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Tangent Fermions: Dirac or Majorana Fermions on a Lattice
Without Fermion Doubling

C. W. J. Beenakker,* A. Donís Vela, G. Lemut, M. J. Pacholski, and J. Tworzydło

Methods to discretize the Hamiltonian of a topological insulator or
topological superconductor, without giving up on the topological protection of
the massless excitations (respectively, Dirac fermions or Majorana fermions)
are reviewed. The method of tangent fermions, pioneered by Richard Stacey,
is singled out as being uniquely suited for this purpose. Tangent fermions
propagate on a 2+ 1 dimensional space-time lattice with a tangent
dispersion: tan2(𝜺∕2) = tan2(kx∕2)+ tan2(ky∕2) in dimensionless units. They
avoid the fermion doubling lattice artefact that will spoil the topological
protection, while preserving the fundamental symmetries of the Dirac
Hamiltonian. Although the discretized Hamiltonian is nonlocal, as required by
the fermion-doubling no-go theorem, it is possible to transform the wave
equation into a generalized eigenproblem that is local in space and time.
Applications that are discussed include Klein tunneling of Dirac fermions
through a potential barrier, the absence of localization by disorder, the
anomalous quantum Hall effect in a magnetic field, and the thermal metal of
Majorana fermions.

1. Introduction

Topological insulators have a gapped interior and gapless ex-
citations on the surface, described by the Dirac Hamiltonian
H = ℏvk ⋅ 𝝈. These are massless quasiparticles, with a cone-
shaped relativistic dispersion relation E = ±ℏv|k|. For computa-
tional purposes one would like to discretizeH, replacing the mo-
mentumoperator k = −i𝜕∕𝜕r by a finite difference on a 2D lattice.
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One then runs into a lattice artefact
known as fermion doubling: A spurious
additional species of low-energy excita-
tions appears, no matter how small the
lattice constant is.
Fermion doubling is a notorious com-

plication in particle physics,[1] governed
by the no-go theorem of Nielsen and
Ninomiya:[2] Any local Hamiltonian that
preserves the chirality of the Dirac
fermions must have an even number
of conical points in the Brillouin zone.
One of the work-arounds invented in that
context[3] is actually the one chosen by na-
ture in a topological insulator: The two-
dimensional (2D) lattice is embedded in
a three-dimensional (3D) lattice, say in
a slab geometry (see Figure 1). One can
then think of the Dirac cone on the top
surface as being doubled on the bottom
surface, but if the surfaces are widely
separated there will effectively be only a
single species of massless excitations on
each surface.

Since it is computationally costly to work with a 3D lattice,[4] a
fully 2D formulation is preferable. In what follows we will review
the options developed by particle physicists, with one key crite-
rion in mind: If we add disorder to the Dirac Hamiltonian, as is
unavoidable in a real material, will the Dirac cone remain gap-
less? The robustness is known as “topological protection,” it is
the defining characteristic of a topological insulator.[5] This crite-
rion has not played a decisive role in particle physics, presumably
because disorder is not a relevant ingredient in that context.
We have found onemethod that satisfies the criterion of avoid-

ing fermion doubling while preserving topological protection. It
has its roots in the particle physics literature,[6,7] but has not been
widely adopted by that community.[6,8,9] Because the linear dis-
persion relation is replaced by a tangent, we will refer to it as the
method of tangent fermions.
In Table 1 we summarize the properties of the various dis-

cretization schemes that we will discuss. Each discretization has
its own dispersion relation, which reduces to the linear disper-
sion near the physical Dirac point at the center k = 0 of the Bril-
louin zone. The distinguishing properties include:

• The symmetries that the discretization does or does not pre-
serve — the chiral symmetry which defines the handedness of
the particles and the symplectic symmetry which is the time-
reversal symmetry for spin-1∕2 particles;
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Figure 1. A topological insulator has a gapped interior and a gapless sur-
face. Massless Dirac fermions exist on the surface, with a conical disper-
sion E(kx , ky) (assuming a surface in the x–y plane of infinite extent). If the
surface Hamiltonian is discretized additional Dirac cones may appear at
the edge of the Brillouin zone (fermion doubling). We review methods to
avoid this lattice artefact.

Table 1. Five approaches to discretize the Dirac equation on a 2D lattice.
The presence or absence of a property is indicated by ✓ or ×, respectively.
The tangent dispersion has a nonlocal Hamiltonian, but it allows a local
formulation of a generalized eigenproblem (hence the ✓ in parentheses).
Only the tangent dispersion has an unpaired and topologically protected
Dirac point.

Dispersion Chiral
symmetry

Symplectic
symmetry

Dirac
points

Locality Topological
protection

Sine ✓ ✓ 4 ✓ ×

Sine + cosine (Wilson[10]) × × 1 ✓ ×

Staggered (Susskind[11]) ✓ × 2 ✓ ×

Linear sawtooth (slac[12]) ✓ ✓ 1 × ×

Tangent (Stacey[6]) ✓ ✓ 1 ×(✓) ✓

• The number of Dirac points in the Brillouin zone (1 if there is
no fermion doubling);

• The locality of the discretization, meaning whether the dis-
cretized Hamiltonian only couples nearby lattice points;

• And finally the presence or absence of the protection against
gap opening by disorder.

The outline of this review is as follows. In the next two sec-
tions we first introduce the fermion-doubling problem of mass-
less lattice fermions, and then compare the various approaches
that have been proposed to overcome this problem. The approach
of tangent fermions is particularly promising for applications in
topological quantum matter, because it preserves the topological
protection of the massless quasiparticles. We review the features
of that approach from the perspective of a characteristic set of
applications in topological insulators and topological supercon-
ductors. Computer codes for the various applications are made
available in a repository.[13]

2. 2D Lattice Fermions

ADirac point q in 2Dmomentum space is a crossing point of two
energy bands, of the form

E(k) = E0 ± ℏv|k − q| + (k − q)2 (1)

