
Properties of the gradient squared of the discrete
Gaussian free field
Cipriani, A.; Hazra, R.S.; Rapoport, A.; Ruszel, W.M.

Citation
Cipriani, A., Hazra, R. S., Rapoport, A., & Ruszel, W. M. (2023).
Properties of the gradient squared of the discrete Gaussian free
field. Journal Of Statistical Physics, 190.
doi:10.1007/s10955-023-03187-3
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3718585
 
Note: To cite this publication please use the final published version
(if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3718585


Journal of Statistical Physics (2023) 190:171
https://doi.org/10.1007/s10955-023-03187-3

Properties of the Gradient Squared of the Discrete Gaussian
Free Field

Alessandra Cipriani1 · Rajat S. Hazra2 · Alan Rapoport3 ·Wioletta M. Ruszel3

Received: 27 April 2023 / Accepted: 18 October 2023 / Published online: 4 November 2023
© The Author(s) 2023

Abstract
In this paper we study the properties of the centered (norm of the) gradient squared of the
discrete Gaussian free field in Uε = U/ε∩Z

d , U ⊂ R
d and d ≥ 2. The covariance structure

of the field is a function of the transfer current matrix and this relates the model to a class of
systems (e.g. height-one field of theAbelian sandpilemodel or pattern fields in dimermodels)
that have a Gaussian limit due to the rapid decay of the transfer current. Indeed, we prove
that the properly rescaled field converges to white noise in an appropriate local Besov-Hölder
space. Moreover, under a different rescaling, we determine the k-point correlation function
and joint cumulants on Uε and in the continuum limit as ε → 0. This result is related to the
analogue limit for the height-one field of the Abelian sandpile (Dürre in Stoch Process Appl
119(9):2725–2743, 2009), with the same conformally covariant property in d = 2.
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1 Introduction

The Gaussian free field (GFF) is one of the most prominent models for random surfaces. It
appears as scaling limit of observables in many interacting particle systems, see for example
Jerison et al. [24], Kenyon [37], Sheffield [21], Wilson [32]. It serves as a building block
for defining the Liouville measure in Liouville quantum gravity (see Ding et al. [10] and
references therein for a list of works on the topic).

Its discrete counterpart, the discrete Gaussian free field (DGFF), is also very well-known
among random interface models on graphs. Given a graph �, a (random) interface model
is defined as a collection of (random) real heights � = (�(x))x∈�, measuring the vertical
distance between the interface and the set of points of � [15, 36]. The discrete Gaussian free
field has attracted a lot of attention due to its links to random walks, cover times of graphs,
and conformally invariant processes (see Barlow and Slade [17], Ding et al. [2], Glimm and
Jaffe [32], Schramm and Sheffield [9], Sheffield [31], among others). In the present paper,
we will consider the DGFF on the square lattice, that is, we will focus on � ⊆ Z

d , in which
case the probability measure of the DGFF is a Gibbs measure with formal Hamiltonian given
by

H(�) = 1

2d

∑

x,y:‖x−y‖=1

V (�(x) − �(y)) (1.1)

where V (ϕ) = ϕ2/2.Wewill always work with 0-boundary conditions, meaning that we will
set�(x) to be zero almost surely outside�. For general potentials V (·) the Hamiltonian (1.1)
defines a broad class of gradient interfaces which have been widely studied in terms of decay
of correlations and scaling limits [5, 7, 29], among others.

The gradient Gaussian free field∇� is defined as the gradient of the DGFF � along edges
of the square lattice. This field is a centered Gaussian process whose correlation structure
can be written in terms of T (·, ·), the transfer current (or transfer impedance) matrix [23].
Namely, if we consider the gradient∇i�(·) := �(·+ei )−�(·) in the i-th coordinate direction
of R

d , we have, for x, y ∈ Z
d , 1 ≤ i, j ≤ d , that

E
[∇i�(x)∇ j�(y)

] = G�(x, y) − G�(x + ei , y) − G�(x, y + e j ) + G�(x + ei , y + e j )

= T (e, f )

where e = (x, x + ei ) and f = (y, y + e j ) are directed edges of the grid and G�(·, ·) is
the discrete harmonic Green’s function on � with 0-boundary conditions outside �. Here
T (e, f ) describes a current flow between e and f .

The main object we will study in our article is the following. Take U to be a connected,
bounded subset of R

d with smooth boundary. Consider the recentered squared norm of the
gradient DGFF, formally denoted by

�ε(·) =:‖∇�‖2 :(·) =
d∑

i=1

: (�(· + ei ) − �(·))2 :

on the discretized domain Uε = U/ε ∩ Z
d , ε > 0, d ≥ 2, with � a 0-boundary DGFF on

Uε. The colon : (·) : denotes the Wick centering of the random variables. In the rest of the
paper we will simply call �ε the gradient squared of the DGFF. Let us remark that we do
not consider d = 1 here since in one dimension the gradient of the DGFF is a collection of
i.i.d. Gaussian variables.
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k-Point Correlation Functions

Our first main result determines the k-point correlation functions for the field �ε on the
discretized domain Uε and in the scaling limit as ε → 0. We defer the precise statement to
Theorem 1 in Sect. 3, which we will now expose in a more informal way. Let ε > 0 and
k ∈ N and let the points x (1), . . . , x (k) in U ⊂ R

d , d ≥ 2, be given. Define x ( j)
ε to be a

discrete approximation of x ( j) in Uε , for j = 1, . . . , k. Let �([k]) be the set of partitions
of k objects and S0

cycl(B) be the set of cyclic permutations of a set B without fixed points.

Finally let E be the set of coordinate vectors of R
d . Then the k-point correlation function at

fixed “level” ε is equal to

E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ =
∑

π∈�([k])

∏

B∈π

2|B|−1
∑

σ∈S0cycl(B)

∑

η:B→E

∏

j∈B

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
x ( j)
ε , x (σ ( j))

ε

)
.

(1.2)

Moreover if x (i) �= x ( j) for all i �= j , the scaling limit of the above expression is

lim
ε→0

ε−dk
E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦

=
∑

π∈�([k])

∏

B∈π

2|B|−1
∑

σ∈S0cycl(B)

∑

η:B→E

∏

j∈B

∂
(1)
η( j)∂

(2)
η(σ ( j))GU

(
x ( j), x (σ ( j))) (1.3)

where GU (·, ·) is the continuum Dirichlet harmonic Green’s function on U . As a corollary
(Corollary 1) we also determine the corresponding cumulants on Uε and in the scaling limit.

Let us discuss some interesting observations in the sequel. The k-point correlation function
of (1.3) has similarities to the k-point correlation that arises in permanental processes, see
Eisenbaum and Kaspi [25], Hough et al. [13], Last and Penrose [19] for relevant literature. In
fact, in d = 1 one can show that the gradient squared is exactly a permanental process with
kernel given by the diagonal matrix whose non-zero entries are the double derivatives of GU

[27, Theorem 1]. In higher dimensions however we cannot identify a permanental process
arising from the scaling limit, since the directions of derivations of the DGFF at each point
are not independent. Nevertheless the 2-point correlation functions of �ε are positive (see
Eq. (4.20) in Sect. 4), which is consistent with attractiveness of permanental processes [25,
Remark on p. 139], and the overall structure resembles closely that of permanental processes
marginals.

In d = 2, the limiting k-joint cumulants of first order κ of our field are interestingly
connected to the cumulants of the height-one field

(
hε(x (i)

ε ) : x (i)
ε ∈ Uε

)
of the Abelian

sandpile model [11, Theorem 2]. Theorem 1 will imply that for every set of  ≥ 2 pairwise
distinct points in d = 2 one has

−2 lim
ε→0

ε−2κ

(
C

4
�ε

(
x (1)
ε

)
, . . . ,

C

4
�ε

(
x ()
ε

))
= lim

ε→0
ε−2κ

(
hε

(
x (1)
ε

)
, . . . , hε

(
x ()
ε

))

(1.4)

with

C = 2

π
− 4

π2 = π E [h0(0)] , (1.5)
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see Dürre [12, Theorem 6].
We would also like to point out that the apparently intricate structure of Eqs. (1.2)–(1.3)

and of Dürre’s Theorem 2 can be unfolded as soon as one recognizes therein the structure
of a Fock space. We will discuss this point in more detail in Sect. 3.1, where in particular
in Corollary 2 we will derive a Fock space representation of the k-point function for the
height-one field. We will pose further questions on this matter in Sect. 5.

Due to the similar nature of the cumulants in the height-one field of the sandpile and our
field, we show in Proposition 1 that in d = 2 the k-point correlation functions are conformally
covariant (compare Dürre [11, Theorem 1], Kassel and Wu [23, Theorem 2]). This hints at
Theorems 2 and 3 of Kassel and Wu [23], in which the authors prove that for finite weighted
graphs the rescaled correlations of the spanning tree model and minimal subconfigurations
of the Abelian sandpile have a universal and conformally covariant limit.

Scaling Limit

The second main result of our paper is the scaling limit of the field towards white noise
in some appropriate local Besov–Hölder space. As we will show in Theorem 2, Sect. 3, as
ε → 0 the gradient squared of the discrete Gaussian free field �ε converges as a random
distribution to spatial white noise W :

ε−d/2

√
χ

�ε
d−→ W (1.6)

for some explicit constant 0 < χ < ∞. The result is sharp in the sense that we obtain
convergence in the smallest Hölder space where white noise lives. The constant χ , defined
explicitly in (3.6), is the analogue of the susceptibility for the Ising model, in that it is a
sum of all the covariances between the origin and any other lattice point. We will prove that
this constant is finite and the field �ε has a Gaussian limit. Note that Newman [30] proves
the same result for translation-invariant fields with finite susceptibility satisfying the FKG
inequality. In our case we do not have translation invariance since we work on a domain, so
we are not able to apply directly this criterion. From a broader perspective there are several
other results in the literature that obtain white noise in the limit due to an algebraic decay of
the correlations, see for example Bauerschmidt et al. [3].

Note that our field can be understood in a wider class of models having correlations which
depend on the transfer current matrix T (·, ·). An interesting point mentioned in Kassel and
Wu [23] is that pattern fields of determinantal processes closely connected to the spanning tree
measure and T (·, ·) (for example the spanning unicycle, the Abelian sandpile model [11] and
the dimer model [6]) have a universal Gaussian limit when viewed as random distributions.
Correlations of those pattern fields can be expressed in terms of transfer current matrices
which decay sufficiently fast and assure the central limit-type behaviour which we also
obtain.

