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A method from random-matrix theory is used to calculate the pair correlation function of a one-dimensional
gas of N � 1 classical particles with a power-law repulsive interaction potential u(x) ∝ |x|−s (a so-called Riesz
gas). An integral formula for the covariance of single-particle operators is obtained, which generalizes known
results in the limits s → −1 (Coulomb gas) and s → 0 (log-gas). As an application, we calculate the variance of
the center of mass of the Riesz gas, which has a universal large-N limit that does not depend on the shape of the
confining potential.
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I. INTRODUCTION

The one-dimensional (1D) Riesz gas [1–4] describes N
classical particles that move on a line (the x axis) with a
repulsive interaction potential u(x) of the form

u(x) =
{

sign(s)|x|−s for s > −2,

− ln |x| for s = 0.
(1.1)

The particles are prevented from moving off to infinity by a
confining potential V (x).

The cases s = 0 and s = −1 are also referred to as log-gas
and Coulomb gas, respectively. The log-gas plays a central
role in random-matrix theory (RMT) [5]. Experimentally, an
interaction potential with an adjustable exponent s � 1 has
been realized in a chain of trapped ion spins [6].

Thermal averages 〈· · · 〉, at inverse temperature β, are de-
fined with respect to the Gibbs measure

P(x1, x2, . . . xN )

= Z−1 exp

⎛
⎝−β

⎡
⎣J

N∑
i< j=1

u(xi − x j ) +
N∑

i=1

V (xi )

⎤
⎦

⎞
⎠,

(1.2)

where Z normalizes the distribution to unity. The interaction
strength is parameterized by J > 0. The average density is

ρ(x) =
〈

N∑
i=1

δ(x − xi )

〉
, (1.3)

normalized to the particle number,∫ ∞

−∞
ρ(x) dx = N. (1.4)
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Much is known about the dependence of ρ(x) on the range
of the interaction [7–10], in the three regimes s > 1 (short-
range repulsion), −1 < s < 1 (weakly long-range repulsion),
and −2 < s < −1 (strongly long-range repulsion). In what
follows we consider the second regime, −1 < s < 1, which
includes the log-gas at s = 0 and the Coulomb gas in the limit
s → −1.

For N � 1 the density has a compact support, which may
consist of multiple disjunct intervals. Considering a single
interval (a, b), an end point may be N independent, fixed by
a hard wall, or it may be N dependent, freely adjustable in a
smooth potential. The density vanishes as a power law at a free
end point, while it diverges (with an integrable singularity) at
a fixed end point.

For example, in the case of a quadratic confinement V (x) ∝
x2, there are two free N-dependent end points at b = −a ∝
N1/(2+s) and the density profile is [9]

ρ(x) ∝ (b2 − x2)(s+1)/2, |s| < 1. (1.5)

The density profile becomes flat in the Coulomb gas limit,
while the log-gas has the Wigner semicircle law [11]. Alterna-
tively, if we set V ≡ 0 and confine the Riesz gas by a hard wall
at x = a and x = b, then the density diverges on approaching
a fixed end point [10],

ρ(x) ∝ (x − a)(s−1)/2(b − x)(s−1)/2, |s| < 1. (1.6)

Knowledge of the density allows us to calculate by inte-
gration the average 〈F 〉 of a single-particle observable F =∑N

i=1 f (xi ) (also known as a “linear statistic”). For N � 1 we
can restrict the integral to the interval (a, b),

〈F 〉 =
∫ b

a
ρ(x) f (x) dx. (1.7)

Going beyond the first moment, Flack, Majumdar, and
Schehr recently obtained [12] a strikingly simple formula for
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the large-N limit of the variance of F in the Coulomb case
[13],

Var F = 1

2βJ

∫ b

a
[df (x)/dx]2 dx for s = −1. (1.8)

The corresponding formula in the RMT case s = 0 is known
[14,15], but results for other values of the interaction param-
eter s are not known. The aim of this paper is to provide that
information for the entire range −1 < s < 1.