On a 2D lattice the momenta can be restricted to a compact re-
gion, the Brillouin zone, spanned by reciprocal lattice vectors.
Momenta related by a reciprocal lattice vector are equivalent. No
fermion doubling means that there is a single inequivalent Dirac
point in the Brillouin zone, in other words, all Dirac points in
momentum space are related by reciprocal lattice vectors.
In the absence of any symmetry the Dirac point is unstable: A

small perturbationmay open a gap at k = q, converting the cross-
ing into an anti-crossing. Crystalline symmetries can stabilize a
Dirac point.[14] One speaks of topological protection if a gap open-
ing is prevented irrespective of the crystal structure.
Topological protection relies on the presence of either chiral

symmetry or symplectic symmetry.[5] Chiral symmetry requires
that the Hamiltonian anticommutes with a unitary operator. One
can then associate a winding number ±1 with a Dirac point. A
gap opening would imply a discontinuous change to zero of the
winding number, which cannot happen in response to a small
perturbation of theHamiltonian. Symplectic symmetry is the time-
reversal symmetry of a spin-1∕2 particle.[15] It enforces a twofold
degeneracy of the energy levels (Kramers theorem), which pre-
vents a crossing of two bands from evolving into an anticrossing.
Only unpaired Dirac points are topologically protected: Dirac

cones may gap out pairwise without changing the net winding
number or without violating Kramers degeneracy. This is amajor
obstacle, because Dirac cones tend to appear in pairs on a lattice.
If both chiral and symplectic symmetry are maintained, the

Brillouin zone contains a Dirac point at zero energy at each mo-
mentum q which differs from −q by a reciprocal lattice vector.
There are 2d such time-reversally invariant momenta in d dimen-
sions, so four in 2D. If we then break symplectic symmetry we
can move the Dirac points around and gap them out pairwise by
merging two Dirac cones with opposite winding number. How-
ever, we can not end up with an unpaired Dirac cone unless we
also break chiral symmetry—spoiling the topological protection.
This obstruction to unpaired Dirac cones in a 2D system can

be expressed by a no-go theorem:[16] A local discretization of the
2D Dirac Hamiltonian cannot have an unpaired Dirac cone, unless
it breaks both chiral and symplectic symmetries. The “locality” con-
dition provides a work around: a nonlocal discretization can have
discontinuities or poles in the dispersion relation, which may
“hide” a Dirac point. One can check that the entries in Table 1
are consistent with this no-go theorem.

3. Methods to Discretize the Dirac Equation

We now turn to the overview of methods to discretize the 2D
Dirac Hamiltonian,

H0 = ℏv(kx𝜎x + ky𝜎y) = ℏv
(

0 −i𝜕x − 𝜕y
−i𝜕x + 𝜕y 0

)
(2)

focusing first on the case that the massless electrons can move
freely on the x–y plane, without any electromagnetic fields. The
Dirac fermions have energy independent velocity v. The Pauli
spin matrices 𝝈 are coupled to the momentum k = −i𝜕r . In
Equation (2) the spin-momentum locking is such that the spin
points parallel to the momentum. The alternative perpendicular
spin-momentum locking (kx𝜎y − ky𝜎x) can be obtained by a
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unitary transformation of H0, so we need not distinguish the
two cases here.
The energy–momentum relation (dispersion relation) of the

Dirac Hamiltonian,

E(k)2 = (ℏv)2(k2x + k2y ) (3)

consists of a pair of cones that touch at the point k = 0 — the
Dirac point. When the Hamiltonian is discretized on a lattice the
dispersion relation becomes periodic: E(k + K) = E(k) for any re-
ciprocal lattice vector K . Momenta which are not related by a
reciprocal lattice vector form the Brillouin zone. For some dis-
cretization methods the Dirac point at k = 0 is copied at other
points in the Brillouin zone (fermion doubling).
The Dirac Hamiltonian (Equation (2)) satisfies the two sym-

metry relations introduced in the previous section,

Chiral symmetry: 𝜎zH0𝜎z = −H0

Symplectic symmetry: 𝜎yH
∗
0𝜎y = H0

(4)

The complex conjugation is taken in the real-space basis, so
the sign of both momentum and spin is inverted by the sym-
plectic symmetry operation. For each discretization method we
will check whether the symmetries (Equation (4)) are preserved
or not.
The topological protection of the Dirac point relies on the ab-

sence of fermion doubling and on the conservation of at least one
of the two fundamental symmetries (Equation (4)). The linearity
of the dispersion relation, E ∝ |k|, may be a desirable feature, but
it is not essential for the protection. What is essential for a prac-
tical method is that the eigenvalue problem can be solved using
linear algebra of sparse matrices. This is the issue of locality of
the discretization.

3.1. Sine Dispersion

We start with a square lattice, lattice constant a, and discretize the
derivative operator by the first order finite difference:

𝜕xf (x, y) → (2a)−1[f (x + a, y) − f (x − a, y)] (5)

and similarly for 𝜕yf (x, y). Notice that e
a𝜕x = eiakx is the translation

operator, ea𝜕x f (x) = f (x + a). The discretization (Equation (5))
therefore gives the Hamiltonian

Hsine = (ℏv∕a)(𝜎x sin akx + 𝜎y sin aky) (6)

with the sine dispersion

Esine(k)
2 = (ℏv∕a)2(sin2 akx + sin2 aky) (7)

Chiral symmetry and symplectic symmetry (Equation (4)) are
both preserved by the Hamiltonian Hsine, but there is fermion
doubling: In the Brillouin zone |kx| < 𝜋∕a, |ky| < 𝜋∕a there are
Dirac points at each of the time-reversally invariant momenta:
the center k = 0, the corners |kx| = |ky| = 𝜋∕a and the midpoints
kx = 0, |ky| = 𝜋∕a, ky = 0, |kx| = 𝜋∕a. The four corners and oppo-
site midpoints are related by a linear combination of reciprocal

Figure 2. Left panel: Staggered pair of grids for the discretization of Dirac
fermions in Susskind’s approach. The black and white dots distinguish the
u and v amplitudes of the spinor wave function Ψ = (u, v). Right panel:
The square shows the Brillouin zone in momentum space, the red dots
indicate two inequivalent Dirac points.

lattice vectors K = (2𝜋∕a, 0) and K ′ = (0, 2𝜋∕a), so there are four
inequivalent Dirac points in the Brillouin zone.