Let us comment finally on the differences between expressions (1.3) and (1.6). The scaling
factors are different, and this reflects two viewpoints one can have on �ε: the one of (1.3)
is that of correlation functionals in a Fock space, while in (1.6) we are looking at it as
a Gaussian distributional field (compare also Theorems 2 and 3 in Dürre [11]). This is
compatible, as there are examples of trivial correlation functionals which are non-zero as
random distributions [22].

The novelty of the paper lies in the fact that we construct the gradient squared of the
Gaussian free field on a grid, determine its k-point correlation function and scaling limits.
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We determine tightness in optimal Besov–Hölder spaces (optimal in the sense that we cannot
achieve a better regularity for the scaling limit to hold). Furthermore we show the “dual”
behavior in the scaling limit of the gradient squared of the DGFF as a Fock space field and
as a random distribution. As mentioned before we recognize a similarity to permanental
processes, and it is worthwhile noticing that for general point processes there is a Fock space
structure, see e.g. Last and Penrose [25, Section 18]. Since there is a close connection to
the height-one field via correlation structures, we also unveil a Fock space structure in the
Abelian sandpile model.

Proof Ideas

The main idea for the proof of results (1.2)–(1.3) is to decompose the k-point correlation
function in terms of complete Feynman diagrams [20]. Then we can use the Gaussian nature
of the field to expand the products of covariances as transfer currents. To determine the scaling
limit we will use developments from Funaki [15] and Kassel and Wu [23]. Let us stress that
the proof of the scaling limit of cumulants differs from the one of Dürre [11, Theorem 2] who
instead uses the correspondence between the height-one field and the spanning tree explicitly
to determine the limiting observables.

The proof of the scaling limit (1.6) is divided into two parts. In a first step (Proposition 2)
we prove that the family of fields under consideration is tight in an appropriate local Besov–
Hölder space by using a tightness criterion of Furlan and Mourrat [16]. The proof requires a
precise control of the summability of k-point functions, which is provided by Theorem 1 and
explicit estimates for double derivatives of the Green’s function in a domain. Observe that,
even if the proof relies on the knowledge of the joint moments of the family of fields, we
only use asymptotic bounds derived from them.More specifically, we need to control the rate
of growth of sums of moments at different points. The second step (Proposition 3) consists
in determining the finite-dimensional distributions and identifying the limiting field. We
will first show that the limiting distribution, when tested against test functions, has vanishing
cumulants of order higher or equal to three, and secondly that the limiting covariance structure
is the L2(U ) inner product of the test functions. This will imply that the finite-dimensional
distributions of converge to those corresponding to d-dimensional white noise. For this we
rely on generalized bounds on double gradients of the Green’s function from Lawler and
Limic [26] and Dürr [11].

Structure of the Paper
The structure of the paper is as follows. In Sect. 2 we fix notation, introduce the fields that

we study and provide the definition of the local Besov–Hölder spaces where convergence
takes place. Section3 is devoted to stating the main results in a more precise manner. The
subsequent Sect. 4 contains all proofs andfinally in Sect. 5we discuss possible generalizations
and pose open questions.

2 Notation and Preliminaries

Notation Let f , g be two functions f , g : R
d → R

d , d ≥ 2. We will use f (x) � g(x) to
indicate that there exists a constant C > 0 such that | f (x)| ≤ C |g(x)|, where | · | denotes
the Euclidean norm in R

d . If we want to emphasize the dependence of C on some parameter
(for example U , ε) we will write �U , �ε and so on. We use the Landau symbol f = O(g)
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if there exist x0 ∈ R
d and C > 0 such that | f (x)| ≤ C |g(x)| for all x ≥ x0. Similarly

f = o(g) means that limx→0 f (x)/g(x) = 0. Furthermore, call [] := {1, 2, . . . , } and
�−, � := {−, . . . , −1, 0, 1, . . . , }, for some  ∈ N.

We will write |A| for the cardinality of a set A. For any finite set A we define �(A) as the
set of all partitions of A. Let Perm(A) denote the set of all possible permutations of the set
A (that is, bijections of A onto itself). When A = [k] for some k ∈ N, we might also refer
to its set of permutations as Sk . If we restrict Sk to those permutations without fixed points,
we denote them as S0

k . Call Scycl(A) the set of the full cyclic permutations of A, possibly
with fixed points. More explicitly, any σ : A → A bijective is in Scycl(A) if σ(A′) �= A′ for
any subset A′

� A with
∣∣A′∣∣ > 1. When this condition is relaxed to all A′ with

∣∣A′∣∣ > 0 we
obtain the set of all cyclic permutations without fixed points which is called S0

cycl(A).
Let n ∈ N and X = (Xi )

n
i=1 be a vector of real-valued random variables, each of which

has all finite moments.

Definition 1 (Joint cumulants of random vector) The cumulant generating function K (t) of
X for t = (t1, . . . , tn) ∈ R

n is defined as

K (t) := log
(
E

[
et·X

])
=

∑

m∈N
n

κm(X)

n∏

j=1

t
m j
j

m j !

where t ·X denotes the scalar product in R
n ,m = (m1, . . . , mn) ∈ N

n is a multi-index with
n components, and

κm(X) = ∂ |m|

∂tm1
1 · · · ∂tmn

n
K (t)

∣∣∣
t1=...=tn=0

being |m| = m1 + · · · + mn . The joint cumulant of the components of X can be defined as a
Taylor coefficient of K (t1, . . . , tn) for m = (1, . . . , 1); in other words

κ(X1, . . . , Xn) = ∂n

∂t1 · · · ∂tn
K (t)

∣∣∣
t1=...=tn=0

.

In particular, for any A ⊆ [n], the joint cumulant κ(Xi : i ∈ A) of X can be computed as

κ(Xi : i ∈ A) =
∑

π∈�(A)

(|π | − 1)!(−1)|π |−1
∏

B∈π

E

[
∏

i∈B

Xi

]

with |π | the cardinality of π .

Let us remark that, by some straightforward combinatorics, it follows from the previous
definition that

E

[
∏

i∈A

Xi

]
=

∑

π∈�(A)

∏

B∈π

κ(Xi : i ∈ B). (2.1)

If A = {i, j}, i, j ∈ [n], then the joint cumulant κ(Xi , X j ) is the covariance between Xi

and X j . We stress that, for a real-valued random variable X , one has the equality

κ(X , . . . , X︸ ︷︷ ︸
n times

) = κn(X) n ∈ N

which we call the n-th cumulant of X .
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2.1 Functions of the Gaussian Free Field andWhite Noise

Let U ⊂ R
d , d ≥ 2, be a non-empty bounded connected open set with C1 boundary. Denote

by (Uε, Eε) the graph with vertex set Uε := U/ε ∩ Z
d and edge set Eε defined as the

bonds induced by the hypercubic lattice Z
d on Uε. For an (oriented) edge e ∈ Eε of the

graph, we denote by e+ its tip and e− its tail, and write the edge as e = (e−, e+). Consider
E := {ei } 1≤i≤d , the canonical basis of R

d . Since we will use approximations via grid points,
we need to introduce, for any t ∈ R

d , its floor function as

�t� := the unique z ∈ Z
d such that t ∈ z + [0, 1)d .

Definition 2 (Discrete Laplacian on a graph) We define the (normalized) discrete Laplacian
with respect to a vertex set V ⊆ Z

d as

�V (x, y) :=

⎧
⎪⎨

⎪⎩

−1 if x = y
1
2d if x ∼ y

0 otherwise.

(2.2)

where x, y ∈ V and x ∼ y denotes that x and y are nearest neighbors. For any function
f : V → R we define

�V f (x) :=
∑

y∈V

�V (x, y) f (y) = 1

2d

∑

y∼x

( f (y) − f (x)) x ∈ V . (2.3)

Call the outer boundary of V as

∂exV := {x ∈ Z
d \ V : ∃ y ∈ V : x ∼ y}.

Definition 3 (Discrete Green’s function) The Green’s function GV (x, ·) : V ∪ ∂exV → R,
for x ∈ V , with Dirichlet boundary conditions is defined as the solution of

{ −�V GV (x, y) = δx (y) if y ∈ V
G�(x, y) = 0 if y ∈ ∂exV

where δ is the Dirac delta function.

Remark 1 When V = Z
d , we ask for the extra condition GV (x, y) → 0 as ‖y‖ → ∞.

Denote by G0(·, ·) the Green’s function for the whole grid Z
d when d ≥ 3, or with a

slight abuse of notation the potential kernel for d = 2. This abuse of notation is motivated
by the fact that we will only be interested in the discrete differences of G0, which exist for
the infinite-volume grid in any dimension. Notice that G0(·, ·) is translation invariant; that
is, G0(x, y) = G0(0, y − x) for all x, y ∈ Z

d .

Definition 4 (Continuum Green’s function) The continuumGreen’s function GU onU ⊂ R
d

is the solution (in the sense of distributions) of
{

�GU (·, y) = −δy(·) on U

GU (·, y) = 0 on ∂U
(2.4)

for y ∈ U , where � denotes the continuum Laplacian and U is the closure of U .
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For an exhaustive treatment on Green’s functions we refer to Evans [14], Lawler and Limic
[26] and Spitzer [33].

Definition 5 (Discrete Gaussian free field, Sznitman [35, Section 2.1]) Let � ⊂ Z
d be finite.

The discrete Gaussian free field (DGFF) (�(x))x∈� with 0-boundary condition is defined as
the (unique) centered Gaussian field with covariance given by

E [�(x)�(y)] = G�(x, y) x, y ∈ �.

Define for an oriented edge e = (e−, e+) ∈ Eε the gradient DGFF ∇e� as

∇e�(e−) := �(e+) − �(e−). (2.5)

In the following, we will define the main object of interest.

Definition 6 (Gradient squared of the DGFF) The discrete stochastic field �ε given by

�ε(x) :=
d∑

i=1

:(∇ei �(x)
)2 : x ∈ Uε

is called the gradient squared of the DGFF, where : · : denotes the Wick product; that is,
: X : = X − E[X ] for any random variable X .

The family of random fields (�ε)ε>0 is a family of distributions, which is defined to act
on a given test function f ∈ C∞

c (U ) as

〈�ε, f 〉 :=
∫

U
�ε (�x/ε�) f (x) dx (2.6)

where we take �ε(�x/ε�) = 0 in case �x/ε� /∈ Uε, which can happen if ε is not small
enough.

