very small com-
pared to vLx determining D; however, it was surely still finite.
The result is shown in Fig. 6: D′ is in magnitude only �1%
of D and becomes negative, which indicates that the vortex
motion is subject to strong resistance according to Eq. (16)
that the vortex velocity vL decreases by the quadratic in the
denominator. This suggests that in first instance, there may be
truth in the claim by Thouless et al., that is, it nearly, but not
totally, vanished. The difference may be in subtle high-order
processes that may be hard to identify. We leave this as a chal-
lenge for future work. And it is worth mentioning that both
D and D′ are close to the GP result as the temperature rises,
which also indicates that the noncore contribution dominates
the dissipation.

V. DRIVING IT HARD: THE DEFORMATION
OF THE VORTEX

In the last section we focused purposefully on the small
velocity regime characterized by a weak Magnus force, such
that the system stays close to equilibrium. The question that
arises is whether there are new phenomena that can be iden-
tified while ramping up vs such that the Magnus force is no
longer small compared to the equilibrium scales of the system.
We have identified in the holographic simulations a phe-
nomenon that has, to the best of our understanding, not been
observed before: when the vortex was accelerated it gradually
deformed. This significantly affected the dissipative properties
of the vortex motion, but only so in the low-temperature local
pair like regime. This study presents here no more than a
descriptive discussion of these phenomena, with no intention
of explaining it in any quantitative depth. We suspect that such
a full elucidation of this nonequilibrium physics may be quite
involved and we leave this to future work.

A. The vortex as a speedboat

While running the simulations, a phenomenon that appears
to be hitherto unidentified was discovered. This is a testimony
of the remarkable flexibility and precision of the holographic
simulations. As explained in the previous section, the measure
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FIG. 9. Deformation of the vortex as function of time after the external superflow is switched on. We show the vortex in “side view”
parallel to the direction of motion towards the right, and pick certain representative short times as well as the way the deformation appears in
the long time (t = 100) stationary regime. (a) Even at very low temperatures the vortex behaves as a rigid “particle” when the drive is small,
as in Fig. 8. (b), (c) Both at low and higher temperatures, the vortex starts to deform for relatively large drives. Immediately after the drive
is switched on, the vortex starts to accelerate as a rigid object and this does not influence the mass as estimated in Sec. III. However, soon
thereafter, a transient regime is followed, where the deformation develops to settle in a final “speedboat” shape in the stationary regime.

of the strength of the forcing is the ratio vs/vc. What happens
when vs becomes a substantial fraction of vc and how does
this depend on temperature? The outcome is in the form of an
unanticipated, dynamics, which was prominent for large vs in
the low-temperature regime.

This was shown in Figs. 9 and 10. At very short times fol-
lowing the quench, the static vortex simply began to accelerate
as a rigid body; consequently, the next aspect did not influence
the estimates for the vortex mass, which was therefore implic-
itly defined as this “initial” mass. However, the shape of the
vortex began to deform after a certain amount of time. Fur-
ther, as a function of increasing vs this deformation becomes
more pronounced. Figure 10 shows this evolution after a time
t = 100/μ, where in all cases the deformation was itself sta-
tionary. Notice that for the largest velocity (vs = 0.314vc), the
background superfluid density was visibly reduced since this
is approaching the critical velocity.

Similar to the previous case, the supercurrent flows in the y
direction, exerting a Magnus force in this direction on the vor-
tex. However, for these larger velocities the (compact) vortex
can no longer be considered a rigid object as its circulating
currents add and subtract to the background current at the
“front” and “back” of the vortex, respectively. Consequently,
the superfluid density is suppressed at the front and enhanced
at the back given that the fluid velocities despite all being of
order of vc were quite different. Effectively, a “bow wave” and

a “stern wake” developed in the outer parts of its core, similar
as the wake of a racing speedboat.