3.2. Sine Plus Cosine Dispersion

An effective way to remove the spurious Dirac points is to gap
them by the addition of a momentum dependent magnetization
𝜇(k)𝜎z to the Dirac Hamiltonian. If 𝜇 vanishes at k = 0 the phys-
ical Dirac point at the center of the Brillouin zone is unaffected.
This is the approach introduced by Wilson.[10,17] A quadratic 𝜇 ∝
k2 is discretized on a square lattice, resulting in the Hamiltonian

HWilson = (ℏv∕a)(𝜎x sin akx + 𝜎y sin aky) +m0𝜎z(2 − cos akx − cos aky)

(8)

with the sine plus cosine dispersion

EWilson(k)
2 = (ℏv∕a)2(sin2 akx + sin2 aky) +m2

0(2 − cos akx − cos aky)
2

(9)

The Dirac points of the sine dispersion acquire a gap ∝ m0, only
the Dirac point at k = 0 remains gapless.
Fermion doubling in Wilson’s approach is avoided at expense

of a breaking of both chiral and symplectic symmetries. The prod-
uct of these two symmetries is preserved,

𝜎xH
∗
Wilson𝜎x = −HWilson (10)

which is sufficient for some applications.[18–21]

3.3. Staggered Lattice Dispersion

Much of the particle physics literature follows Susskind’s
approach,[11,22] which applies a different lattice to each of the two
components of the spinor wave function Ψ = (u, v). The two lat-
tices are staggered, see Figure 2, displaced by half a lattice con-
stant. The momentum operator transfers from one lattice to the
other, which amounts to a diagonal displacement by a distance of
a∕

√
2, as expressed by the translation operators eia(kx±ky)∕2.
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The discretized Dirac Hamiltonian still acts on the original lat-
tice (black dots in Figure 2). The unitary transformation with op-
erator

Ustagger =
(
1 0
0 eia(kx+ky)∕2

)
(11)

initializes the pair of staggered lattices (u component on the black
dots, v-component on the white dots). The Hamiltonian then
takes the form

HSusskind =
√
2(ℏv∕a)U†

stagger

(
𝜎x sin[a(kx − ky)∕2]

+ 𝜎y sin[a(kx + ky)∕2]
)
Ustagger (12)

Check that the 2𝜋∕a periodicity in the kx and ky components is
maintained: the minus sign picked up by the sine terms is can-
celed by the unitaries.
In terms of the rotatedmomenta qx = (kx − ky)∕

√
2, qy = (kx +

ky)∕
√
2, normalized such that |q|2 = |k|2, one has

HSusskind = ℏv[qx𝜎x + qy𝜎y + (q2)] (13)

so the Dirac Hamiltonian (Equation (2)) is recovered in the con-
tinuum limit.
The corresponding dispersion relation

ESusskind(k)
2 = 2(ℏv∕a)2

(
sin2[(kx − ky)∕2] + sin2[(kx + ky)∕2]

)
(14)

has two inequivalent Dirac points in the Brillouin zone, at the
center and at the corner. Compared to the sine discretization the
staggered lattice has reduced the number of Dirac points from
four to two, but fermion doubling has not been fully eliminated.
Chiral symmetry is preserved, but symplectic symmetry is bro-
ken by the relative displacement of the two spinor components.
More generally, on a d-dimensional lattice the sine dispersion

has 2d inequivalent Dirac points in the Brillouin zone (one at
each time-reversally invariantmomentum), and the staggered lat-
tice reduces that by one half. For d = 1 this is sufficient to avoid
fermion doubling. In that case the Susskind Hamiltonian (Equa-
tion (12)) is equivalent (up to a unitary transformation) to the 1D
Wilson Hamiltonian

HWilson(kx, ky = 0) = (ℏv∕a)𝜎x sin akx +m0𝜎z(1 − cos akx) (15)

for the special value m0 = ℏv∕a. The resulting sin(akx∕2) disper-
sion is shown in Figure 3 (green curve).

3.4. Linear Sawtooth Dispersion

The discretization schemes discussed in the previous subsection
are all local, in the sense that they produce a sparse Hamiltonian:
each lattice site is only coupled to a few neighbors. If one is will-
ing to abandon the locality of the Hamiltonian, one can eliminate
the fermion doubling by a discretization of the spatial derivative

Figure 3. Dispersion relations of Dirac fermions on a 1D lattice, for four
different discretization schemes. One with fermion doubling (black curve,
Esine) and three without fermion doubling: EWilson (green curve, for m0 =
ℏv∕a, when ESusskind = EWilson), ESLAC (red curve), and EStacey (blue curve).
Inequivalent Dirac points are indicated by a red dot. The first Brillouin zone
is the interval |k| < 𝜋∕a, the plot is extended to |k| < 2𝜋∕a to show the
dispersion on both sides of the Brillouin zone boundary.

that involves all lattice points,

𝜕xf (x, y) → a−1
∞∑
n=1

(−1)nn−1[f (x − na, y) − f (x + na, y)]

= a−1
∞∑
n=1

(−1)nn−1(e−na𝜕x − ena𝜕x )f (x, y) = a−1(ln ea𝜕x )f (x, y)

(16)

This discretization scheme goes by the name of slac
fermions[12,23] in the particle physics literature. It has also
been implemented in a condensed matter context.[24–27]

In momentum representation, the Hamiltonian takes the
form

HSLAC = −i(ℏv∕a)
(
𝜎x ln e

iakx + 𝜎y ln eiaky
)

(17)

where the branch cut of the logarithm is taken on the negative
real axis. The corresponding dispersion

ESLAC(k)
2 = (ℏv)2 (k2x + k2y ) for |kx|, |ky| < 𝜋∕a (18)

is a linear sawtooth, with a cusp at the edge of the Brillouin zone
(see Figure 3, red curve). Fermion doubling is avoided and both
chiral and symplectic symmetries are preserved.

3.5. Tangent Dispersion

The approach pioneered by Stacey[6,7] seems a minor modifica-
tion of the slac approach—but it has far reaching consequences.
The nonlocal derivative (Equation (16)) is modified by removal of
the 1∕n factor,

𝜕xf (x, y) → 2a−1
∞∑
n=1

(−1)n[f (x − na, y) − f (x + na, y)]

= 2a−1
∑
n

(−1)n(e−na𝜕x − ena𝜕x )f (x, y) = −(2i∕a) tan(ia𝜕x∕2)f (x, y)

(19)
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The corresponding Hamiltonian

HStacey = (2ℏv∕a)
[
𝜎x tan(akx∕2) + 𝜎y tan(aky∕2)

]
(20)

has a tangent dispersion,

EStacey(k)
2 = (2ℏv∕a)2

[
tan2(akx∕2) + tan2(aky∕2)

]
(21)

The cusp at the Brillouin zone boundary has been replaced by a
pole (see Figure 3, blue curve).
As in the slac approach, the Stacey approach avoids fermion

doubling while preserving chiral and symplectic symmetries, at
the expense of a nonlocal Hamiltonian. The key merit of the tan-
gent dispersion is that the nonlocality can be removed by trans-
forming the eigenproblem HΨ = EΨ into a generalized eigen-
problemΨ = EΨ, with local operators and  on both sides
of the equation. This transformation is possible because the tan-
gent is the ratio of two operators, sine and cosine, that have a local
representation on the lattice.[28]

Ref. [6] formulated the generalized eigenproblem by means of
finite differences on a pair of staggered grids. This produces op-
erators and  that are local but not Hermitian, which is prob-
lematic in a numerical implementation. The alternative formu-
lation of ref. [29] resolves this issue, resulting in the generalized
eigenproblem[30]

Ψ = EΨ,  = 1
4
(1 + cos akx)(1 + cos aky)

 = ℏv
2a

[
𝜎x(1 + cos aky) sin akx + 𝜎y(1 + cos akx) sin aky

] (22)

Both operators  and  are Hermitian and  is also positive
definite.[31] Both are sparse matrices, only nearby sites on the lat-
tice are coupled. This combination of properties allows for an ef-
ficient calculation of the energy spectrum.