When no ambiguities appear, we will write (∇i�(x))2 for
(∇ei �(x)

)2, with i =
1, 2, . . . , d . For any given function f : Z

d × Z
d → R, we define the discrete gradient

in the first argument and direction ei ∈ E as

∇(1)
ei

f (x, y) := f (x + ei , y) − f (x, y),

with x, y ∈ Z
d , and analogously

∇(2)
ei

f (x, y) := f (x, y + ei ) − f (x, y)

for the second argument. Once again, when no ambiguities arise, we will write∇(1)
i for ∇(1)

ei ,
and analogously for the second argument.

For a continuum function g : U × U → R, ∂(1)
ei g(x, y) denotes the partial derivative of

g with respect to the first argument in the direction of ei , while ∂
(2)
ei g(x, y) corresponds to

the second argument, also in the direction ei . The same abuse of notation on the subindex ei

applies here.

Definition 7 (Gaussian white noise) The d-dimensional Gaussian white noise W is the
centered Gaussian random distribution on U ⊂ R

d such that, for every f , g ∈ L2(U ),

E [〈W , f 〉〈W , g〉] =
∫

U
f (x)g(x)dx .

In other words, 〈W , f 〉 ∼ N(
0, ‖ f ‖2

L2(U )

)
for every f ∈ L2(U ).
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2.2 Besov–Hölder Spaces

In this Subsection we will define the functional space on which convergence will take place.
We will use Furlan and Mourrat [16] as a main reference. Local Hölder and Besov spaces of
negative regularity on general domains are natural functional spaceswhen considering scaling
limits of certain random distributions or in the context of non-linear stochastic PDE’s, see
e.g. Furlan and Mourrat [16], Hairer [18] especially when those objects are well-defined on
a domain U ⊂ R

d but not necessarily on the full space R
d . They are particularly suited for

fields which show bad behaviour near the boundary ∂U .
Let (Vn)n∈Z be a dense subsequence of subspaces of L2(Rd) such that

⋂
n∈Z

Vn = {0}.
Denote by Wn the orthogonal complement of Vn in Vn+1 for all n ∈ Z. Furthermore, we
assume the following properties. The function f ∈ Vn if and only if f (2−n ·) ∈ V0. Let
(φ(· − k))k∈Z

d be an orthonormal basis of V0 and (ψ(i)(· − k))i<2d ,k∈Z
d an orthonormal

basis of W0. Note that φ, (ψ(i))i<2d both belong to Cr
c(R

d) for some positive integer r ∈ N,
that is, they belong to the set of r times continuously differentiable functions on R

d with
compact support. For more details about wavelet analysis, see [8, 28].

Define �n = Z
d/2n and

φn,x (y) = 2dn/2φ
(
2n(y − x)

)

resp.

ψ(i)
n,x (y) = 2dn/2ψ(i)(2n(y − x)

)

which makes (φn,x )x∈�n an orthonormal basis of Vn resp. (ψ(i)
n,x )x∈�n ,i<2d ,n∈Z an orthonor-

mal basis of L2(Rd). Every function f ∈ L2(Rd) can be decomposed into

f = Vk f +
∞∑

n=k

Wn f

for any fixed k ∈ Z, where Vn resp. Wn are the orthogonal projections onto Vn resp. Wn

defined as

Vn f =
∑

x∈�n

〈
f , φn,x

〉
φn,x Wn f =

∑

i<2d ,x∈�n

〈
f , ψ(i)

n,x

〉
ψ(i)

n,x .

Definition 8 (Besov spaces) Let α ∈ R, |α| < r , p, q ∈ [1,∞] and U ⊂ R
d . The Besov

space Bα
p,q(U ) is the completion of C∞

c (U ) with respect to the norm

‖ f ‖Bα
p,q

:= ‖V0 f ‖L p + ∥∥(
2αn‖Wn f ‖L p

)
n∈N

∥∥
q .

The local Besov space Bα,loc
p,q (U ) is the completion of C∞(U ) with respect to the family of

semi-norms

f �→ ‖χ̃ f ‖Bα
p,q

indexed by χ̃ ∈ C∞
c (U ).

We will use the following embedding property of Besov spaces in the tightness argument.

Lemma 1 (Furlan and Mourrat [16, Remark 2.12]) For any 1 ≤ p1 ≤ p2 ≤ ∞, q ∈ [1,∞]
and α ∈ R, the space Bα,loc

p2,q (U ) is continuously embedded in Bα,loc
p1,q (U ).
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Finally let us define the functional space where convergence will take place, the space of
distributions with locally α-Hölder regularity. For that, we denote as Cr the set of r times
continuously differentiable functions on R

d , with r ∈ N ∪ {∞}. We also define the Cr norm
of a function f ∈ Cr as

‖ f ‖Cr :=
∑

|i |≤r

‖∂i f ‖L∞

being i ∈ N
d a multi-index.

Definition 9 (Hölder spaces) Let α < 0, r0 = −�α�. The space Cα
loc(U ) is called the locally

Hölder space with regularity α ∈ R on the domain U . It is the completion of C∞
c (U ) with

respect to the family of semi-norms

f �→ ‖χ̃ f ‖Cα

indexed by χ̃ ∈ C∞
c (U ) and

‖ f ‖Cα = sup
λ∈(0,1]

sup
x∈R

d
sup

η∈Br0

λ−α

∫

R
d

f (·) λ−d η

( · − x

λ

)

where

Br0 = {
η ∈ Cr0 : ‖η‖Cr0 ≤ 1, supp η ⊂ B(0, 1)

}
.

Note that by Furlan and Mourrat [16, Remark 2.18] one has Cα
loc(U ) = Bα,loc∞,∞(U ).

3 Main Results

The first result we would like to present is an explicit computation of the k-point correlation
function of the gradient squared of the DGFF field �ε defined in Definition 6.

Theorem 1 Let ε > 0 and k ∈ N and let the points x (1), . . . , x (k) in U ⊂ R
d , d ≥ 2, be given.

Define x ( j)
ε := ⌊

x ( j)/ε
⌋

and choose ε small enough so that x ( j)
ε ∈ Uε, for all j = 1, . . . , k.

Then

E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦=
∑

π∈�([k])

∏

B∈π

2|B|−1
∑

σ∈S0cycl(B)

∑

η:B→E

∏

j∈B

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
x ( j)
ε , x (σ ( j))

ε

)

(3.1)

where GUε (·, ·) was defined in Definition 3. Moreover if x (i) �= x ( j) for all i �= j , then

lim
ε→0

ε−dk
E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦

=
∑

π∈�([k])

∏

B∈π

2|B|−1
∑

σ∈S0cycl(B)

∑

η:B→E

∏

j∈B

∂
(1)
η( j)∂

(2)
η(σ ( j))GU

(
x ( j), x (σ ( j))) (3.2)

where GU (·, ·) was defined in Eq. (2.4).
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Remark 2 It will sometimes be useful to write (3.1) as the equivalent expression

E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ =
∑

π∈�([k])
w/o singletons

∏

B∈π

2|B|−1
∑

σ∈Scycl(B)

×
∑

η:B→E

∏

j∈B

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
x ( j)
ε , x (σ ( j))

ε

)
(3.3)

where the condition of σ belonging to full cycles of B without fixed points is inserted in the
no-singleton condition of the permutations π .

Remark 3 From the above expression it is immediate to see that the 2-point function is given
by

E
[
�ε

(
xε

)
�ε

(
yε

)] = 2
∑

i, j∈[d]

(
∇(1)

i ∇(2)
j GUε

(
xε, yε

))2

which will be useful later on.

The following Corollary is a direct consequence of Theorem 1.

Corollary 1 Let  ∈ N. The joint cumulants κ
(
�ε

(
x ( j)
ε

) : j ∈ [], x ( j)
ε ∈ Uε

)
of the field

�ε at “level” ε > 0 are given by

κ
(
�ε

(
x ( j)
ε

) : j ∈ []
)

= 2−1
∑

σ∈S0cycl([])

∑

η:[]→E

∏

j=1

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
x ( j)
ε , x (σ ( j))

ε

)
.

(3.4)

Moreover if x (i) �= x ( j) for all i �= j , then

lim
ε→0

ε−dκ
(
�ε

(
x ( j)
ε

) : j ∈ []
)

= 2−1
∑

σ∈S0cycl([])

∑

η:[]→E

∏

j=1

∂
(1)
η( j)∂

(2)
η(σ ( j))GU

(
x ( j), x (σ ( j))).

(3.5)

As already mentioned in the introduction, comparing our result with Dürre [11, Theorem 2]
we obtain (1.4).

The following proposition states that in d = 2 the limit of the field �ε is conformally
covariant with scale dimension 2. This result can also be deduced for the height-one field for
the sandpile model, see Dürre [11, Theorem 1].

Proposition 1 Let U , U ′ ⊂ R
2, k ∈ N,

{
x ( j)

}
j∈[k], and

{
x ( j)
ε

}
j∈[k] be as in Theorem 1.

Furthermore let h : U → U ′ be a conformal mapping and call hε

(
x ( j)

) := ⌊
h

(
x ( j)

)
/ε

⌋
,

for ε small enough so that hε

(
x ( j)

) ∈ U ′
ε for all j ∈ [k]. Then

lim
ε→0

ε−2k
E

⎡

⎣
k∏

j=1

�U
ε

(
x ( j)
ε

)
⎤

⎦ =
k∏

j=1

∣∣∣h′(x ( j))
∣∣∣
2
lim
ε→0

ε−2k
E

⎡

⎣
k∏

j=1

�U ′
ε

(
hε

(
x ( j)))

⎤

⎦

where now for clarity we emphasize the dependence of �ε on its domain.
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Finally we will show that the rescaled gradient squared of the discrete Gaussian free field
will converge towhite noise in some appropriate locallyHölder spacewith negative regularity
α in d ≥ 2 dimensions. This space is denoted as Cα

loc(U ) (see Definition 9).

Theorem 2 Let U ⊂ R
d with d ≥ 2. The gradient squared of the discrete Gaussian free field

�ε converges in the following sense as ε → 0:

ε−d/2

√
χ

�ε
d−→ W ,

where the white noise W is defined in Definition 7. This convergence takes place in Cα
loc(U )

for any α < −d/2, and the constant χ defined as

χ := 2
∑

v∈Z
d

∑

i, j∈[d]

(
∇(1)

i ∇(2)
j G0(0, v)

)2
(3.6)

is well-defined, in the sense that 0 < χ < ∞.

Remark 4 Let us remind the reader that Cα
loc(U ) with α < −d/2 are the optimal spaces in

which the white noise lives. See for example Armstrong et al. [1, Proposition 5.9].

