
Towards a general boolean function benchmark suite
Kalkreuth, R.T.; Vašíček, Z.; Husa, J.; Vermetten, D.L.; Ye, F.; Bäck, T.H.W.

Citation
Kalkreuth, R. T., Vašíček, Z., Husa, J., Vermetten, D. L., Ye, F., & Bäck, T. H. W. (2024).
Towards a general boolean function benchmark suite. Gecco '23, 591-594.
doi:10.1145/3583133.3590685
 
Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3718565
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3718565


Towards a General Boolean Function Benchmark Suite
Roman Kalkreuth

r.t.kalkreuth@liacs.leidenuniv.nl
Leiden Institute of Advanced

Computer Science, Leiden University
Leiden, Netherlands

Zdeněk Vašíček
vasicek@fit.vut.cz

Brno University of Technology
Brno, Czech Republic

Jakub Husa
ihusa@fit.vut.cz

Brno University of Technology
Brno, Czech Republic

Diederick Vermetten
d.l.vermetten@liacs.leidenuniv.nl
Leiden Institute of Advanced

Computer Science, Leiden University
Leiden, Netherlands

Furong Ye
f.ye@liacs.leidenuniv.nl

Leiden Institute of Advanced
Computer Science, Leiden University

Leiden, Netherlands

Thomas Bäck
T.H.W.Baeck@liacs.leidenuniv.nl
Leiden Institute of Advanced

Computer Science, Leiden University
Leiden, Netherlands

ABSTRACT
Just over a decade ago, the first comprehensive review on the state
of benchmarking in Genetic Programming (GP) analyzed the mis-
match between the problems that are used to test the performance
of GP systems and real-world problems. Since then, several bench-
mark suites in major GP problem domains have been proposed
over time, which were able to fill some of the major gaps. In the
framework of the first review about the state of benchmarking in
GP, logic synthesis was classified as one of the major GP problem
domains. However, a diverse and accessible benchmark suite for
logic synthesis is still missing in the field of GP. In this work, we
take a first step towards a benchmark suite for logic synthesis that
covers different types of Boolean functions that are commonly used
for the evaluation of GP systems. We also present baseline results
that have been obtained by former work and in our evaluation
experiments by using Cartesian Genetic Programming.

CCS CONCEPTS
•Computingmethodologies→Discrete space search;Genetic
programming; Evolvable hardware; • Hardware → Combina-
tional synthesis.

KEYWORDS
Benchmarking, Boolean function learning, Genetic Programming

ACM Reference Format:
RomanKalkreuth, ZdeněkVašíček, JakubHusa, Diederick Vermetten, Furong
Ye, and Thomas Bäck. 2023. Towards a General Boolean Function Bench-
mark Suite. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’23 Companion), July 15–19, 2023, Lisbon, Portugal. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3583133.3590685

ACKNOWLEDGMENTS
This work was supported by the Czech Science Foundation project
22-02067S.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3590685

1 INTRODUCTION
A little over a decade ago, McDermott et al. [20] published the first
review on benchmarking in GP [3, 4, 6, 13], which highlighted the
damaging gap between benchmarks commonly used to test GP sys-
tems and real-world problems. The effort of McDermott et al. did
not go beyond a following community survey [32] and ultimately
proposed a new benchmark suite for GP but various benchmarks
in major GP problem domains such as program synthesis, sym-
bolic regression or classification emerged afterward [5, 23, 24]. At
last year’s GECCO conference, the work of McDermott et al. [20]
was awarded the SIGEVO Impact award, which triggered reflection
on the developments of the last decades. Very recently, a follow-
up article on the state and of development of Benchmarking has
been published by McDermott et al. [19]. Besides reviewing well-
established GP benchmark suites which have been proposed over
the last years, the missing of a Boolean function benchmark suite
for logic synthesis (LS) has been identified as one of the major gaps.
Although various benchmarks for LS have been proposed in the
past, a general benchmark suite for LS is still missing. Moreover, the
authors state that for the future of benchmarking in LS, it might be
useful to further increase the diversity of benchmarks by exploring
new Boolean function problems and curating these problems into
a new benchmark suite.
Therefore, in this work, we follow up the suggestion of McDermott
et al. [19] and consider benchmarking in LS from a general per-
spective. We reflect on the requirements for a general benchmark
suite for LS, and bundle together a set of Boolean functions from
the major categories commonly used in previous work on GP. The
selected benchmarks aim at the synthesis of Boolean functions
from scratch, which has been considered a challenging task for GP
systems [30].