4. Topologically Protected Dirac Point

The Dirac cone of the continuumHamiltonian (Equation (2)) re-
mains gapless in the presence of perturbations that do not break
both chiral and symplectic symmetries. This topological protec-
tion is lost on the lattice for each of the discretized Hamiltoni-
ans discussed in the previous section—except for one: Tangent
fermions retain a topologically protected Dirac cone.[32]

The gap opening can be demonstrated in the simplest 1D case,
in the presence of an electrostatic potential that varies rapidly on
the scale of the lattice constant. This breaks chiral symmetry but
it preserves symplectic symmetry, so in the continuum descrip-
tion theDirac point should remain gapless (protected by Kramers
degeneracy).
Following ref. [32] we apply the staggered potential V(x) =

V cos(𝜋x∕a), switching from +V to −V between even and odd-
numbered lattice sites. This potential couples the states at k and
k + 𝜋∕a, as described by the Hamiltonian

HV (k) =
(
H(k) V∕2
V∕2 H(k + 𝜋∕a)

)
(23)

The Brillouin zone is halved to |k| < 𝜋∕2a, with the band
structure[33] shown in Figure 4.

Figure 4. Same as Figure 3, but now in the presence of a staggered poten-
tial V(x) = V cos(𝜋x∕a) with V = ℏv∕a. Only Stacey’s tangent dispersion
remains gapless.

The size of the gap 𝛿E that opens up at k = 0 due to the stag-
gered potential depends on the size of the gapΔ at k = 𝜋∕a of the
unperturbed dispersion: the largerΔ the smaller 𝛿E. The sine dis-
persion hasΔ = 0 and the resulting 𝛿E = V is of first order in the
perturbation strength. For the other dispersions the gap is of sec-
ond order, 𝛿E = V2∕Δ for V ≪ Δ. To avoid the gap opening we
thus need a pole Δ → ∞ in the dispersion at the Brillouin zone
boundary, which is provided by the tangent dispersion.

5. Application: Klein Tunneling

When a massless Dirac fermion approaches a potential bar-
rier perpendicularly to the equipotentials it is not reflected but
transmitted through the barrier with probability one. This ef-
fect, known as Klein tunneling, relies on two properties of the
Dirac Hamiltonian: chiral symmetry and absence of fermion
doubling.[34,35] Reflection of the particle within the same Dirac
cone would require a chirality flip and is thus forbidden.

5.1. Tangent Fermions on a Space-Time Lattice

Klein tunneling of tangent fermions was studied in ref. [36],
based on a space-time lattice generalization[32] of the generalized
eigenproblem (Equation (22)). The stationary equation Ψ =
EΨ can be converted into a time-dependent equation (time
step 𝛿t) upon substitution of Ψ on the left-hand-side by 1

2
[Ψ(t +

𝛿t) + Ψ(t)], and ofEΨ on the right-hand-side by (iℏ∕𝛿t)[Ψ(t + 𝛿t) −
Ψ(t)].
The result is a finite difference equation of the Crank–Nicolson

type,(
 + i𝛿t

2ℏ

)
Ψ(t + 𝛿t) =

(
 − i𝛿t

2ℏ

)
Ψ(t) (24)

Finite time step corrections are of third order in 𝛿t, but the evo-
lution is exactly unitary to all orders in 𝛿t: Ψ(t + 𝛿t) = 0Ψ(t)
with0 = ( + i𝛿t

2ℏ
)−1( − i𝛿t

2ℏ
) unitary because and com-

mute.
The eigenvalues ei𝜀𝛿t of 0 are given by

tan2(𝜀𝛿t∕2) = (v𝛿t∕a)2
[
tan2(akx∕2) + tan2(aky∕2)

]
(25)

Ann. Phys. (Berlin) 2023, 535, 2300081 2300081 (5 of 13) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300081 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 5. Band structure (Equation (25)) of tangent fermions on a space-time lattice (with v𝛿t∕a = 1). The dispersion smoothly crosses the Brillouin
zone boundaries (dotted lines). Reproduced under the terms of the CC-BY 4.0 license.[32] Published 2022, Wiley-VCH.

as plotted in Figure 5. The dispersion is approximately linear near
k = 0 and exactly linear along the lines kx = 0 and ky = 0 if we
choose the discretization units such that v = a∕𝛿t. Alternatively,
for v = 2−1∕2 a∕𝛿t the dispersion is exactly linear along the diago-
nal lines kx = ±ky.
Note that the pole in the tangent dispersion (Equation (21))

of the time-independent problem is regularized on the space-
time lattice, the bands are joined smoothly at the Brillouin
zone boundaries.
Equation (24) describes the free evolution of the particle. For

the Klein tunneling problem we wish to add an electrostatic po-
tential V(r). This can be done without breaking the unitarity of
the evolution by splitting the operator,[37]

e−i(H0+V)𝛿t∕ℏ = e−iV𝛿t∕2ℏe−iH0𝛿t∕ℏe−iV𝛿t∕2ℏ + (𝛿t3) (26)

resulting in the evolution equation[32]

(
 + i𝛿t

2ℏ

)
eiV𝛿t∕2ℏΨ(t + 𝛿t) =

(
 − i𝛿t

2ℏ

)
e−iV𝛿t∕2ℏΨ(t) (27)

Because both  and  are sparse matrices, coupling only
nearby sites on the lattice, the finite difference equation (27) can
be solved efficiently: The computational cost per time step scales
as N lnN with the number of lattice sites. An alternative method
of solution is to rewrite the evolution equation as

Ψ(t + 𝛿t) = e−iV𝛿t∕2ℏ−10e−iV𝛿t∕2ℏΨ(t) (28)

with  the Fourier transform operator. Since 0 is diagonal in
momentum space and V is diagonal in position space, the entire
computational cost is then pushed into the fast Fourier transform
algorithm, which has the same N lnN scaling.