3.1 Fock Space Structure

Let us discuss in the following the connection to Fock spaces. We start by reminding the
reader of the definition of the continuum Gaussian free field (GFF).

Definition 10 (Continuum Gaussian free field, Berestycki [4, Section 1.5]) The continuum
Gaussian free field � with 0-boundary (or Dirichlet) conditions outside U is the unique
centered Gaussian process indexed by C∞

c (U ) such that

Cov
(
�( f ), �(g)

) =
∫

U×U
f (x)g(y)GU (x, y) dxdy f , g ∈ C∞

c (U )

where GU (·, ·) was defined in Definition 4.

We can think of it as an isometry � : H → L2(�, P), for some Hilbert spaceH and some
probability space (�,F, P). To fix ideas, throughout this Section let us fix H := H1

0(U ),
the order one Sobolev space with Dirichlet inner product (see Berestycki [4, Section 1.6]).
Note that, even if the GFF is not a proper random variable, we can define its derivative as a
Gaussian distributional field.

Definition 11 (Derivatives of the GFF, Kang and Makarov [22, p. 4]) The derivative of � is
defined as the Gaussian distributional field ∂i�, 1 ≤ i ≤ d , in the following sense:

(
∂i�

)
( f ) := � (∂i f ) f ∈ C∞

c (U ).

There is however another viewpoint that one can take on the GFF and its derivatives, and
is that of viewing them as Fock space fields. This approach will be used to reinterpret the
meaning of Theorem 1. For the reader’s convenience we now recall here some basic facts
about Fock spaces and their fields. Our presentation is drawn from Janson [20, Section 3.1]
and Kang and Makarov [22, Sec. 1.2−1.4].
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For n ≥ 0, we denoteH�n as the n-th symmetric tensor power ofH; in other words,H�n

is the completion of linear combinations of elements f1 � · · · � fn with respect to the inner
product

〈 f1 � · · · � fn, g1 � · · · � gn〉 =
∑

σ∈Sn

n∏

i=1

〈
fi , gσ(i)

〉
fi , gi ∈ H 1 ≤ i ≤ n.

The symmetric Fock space overH is

Fock(H) :=
⊕

n≥0

H�n .

Wenow introduce elements in Fock(H) calledFock space fields.We call basic correlation
functionals the formal expressions of the form

Xp = X1(x1) � · · · � X p(x p)

for p ∈ N, x1, . . . , x p ∈ U , and X1, . . . , X p derivatives of�. The setS(Xp) := {x1, . . . , x p}
is called the set of nodes of Xp . Basic Fock space fields are formal expressions written as
products of derivatives of the Gaussian free field �, for example 1 � �, ∂� � � � � etc.
A general Fock space field X is a linear combination of basic fields. We think of any such
X as a map u �→ X(u), u ∈ U , where the values X = X(u) are correlation functionals
with S(X) = {u}. Thus Fock space fields are functional-valued functions. Observe that Fock
space fields may or may not be distributional random fields, but in any case we can think of
them as functions in U whose values are correlation functionals.

Our goal is to define now tensor products. We will restrict our attention to tensor products
over an even number of correlation functionals, even if the definition can be given for an
arbitrary number of them. The reason behind this presentation is due to the set-up we will be
working with.

Definition 12 (Tensor products in Fock spaces) Letm ∈ 2N. Given a collection of correlation
functionals

X j := X j1(z j1) � · · · � X jn j (z jn j ) 1 ≤ j ≤ m

with pairwise disjoint S(X j )’s, the tensor product of the elements X1, . . . ,Xm is defined as

X1 · · ·Xm :=
∑

γ

∏

{u,v}∈Eγ

E [Xu(xu)Xv(xv)] (3.7)

where the sum is taken over Feynman diagrams γ with vertices u labeled by functionals X pq

in such a way that there are no contractions of vertices in the same S(Xp). Eγ denotes the set
of edges of γ . One extends the definition of tensor product to general correlation functionals
by linearity.

The reader may have noticed that (3.7) is simply one version of Wick’s theorem. It is
indeed this formula that will allow us in Sect. 4.2 to prove Theorem 1, and that enables one to
bridge Fock spaces and our cumulants in the following way. For any j ∈ [k], k ∈ N, i j ∈ [d],
one can define the basic Fock space field Xi j := ∂i j �. Introduce the correlation functional

Y j :=
∑

i j ∈E
X�2

i j

(
x ( j)) (3.8)

for x ( j) ∈ U . We obtain now the statement of the next Lemma.
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Lemma 2 (k-point correlation functions as Fock space fields) Under the assumptions of
Theorem 1,

lim
ε→0

ε−dk
E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ =
∑

π∈�([k])

(
1

2

)|π | ∏

B∈π

YB
(
x (B)

)

whereYB
(
x (B)

) := 2Y1�· · ·�2Y j , S(Y j ) = {x ( j)}, j ∈ B. Here |π | stands for the number
of blocks of the partition π and the tensor product on the r.h.s. is taken in the sense of (3.7).

TheFock space structure ismore evident from theGaussian perspective of theDGFF, but (1.4)
together with Dürre’s theorem entail a corollary which wewould like to highlight.We remind
the reader of the definition of the constant C in (1.5).

Corollary 2 (Height-one field k-point functions, d = 2) With the same notation of Theorem 1
one has in d = 2 that

lim
ε→0

ε−2k
E

⎡

⎣
k∏

j=1

(
hε

(
x ( j)
ε

) − E

[
hε

(
x ( j)
ε

)])
⎤

⎦ =
∑

π∈�([k])

(
−1

2

)|π | ∏

B∈π

ỸB
(
x (B)

)

where ỸB
(
x (B)

) := Ỹ1 � · · · � Ỹ j , S(Ỹ j ) = {x ( j)} and Ỹ j := C Y j , j ∈ B. As before, |π |
stands for the number of blocks of the partition π .

Remark 5 Mind that our Green’s functions differ from those of [11] by a factor of 2d since
in their definitions we use the normalized Laplacian, whereas Dürre uses the unnormalized
one. This has to be accounted for when comparing the corresponding results in both papers.

4 Proofs

4.1 Previous Results from Literature

Let us now expose some important results that we will refer to throughout the proofs. They
refer to partially known results and partially consist of straightforward generalizations of
previous results.

Our computations will rely on the fact that the distribution of the gradient field ∇i�,
i ∈ [d], is well-known. The following result is quoted from Funaki [15, Lemma 3.6].

Lemma 3 Let � ⊂ Z
d be finite, and let (�x )x∈� be a 0-boundary conditions DGFF on �

(see Definition 5). Then
{

E [∇i�(x)] = 0 if x ∈ � i ∈ [d]
E

[∇i�(x)∇ j�(y)
] = ∇(1)

i ∇(2)
j G�(x, y) if x, y ∈ � i, j ∈ [d].

Consequently, we can directly link the gradient DGFF to so-called transfer current matrix
T (·, ·) by

T (e, f ) = G�(e−, f −) − G�(e+, f −) − G�(e−, f +) + G�(e+, f +) (4.1)

where e, f are oriented edges of � (see Kassel and Wu [23, Section 2]). Equivalently we
can write

T (e, f ) = ∇e∇ f G�(e−, f −). (4.2)
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From Lemma 3, it is clear that we need to control the behaviour of double derivatives of
discrete Green’s function in the limit ε → 0. In order to find the limiting joint moments of
the point-wise field �ε(x) we will need the following result about the convergence of the
discrete difference of the Green’s function on Uε (see Definition 3) to the double derivative
of the continuum Green’s function GU (·, ·) on a set U (see Eq. (2.4)). This result follows
from Theorem 1 of Kassel and Wu [23].

Lemma 4 (Convergence of the Green’s function differences) Let v, w be points in the set U,
with v �= w. Then for all a, b ∈ E,

lim
ε→0

ε−d ∇(1)
a ∇(2)

b GUε (�v/ε� , �w/ε�) = ∂(1)
a ∂

(2)
b GU (v,w).

The next lemma is a generalization of Dürre [12, Lemma 31] for general dimensions
d ≥ 2. The proof is straightforward and will be omitted. It provides an error estimate when
replacing the double difference of GUε (·, ·) on the finite set by that of G0(·, ·) defined on the
whole lattice.

Lemma 5 Let D ⊂ U be such that the distance between D and U is non-vanishing, that is,
dist (D, ∂U ) := inf(x,y)∈D×∂U |x − y| > 0. There exist cD > 0 and εD > 0 such that, for
all ε ∈ (0, εD], for all v,w ∈ Dε := D/ε ∩ Z

d and i, j ∈ [d],
∣∣∣∇(1)

i ∇(2)
j GUε (v, w) − ∇(1)

i ∇(2)
j G0(v,w)

∣∣∣ ≤ cD εd (4.3)

and also

∣∣∣∇(1)
i ∇(2)

j GUε (v, w)

∣∣∣ ≤ cD ·
{

|v − w|−d if v �= w

1 if v = w.
(4.4)

An immediate consequence of (4.4) and the expression (3.1) in Theorem 1 for two points
gives us the following bound on the covariance of the field:

Corollary 3 Let D, v and w be as in Lemma 5. Then

E [�ε(v)�ε(w)] ≤ cD ·
{

|v − w|−2d if v �= w

1 if v = w.
(4.5)

On the other hand, we will also make use of a straightforward extension of Lawler and
Limic [26, Corollary 4.4.5] for d = 2 and Lawler and Limic [26, Corollary 4.3.3] for d ≥ 3,
yielding the following Lemma.

Lemma 6 (Asymptotic expansion of the Green’s function differences) As |v| → +∞, for all
i, j ∈ [d]

∣∣∣∇(1)
i ∇(2)

j G0(0, v)

∣∣∣ = O(|v|−d)
.

The following technical combinatorial estimate, which is an immediate extension of a
corollary of Dürre [12, Lemma 37], will be important when proving tightness of the family
(�ε)ε , in order to bound the rate of growth of the moments of 〈�ε, f 〉 for some test function
f :
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Lemma 7 Let D ⊂ U such that dist (D, ∂U ) > 0 and p ≥ 2. Then

∑

v1,...,vp∈Dε

vi �=v j for i �= j

⎛

⎝
p−1∏

i=1

1

|vi − vi+1|d

⎞

⎠ 1
∣∣vp − v1

∣∣d
= OD

(
ε− p

2 −d+1
)

where Dε := D/ε ∩ Z
d .