2 LOGIC SYNTHESIS IN GENETIC
PROGRAMMING

Logic synthesis (LS) in GP can be considered a black-box and op-
timization problem domain that has played a major role in the
application scope of GP research throughout its history. In gen-
eral, LS by means of GP refers to the application of GP models
to synthesize expression that match the input-output mapping of
Boolean functions. Boolean functions can be formally expressed

https://orcid.org/0000-0003-1449-5131 
https://orcid.org/0000-0002-2279-5217
https://orcid.org/0000-0003-0863-9952
https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0002-8707-4189
https://orcid.org/0000-0001-6768-1478
https://doi.org/10.1145/3583133.3590685
https://doi.org/10.1145/3583133.3590685


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Kalkreuth et al.

and mathematically described with Boolean expressions. LS as tack-
led with GP paradigm predominantly addresses two major tasks in
this problem domain:

(1) Synthesis of a Boolean expression that produces the correct
output given the inputs of the Boolean function.

(2) Optimization of the Boolean expression that represents a certain
Boolean function.

The latter task is approached by defining one or more optimization
objectives. Both tasks are performed in accordance with Boolean
logic and algebra. Besides, algebraic expressions, Boolean functions
are commonly represented with truth tables that describe the input-
output mapping of the respective function.

2.1 Learning of Boolean Functions with Known
Input-output Mapping

As a nature-inspired search heuristic for automatic programming,
GP is well suited for LS, since various GP representation models
can easily be applied to this task. LS as an application field for GP
was popularized by Koza by representing LISP programs as parse
trees [13–17]. Since various Boolean expressions can be formulated
as LISP S-expressions, Koza used his approach to evolve Boolean
expressions for Boolean functions like digital multiplexers and
parity.
Since Koza’s parse-tree representation tree-based model of GP aims
for single-output functions, further work in GP concentrated on
graph-based multiple-output representation models [10, 21, 22, 27].
Commonly used multiple-output functions for the evaluation and
comparison of graph-based GP models and corresponding opera-
tors are arithmetic functions such as the digital adder and multi-
plier as well as combinational functions [1, 8, 12, 29]. Since a large
part of Boolean functions can be implemented as digital circuits a
real-world application of graph-based GP is located in the field of
evolvable hardware [28]. This type of application poses the require-
ment on GP systems to be able to synthesize combinational circuits
from scratch which has been considered to be a challenging task
for graph-based GP [30].

2.2 Learning of Cryptographic Boolean
Functions

The majority of problems in LS have been specified by the known
input-output mapping, such as the truth table. However, there are
problems where the input-output mapping is not known a priori.
These are known as black box problems, because the target Boolean
function can only be interacted with through its inputs and outputs.
Cryptographic Boolean functions fall into this category. They are
designed and analyzed on the basis of their specific properties such
as nonlinearity, algebraic degree or correlation immunity, each of
which makes them resistant against certain types of cryptographic
attacks [2]. The goal of the heuristic search is then to find any
function that possesses a certain set of these properties.
Applications of EC have focused mainly on Boolean functions with
high nonlinearity and some combinations of additional properties,
suitable for use in stream ciphers [9, 25, 26], and functions with low
Hamming weight suitable for protecting cryptographic applications
against side-channel attacks on their implementation [25].