5.2. Wave Packet Propagation

In ref. [32] the evolution equation (Equation (28)) was used to
calculate the time dependence of a state Ψ(x, y, t) incident along

the x-axis on a rectangular barrier (height V0). The initial state is
a Gaussian wave packet,

Ψ(x, y, 0) = (4𝜋w2)−1∕2eik0xe−(x
2+y2)∕2w2

(
1
1

)
(29)

with parameters k0 = 0.5∕a, w = 30 a, at mean energy Ē =
0.35ℏ∕𝛿t. The velocity v = 2−1∕2 a∕𝛿t was chosen such that the
dispersion has the largest deviation from linearity along the x-
axis, so this should provide the most stringent test of the space-
time discretization.
As shown in the left panel of Figure 6, although V0 > Ē the

tangent fermion is fully transmitted through the potential bar-
rier. This is contrasted in the right panel with the partial trans-
mission of the wave packet for a discretization on a staggered
space-time lattice,[38] which preserves chiral symmetry but has a
second Dirac cone in the Brillouin zone.[38,39]

6. Application: Strong Antilocalization

One of the most striking signatures of an unpaired Dirac cone is
the absence of quantum localization on the surface of a topolog-
ical insulator.[40–42] The conductance at the Dirac point increases
with increasing disorder, a counter-intuitive effect referred to as
strong antilocalization (“strong” to distinguish it from weak an-
tilocalization, which is a small effect of order e2∕h).
Disorder breaks chiral symmetry, but preserves the symplec-

tic time-reversal symmetry—which is essential for the effect. (In
a magnetic field the surface would be localized by disorder, as
in a quantum Hall insulator.[43]) Ref. [8] studied the emergence
of strong antilocalization in the electrical conductivity by applica-
tion of Stacey’smethod of discretization of theDirac equation.[6,7]

For that purpose the method must be applied to the transfer ma-
trix rather than to the Hamiltonian. Let us summarize how that
is done.

6.1. Transfer Matrix for Tangent Fermions

We consider a two-terminal geometry along the x-axis, with a
source contact at x = 0 and a drain contact at x = L. To solve the

Ann. Phys. (Berlin) 2023, 535, 2300081 2300081 (6 of 13) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 6. Three snapshots of the time-dependent simulation of Klein tunneling, in two alternative methods of discretization of the Dirac equation. A
potential barrier (height V0 = 1.41ℏ∕𝛿t and width 50 a) is located between the dotted lines. A wave packet at mean energy Ē = 0.35ℏ∕𝛿t is normally
incident on the barrier. The color scale shows |Ψ|2 normalized to unit peak height at each of the three times. Full transmission is obtained for the tangent
discretization without fermion doubling (left panel), while fermion doubling causes reflections for a staggered space-time lattice discretization[38] (right
panel). Reproduced with permission.[36] Copyright 2022, IOP Publishing.

scattering problem on a lattice we need to find out how the wave
functions Ψ(0, y) and Ψ(L, y) are related in the presence of a dis-
order potential V(x, y).
We start from the generalized eigenproblem (22) for tan-

gent fermions, including the potential in a way that preserves
Hermiticity,[29]

Ψ = Φ†(E − V)ΦΨ, Φ = ΦxΦy, Φ𝛼 =
1
2
(1 + eiak𝛼 )

 = ℏv
2a

[
𝜎x(1 + cos aky) sin akx + 𝜎y(1 + cos akx) sin aky

] (30)

We have used the identity 1
2
(1 + eik)(1 + e−ik) = 1 + cos k to factor

the  operator in Equation (22). We then multiply both sides of
the equation by (Φ†

x)
−1, to obtain an equation that relatesΨm(y) =

Ψ(x = ma, y) to Ψm+1 = eiakxΨm

Ψm+1 =
[
Φ†

y (1 +
1
2
i𝜎xUm)Φy −

1
2
𝜎z sin aky

]−1
×
[
Φ†

y (1 −
1
2
i𝜎xUm)Φy +

1
2
𝜎z sin aky

]
Ψm (31)

with Um = (a∕ℏv)[V(ma, y) − E].
Equation (31) defines the one-step transfer matrix Mm, via

Ψm+1 = MmΨm. The full transfer matrix M from source to drain
is given by ref. [44]

∏
m Mm, ordered such thatMm+1 is to the left

ofMm. The transfer matrix satisfies the current conservation con-
dition

M†JxM = Jx, Jx = v𝜎xΦ†
yΦy (32)

The operator Jx is the current operator in the x-direction. The
transmission matrix t can be obtained algebraically from the
transfer matrix (see Appendix C), and then the two-terminal con-
ductance G follows from the Landauer formula

G = e2

h
Tr tt† (33)

where t is evaluated at the Fermi energy E = EF.

6.2. Topological Insulator versus Graphene

In Figure 7 we show the scaling with sample size of the disorder-
averaged surface conductivity 𝜎 = (L∕W)⟨G⟩ of a topological
insulator.[8] The conductivity at the Dirac point (EF = 0) increases
upon increasing the disorder strength, with a logarithmic scaling
𝜎 ∝ ln(L∕𝓁) as a function of sample size L and mean free path 𝓁.
An unpaired Dirac cone is needed to avoid localization at large

disorder. To see that, we show in Figure 8 the conductivity as a
function of disorder strength in a graphene sheet.[45] Graphene
has a 2D honeycomb lattice with a pair of Dirac cones in the Bril-
louin zone. A smooth and weak disorder potential does not cou-
ple the cones, so the conductivity initially increases with increas-
ing disorder, as in a topological insulator. But when the disorder
strength is further increased scattering between the Dirac cones
of graphene becomes appreciable, and localization sets in.

7. Application: Anomalous Quantum Hall Effect

The spectrum of 2D massless Dirac fermions in a magnetic field
is anomalous. In addition to magnetic field dependent Landau

Ann. Phys. (Berlin) 2023, 535, 2300081 2300081 (7 of 13) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 7. Dependence of the disorder averaged conductivity 𝜎 =
(L∕W)⟨G⟩ on the ratio of sample length L and mean free path 𝓁 of a topo-
logical insulator. Different colors of the data points distinguish different
disorder strengths. The length L and width W of the sample are varied
at constant aspect ratio W∕L = 3. The Fermi energy is at the Dirac point.
The asymptotes expected in the limits of small and large 𝓁 are indicated
by dashed lines. Reproduced with permission.[8] Copyright 2008, Ameri-
can Physical Society.

Figure 8. Disorder averaged conductivity of a graphene sheet (W∕L = 3,
Fermi energy at the Dirac point), as a function of the dimensionless dis-
order strength. The conductance quantum is four times e2∕h, because of
spin degeneracy and because of the presence of two Dirac points in the
Brillouin zone. Reproduced with permission.[45] Copyright 2007, European
Physical Society.

levels, there is one level pinned to zero energy irrespective of the
magnetic field strength.[46] This “zeroth Landau level” is topo-
logically protected by chiral symmetry: If the perpendicular field
strength has spatial fluctuations, for example, because of ripples
on the surface, all Landau levels are broadened except the zeroth
Landau level.[47] Figure 9 illustrates the anomaly.
Tomodel this with tangent fermions on a 2D lattice we need to

introduce the vector potential in a gauge invariant way—without
breaking the locality of the generalized eigenproblem. Let us
summarize how that can be done, following ref. [48].