4.2 Proof of Theorem 1

The strategy to prove the first theorem is based on decomposing the k-point functions into
combinatorial expressions that involve basically covariances of Gaussian random variables.
This is made possible by our explicit knowledge of the Gaussian field which underlies �ε.
These covariances can be estimated using the transfer matrix (Eq. (4.2)), whose scaling limit
is well-known: it is the differential of the Laplacian Green’s function (cf. Kassel andWu [23,
Theorem 1]).

In order to compute the k-point function we will first make use of Feynman diagrams
techniques, of which we provide a brief exposition in the appendix at the end of the present
paper. In particular we will make use of Theorem A.4.

Proof of Theorem 1 Let us compute the function

Qk
(
x (1)
ε , . . . , x (k)

ε

) := E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ .

From Definition 6 of �ε

(
x ( j)
ε

)
we know that

Qk
(
x (1)
ε , . . . , x (k)

ε

) =
∑

i1,...,ik∈E
E

⎡

⎣
k∏

j=1

:
(
∇i j �

(
x ( j)
ε

))2 :
⎤

⎦

with E the canonical basis of R
d . In our case we have k products of the Wick product

: (∇i j �
(
x ( j)
ε

))2 : (indexed by j , not i j ). So we can identify Y j in Theorem A.4 with :
(∇i j �

(
x ( j)
ε

))2 : for any j ∈ [k], being ξ j1 = ξ j2 = ∇i j �
(
x ( j)
ε

)
.

Let us denote x ( j)
ei := (

x ( j), x ( j) + ei
)
, i ∈ [d] , j ∈ [k] (we drop the dependence on

ε to ease notation). Also to make notation lighter we fix the labels i j for the moment and

keep them implicit. We then define U := {
x (1), x (1), . . . , x (k), x (k)

}
, where each copy is

considered distinguishable. We also define F D0 as the set of complete Feynman diagrams
on U such that no edge joins x (i) with (the other copy of) x (i). That is, a typical edge b in a
Feynman diagram γ in F D0 is of the form

(
x ( j), x (m)

)
, with j �= m and j, m ∈ [k]. Thus

by Definition A. 1 we have

E

⎡

⎣
k∏

j=1

:
(
∇�

(
x ( j)
ε

))2 :
⎤

⎦ =
∑

γ∈F D0

ν(γ ) =
∑

γ∈F D0

∏

b∈Eγ

E
[∇b+�

(
(b+)−

) ∇b−�
(
(b−)−

)]
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where Eγ are the edges of γ (note that the edges of γ connect edges of Uε) and (b+)−
denotes the tail of the edge b+ (analogously for b−). Lemma 3 and Eq. (4.2) yield

E

⎡

⎣
k∏

j=1

:
(
∇�

(
x ( j)
ε

))2 :
⎤

⎦ =
∑

γ∈F D0

∏

b∈Eγ

T (b+, b−).

Now we would like to express Feynman diagrams in terms of permutations. We first note
that any given γ ∈ F D0 cannot join x (i) with itself (neither the same nor the other copy
of itself). So instead of considering permutations σ ∈ Perm(U) we consider permutations
σ ′ ∈ Sk , being Sk the group of permutations of the set [k]. Any γ ∈ F D0 is a permutation
σ ∈ Perm(U), but given the constraints just mentioned, we can think of them as permutations
σ ′ ∈ Sk without fixed points; that is, σ ′ ∈ S0

k . Thus

E

⎡

⎣
k∏

j=1

:
(
∇�

(
x ( j)
ε

))2 :
⎤

⎦ =
∑

σ ′∈S0k

c(σ ′)
k∏

j=1

T
(

x ( j), x (σ ′( j))
)

with c(σ ′) a constant that takes into account the multiplicity of different permutations σ that
give rise to the same σ ′, depending on its number of subcycles.

Let us disassemble this expression even more. In general σ ′ can be decomposed in q
cycles. Since σ ′ ∈ S0

k (in particular, it has no fixed points), there are at most �k/2� cycles in
a given σ ′. Hence,

E

⎡

⎣
k∏

j=1

:
(
∇�

(
x ( j)
ε

))2 :
⎤

⎦ =
�k/2�∑

q=1

∑

σ ′∈S0k
σ ′=σ ′

1...σ
′
q

c(σ ′)
q∏

h=1

∏

j∈σ ′
h

T
(

x ( j), x (σ ′
h( j))

)

where the notation j ∈ σ ′
h means that j belongs to the domain where σ ′

h acts (non trivially).

As for c(σ ′), given a cycle σ ′
i , i ∈ [q], it is straightforward to see that there are 2|σ ′

i |−1

different Feynman diagrams in F D0 that give rise to σ ′
i , where |σ ′

i | is the length of the orbit
of σ ′

i . This comes from the fact that we have two choices for each element in the domain, but
swapping them gives back the original Feynman diagram, so we obtain

c(σ ′) =
∏

i∈[q]
2|σ ′

i |−1.

Now we note that a cyclic decomposition of a permutation of the set [k] determines
a partition π ∈ � ([k]) (although not injectively). This way, a sum over the number of
partitions q and σ ′ ∈ S0

k with q cycles can be written as a sum over partitions π with no
singletons, and a sum over full cycles in each block B (that is, those permutations consisting
of only one cycle). Hence

E

⎡

⎣
k∏

j=1

:
(
∇�

(
x ( j)
ε

))2 :
⎤

⎦ =
∑

π∈�([k])
w/o singletons

∏

B∈π

∑

σ∈Scycl(B)

2|B|−1
∏

j∈B

T
(

x ( j), x (σ ( j))
)

where we also made the switch between
∏

B∈π and
∑

σ∈Scycl(B) by grouping by factors.

Alternatively, we can express this average in terms of S0
cycl(B), the set of full cycles without
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fixed points, as

E

⎡

⎣
k∏

j=1

:
(
∇�

(
x ( j)
ε

))2 :
⎤

⎦ =
∑

π∈�([k])

∏

B∈π

∑

σ∈S0cycl(B)

2|B|−1
∏

j∈B

T
(

x ( j), x (σ ( j))
)

.

Finally, we need to put back the subscript i j in the elements x ( j) and sum over i1, . . . , ik ∈
E. Note that for any function f : Ek → R we have

∑

i1,...,ik∈E
f (i1, . . . , ik) =

∑

η:[k]→E
f (η(1), . . . , η(k))

so that

E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ =
∑

η:[k]→E

∑

π∈�([k])

∏

B∈π

2 |B|−1
∑

σ∈S0cycl(B)

∏

j∈B

T

(
x ( j)
η( j), x (σ ( j))

η(σ ( j))

)

and grouping the η( j)’s according to each block B ∈ π we get

E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ =
∑

π∈�([k])

∏

B∈π

2 |B|−1
∑

σ∈S0cycl(B)

∑

η:B→E

∏

j∈B

T

(
x ( j)
η( j), x (σ ( j))

η(σ ( j))

)
.

Regarding the transfer matrix T , using Eq. (4.2) we can write the above expression as

E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦=
∑

π∈�([k])

∏

B∈π

2 |B|−1
∑

σ∈S0cycl(B)

∑

η:B→E

∏

j∈B

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
x ( j)
ε , x (σ ( j))

ε

)

obtaining the first result of the theorem. Finally, using Lemma 4 we obtain the second
statement. ��

4.3 Proof of Corollary 1 and Proposition 1

Proof of Corollary 1 Recall that Definition 1 yields

E

⎡

⎣
k∏

j=1

�ε(x ( j)
ε )

⎤

⎦ =
∑

π∈�([k])

∏

B∈π

κ
(
�ε(x ( j)

ε ) : j ∈ [k]
)

. (4.6)

From expressions (3.1) and (3.2) in Theorem 1 let us see that the equality follows factor by
factor by using strong induction. For k = 1 it is trivially true since the mean of the field is 0.
Now let now us assume that it holds for n = 1, . . . , k − 1. From (2.1) we have that

κ
(
�ε

(
x ( j)
ε

) : j ∈ [k]
)

= E

⎡

⎣
k∏

j=1

�ε

(
x ( j)
ε

)
⎤

⎦ −
∑

π∈�([k])
|π |>1

∏

B∈π

κ
(
�ε

(
x ( j)
ε

) : j ∈ B
)
.

Using again (2.1) on the expectation term and the induction hypothesis, after cancellations
we get

κ
(
�ε

(
x ( j)
ε

) : j ∈ [k]
)

= 2k−1
∑

σ∈S0cycl([k])

∑

η:[k]→E

k∏

j=1

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
x ( j)
ε , x (σ ( j))

ε

)
.
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Thus the proof follows by induction. ��
The equality in absolute value between our cumulants and those of Dürre [11, Theorem

1] allow us to adapt his proof and conclude that, in the case of d = 2, our field is conformally
covariant with scale dimension 2.

Proof of Proposition 1 It is known [4, Proposition 1.9] that the continuum Green’s function
GU (·, ·), defined in Eq. (2.4), is conformally invariant against a conformal mapping h : U →
U ′; that is, for any v �= w ∈ U ,

GU (v,w) = GU ′ (h(v), h(w)) .

Recalling expression (3.5) for the limiting cumulants we see that, for any integer  ≥ 2,

lim
ε→0

ε−2κ
(
�U

ε

(
x ( j)
ε

) : j ∈ []
)

= 2−1
∑

σ∈S0cycl([])

∑

η:[]→E

∏

j=1

∂
(1)
η( j)∂

(2)
η(σ ( j))GU ′

(
hε

(
x ( j)), hε

(
x (σ ( j))))

where the derivatives on the right hand side act on GU ′ ◦ (hε, hε), not on GU ′ . From the
cumulants expression we deduce that, for a given permutation σ and assignment η, each
point x ( j) will appear exactly twice in the arguments of the product of differences of GU ′ .
Thus, using the chain rule and the Cauchy–Riemann equations, for a fixed σ we obtain an
overall factor

∏
j=1

∣∣h′(x ( j)
)∣∣2 after summing over all η. We then obtain

lim
ε→0

ε−2κ
(
�U

ε

(
x ( j)
ε

) : j ∈ []
)

=
∏

j=1

∣∣∣h′(x ( j))
∣∣∣
2
lim
ε→0

ε−2κ
(
�U ′

ε

(
hε

(
x ( j)))

: j ∈ []
)
.

The result follows plugging this expression into the moments. ��

4.4 Proof of Theorem 2

The proof of this Theorem will be split into two parts. First we will show that the family
(�ε)ε>0 is tight in some appropriate Besov space and then we will show convergence of
finite-dimensional distributions (〈�ε, fi 〉)i∈[m] and identify the limit.