3 TOWARDS A BENCHMARK SUITE FOR
BOOLEAN FUNCTION SYNTHESIS

3.1 General Motivation
The primary motivation for our work is to promote the synthesis of
Boolean functions in GP research, since a general benchmark suite
for this task is still missing. Another general motivation behind
our benchmark suite is to promote diversity and accessibility in
the Boolean problem domain, which we also identified as a gap in
the field. We also think that a benchmark suite on logic synthesis
should include the scaling property of Boolean functions, since it
has been commonly used to evaluate the robustness of GP methods
in the past. For instance, the upscaling of the bit-length can be used
to increase the complexity of a Boolean function, but similarity is
maintained.

3.2 Main Objectives and Properties
Considering our general motivation, we think that the philosophy
behind a LS benchmark suite should respect the following objec-
tives and properties: Generalization, Accessibility, Scaling and
Blacklisting. A generalized approach to benchmarking in LS is
achieved by covering a broader spectrum of types of Boolean func-
tions. However, our approach is balanced with practical orientation
since all proposed functions can be implemented in digital circuits.
Another property of the benchmark suite is to enable accessibility
to the data of the respective benchmarks by providing interfaces
for the used formats in three major programming languages: C++,
Java and Python. We make use of the scaling property of Boolean
functions by proposing benchmarks of the same type with differ-
ent bit lengths of the respective inputs. Scaling up the bit length
increases the difficulty of the proposed benchmarks but maintains
similarity. It has been found that the overuse of single-output func-
tions affects diversity in LS negatively [20, 32]. Moreover, since
the overused low-order parity-even and multiplexer benchmarks
have been blacklisted, we only include high-order parity functions
and promote diversity by emphasizing multiple-output Boolean
functions as it was recommended by White et al. [32].

3.3 Problem Selection
Based on a comprehensive survey of relevant work published in
the last two decades, we propose to include the following problems
in the benchmark suite:

3.3.1 Adders. Adders are a popular arithmetic benchmark that has
been used within the EC community since the early days. Adders
are naturally targeted as a more viable alternative to the evolution
of multipliers.

3.3.2 Multipliers. In addition to adders, we also include multipliers.
The evolutionary design of multipliers represents probably the
hardest problem due to the complexity of the multiplication itself
(the multipliers consist of a sequence of adders reducing the partial
products to a single output vector) [7].

3.3.3 Demultiplexer. The demultiplexer benchmark is a multiple-
output problem which has been used in former work to evaluate
the search performance of graph-based GP systems [1, 11, 12, 31].



Towards a General Boolean Function Benchmark Suite GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 1: Function sets used for the evaluations

Identifier Functions Description

F⊖ AND,OR,NAND,NOR Reduced function set
F⊕ BUFa, NOTa, AND, OR, XOR, NAND, NOR, XNOR Extended function set
F𝑝 BUFa, NOTa, AND, OR Parity
F𝑐 AND, XOR, OR, XNOR, INHb Cryptographic

3.3.4 Comparators. We include two types of comparators, the iden-
tity andmagnitude comparator. Both types checkwhether one value
is less or greater than the other or if both values are equal. The iden-
tity comparator is another benchmark which provides a scalable
multiple-output problem that has been proposed by Walker and
Miller [31]. The identity comparator makes binary comparisons
among the inputs, and each input represents an operand. The mag-
nitude comparator compares the sum of two operands, whereby
the size of each operand depends on the respective bit length.

3.3.5 Mixed (building blocks). Mixed or multi-functional Boolean
functions have been comparatively less used in the past. In the
field of CGP, experiments have predominantly concentrated on
the evaluation of single-functional benchmarks. However, Walker
and Miller [31] proposed a 3-bit arithmetic logic unit (ALU) bench-
mark for the evaluation of a multi-chromosome approach to the
CGP representation model. A detailed specification of this type of
benchmark is available in the GitHub repository.

3.3.6 Parity circuits. Parity circuits are another commonly used
benchmark. Although the construction of an optimal parity circuit
is a straightforward process, these circuits provide a simple, yet
challenging problem that can be used to evaluate and compare
different optimization algorithms. The difficulty comes from the
fact that Parity is a symmetric Boolean function where the output
only depends on the number of ones. 5,8,10 and 12-input parities
have been used to investigate the role of neutrality in CGP [33].