Figure 9. Slab of a topological insulator in a perpendicular magnetic field
B. Landau levels form on the top and bottom surface at energy |E| ∝ √

n,
n = 0, 1, 2,…, symmetrically arranged around E = 0. The density of states
(DOS) of the zeroth Landau level is not broadened by a spatially fluctu-
ating B, provided that the slab thickness d is sufficiently large that the
two surfaces are decoupled. Reproduced under the terms of the CC-BY
4.0 license.[48] Published 2023, Elsevier.

7.1. Gauge Invariant Tangent Fermions

We rewrite Equation (30) in terms of the translation operator
T𝛼 = ea𝜕𝛼 = eiak̂𝛼 ,

Ψ = Φ(E − V)Φ†Ψ (34a)

 = ℏv
8ia

𝜎x(1 + Ty)(Tx − T†
x )(1 + T†

y ) +
ℏv
8ia

𝜎y(1 + Tx)(Ty − T†
y )(1 + T†

x )

(34b)

Φ = 1
8
(1 + Tx)(1 + Ty) +

1
8
(1 + Ty)(1 + Tx) (34c)

The Peierls substitution incorporates the vector potential A in
a gauge invariant way by the replacement

T𝛼 → 𝛼 =
∑
n

ei𝜙𝛼 (n)|n⟩⟨n + e𝛼|, 𝜙𝛼(n) = e∫
n

n+e𝛼
A𝛼(r) dx𝛼 (35)

The sum over n is a sum over lattice sites on the 2D square lattice,
and e𝛼 ∈ {ex, ey} is a unit vector in the 𝛼-direction. Note that the
A-dependent translation operators no longer commute,

yx = e2𝜋i𝜑∕𝜑0xy (36)

where𝜑 is the flux through a unit cell in units of the flux quantum
𝜑0 = h∕e. In Equation (34) the translation operators are ordered
such that  remains Hermitian.
This is the gauge invariant discretization of the time-

independent Dirac equation. For the time-dependent case we ap-
ply the Peierls substitution (Equation (35)) to the finite difference
equation

[
ΦΦ† + i𝛿t

2ℏ
( + ΦVΦ†)

]
Ψ(t + 𝛿t) =

[
ΦΦ† − i𝛿t

2ℏ
( + ΦVΦ†)

]
Ψ(t)

(37)

For V = 0 this is the Crank–Nicolson equation (Equation (24)).
Because Φ and  no longer commute after the Peierls substitu-
tion, the unitarity condition is modified. If we reorganize Equa-
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tion (37) as Ψ(t + 𝛿t) = Ψ(t), then the operator  satisfies the
generalized unitarity condition

 †ΦΦ† = ΦΦ† (38)

It follows that the conserved density is [29, 49]

𝜌(t) = ⟨Ψ†(t)|ΦΦ†|Ψ(t)⟩ = 𝜌(t + 𝛿t) (39)

7.2. Topologically Protected Zeroth Landau Level

In a continuum description the zeroth Landau level has a definite
winding number, a chiralityC = ⟨0|𝜎z|0⟩ = ±1 depending on the
sign of the magnetic field. If chiral symmetry is maintained the
indexC is a topological invariant,[46,50,51] preventing a broadening
of the level. However, on a lattice a nonzero C is incompatible
with gauge invariance.[52] Indeed, the Landau level spectrum for
tangent fermions has a zeroth Landau level in both the C = +1
and C = −1 manifold.[48]

One way to understand this obstruction, is to consider the pro-
cess by which a uniform magnetic field is concentrated into an
array of h∕e flux tubes, each of which is fully contained within a
unit cell. The winding number cannot change by such a smooth
deformation, but the resulting magnetic field distribution may
be gauged away on the lattice, hence the net value of C must be
equal to zero.
Fortunately, there is a work-around:[48] One may spatially sep-

arate the opposite chirality manifolds by adjoining a +B and −B
region next to each other in the 2D plane. Each of the two re-
gions then has a chirality polarized zeroth Landau level. Nature
employs a similar work-around in the 3D topological insulator
geometry of Figure 9, but there the chiralities are separated on
opposite surfaces in the third dimension. The computational ad-
vantage of the tangent fermion discretization is that the spatial
separation can be realized in two dimensions.
The topological protection of the chirality-polarized zeroth

Landau level is demonstrated in Figure 10. The left panel shows
that the density of states peak at E = 0 persists with only a
slight broadening in the disordered system. It is essential that
the tangent fermion discretization does not break chiral sym-
metry. To illustrate this, the right panel shows the correspond-
ing result using Wilson’s sine+cosine dispersion (Equation (9)),
which breaks chiral symmetry. Without disorder the only differ-
ence with the tangent dispersion is an energy shift of the zeroth
Landau level,[53,54] but with disorder the difference is quite dra-
matic.

8. Application: Majorana Metal

8.1. Dirac versus Majorana Fermions

So far we discussed massless excitations, Dirac fermions, in
a topological insulator. A topological superconductor also has
massless excitations, but these are Majorana fermions rather
than Dirac fermions.[55–57] The difference is the degree of free-
dom on which the Pauli matrices act in the k ⋅ 𝝈 Hamiltonian.
For Dirac fermions the 𝜎x operation flips the spin of the quasi-
particle, for Majorana fermions it converts particle into antipar-
ticle. The latter operation does not conserve charge, it is allowed

Figure 10. Density of states (DOS) per unit cell for the tangent disper-
sion (panel a) and for Wilson’s sine+cosine dispersion (panel b), with
and without disorder in the magnetic field. Energies are rescaled by the

energy E1 = v
√
2ℏeB of the first Landau level. The zeroth Landau level of

the Wilson Hamiltonian (Equation (8)) is displaced from E = 0 by an en-
ergy 𝛿E = 1

2
eBa2m0∕ℏ. The plot is for m0 = ℏv∕a. Reproduced under the

terms of the CC-BY 4.0 license.[48] Published 2023, Elsevier.

because the missing charge of 2e is absorbed as a Cooper pair by
the superconductor.
The Hamiltonian of a 2D topological superconductor is

HMajorana = ℏv(kx𝜎x + ky𝜎y) + V(x, y)𝜎z (40)