This metaphorical similarity with the speedboat is further
strengthened by observing the long time regime. The defor-
mation requires a certain time to develop, which should be set

FIG. 10. Order-parameter profile of the vortex in the sta-
tionary long time regime as function of increasing drives vs =
0.006vc, 0.126vc, and 0.314vc, respectively. For the largest current
case, it is evident that the background order parameter was becoming
smaller, as the system began to approach the critical current.
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FIG. 11. Dependence of the trajectories on the driving velocity vs

and temperature. (a) The regime of low temperature (T = 0.017Tc)
and small vs/μ = 0.0025; after a very brief acceleration, the vortex
only moves at a constant speed. (b) The regime of low tempera-
ture (T = 0.017Tc) and large vs/μ = 0.05 where the deformation
is pronounced. At very early times (regime A), the vortex starts to
accelerate in a rigid manner and the drive does not influence the
vortex mass (light blue). In regime B, the deformation becomes
discernible and starts to develop and fitting to the HVI equation fails.
Upon entering regime C, the deformation has become stationary and
the vortex again enters a drag-dominated regime where, similar to the
case before, the HVI coefficients D and D′ can be determined from
the constant velocity trajectories. (c) Upon raising the temperature,
pronounced also for a strong drive (vs = 0.2vc) and at T = 0.5Tc,
the effects of the deformation became less obvious and also the
coefficient change before and after deformation was not drastic.

by the inverse of the gap scale. However, at the longer times,
where the vortex settles in the stationary, drag-dominated
regime wherein it was moved with constant velocity (Figs. 4
and 11). Further, the deformation itself became stationary.
This is similar to the stationary wake of the speedboat when
it has settled at its constant terminal velocity. This is feasible
because it is caused by a similar balance between the drag and
external forces, acting differently at the “bow” and the “stern”
of the moving vortex.

B. Nonlinear dependence of the dissipation on the strength
of the drive

As a final issue, are the dissipative parameters of the HVI
EOM pending on the strength of the drive and the deforma-
tion, and if so what happens? As we already announced, for
a strong drive the vortex is deforming in a similar fashion

FIG. 12. Coefficients D and D′ as a function of temperature for
a range of driving velocities, revealing an extreme sensitivity to the
latter at low temperatures.

both at low and high temperatures, e.g. Figs. 9(b) and 9(c).
However, we find that the degree to which the trajectories
and thereby the HVI dissipative parameters turn nonlinear is
depending critically on temperature.

This is manifested directly by the trajectories, as shown
in Fig. 11. Figure 11(a) shows the small drive reference.
Figure 11(c) shows the trajectories at T = 0.5Tc and a large
vs = 0.2vc drive; however, these appear similar to the small
drive case. Radically different trajectories were observed for
large drives (shown is vs = 0.05µ) and low temperature, as in
Fig. 11(b). In fact, next to the early time “mass-dominated”
regime A, and the late time stationary regime C, an inter-
mediate time regime B was obtained, where the deformation
developed. It appears that we cannot quite fit the trajectories
in this regime with the HVI equation. This is not surpris-
ing as the vortex in this regime did not behave as a rigid
particle, and rather was subjected to a developing “plastic
deformation” that should imprint on the dissipative properties.
This is particularly obvious considering the y direction (right
middle panel). As we discussed, this gives away directly the
Iordanskii force; however, this exhibits erratic behavior in this
deformation regime.

This can be further quantified by fitting the late time sta-
tionary trajectories to the HVI equation as before, and now
also as function of the strength of the drive. The result is
shown in Fig. 12, revealing a staggering surprise. When T →
Tc, vs does not make any difference. It is evident that D and
D′ are the same as in the small velocity regime. However,
upon lowering the temperature, D and similarly D′ increased
by more than an order of magnitude for the moderate vs/μ =
0.05. For comparison we checked this for GP, which indicated
that D and D′ were completely independent of vs. This is
clearly an effect tied to the special nature of the holographic
vortices.

To shed further light on the origin of this highly nonlinear
behavior of these parameters, we also inspected the energy
flux τ and HVI power dissipation P for different vs. Figure 13
shows that with the increase in external flow velocity, the
additional dragging force from deformation resulted in a de-
crease in the relative dissipation, and conformed to the power
of dissipation as in Eq. (21).