3.3.7 Cryptographic functions. To support the diversity of the
benchmark set, we also included four types of cryptographic Boolean
functions – bent, balanced, resilient, and masking – each with dif-
ferent levels of complexity and relevant properties [2, 25].

3.3.8 Function sets. Since themajority of the problems are typically
implemented with XOR gates, we propose the use of a reduced
function set F⊖ (see Table 1) for the easier problems to increase the
difficulty of these problems. For the evaluation of more complex
problems, we recommend an extended function set F⊕ . For the
evaluation of the cryptographic benchmarks the set F𝑐 should be
used [25, 26].

3.4 Evaluation Methods (Fitness Calculation)
3.4.1 Similarity of Boolean Circuits. In the case of Boolean circuit
evolution, the Hamming distance is typically used in the fitness
function to determine the similarity of a Boolean circuit encoded
by a candidate solution to the specification. Typically, the problem
specification is provided in the form of a truth table, which defines
the output of the circuit for every possible input combination. The
Hamming distance then measures the difference between the de-
sired and actual outputs of a circuit. As the distance corresponds
to the number of positions in which two Boolean vectors differ,

its usage in the fitness function is straightforward, as it naturally
assigns a lower score to circuits that produce outputs closer to the
desired outputs and a higher score to circuits that produce outputs
further away from the desired outputs. The circuit with the lowest
Hamming distance is considered the best and selected for the next
generation.

3.4.2 Evaluation of cryptographic properties. Cryptographic bench-
marks consider five properties, which are defined as follows. Ham-
ming weight of a Boolean function is defined as the number of ones
in its truth table [2]. A function is said to be balanced if its truth
table contains the same amount of ones and zeros. That is, if its
Hamming weight is equal to 𝐻𝑊 (𝑓 ) = 2𝑛−1 [2].
To evaluate nonlinearity, the truth table of a function needs to be
converted into a Walsh spectrum𝑊𝑆 (𝑓 ), which defines nonlinear-
ity as 𝑁𝐿(𝑓 ) = 2𝑛−1− 1

2𝑚𝑎𝑥 (𝑊𝑆 (𝑓 )) and represents the Hamming
distance between the function and the nearest affine (linear or
inversion of a linear) function [2].
Correlation immunity is also defined using Walsh spectrum. If
values all items of the Walsh spectrum with Hamming weight
1 ≤ 𝐻𝑊 ≤ 𝑡 are zero, then the Boolean function has correlation
immunity of degree 𝑡 [2].
To evaluate algebraic degree, the truth table of a function needs to
be converted into algebraic normal form (ANF). Boolean function
has algebraic degree of 𝑑 if its ANF contains at least one item with
Hamming weight 𝐻𝑊 ≥ 𝑑 [2].
For the purposes of heuristic search, all properties are normalized
to range <0, 1>, those which are relevant to the specific type of
a cryptographic function are added together, and the candidate
solution with the highest score is considered the best.

3.5 Interfaces and Resources
The data files for the benchmarks are available in several formats
and publicly accessible in our GitHub repository1. For each bench-
mark, we provide open-source parameterized Verilog model allow-
ing to easily scale the bit width, synthesized baseline in common
BLIF format as well as the complete input-output mapping in un-
compressed and compressed form for ease of use. Due to the limited
space, the data formats are described in more details in the reposi-
tory. Interfaces for C++, Java and Python can also be found in our
repository.

3.6 Benchmarks and Baseline Results
The baselines results for the selected benchmarks have been ob-
tained with standard CGP in former work and in our experiments.
We used the common 1 + 𝜆 algorithm with standard probabilis-
tic point mutation and neutral genetic drift. To report fair results
with CGP, we performed hyperparameter optimization (HPO) with
irace [18] for each tested benchmark. For the evaluation of each
benchmark, we performed 100 runs and measured the number of
fitness evaluations until the CGP algorithm terminated. The list of
benchmarks and the corresponding baseline results are provided in
our GitHub repository.