For that purpose one needs the connected pair correlation
function

R(x, y) =
〈

N∑
i, j=1

δ(x − xi )δ(y − x j )

〉
− ρ(x)ρ(y), (1.9)

which gives the variance upon integration,

Var F =
∫ b

a
dx

∫ b

a
dy R(x, y) f (x) f (y). (1.10)

In RMT there are basically two methods to compute
R(x, y). The method of orthogonal polynomials [16] applies
to specific confining potentials (typically linear or quadratic)
and then gives results for any N . The alternative method of
functional derivatives [17] (equivalently, the method of loop
equations [18]) takes the large-N limit, but then works gener-
ically for any form of confinement. Since the latter method
does not assume a logarithmic repulsion, it is the method of
choice in what follows.

II. PAIR CORRELATION FUNCTION

For N � 1 the pair correlation function oscillates rapidly
on the scale of the interparticle spacing δx 	 (b − a)/N .
These oscillations are irrelevant for the computation of the
variance of an observable that varies smoothly on the scale
of δx, so that in the large-N limit it is sufficient to know the
smoothed correlation function.

The method of functional derivatives starts from the exact
representation

R(x, y) = − 1

β

δρ(x)

δV (y)
. (2.1)

The variation of the density is to be carried out at constant
particle number, ∫ b

a
δρ(x) dx = 0. (2.2)

The integration interval (a, b) is the support of the smoothed
particle density ρ(x) in the large-N limit. (We assume that the
confining potential produces a support in a single interval.)

In the regime −1 < s < 1 of a weakly long-ranged repul-
sion, and for J � 1/β, variations in the smoothed density ρ

and in the confining potential V are related by the condition
of mechanical equilibrium [9,19],

J
∫ b

a
u(x − y)δρ(y) dy + δV (x) = constant, a < x < b.

(2.3)

Taking the derivative with respect to x we have a singular
integral equation,

J (|s| + δ0,s)P
∫ b

a
dy δρ(y)

sign(x − y)

|x − y|s+1
= d

dx
δV (x),

a < x < b, (2.4)

which we need to invert in order to obtain the functional
derivative (2.1). (The symbol P indicates the principal value
of the integral.)

For −1 < s < 1 the general solution to Eq. (2.4) is given
by the Sonin inversion formula [20–22] (see Appendix A),

J (|s| + δ0,s)δρ(x) = CδV [(x − a)(b − x)]s− − C1SδV (x),

(2.5a)

SδV (x) = −(x − a)s+ d

dx

∫ b

x
dt

(t − x)s−

(t − a)s

d

dt

×
∫ t

a
dy (y − a)s− (t − y)s+ d

dy
δV (y),

(2.5b)

C1 = sin(πs+)�(s + 1)

πs+�(s+)2
, s± = (s ± 1)/2.

(2.5c)

The coefficient CδV is fixed by the constraint (2.2),

CδV = C1

C2

∫ b

a
dx SδV (x), (2.6a)

C2 =
∫ b

a
dx [(x − a)(b − x)]s−= (b − a)s√π �(s+)

2s �(1 + s/2)
. (2.6b)

The function �(x) is the usual gamma function.
The pair correlation function R(x, y) is obtained from

Eq. (2.1) as a distribution, defined by its action on a test
function g(y) upon integration over y. Using the functional-
derivative identities∫ b

a
dy

δSδV (x)

δV (y)
g(y) = Sg(x), (2.7a)

∫ b

a
dy

δCδV

δV (y)
g(y) = C1

C2

∫ b

a
dx Sg(x), (2.7b)

we find the following expression:

Jβ(|s| + δ0,s)
∫ b

a
dy R(x, y)g(y)

= C1Sg(x) − [(x − a)(b − x)]s− C1

C2

(∫ b

a
dx Sg(x)

)
.

(2.8)

III. COVARIANCE OF SINGLE-PARTICLE OBSERVABLES

Equation (2.8) provides a formula for the covariance of the
two observables F = ∑N

i=1 f (xi ) and G = ∑N
i=1 g(xi ),

CoVar(F, G) = 〈FG〉 − 〈F 〉〈G〉

=
∫ b

a
dx

∫ b

a
dy R(x, y) f (x)g(y). (3.1)
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The covariance is given by integrals over f (x) and Sg(x),

Jβ(|s| + δ0,s) CoVar (F, G)

= C1

∫ b

a
dx f (x)Sg(x) − C1

C2

(∫ b

a
dx Sg(x)

)

×
∫ b

a
dx [(x − a)(b − x)]s− f (x). (3.2)

The variance of a single observable then follows from
Var F = CoVar(F, F ).