This spectacular nonlinear response of the vortex as man-
ifested by the amplification of D for increasing drive was
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FIG. 13. Relative dissipation considering the influence of defor-
mation at different velocities. The temperature is T = 0.17Tc. The
solid line is the total-energy flux from Eq. (18), and the dashed line
is the power of dissipation from Eq. (21).

presented as an observation. The cause remains unclear. On
the one hand, one anticipates that the deformation process
itself could be a source of extra dissipation; however, we
observe the large increase in D in the regime resulted in
the deformation becoming stationary. In addition, the simple
shear drag associated with the vortex core in the small drive
regime, as discussed in Sec. IV A, does not offer an obvious
explanation. We do not expect that the (minimal) shear viscos-
ity of the normal core would be affected by the drive, while the
overall size of the vortex did not change significantly. Thus,
this could play a role as it has the wrong sign because the
vortex radius increases for increasing vs. We suspect that this
rather spectacular nonlinear response of D with vs originates
from the rather anisotropic distribution of the currents implied
by the “speedboat” deformation. This is an interesting subject
for further research.

VI. DISCUSSION AND CONCLUSIONS

What did we achieve? In its applications to condensed
matter physics, holography has now quite a track record in
describing an alternate reality that may not be liter- ally real-
ized in the laboratories, being however remark- ably precise
and correct with regard to the description of the physical
properties. A key element is its capacity to capture with
high precision the ramifications of quantum thermalization,
clearly indicating the macroscopic reality at finite tempera-
ture. This was previously a terrain occupied exclusively by
the comparatively simple quantum kinetic theory. One virtue
of holography is that in this regard it broadens the view,
yielding counterexamples of behaviors that are rather entirely
different from this established “gas” paradigm. This is surely
a beneficial circumstance dealing with problems such as those
encountered in high-Tc superconductors, thereby offering a
different basic perspective on the rather mysterious physics
in these systems.

A case in point is the thermal physics of dynamical vortex
systems. This is among the hardest quantum thermalization

and dissipation problems that have been identified. As we
reviewed in the study, even basic properties such as the vortex
mass and the Iordanskii force which are within the confines
of quantum kinetic gas theory are still considered as unsettled
despite a large body of work.

This study showed here that with comparatively little ef-
fort we managed to completely chart this problem based on
holography, now in the setting of an extremely strongly inter-
acting and densely many-body entangled underlying quantum
physics. This revealed several surprises that we rationalized
to a certain degree. (a) The vortex inertial mass varying from
the relativistic generalization of the Baym-Chandler mass at
low temperature, to subsequently vanish upon approaching the
critical temperature. (b) The HVI drag coefficient (D) peaking
at low temperature, which was associated with the particulars
of the shear drag rooted in the “strange” metal core, supple-
mented by a subdominant normal fluid drag similar to that in
the kinetic gas systems. (c) An Iordanskii force that is finite
but very small and roughly temperature independent, hinted
at a generalization of the arguments of Thouless et al. (d) The
most genuine of all surprises in the form of the “speedboat”
deformation of the vortex under a strong drive, causing a
spectacular increase in the drag forces.

Is there more to it than just an entertaining theoret- ical
toy model exercise? Can this be used to shed light on real
physics problems? A first area where this may be employed
may be quantum turbulence. We focused on the most basic
dynamical question: consider one vortex and drive it by a
homogeneous background flow. This was input for the next
level problem: consider a closed vortex loop in three dimen-
sions. The countercirculating (vortex, antivortex) parts of the
loop exerted attractive Magnus forces on each other, causing
the loop to shrink and eventually annihilate. Similarly, vortex
strands may intersect and reconnect. This was already studied
holographically [56] although only for the case of the minimal
holographic superfluid that is characterized by a different dis-
sipation. The cores are here associated with the zero-density
CFT’s with viscosities that are vanishing at zero temperature:
single-vortex properties are actually not even charted for these
setups but we can anticipate the outcome based on what is
known.