1https://github.com/boolean-function-benchmarks

https://github.com/boolean-function-benchmarks


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Kalkreuth et al.

4 CONCLUSIONS AND FUTUREWORK
In this work, we made the first step towards an accessible and
diverse benchmark suite for logic synthesis that will consist of 32
benchmarks selected from popular categories of Boolean functions.
Overall, the selected benchmarks cover a wide range of Boolean
functions in terms of problem hardness and input-output ratio. The
use of the selected benchmarks can support the evaluation of the
search performance and robustness of GP methods in LS. Naturally,
our next step will be to propose a new benchmark suite for LS.
Another point which will be addressed by future work concerns the
study of the search complexity of our selected benchmarks. More
precisely, we plan to propose complexity measurements that are
based on the data of the benchmarks and to study the correlation
to the input-output ratio of the benchmarks.

REFERENCES
[1] Timothy Atkinson, Detlef Plump, and Susan Stepney. 2018. Evolving Graphs by

Graph Programming. In Genetic Programming - 21st European Conference, EuroGP
2018, Parma, Italy, April 4-6, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10781), Mauro Castelli, Lukás Sekanina, Mengjie Zhang, Stefano Cagnoni,
and Pablo García-Sánchez (Eds.). Springer, 35–51. https://doi.org/10.1007/978-3-
319-77553-1_3

[2] Ann Braeken. 2006. Cryptographic properties of Boolean functions and S-boxes.
Ph. D. Dissertation. Katholieke Universiteit Leuven.

[3] Nichael Lynn Cramer. 1985. A Representation for the Adaptive Generation of
Simple Sequential Programs. In Proceedings of the 1st International Conference
on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, John J. Grefenstette (Ed.).
Lawrence Erlbaum Associates, 183–187.

[4] Richard Forsyth. 1981. BEAGLE A Darwinian Approach to Pattern Recognition.
Kybernetes 10, 3 (1981), 159–166. https://doi.org/doi:10.1108/eb005587

[5] Thomas Helmuth and Lee Spector. 2015. General Program Synthesis Benchmark
Suite. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2015, Madrid, Spain, July 11-15, 2015, Sara Silva and Anna Isabel Esparcia-
Alcázar (Eds.). ACM, 1039–1046. https://doi.org/10.1145/2739480.2754769

[6] Joseph Hicklin. 1986. Application of the Genetic Algorithm to Automatic Program
Generation. Master’s thesis. University of Idaho.

[7] David Hodan, Vojtech Mrazek, and Zdenek Vasicek. 2020. Semantically-Oriented
Mutation Operator in Cartesian Genetic Programming for Evolutionary Circuit
Design. In Proceedings of the 2020 Genetic and Evolutionary Computation Confer-
ence (Cancún, Mexico) (GECCO ’20). Association for Computing Machinery, New
York, NY, USA, 940–948. https://doi.org/10.1145/3377930.3390188

[8] David Hodan, Vojtech Mrazek, and Zdenek Vasícek. 2021. Semantically-oriented
mutation operator in cartesian genetic programming for evolutionary circuit
design. Genet. Program. Evolvable Mach. 22, 4 (2021), 539–572. https://doi.org/10.
1007/s10710-021-09416-6

[9] Jakub Husa. 2019. Comparison of genetic programming methods on design of
cryptographic boolean functions. In European Conference on Genetic Programming.
Springer, 228–244.

[10] T. Kalganova. 1997. Evolutionary Approach to Design Multiple-valued Combina-
tional Circuits. In Proceedings. of the 4th International conference on Applications
of Computer Systems (ACS’97). Szczecin, Poland, 333–339.