Tightness

Proposition 2 Let U ⊂ R
d , d ≥ 2. Under the scaling ε−d/2, the family (�ε)ε>0 is tight in

Bα,loc
p,q (U ) for any α < −d/2 and p, q ∈ [1,∞]. The family is also tight in Cα

loc(U ) for every
p, q ∈ [1,∞] and α < −d/2.

Recall that the local Besov space Bα,loc
p,q (U ) was defined in Definition 8 and the local

Hölder space Cα
loc(U ) in Definition 9.

Finite-Dimensional Distributions

Proposition 3 Let U ⊂ R
d and d ≥ 2. There exists a normalization constant χ > 0 such

that, for any set of functions
{

fi ∈ L2(U ) : i ∈ [m], m ∈ N
}
, the random elements 〈�ε, fi 〉

converge in the following sense:
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(
ε−d/2

√
χ

〈�ε, fi 〉
)

i∈[m]
d−→ (〈W , fi 〉)i∈[m]

as ε → 0.

4.4.1 Proof of Proposition 2

We will use the tightness criterion given in Theorem 2.30 in Furlan and Mourrat [16]. First
we need to introduce some notation. Let f and (g(i))1≤i<2d be compactly supported test
functions of class Cr

c(R
d), r ∈ N. Let �n := Z

d/2n , and let R > 0 be such that

supp f ⊂ B0(R) supp g(i) ⊂ B0(R) i < 2d . (4.7)

Let K ⊂ U be compact and k ∈ N. We say that the pair (K , k) is adapted if

2−k R < dist (K , U c).

We say that the set K is a spanning sequence if it can be written as

K = {(Kn, kn) : n ∈ N}
where (Kn) is an increasing sequence of compact subsets of U such that

⋃
n Kn = U , and

for every n the pair (Kn, kn) is adapted.

Theorem 3 (Tightness criterion, Furlan andMourrat [16, Theorem 2.30]) Let f , (g(i))1≤i<2d

in Cr
c(R

d) with the support properties mentioned above, and fix p ∈ [1,∞) and α, β ∈ R

satisfying |α| , |β| < r , α < β. Let (�m)m∈N be a family of random linear functionals on
Cr

c(U ), and let K be a spanning sequence. Assume that for every (K , k) ∈ K, there exists a
constant c = c(K , k) < ∞ such that for every m ∈ N,

sup
x∈�k∩K

E

[∣∣∣
〈
�m, f

(
2k(· − x)

)〉∣∣∣
p]1/p ≤ c (4.8)

and

sup
x∈�n∩K

2dn
E

[∣∣∣
〈
�m, g(i)(2n(· − x)

)〉∣∣∣
p]1/p ≤ c 2−nβ i < 2d n ≥ k. (4.9)

Then the family (�m)m is tight in Bα,loc
p,q (U ) for any q ∈ [1,∞]. If moreover α < β − d/p,

then the family is also tight in Cα
loc(U ).

Proof of Proposition 2 We will consider an arbitrary scaling εγ , γ ∈ R, and then choose an
optimal one to make the fields tight. We define �̃ε as the scaled version of �ε , that is,

�̃ε(x) := εγ �ε(x) = εγ
d∑

i=1

:(∇i�(x))2 : x ∈ Uε.

The family of random linear functionals (�m)m∈N in Theorem 3 is to be identified with the
fields (�̃ε)ε>0 taking for example ε decreasing to zero along a dyadic sequence. Now let
us expand the expressions (4.8) and (4.9) in Theorem 3. To simplify notation, let us define
fk,x (·) := f

(
2k(· − x)

)
for k ∈ N and x ∈ R

d , and analogously for g(i).
In the proof we will set p ∈ 2N. This will not affect the generality of our results because

of the embedding of local Besov spaces described in Lemma 1. This means that we can read
(4.8) and (4.9) forgetting the absolute value in the left-hand side. Let us rewrite the p-th
moment of

〈
�̃ε, fk,x

〉
as
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0 ≤ E
[〈
�̃ε, fk,x

〉p] = εγ p
E

[ ∫

U p
�ε (�x1/ε�) · · · �ε

(⌊
x p/ε

⌋)
fk,x (x1) · · · fk,x (x p) dx1 · · · dx p

]
. (4.10)

We will seek for a more convenient expression to work with. If we allow ourselves to slightly
abuse the notation for �̃ε, then we can express it in a piece-wise continuous fashion as

�̃ε(x) = εγ
∑

y∈Uε

1S1(y)(x)

d∑

i=1

:(∇i�(y))2 : = εγ
∑

y∈Uε

1S1(y)(x)�ε(y)

where Sa(y) is the square of side-length a centered at y. Under a change of variables, if we
define U ε := U ∩ εZ

d (mind the superscript and the definition which is different from that
of Uε in Sect. 2) then

�̃ε(x) = εγ
∑

y∈U ε

1Sε(y/ε)(x)�ε(y/ε).

This way, expression (4.10) now reads

E
[〈
�̃ε, fk,x

〉p] = εγ p
E

⎡

⎣
∑

y1,...,yp∈U ε

�ε(y1/ε) · · · �ε(yp/ε)

p∏

j=1

∫

Sε(y j )

fk,x (z) dz

⎤

⎦

Therefore the left-hand side of expression (4.8) from Theorem 3 is upper-bounded by

εγ sup
x∈�k∩K

⎡

⎣
∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

fk,x (z) dz

⎤

⎦
1/p

. (4.11)

Analogously, expression (4.9) from Theorem 3 reads

εγ 2dn sup
x∈�n∩K

⎡

⎣
∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

g(i)
n,x (z) dz

⎤

⎦
1/p

.

(4.12)

Choose K = (Kn, n)n∈N with

Kn = {
x ∈ R

d | dist (x, U c) ≥ (2 + δ)R2−n}

for some δ > 0 and R such that (4.7) holds. Let us first consider (4.12). Given that
supp g(i)

(
2n(· − x)

) ⊂ Bx (R2−n) we can restrict the sum over y j to the set

�n,x =
{

y ∈ U ε | d(y, x) < 2−n R + ε
√

d/2
}

.

We now bound (4.12) separately for the cases 2n ≥ Rε−1 and 2n < Rε−1. If 2n ≥ Rε−1,
we have

∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

g(i)
n,x (z) dz ≤

≤
∑

y1,...,yp∈�n,x

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

g(i)
n,x (z) dz.
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The sum over �n,x can be bounded by a sum over a finite amount of points independent of
n, since under the condition 2n ≥ Rε−1 the set �x,n has at most 3d points for any x , ε and
n. Let us show that the sum of these expectations is uniformly bounded by a constant.

Looking at expression (3.3) we observe the following: any given partition π ∈ �([p])
with no singletons can be expressed as π = {B1, . . . , B}, with 1 ≤  ≤ p such that∑

1≤i≤ ni = p, with ni := |Bi |. Then the cumulant corresponding to any given Bi (see
Corollary 1) is proportional to a sum over σ ∈ S0

cycl(Bi ) and η : Bi → E of terms of the
form

∏

j∈Bi

∇(1)
η( j)∇(2)

η(σ ( j))GUε

(
y j , yσ( j)

)
.

Using (4.4) we can bound this expression (up to a constant) by
∏

j∈Bi

min
{∣∣y j − yσ( j)

∣∣−d
, 1

}

where the minimum takes care of the case in which the set {y j : j ∈ Bi } has repeated values,
so that y j = yσ( j) for some j ∈ Bi and some σ . So we have that

E
[
�ε(y1) · · · �ε(yp)

]
�Kn

∑

π∈�([p])

∏

B∈π

c(|B|)
∏

j∈B

min
{∣∣y j − yσ( j)

∣∣−d
, 1

}
(4.13)

for some constant c(|B|) depending on B that accounts for the sum over σ ∈ S0
cycl(B) and

over η : B → E. Since |yi − y j | ≥ 1 for any yi , y j ∈ �n,x and any n and x , (4.13) is bounded
by a constant depending only on p, so that

∑

y1,...,yp∈�n,x

E
[
�ε(y1) · · · �ε(yp)

]
�Kn 3d p

∑

π∈�([p])

∏

B∈π

c(|B|)
∏

j∈B

�Kn 1

since |�n,x | ≤ 3d p for all n and x .
On the other hand, using the fact that

∫

Sε(y j )

∣∣∣g(i)
n,x (z)

∣∣∣ dz � 2−dn

we obtain

∑

y1,...,yp∈�n,x

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

g(i)
n,x (z) dz �Kn 2−dpn

which gives the bound

εγ 2dn sup
x∈�n∩K

⎡

⎣
∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

g(i)
n,x (z) dz

⎤

⎦
1/p

�Kn εγ .

Observe that Theorem 3 allows the constant c to depend on K = Kn , so the symbol �Kn is
not an issue. Then, for any γ ≤ 0 we can bound the above expression by a constant multiple
of 2−γ n . On the other hand, if 2n < Rε−1, we have

∫

Sε(y j )

∣∣∣g(i)
n,x (z)

∣∣∣ dz � εd .
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We also note that

�n,x ⊂ Sε,x := [
x − 2R2−n, x + 2R2−n]d ∩ εZ

d .

Using this and calling N := �2R2−nε−1�, we obtain
∑

y1,...,yp∈�n,x

E
[
�ε(y1/ε) · · · �ε(yp/ε)

] ≤
∑

y1,...,yp∈�−N ,N�d

E
[
�ε(y1) · · · �ε(yp)

]
.

Let us first study the behaviour of this expression for p = 2. By Corollary 3 we get

∑

y1,y2∈�−N ,N�d

E [�ε(y1)�ε(y2)] �Kn

∑

y1,y2∈�−N ,N�d

y1=y2

1 +
∑

y1,y2∈�−N ,N�d

y1 �=y2

1

|y1 − y2|2d

� N d +
∑

y1∈�−N ,N�d

∫ 2
√
2N

1

rd−1

r2d
dr = N d +

∑

y1∈�−N ,N�d

1

d

(
1 − 2−3d/2N−d

)
� N d .

Let us now analyze E
[
�ε(y1) · · · �ε(yp)

]
for an arbitrary p. In the same spirit as the case

2n ≥ Rε−1, by expression (4.13) we know that
∑

y1,...,yp∈�−N ,N�d

E
[
�ε(y1) · · · �ε(yp)

]
�Kn

∑

π∈�([p])

∏

B∈π

c(|B|)
∑

y1,...,yp∈�−N ,N�d

∏

j∈B

min
{∣∣y j − yσ( j)

∣∣−d
, 1

}
.