For general functions f , g the integrals in Eq. (3.2) may
be carried out numerically (see Appendix A). Closed-form
expressions can be obtained for polynomial functions. It is
convenient to shift the origin of the coordinate system so that
(a, b) → (0, L). We define Xp = ∑

i xp
i , p � 1, and obtain the

covariance

Jβ(|s| + δ0,s) CoVar (Xp, Xq ) = 2πLp+q+s�(s)

�(−p − s−)�(p + s + 1)�(−q − s−)�(q + s + 1)

× pqs sin(πs+)

(p + q + s)(cos[π (p + q + s)] + cos[π (p − q)])
. (3.3)

For the variance this reduces to

Jβ(|s| + δ0,s) Var Xp = 2πL2p+s p2s�(s) sin(πs+)

(2p + s)�(−p − s−)2�(p + s + 1)2(1 + cos[π (2p + s)])
. (3.4)

We have checked that the general formula (3.3) agrees with the known formulas in the Coulomb gas limit [12] (see also
Appendix B),

Jβ CoVar (F, G) = 1

2

∫ L

0

df (x)

dx

dg(x)

dx
dx, for s = −1, ⇒ Jβ CoVar (Xp, Xq ) = pqLp+q−1

2(p + q − 1)
, (3.5)

and in the log-gas limit [23,24],

Jβ CoVar (F, G) = 1

π2
P

∫ L

0
dx

∫ L

0
dy

g(y)df (x)/dx

y − x

√
x(L − x)

y(L − y)
, for s = 0,

⇒ Jβ CoVar (Xp, Xq ) = πLp+q

(p + q)�
(

1
2 − p

)
�(p)�

(
1
2 − q

)
�(q) cos(π p) cos(πq)

.

(3.6)

IV. VARIANCE OF THE CENTER OF MASS

By way of illustration, we compute the variance of the cen-
ter of mass M = N−1 ∑N

i=1 xi of the Riesz gas. Equation (3.4)
for p = 1 gives

Var M = Cs
√

π

2s+3�
(

1
2 − s/2

)
�(2 + s/2)

,

Cs = Ls+2

N2Jβ

1

|s| + δ0,s
. (4.1)

The dimensionless coefficient Cs is N independent if the sys-
tem is scaled at constant interparticle spacing δx = L/N with
interaction strength J ∝ Ns.

The dependence of Var M on the interaction exponent
s is plotted in Fig. 1. At the upper limit s → 1 we find
C−1

s Var M → 0, to leading order in 1/N . This is consistent
with the fact that the repulsion is short range for s > 1, so
we would expect the positions of the particles to fluctuate
independently. The variance of the center of mass (rescaled
by Cs) would then be of order 1/N .

The theory applies to the interval −1 < s < 1 of a weakly
long-range repulsion. The dashed curve in Fig. 1 is the analyt-
ical continuation of Eq. (4.1) to the interval −2 < s < −1 of
a strongly long-range repulsion. We surmise that the formula
remains valid in that regime.

V. CONCLUSION

In conclusion, we have computed the pair correlation
function of a 1D system of classical particles with a long-
range power-law repulsion. In the thermodynamic limit
(particle number N and system size L to infinity at
fixed interparticle spacing δx = L/N), and upon smoothing

FIG. 1. Variance of the center of mass of the Riesz gas, computed
from Eq. (4.1). The calculation applies to the interval |s| < 1, the
dashed curve is the analytical continuation of Eq. (4.1) to smaller s.
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over δx, the pair correlation function becomes a universal
function of the power law exponent s ∈ (−1, 1)—independent
of the shape of the confining potential V (x) for a given single-
interval support (a, b) of the average density. So it does not
matter if the Riesz gas is confined to the interval (0, L) by a
soft parabolic potential or by a hard-wall confinement—the
density fluctuations are the same even though the aver-
age density profile ρ(x) is very different in the two cases
[10].