[11] Roman Kalkreuth. 2019. Two New Mutation Techniques for Cartesian Ge-
netic Programming. In Proceedings of the 11th International Joint Conference
on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19,
2019, Juan Julián Merelo Guervós, Jonathan M. Garibaldi, Alejandro Linares-
Barranco, Kurosh Madani, and Kevin Warwick (Eds.). ScitePress, 82–92. https:
//doi.org/10.5220/0008070100820092

[12] Roman Kalkreuth. 2022. Towards Phenotypic Duplication and Inversion in
Cartesian Genetic Programming. In Proceedings of the 14th International Joint
Conference on Computational Intelligence, IJCCI 2022, Valletta, Malta, October 24-26,
2022, Thomas Bäck, Bas van Stein, Christian Wagner, Jonathan M. Garibaldi, H. K.
Lam, Marie Cottrell, Faiyaz Doctor, Joaquim Filipe, Kevin Warwick, and Janusz
Kacprzyk (Eds.). SCITEPRESS, 50–61. https://doi.org/10.5220/0011551000003332

[13] John R. Koza. 1989. Hierarchical Genetic Algorithms Operating on Populations of
Computer Programs. In Proceedings of the 11th International Joint Conference on
Artificial Intelligence. Detroit, MI, USA, August 1989, N. S. Sridharan (Ed.). Morgan
Kaufmann, 768–774. http://ijcai.org/Proceedings/89-1/Papers/123.pdf

[14] John R. Koza. 1990. Concept Formation and Decision Tree Induction Using the
Genetic Programming Paradigm. In Parallel Problem Solving from Nature, 1st
Workshop, PPSN I, Dortmund, Germany, October 1-3, 1990, Proceedings (Lecture
Notes in Computer Science, Vol. 496), Hans-Paul Schwefel and Reinhard Männer

(Eds.). Springer, 124–128. https://doi.org/10.1007/BFb0029742
[15] John R. Koza. 1990. Genetic Programming: A Paradigm for Genetically Breeding

Populations of Computer Programs to Solve Problems. Technical Report. Stanford,
CA, USA.

[16] John R. Koza. 1990. A Hierarchical Approach to Learning the Boolean Multi-
plexer Function. In Proceedings of the First Workshop on Foundations of Genetic
Algorithms. Bloomington Campus, Indiana, USA, July 15-18 1990, Gregory J. E.
Rawlins (Ed.). Morgan Kaufmann, 171–192. https://doi.org/10.1016/b978-0-08-
050684-5.50014-8

[17] John R. Koza. 1993. Genetic programming - on the programming of computers by
means of natural selection. MIT Press.

[18] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, and Mauro Birattari. 2016. The irace package: Iterated Racing for Auto-
matic Algorithm Configuration. Operations Research Perspectives 3 (2016), 43–58.
https://doi.org/10.1016/j.orp.2016.09.002

[19] JamesMcDermott, Gabriel Kronberger, Patryk Orzechowski, Leonardo Vanneschi,
LucaManzoni, Roman Kalkreuth, andMauro Castelli. 2022. Genetic Programming
Benchmarks: Looking Back and Looking Forward. SIGEVOlution 15, 3, Article 1
(dec 2022), 19 pages. https://doi.org/10.1145/3578482.3578483

[20] JamesMcDermott, David RobertWhite, Sean Luke, LucaManzoni, Mauro Castelli,
Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper,
Kenneth A. De Jong, and Una-May O’Reilly. 2012. Genetic programming needs
better benchmarks. In Genetic and Evolutionary Computation Conference, GECCO
’12, Philadelphia, PA, USA, July 7-11, 2012, Terence Soule and Jason H. Moore
(Eds.). ACM, 791–798. https://doi.org/10.1145/2330163.2330273

[21] Julian F. Miller. 1999. An empirical study of the efficiency of learning boolean
functions using a Cartesian Genetic Programming approach. In Proceedings of
the Genetic and Evolutionary Computation Conference, Wolfgang Banzhaf, Jason
Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and
Robert E. Smith (Eds.), Vol. 2. Morgan Kaufmann, Orlando, Florida, USA, 1135–
1142. http://citeseer.ist.psu.edu/153431.html

[22] J. F. Miller, P. Thomson, and T. Fogarty. 1997. Designing Electronic Circuits
Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study. In Genetic
Algorithms and Evolution Strategies in Engineering and Computer Science. Wiley,
105–131.