Thus, by choosing different holographic setups, a variety
of typical single-vortex dissipative behaviors can be hard-
wired, which can then be used to investigate the manner in
which it influenced these more intricate and complex be-
haviors. This becomes particularly interesting dealing with
full-fledged quantum turbulence, where one departs from a
dense tangle of vortices to track how this evolves dynamically.
This is a mainstream research area that started in helium,
being intensely pursued presently in the cold-atom labora-
tories. The theoretical side is, however, nearly completely
monopolized by studies departing from the GP equation, a no-
table exception being the study based on minimal holographic
superconductivity demonstrating the “reversal” of the (Kol-
mogorov) cascade in 2D superfluid turbulence [46]. However,
the manner in which this is influenced by the, in principle,
differing dissipative properties of single vortices depending
on the underlying quantum system remains unclear. Other
questions are the manner in which the peculiar behavior of the
drag parameter of our RN vortices influenced the cascades,

144511-15



YANG, XIA, ZENG, TSUBOTA, AND ZAANEN PHYSICAL REVIEW B 107, 144511 (2023)

whether the vortex mass matters, and can the deformation
phenomenon influence the reconnection physics.

These issues are addressing theoretical curiosity, but could
these relate to circumstances found in nature? The crucial
aspect of our holographic setup is the dissipative nature of the
vortex core. In fact, this is an ubiquitous condition in metal-
lic BCS superconductors. In principle, the mean-field gap is
suppressed in the core of the vortex of such superconductors.
However, in the extreme “clean” 3He superfluid, the finite-size
splitting of the Bogoliubov-type quantum mechanical states
in the core become eventually large compared to temperature.
This rendered these cores as effectively empty, thus making
it possible to identify the “anomaly currents” contributing
to the dissipation associated with the unconventional order
parameter [106].

However, a next caveat is that this works differently in
typical metallic superconductors. Invariably, there is a residual
quenched disorder rendering a residual normal state resistivity
owing to elastic scattering in the low-temperature metal-
lic state. As reported by Bardeen and Stephen [107] this
diminished the effect of the finite-size gaps when the elas-
tic mean-free path was shorter than the coherence length,
thus rendering the vortex cores as dissipative. Although the
physics governing the dissipation from our RN holographic
vortices is fundamentally different (the hydrodynamical shear
drag), there may be sufficient similarity for holographic sim-
ulations to be useful to study dynamical questions in this
context.

There is yet another difference of principle. Metallic su-
perconductors were gauged and this rendered the physics
to be different from the neutral superfluid described using
our present setup. This is particularly the case for the topo-
logical excitations, which are now “fluxoids” (Abrikosov,
Nielsen-Olesen vortices), characterized by an absolute size

set by the London penetration depth being characterized by
the magnetic flux quantum as topological charge. These are
sourced by magnetic fields instead of “mechanical” external
forces. They played no role at all in the study of quantum
turbulence for the simple practical reason that the typical
timescales associated with ramping up magnetic fields were
very long compared to the intrinsic timescales associated with
the (electronic) fluxoids. Consequently, it was impossible to
quench the system, which is a prerequisite to reach far out-of-
equilibrium conditions.

On the other hand, motivated by applications “vortex
dynamics” involving issues like flux penetration, the es-
tablishment and pinning of Abrikosov (fluxoid) lattices
have been subject of an intense research effort [7]. But
also in this context realistic simulations of such dynami-
cal phenomena are not easy given the intricacies of vortex
dissipation.

In this regard, very recently it got completely clarified
how to use the holographic dictionary to “lift” the neutral
superfluid in the holographic boundary to a gauged status in
a technically efficient manner, in terms of mixed (direct and
alternate) boundary conditions [67,71,108]. It is straightfor-
ward to incorporate these in the general framework that we
have been using here, and it would be quite interesting to
explore what can be learned from holography in the context
of this large research area dealing with magnetic fields in
superconductors.
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