Our result (3.2) for the covariance of a pair of single-
particle observables generalizes old results for a logarithmic
repulsion [14,15] and a very recent result for a linear repul-
sion [12]. We rely on a solution of an integral equation that
requires |s| < 1 (weakly long-range regime), but the method
of functional derivatives that we have used can be applied also
outside of this interval. The independence of the pair corre-
lation function R(x, y) = −β−1δρ(x)/δV (y) on the shape of
the confining potential follows directly from the linearity of
the relation between ρ and V , so we expect a universal result
also for −2 < s < −1. In the short-range regime s > 1, in
contrast, the ρ–V relation is nonlinear [9] and no universal
answer is expected.
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APPENDIX A: SONIN INVERSION FORMULA

We summarize results from Refs. [20–22] on the solution
of the singular integral equation

P
∫ b

a
dy S(y)

sign(x − y)

|x − y|s+1
= g′(x), x ∈ (a, b), |s| < 1.

(A1)

The homogenous integral equation, with zero on the right-
hand side, has the solution

S0(x) = [(x − a)(b − x)]s− . (A2)

The Sonin inversion formula gives two particular solutions
to the inhomogeneous integral equation,

S−(x) = −C1(x − a)s− d

dx

∫ b

x
dt

(t − x)s+

(t − a)s

d

dt

∫ t

a
dy (y − a)s+ (t − y)s−g′(y), (A3)

S+(x) = C1(x − a)s+ d

dx

∫ b

x
dt

(t − x)s−

(t − a)s

d

dt

∫ t

a
dy (y − a)s− (t − y)s+g′(y). (A4)

For the general solution we take either one of these two particular solutions and add it to an arbitrary multiple of the
homogeneous solution,

S(x) = S±(x) + constant × S0(x), (A5)

where “constant” means independent of x. Since, by construction, the difference of two particular solutions solves the homoge-
neous integral equation, it does not matter for the general solution, which particular solution we choose.

In the main text we chose S+(x). This has the benefit over S−(x) that the derivatives can be eliminated upon partial integration,∫ b

a
dx f (x)S+(x) = − C1

∫ b

a
dx [ f ′(x)(x − a) + s+ f (x)](x − a)s−

×
∫ b

x
dt

(t − x)s−

(t − a)s

∫ t

a
dy s+(y − a)s− (t − y)s−g′(y). (A6)

The three definite integrals of Eq. (A6) are in a form that can be evaluated numerically, without the need to take derivatives.

APPENDIX B: COULOMB GAS LIMIT

The Coulomb gas limit s = −1 can be obtained from the
general formulas for |s| < 1 by means of the identities [25]

lim
ε↘0

∫ b

x

ε f (y)

(y − x)1−ε
dy = f (x), (B1a)

lim
ε↘0

∫ b

a

ε f (x)

[(b − x)(x − a)]1−ε
dx = f (a) + f (b)

b − a
. (B1b)

We start from the derivative-free representation (A6) of the
integrals in Eq. (3.2), and apply Eq. (B1) first to the integral
over y,

I1(t ) = lim
s↘−1

∫ t

a
dy s+(y − a)s− (t − y)s−g′(y) = g′(t ) + g′(a)

t − a
,

(B2)

then to the integral over t ,

I2(x) = lim
s↘−1

∫ b

x
dt

(t − x)s−

(t − a)s
I1(t ) = 1

s+
[g′(x) + g′(a)],

(B3)

and finally to the integral over x,

I3 = lim
s↘−1

∫ b

a
dx [ f ′(x)(x − a) + s+ f (x)](x − a)s− I2(x)

= 1

s+

∫ b

a
dx f ′(x)[g′(x) + g′(a)] + 2

s+
f (a)g′(a). (B4)
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Moreover, since 1/C2 → 1
2 s+(b − a) for s → −1, we have

lim
s↘−1

1

C2

∫ b

a
dx [(x − a)(b − x)]s− f (x) = 1

2
[ f (b) + f (a)].

(B5)

Using also C1 = 1
2 s+ + O(s + 1)2 we thus arrive at

lim
s↘−1

C1

∫ b

a
dx f (x)Sg(x)

= 1

2

∫ b

a
dx f ′(x)[g′(x) + g′(a)] + f (a)g′(a), (B6a)

lim
s↘−1

C1

C2

(∫ b

a
dx Sg(x)

)∫ b

a
dx [(x − a)(b − x)]s− f (x)

= 1

2
g′(a)[ f (b) + f (a)]. (B6b)

Substitution of Eq. (B6) into Eq. (3.2) gives

lim
s↘−1

CoVar (F, G) = 1

2Jβ

∫ b

a
dx f ′(x)g′(x), (B7)

in accord with Ref. [12].
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