In a topological insulator the electrostatic potential V is multi-
plied by the unit matrix, since it does not couple to the spin of a
Dirac fermion. But the potential acts with opposite sign on par-
ticles and antiparticles, hence the Pauli matrix 𝜎z for Majorana
fermions. The terms proportional to 𝜎x and 𝜎y represent a super-
conducting pair potential with p-wave symmetry.
The chiral and symplectic symmetries (Equation (4)) are both

broken, but the product of these two symmetries is preserved,

𝜎xH
∗
Majorana𝜎x = −HMajorana (41)

where the complex conjugation is carried out in the real-space
basis (so momentum k changes sign). Equation (41) represents
the particle-hole (or charge-conjugation) symmetry of a super-
conductor.
The particle-hole symmetry stabilizes localized states at zero

energy: any small deviation away from E = 0 would break the
±E symmetry. These socalled Majorana zero-modes are charge-
neutral, equal-weight superpositions of electrons and holes. They
cannot carry an electrical current, but they can contribute to ther-
mal transport if their density becomes large enough. With in-
creasing disorder the topological superconductor thus undergoes
a transition from a thermal insulator to a thermal metal of Majo-
rana fermions, a “Majorana metal.”[55]

8.2. Phase Diagram

The properties of Majorana fermions on a lattice have been stud-
ied in refs. [58, 59]. One can use either the Wilson discretization
approach (sine+cosine dispersion) or the Stacey approach (tan-
gent dispersion), since the discretized Hamiltonian conserves

Ann. Phys. (Berlin) 2023, 535, 2300081 2300081 (9 of 13) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 11. Phase diagramofMajorana fermions in a 2D topological super-
conductor. The potential landscape fluctuates randomly from site to site
in the interval (V̄ − 𝛿V, V̄ + 𝛿V). The color scale gives the geometrically av-
eraged density of states 𝜌g ,

[60–62] defined by ln(𝜌g∕N) = N−1 ∑N
i=1 log 𝜌i,

with 𝜌i the local density of states at site i ∈ {1, 2,…N} (computed in an
energy window ΔE around E = 0). States that extend over a subset 𝛿N of
the N lattice sites have 𝜌g ≃ Ne−N∕𝛿N, so an exponentially small 𝜌g indi-
cates a localized phase. The two plots are calculated for N = 20 × 20,
ΔE = 0.23ℏv∕a, averaged over 50 disorder realizations. The left panel
is for tangent fermions, the right panel for Wilson fermions (with mass
m0 = ℏv∕a).

particle-hole symmetry in both approaches. It is essential that
fermion doubling is avoided: only an unpaired Majorana zero-
mode is stable at E = 0, fermion doublingwould allow the state to
split away from zero energy without breaking the ±E symmetry.
Figure 11 compares the phase diagrams for the two ap-

proaches. Both show themetallic phase at large disorder strength
𝛿V , but the insulating phase at weak disorder differs qualitatively.
For tangent fermions the phase diagram is ±V̄ symmetric in the
average potential. For the Wilson Hamiltonian (Equation (8)),
with mass term m0, the symmetry axis is shifted: the phase di-
agram is ±(2m0 + V̄) symmetric. The phase boundary at V̄ = 0 is
thus replicated at V̄ = −4m0 (outside of the range of the figure),
and in between there is another phase boundary at V̄ = −2m0.

9. Outlook

Tangent fermions have not found much employ in lattice gauge
theory.[1] Richard Stacey, who introduced this discretization of
the Dirac equation in that context,[6] concluded in a follow-up
paper[63] that: “This approach is not a success, and we will not
consider it further.” The singularity of the tangent dispersion at
the edge of the Brillouin zone, which tangent fermions sharewith
slac fermions,[12] was considered a showstopper.
Stacey’s approach was reconsidered in condensed matter

physics, as a way to model the low-energy properties of
graphene.[8] The present review was motivated by a recent devel-
opment in the study of topological insulators. Tangent fermions
play a unique role in these materials, they represent the only
class of 2D lattice fermions with a topologically protected Dirac
cone.[32] What distinguishes them from slac fermions is that the
dispersion can be regularized on a space-time lattice, produc-
ing a smooth energy–momentum relation across the entire Bril-

Figure 12. Quasi-energy bandstructure 𝜀(kx , ky) for slac fermions (red)
and for tangent fermions (yellow). The surfaces are computed, respec-
tively, from the two equations (𝜀𝛿t + 2𝜋n)2 = (akx)

2 + (aky)
2, n ∈ ℤ, and

tan2(𝜀𝛿t∕2) = tan2(akx∕2) + tan2(aky∕2). Only the first Brillouin zone is
shown, the full bandstructure is periodic in momentum k𝛼 with period
2𝜋∕a and periodic in quasi-energy 𝜀 with period 2𝜋∕𝛿t. Near k = 0 both
discretizations have the Dirac cone 𝜀2 = v2(k2x + k2y ) of the continuum
limit, with velocity v = a∕𝛿t. The band structure of slac fermions has a
discontinuous derivative at Brillouin zone boundaries, the band structure
of tangent fermions is smooth. Reproduced under the terms of the CC-BY
4.0 license.[32] Published 2022, Wiley-VCH.

louin zone, of the form tan2(𝜀∕2) = tan2(kx∕2) + tan2(ky∕2) in di-
mensionless units. The sawtooth dispersion of slac fermions, in
contrast, retains singularities at Brillouin zone boundaries when
time and space are both discretized (see Figure 12).
In the preceding sections we have reviewed several applica-

tions of tangent fermions in topological states of matter (in-
sulators and superconductors). These all involve single-particle
physics (either of Dirac fermions or of Majorana fermions). We
look forward to applications inmany-body physics. slac fermions
have been used to study various models of interacting electrons
on a lattice.[24–27] Their sawtooth dispersion creates lattice arte-
facts which are not removed by reducing the lattice constant. It
would be of interest to explore whether tangent fermions can pro-
vide an alternative route without those artefacts.

Appendix A: The Inverse of the Stacey Derivative is
the Trapezoidal Integrator

In Section 3 we compared three different ways to discretize the differ-
ential operator 𝜕x : the local derivative 𝜕

local
x given by Equation (5), the slac

derivative 𝜕SLACx given by Equation (16), and the Stacey derivative 𝜕Staceyx
given by Equation (19). The corresponding inverses produce three differ-
ent discretizations of the integral operator. Let us identify these.