Using Lemma 7 we get
∑

y1,...,yp∈�−N ,N�d

∏

j∈B

min
{∣∣y j − yσ( j)

∣∣−d
, 1

}
�Kn N

ni
2 +d−1

by identifying ε with 1/N . So we arrive to
∑

y1,...,yp∈�−N ,N�d

E
[
�ε(y1) · · · �ε(yp)

]
�Kn

∑

π∈�([p])

∏

B∈π

c(|B|)N
ni
2 +d−1.

Now we use that
∏

B∈π

N
ni
2 +d−1 = N (d−1)|π |+ p

2

and since the sum takes place over partitions of the set [p] with no singletons, putting
everything back into (3.3) we see that the term with the largest value of |π | will dominate for
large N . For p even this happens when π is composed of cycles of two elements, in which
case |π | = p/2. Hence, ∑

y1,...,yp∈�−N ,N�d

E
[
�ε(y1) · · · �ε(yp)

]
�Kn N

dp
2

for p even. Finally,

εγ 2dn sup
x∈�n∩Kn

⎡

⎣
∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · ·�ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

g(i)
n,x (z) dz

⎤

⎦
1/p

�Kn 2
dn
2 εγ+ d

2 .
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If γ ≥ −d/2 then we can bound the above expression by a constant multiple of

2
dn
2 2

−
(
γ+ d

2

)
n = 2−γ n . Otherwise, we cannot bound it uniformly in ε, as the bound depends

increasingly on ε as it approaches 0.
Now we need to obtain similar bounds for (4.8), which applied to our case takes the

expression given in (4.11). For the case 2n ≥ Rε−1 we have

εγ sup
x∈�n∩Kn

⎡

⎣
∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · ·�ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

fk,x (z) dz

⎤

⎦
1/p

� εγ 2−dn < εγ+d

which is bounded by some c = c(Kn, n) whenever γ ≥ −d . If 2n < Rε−1 instead we get

εγ sup
x∈�n∩Kn

⎡

⎣
∑

y1,...,yp∈U ε

E
[
�ε(y1/ε) · · ·�ε(yp/ε)

] p∏

j=1

∫

Sε(y j )

fk,x (z) dz

⎤

⎦
1/p

�Kn εγ+ d
2 2− dn

2 .

As before, only if γ ≥ −d/2 we have the required bound.
Theorem 3 now implies that under scaling ε−d/2 the family (�ε)ε>0 is tight in Bα,loc

p,q (U )

for any α < −d/2, any q ∈ [1,∞] and any p ≥ 2 and even. Using Lemma 1 this holds for
any p ∈ [1,∞]. This way, the family is also tight in Cα

loc(U ) for every α < −d/2. ��
Remark 6 Observe that the scaling ε−d (the one used for the joint moments in Theorem 1)
is outside the range of γ required for the tightness bounds, and therefore it will give a trivial
scaling.

4.4.2 Proof of Proposition 3

The proof of this proposition will be divided into three parts. Firstly, we will determine the
normalizing constantχ and show that it is well-defined, in the sense that it is a strictly positive
finite constant. Secondly, recalling Definition 1, we will demonstrate that the n-th cumulant
κn(〈�ε, f 〉) of each random variable 〈�ε, f 〉, f ∈ L2(U ), vanishes for n ≥ 3. Finally
we show that the second cumulant κ2(〈�ε, f 〉, 〈�ε, g〉), g ∈ L2(U ), which is equal to the
covariance, converges to the appropriate one corresponding to that of white noise. Once we
have this, we can show that any collection (〈�ε, f1〉, . . . , 〈�ε, fk〉), k ∈ N, is a Gaussian
vector. To see this it suffices to take any linear combination f = ∑

i∈[k] αi 〈�ε, fi 〉, αi ∈ R

for all i ∈ [k] so that, by multilinearity, all the cumulants κn (〈�ε, f 〉) converge to those of a
centered normal with variance

∫
U f (x)2dx . The ideas are partially inspired from Dürre [12,

Section 3.6].
For the rest of this Subsection we will work with test functions f ∈ C∞

c (U ). The lifting
of the results to every f ∈ L2(U ) follows by a standard density argument [20, Chapter 1,
Section 3]. Let us first derive a convenient representation of the action 〈�ε, f 〉 defined in
Eq. (2.6). More precisely, defining 〈�ε, f 〉S as

〈�ε, f 〉S :=
∑

v∈Uε

f (εv)�ε(v)

for any test function f ∈ C∞
c (U ) we can write

〈�ε, f 〉 = εd〈�ε, f 〉S + Rε( f )

where Rε( f ) denotes the reminder term that goes to 0 in L2, as we show in the next lemma.
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Lemma 8 Let U ⊂ R
d , d ≥ 2. For any test function f ∈ C∞

c (U ) as ε → 0 it holds that

|Rε( f )| L2−→ 0. (4.14)

Proof Observe that

〈�ε, f 〉 =
∫

U
�ε (�x/ε�) f (x)dx =

∑

x∈Uε

�ε(x)

∫

Ax

f (y)dy

where Ax := {a ∈ U : �a/ε� = x}. It is easy to see that |Ax | ≤ εd , and given that the support
of f is compact and strictly contained in U , for ε sufficiently small (depending on f ), the
distance between this support and the boundary ∂U will be larger than

√
dε. So there is no

loss of generality if we assume that |Ax | = εd .
Now, we can rewrite (4.14) as

∣∣∣∣∣∣

∑

x∈Uε

�ε(x)

(∫

Ax

f (y)dy − εd f (εx)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x∈Uε

εd �ε(x)

(
1

|Ax |
∫

Ax

f (y)dy − f (εx)

)∣∣∣∣∣∣
.

(4.15)

Let us call I(x) the term

I(x) := 1

|Ax |
∫

Ax

f (y)dy − f (εx).

The set Ax is not a Euclidean ball, but it has bounded eccentricity (see Stein and Shakarchi
[34, Corollary 1.7]). Therefore we can apply the Lebesgue differentiation theorem to claim
that I(x) will be of order o(1), where the rate of convergence possibly depends on x and f .

To see statement (4.14), we square the expression in (4.15) and take its expectation,
obtaining

E

⎡

⎣
∣∣∣∣

∑

x∈Uε

εd �ε(x) I(x)

∣∣∣∣
2
⎤

⎦ ≤ ε2d
E

⎡

⎣
∑

x∈Uε

�2
ε(x)

⎤

⎦

⎛

⎝
∑

x∈Uε

I2(x)

⎞

⎠ (4.16)

where we used the Cauchy–Schwarz inequality. By Corollary 3 the expectation on the right-
hand side can be bounded as

E

⎡

⎣
∑

x∈Uε

�2
ε(x)

⎤

⎦ �
∑

x∈Uε

1 = O(
ε−d)

while the second term in (4.16) is of order o(ε−d). With the outer factor ε2d (4.16) goes to
0, as we wanted to show. ��

Let us remark that, by the previous lemma, proving finite-dimensional convergence of{
ε−d/2√

χ
〈�ε, f p〉 : p ∈ [m]

}
will be equivalent to proving finite-dimensional convergence of

{
εd/2√

χ
〈�ε, f p〉S : p ∈ [m]

}
.
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Definition of �

Lemma 9 Let G0(·, ·) be the Green’s function on Z
d defined in Sect.2.1. The constant

χ := 2
∑

v∈Z
d

∑

i, j∈[d]

(
∇(1)

i ∇(2)
j G0(0, v)

)2

is well-defined. In particular χ ∈ (8,+∞).

Proof Let us define κ0 as

κ0(v,w) := 2
∑

i, j∈[d]

(
∇(1)

i ∇(2)
j G0(v,w)

)2
. (4.17)

By translation invariance we notice that κ0(v,w) = κ0(0, w−v). Moreover, using Lemma 6,
we have that as |v| → +∞

κ0(0, v) � |v|−2d

so that we can bound χ from above by

χ =
∑

v∈Z
d

κ0(0, v) � 1 +
∑

v∈Z
d\{0}

|v|−2d < +∞.

For the lower bound, since κ0(0, v) ≥ 0 for all v ∈ Z
d we can take v = 0. Choosing the

differentiation directions i = j = 1 in (4.17) we get the term 2
(∇(1)

1 ∇(2)
1 G0(0, 0)

)2, which
can be expressed as 8 (G0(0, 0) − G0(e1, 0))2 using translation and rotation invariance of
G0. Now, by definition

�G0(0, 0) = 1

2d

∑

x∈Z
d :|x |=1

(G0(x, 0) − G0(0, 0)) = −1

from which G0(0, 0) − G0(e1, 0) = 1. This implies that χ ≥ 8, and the lemma follows. ��

Vanishing Cumulants �n for n ≥ 3

Lemma 10 For n ≥ 3, f ∈ C∞
c (U ), the cumulants κn

(
εd/2〈�ε, f 〉S

)
go to 0 as ε → 0.

Proof Recall that, by the multilinearity of cumulants, for n ≥ 2 the n-th cumulant satisfies

κn

(
εd/2〈�ε, f 〉S

)
= ε

nd
2

∑

v1,...,vn∈Dε

κ (�ε(vi ) : i ∈ [n])
n∏

j=1

f (εv j ) (4.18)

with D := supp f , which is compact inside U . The goal now is to show that

ε
nd
2

∑

v1,...,vn∈Dε

|κ (�ε(vi ) : i ∈ [n])| −→ 0

as ε → 0.
First, we note from the cumulants expression (3.4) and bound (4.4) in Lemma 5 that, for

any set V of (possibly repeated) points of Dε , with |V | = n, we have

|κ (�ε(v) : v ∈ V )| �D,n

∑

σ∈S0cycl(V )

∏

v∈V

min
{
|v − σ(v)|−d , 1

}
.
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Using the above expression and Lemma 7, it is immediate to see that, if V has m distinct
points with 1 ≤ m ≤ n,

∑

v1,...,vn∈Dε
m distinct points

|κ (�ε(vi ) : i ∈ [n])| = OD,n

(
ε− m

2 −d+1
)

� OD,n

(
ε− n

2 −d+1
)

so that

ε
nd
2

∑

v1,...,vn∈Dε

|κ (�ε(vi ) : i ∈ [n])| = OD,n

(
ε

1
2 (d−1)(n−2)

)
.

We observe in particular that for d ≥ 2 this expression goes to 0 for any n ≥ 3. Furthermore,
going back to (4.18), since f is uniformly bounded this shows that for n ≥ 3 the cumulants
κn go to 0 as ε → 0, as we wanted to show. ��

Covariance Structure �2

Lemma 11 For any two functions f p, fq ∈ C∞
c (U ), with p, q ∈ [m] for m ∈ N, we have

εd κ
(〈�ε, f p〉S, 〈�ε, fq〉S

) ε→0−−→ χ

∫

U
f p(x) fq(x)dx .