Consider Riemann sum approximations of the integral ∫ x
−∞ f (x′) dx′ on

a 1D lattice of equidistant points (spacing a). One distinguishes the right
Riemann sum

S+[f ](x) = a
∞∑
n=0

f (x − na) = a
1 − e−a𝜕x

(1)

Ann. Phys. (Berlin) 2023, 535, 2300081 2300081 (10 of 13) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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the left Riemann sum

S−[f ](x) = a
∞∑
n=0

f (x − a − na) = ae−a𝜕x

1 − e−a𝜕x
(2)

and the middle Riemann sum

S0[f ](x) = 2a
∞∑
n=0

f (x − a − 2na) = 2ae−a𝜕x

1 − e−2a𝜕x
= a

i sin ak̂x
(3)

We have written these in terms of the translation operator e±a𝜕x f (x) =
f (x ± a), with k̂x = −i𝜕x the momentum operator. The average of left and
right Riemann sums is the trapezoidal integration rule,

T[f ](x) = 1
2
S+[f ](x) +

1
2
S−[f ](x) =

1
2
a1 + e−a𝜕x

1 − e−a𝜕x
= a

2i
cotan ( 1

2
ak̂x) (4)

We can now identify the inverse of S0 with the sine dispersion of the
local discretization (5), and the inverse of T with the tangent dispersion of
the Stacey discretization (Equation (19)),

S−10 = 𝜕localx

T−1 = 𝜕
Stacey
x

(5)

Remarkably enough, tangent fermions implement the trapezoidal integra-
tion rule.

What about slac fermions? Inversion of the slac derivative gives the
integration operator kernel

K(x, x′) = 1
2𝜋 ∫

𝜋∕a

−𝜋∕a
eik(x−x

′) 1
ik
dk = 1

𝜋
Si (𝜋x∕a − 𝜋x′∕a) (6)

with Si (x) the sine integral function. The discretized integral then becomes

∫
x

−∞
f (x′) dx′ → a

𝜋

∞∑
n=−∞

[
Si (𝜋x∕a − 𝜋n) + 𝜋∕2

]
f (na) (7)

Unlike the Riemann sums (Equations (1)–(4)), the integrator Equation (7)
is nonlocal: the definite integral ∫ x2

x1
f (x)dx requires a summation over an

infinite number of terms.

Appendix B: Real-Space Formulation of the
Generalized Eigenproblem

The generalized eigenproblem (Equation (22)) of tangent fermions can
be formulated in the position basis upon the substitution

eiak𝛼 →
∑
n

|n⟩⟨n + e𝛼| (B1)

The sum over n = nxex + nyey, with nx, ny ∈ ℤ, is a sum over lattice sites
on the 2D square lattice (lattice constant a).

We thus have the equation Ψ = EΨ, with on the left-hand-side the
operator

 = − iℏv
a
D ⋅ 𝝈, D = (Dx, Dy) (B2a)

Dx =
1
8

∑
n

(
2|n⟩⟨n + ex | + |n⟩⟨n + ex + ey| + |n⟩⟨n + ex − ey|) −H.c.

(B2b)

Figure B1. Staggered pair of grids to represent the two fields 𝜓 and 𝜓̃ =
Φ𝜓 . Reproduced under the terms of the CC-BY 4.0 license.[29] Published
2021, SciPost Foundation.

Dy =
1
8

∑
n

(
2|n⟩⟨n + ey| + |n⟩⟨n + ex + ey| + |n⟩⟨n + ey − ex |) −H.c.

(B2c)

and on the right-hand-side the operator  = Φ†Φ with

Φ = 1
4

∑
n

(|n⟩⟨n| + |n⟩⟨n + ex | + |n⟩⟨n + ey| + |n⟩⟨n + ex + ey|) (B3)

The abbreviation H.c. stands for “Hermitian conjugate.” Both operators
 and  are local, only nearby lattice points are connected.

By way of illustration, we work out the expectation value

⟨𝜓|Φ†Φ|𝜓⟩ = ∑
n

|𝜓̃n|2, 𝜓̃n = 1
4
(𝜓n + 𝜓n+ex + 𝜓n+ey + 𝜓n+ex+ey ) (B4)

One can interpret this in terms of the two staggered lattices shown in Fig-
ure B1. The field 𝜓̃ = Φ𝜓 is defined on a white lattice point as the average
of the amplitudes of the wave function 𝜓 on the four adjacent black lat-
tice points.

Appendix C: From Transfer Matrix to Transmission
Matrix

We explain the method[8] to extract the transmission matrix t from the
transfer matrix M of the tangent fermions. As described in Section 6.1,
we consider a two-terminal geometry: A disordered region of width W in
the y-direction connects to ideal leads at x = 0 and x = L. The dynamics in
the leads is simplified by cutting the bonds in the transverse direction, so
the incoming and outgoing modes propagate along one of the N = W∕a
chains of lattice sites parallel to the x-axis.

We separate the spinor degrees of freedom s = ± of the transfer matrix
into four N ×N blocks,

M =
(
M++ M+−

M−+ M−−

)
(C1)

Ann. Phys. (Berlin) 2023, 535, 2300081 2300081 (11 of 13) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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The current conservation relation (Equation (32)) can be written in the
canonical form

M̃†
(
1 0
0 −1

)
M̃ =

(
1 0
0 −1

)
(C2)

in terms of a matrix M̃ related toM by a similarity transformation,

M̃ = RMR−1, R =

(
(Φ†

yΦy)
1∕2 (Φ†

yΦy)
1∕2

(Φ†
yΦy)

1∕2 −(Φ†
yΦy)

1∕2

)
(C3)

It follows directly from Equation (C2) that thematrix S constructed from
M̃ by

M̃ =
(
a b
c d

)
⇔ S =

(
−d−1c d−1

a − bd−1c bd−1

)
(C4)

is a unitary matrix. This is the scattering matrix of the disordered region.
TheN ×N transmission matrix t is the upper-right block of S, given by the
inverse of the lower-right block of M̃,

t =
(
M̃−−)−1 (C5)

The transformation (Equation (C4)) also points the way to a method
to avoid the numerical instability inherent in the multiplication of transfer
matrices:[8] First convert each M̃m into a unitary matrix Sm by means of
Equation (C4). Matrix multiplication of ̃m’s induces a nonlinear compo-
sition (star product[64]) of Sm’s,

̃1̃2 → S1 ⋆ S2 (C6)

defined by(
A1 B1
C1 D1

)
⋆

(
A2 B2
C2 D2

)

=
(
A1 + B1(1 − A2D1)

−1A2C1 B1(1 − A2D1)
−1B2

C2(1 − D1A2)
−1C1 D2 + C2(1 − D1A2)

−1D1B2

)
(C7)

Since the Sm’s are unitary, and the star product preserves unitarity, the
divergence of eigenvalues that plagues the transfer matrix multiplication
is avoided.
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