Proof Without loss of generality we define the compact set D ⊂ U as the intersection of the
supports of f p and fq . Then

εd κ
(〈�ε, f p〉S, 〈�ε, fq〉S

) = εd
∑

v,w∈Dε

f p(εv) fq(εw) κ (�ε(v),�ε(w)) . (4.19)

From Theorem 1, we know the exact expression of κ (�ε(v),�ε(w)), given by

κ (�ε(v),�ε(w)) = 2
∑

i, j∈[d]

(
∇(1)

i ∇(2)
j GUε (v, w)

)2
. (4.20)

Recall the constant κ0(v,w), defined in (4.17). We will approximate κ (�ε(v),�ε(w)) by
κ0(v,w) and then plug it in (4.19). In other words, we will approximate GUε (·, ·) by G0(·, ·).
First we split Eq. (4.19) into two parts:

εd κ
(〈�ε, f p〉S, 〈�ε, fq〉S

) = εd
∑

v,w∈Dε

|v−w|≤1/
√

ε

f p(εv) fq(εw) κ (�ε(v),�ε(w))

+εd
∑

v,w∈Dε

|v−w|>1/
√

ε

f p(εv) fq(εw) κ (�ε(v),�ε(w)) .

(4.21)

The second term above can be easily disregarded: remember that the cumulant for two random
variables equals their covariance, so using Corollary 3 we get

εd
∑

v,w∈Dε

|v−w|>1/
√

ε

f p(εv) fq (εw) κ (�ε(v),�ε(w)) � εd
∑

v,w∈Dε

|v−w|>1/
√

ε

|v − w|−2d �
∑

z∈Z
d

|z|>1/
√

ε

|z|−2d
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which goes to 0 as ε → 0. For the first sum in (4.21), let us compute the error we are
committing when replacing GUε by G0. We notice that

max
i, j∈[d] sup

v,w∈Dε

sup
ε∈(0,εD ]

∣∣∣∇(1)
i ∇(2)

j GUε (v, w)

∣∣∣ ≤ cD

justified by (4.4) in Lemma 5, combined with

max
i, j∈[d] sup

v,w∈Z
d

∣∣∣∇(1)
i ∇(2)

j G0(v,w)

∣∣∣ ≤ c

for some c > 0, which is a consequence of Lemma 6. Recalling that |a2−b2| = |a−b||a+b|
for any real numbers a, b, and setting

a := ∇(1)
i ∇(2)

j GUε (v, w)

and

b := ∇(1)
i ∇(2)

j G0(v,w)

together with (4.3) from Lemma 5, we obtain

∑

i, j∈[d]

(
∇(1)

i ∇(2)
j GUε (v, w)

)2 =
∑

i, j∈[d]

(
∇(1)

i ∇(2)
j G0(v,w)

)2 + O(
εd)

.

We can use this approximation in the first summand in (4.21) and obtain

εd
∑

v,w∈Dε

|v−w|≤1/
√

ε

f p(εv) fq(εw) κ (�ε(v),�ε(w)) = εd
∑

v,w∈Dε

|v−w|≤1/
√

ε

f p(εv) fq(εw) κ0(v,w)

+O(
εd/2)

(4.22)

since
∣∣{v,w ∈ Dε : |v − w| < 1/

√
ε
}∣∣ = O(

ε− 3
2 d

)
. Now, given that both f p and fq are in

C∞
c (U ), they are also Lipschitz continuous. Hence

εd
∑

v,w∈Dε

|v−w|≤1/
√

ε

∣∣ fq(εv) − fq(εw)
∣∣ |κ0(v,w)| � εd

∑

v,w∈Dε

1≤|v−w|≤1/
√

ε

√
ε

|v − w|2d
= o(1)

so that we can replace, up to a negligible error, fq(εw) by fq(εv) in (4.22), getting

εd κ
(〈�ε, f p〉S, 〈�ε, fq〉S

) = εd
∑

v,w∈Dε

|v−w|≤1/
√

ε

f p(εv) fq(εv) κ0(v,w) + o(1).

Finally the translation invariance of κ0 implies

lim
ε→0

εd κ
(〈�ε, f p〉S, 〈�ε, fq〉S

) =
∑

v∈Z
d

κ0(0, v)

∫

U
f p(x) fq(x)dx

as claimed. ��
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5 Discussion and Open Questions

In this paper we studied properties of the gradient squared of the discrete Gaussian free field
on Z

d such as k-point correlation functions, cumulants, conformal covariance in d = 2 and
the scaling limit on a domain U ⊂ R

d .
One of the most striking result we have obtained is the “almost” permanental structure of

our field contrasting the block determinantal structure of the height-one field of the Abelian
sandpile studied in Dürre [11, 12], Kassel and Wu [23]. We plan to investigate implications
of these structures further in the future.

In fact, the idea of the proof for tightness in Proposition 2 is based on the application of a
criterion by Furlan and Mourrat [16] for local Hölder and Besov spaces. The proof requires
a precise control of the summability of k-point functions, which is provided by Theorem 1
and explicit estimates for double derivatives of the Green’s function in a domain. Observe
that the proof is based only on the growth of sums of moments at different points. Thus this
technique can be generalized to prove tightness of other fields just by having information
on these bounds, which is usually easier to obtain than the whole expression on the joint
moments.

Regarding the convergence of finite-dimensional distributions, Proposition 3, note that this
strategy can be generalized to prove convergence to white noise of other families of fields,
given the relatively mild conditions that we used from the field in question. Among them, one
only requires knowledge on bounds of sums of joint cumulants, the existence of an infinite
volume measure, and the finiteness of the susceptibility constant. Note that similar scaling
results were given for random fields on the lattice satisfying the FKG inequality in Newman
[30].
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A Appendix: Feynman Diagrams

When calculating expectations of products of Gaussian variables, one often obtains expres-
sions consisting of pairwise combinations of the variables in question. It is then useful to
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define a graphical representation for these objects, the so-called Feynman diagrams. For a
complete exposition on the subject we refer the reader to Janson [20, Chapters 1, 3].

Definition A. 1 (Feynman diagrams, Janson [20, Definition 1.35]) A Feynman diagram γ of
order n ≥ 0 and rank r = r(γ ) ≥ 0 is a graph consisting of a set of n vertices and r edges
without common endpoints. These are r disjoint pairs of vertices, each joined by an edge, and
n−2r unpaired vertices. AFeynman diagram is said to be complete if r = n/2 and incomplete
if r < n/2. Let F D0 denote the set of all complete Feynman diagrams. A Feynman diagram
labeled by n random variables ξ1, . . . , ξn defined on the same probability space is a Feynman
diagram of order n with vertices 1, . . . , n, where ξi is thought as being attached to vertex i .
The value v(γ ) of such a Feynman diagram γ with edges (ik, jk), k = 1, . . . , r and unpaired
vertices {i : i ∈ A} is given by

v(γ ) =
r∏

k=1

E
[
ξik ξ jk

] ∏

i∈A

ξi .

Observe that this value is in general a random variable, and it is deterministic whenever the
diagram is complete.

This definition allows us to express the expectation of the product of n Gaussian random
variables in terms of Feynman diagrams as follows:

Theorem A.1 [20,Theorem1.36]Let ξ1, . . . , ξn be centered jointly normal random variables.
Then

E [ξ1 · · · ξn] =
∑

γ

v(γ )

where the sum takes place over all γ ∈ F D0 labeled by ξ1, . . . , ξn.

We can also decompose the Wick product of n Gaussian variables in terms of Feynman
diagrams, as stated in the following theorem:

Theorem A.2 [20, Theorem 3.4] Let ξ1, . . . , ξn be centered jointly normal random variables.
Then

:ξ1 · · · ξn : =
∑

γ

(−1)r(γ )v(γ )

being r(γ ) the rank of γ , where the sum takes place over all Feynman diagrams γ labeled
by ξ1, . . . , ξn.

An extension of Theorem A.1 now reads:

Theorem A.3 [20, Theorem 3.8] Let ξ1, . . . , ξn+m be centered jointly normal random
variables, with m, n ≥ 0. Then

E
[:ξ1 · · · ξn : ξn+1 · · · ξn+m

] =
∑

γ

v(γ )

where the sum takes place over all complete Feynman diagrams γ labeled by ξ1, . . . , ξn+m

such that no edge joins any pair ξi and ξ j with i < j ≤ n.

A formula for an even more general case can be obtained as follows:
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Fig. 1 An example of a possible pairing of edges in a Feynman diagram

Theorem A.4 [20, Theorem 3.12] Let Yi =: ξi1 · · · ξili :, where
{
ξi j

}
1≤i≤k,
1≤ j≤li

are centered

jointly normal variables, with k ≥ 0 and l1, . . . , lk ≥ 0. Then

E [Y1 · · · Yk] =
∑

γ

v(γ )

where we sum over all complete Feynman diagrams γ labeled by
{
ξi j

}
i j such that no edge

joins two variables ξi1 j1 and ξi2 j2 with i1 = i2.

Remark 7 We said this is a formula for an even more general case than Theorem A.3 because
: X : = X for any centered normal variable.

This theorem will be used for the proof of Theorem 1. In that case, each Yi is the Wick
product of two variables, namely Yi =: ξi1ξi2 :, for all i = 1, . . . , n. In this specific case it
will hold, in fact, that ξi1 = ξi2 for all i , but we keep a different notation for each variable
in order to keep track of every possible Feynman diagram that can be made up from the
variables Yi . The value of a complete Feynman diagram γ in this setting will be given by the
expression

v(γ ) =
k∏

s=1

E
[
ξαs mαs

ξβs mβs

]

with αs, βs ∈ [k], αs �= βs for all s, and mαs , mβs ∈ {1, 2}.
Let us discuss a concrete example for the case k = 3. One example is γ = (V , E) with

two copies of nodes per vertex V = {xi , x̃i : i = 1, 2, 3} and the set of undirected edges
E = {(x1, x2), (x̃1, x3), (x̃2, x̃3)}which pictorially can be depicted in Fig. 1. We have in total
8 complete Feynman diagrams in this case which can be obtained by considering the different
edges resulting from pairings of the nodes {xi , x̃i : i = 1, 2, 3} ignoring all pairings of the
sort (xi , x̃i ) for all i = 1, 2, 3.
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