[23] Patryk Orzechowski, William La Cava, and Jason H. Moore. 2018. Where Are
We Now? A Large Benchmark Study of Recent Symbolic Regression Methods.
In Proceedings of the Genetic and Evolutionary Computation Conference (Kyoto,
Japan) (GECCO ’18). Association for Computing Machinery, New York, NY, USA,
1183–1190. https://doi.org/10.1145/3205455.3205539

[24] Patryk Orzechowski and Jason H. Moore. 2021. Generative and reproducible
benchmarks for comprehensive evaluation of machine learning classifiers. CoRR
abs/2107.06475 (2021). arXiv:2107.06475 https://arxiv.org/abs/2107.06475

[25] Stjepan Picek, Claude Carlet, Sylvain Guilley, Julian F Miller, and Domagoj
Jakobovic. 2016. Evolutionary algorithms for boolean functions in diverse do-
mains of cryptography. Evolutionary computation 24, 4 (2016), 667–694.

[26] Stjepan Picek, Domagoj Jakobovic, Julian F Miller, Lejla Batina, and Marko Cupic.
2016. Cryptographic Boolean functions: One output, many design criteria. Applied
Soft Computing 40 (2016), 635–653.

[27] Riccardo Poli. 1997. Evolution of Graph-Like Programs with Parallel Distributed
Genetic Programming. In Proceedings of the 7th International Conference on Genetic
Algorithms, East Lansing, MI, USA, July 19-23, 1997, Thomas Bäck (Ed.). Morgan
Kaufmann, 346–353.

[28] Lukás Sekanina. 2012. Evolvable Hardware. In Handbook of Natural Computing,
Grzegorz Rozenberg, Thomas Bäck, and Joost N. Kok (Eds.). Springer, 1657–1705.
https://doi.org/10.1007/978-3-540-92910-9_50

[29] Léo Françoso Dal Piccol Sotto, Paul Kaufmann, Timothy Atkinson, Roman
Kalkreuth, and Márcio Porto Basgalupp. 2021. Graph representations in ge-
netic programming. Genet. Program. Evolvable Mach. 22, 4 (2021), 607–636.
https://doi.org/10.1007/s10710-021-09413-9

[30] Zdenek Vasicek and Lukas Sekanina. 2014. How to evolve complex combinational
circuits from scratch?. In 2014 IEEE International Conference on Evolvable Systems,
ICES 2014, Orlando, FL, USA, December 9-12, 2014. IEEE, 133–140. https://doi.org/
10.1109/ICES.2014.7008732

[31] James Alfred Walker, Katharina Völk, Stephen L. Smith, and Julian Francis Miller.
2009. Parallel evolution using multi-chromosome cartesian genetic programming.
Genet. Program. Evolvable Mach. 10, 4 (2009), 417–445. https://doi.org/10.1007/
s10710-009-9093-2

[32] David Robert White, James McDermott, Mauro Castelli, Luca Manzoni, Brian W.
Goldman, Gabriel Kronberger, Wojciech Jaskowski, Una-May O’Reilly, and Sean
Luke. 2013. Better GP benchmarks: community survey results and proposals.
Genet. Program. EvolvableMach. 14, 1 (2013), 3–29. https://doi.org/10.1007/s10710-
012-9177-2

[33] Tina Yu and Julian Miller. 2002. Finding Needles in Haystacks Is Not Hard with
Neutrality. InGenetic Programming, James A. Foster, Evelyne Lutton, Julian Miller,
Conor Ryan, and Andrea Tettamanzi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 13–25.

https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/doi:10.1108/eb005587
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/3377930.3390188
https://doi.org/10.1007/s10710-021-09416-6
https://doi.org/10.1007/s10710-021-09416-6
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0011551000003332
http://ijcai.org/Proceedings/89-1/Papers/123.pdf
https://doi.org/10.1007/BFb0029742
https://doi.org/10.1016/b978-0-08-050684-5.50014-8
https://doi.org/10.1016/b978-0-08-050684-5.50014-8
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1145/3578482.3578483
https://doi.org/10.1145/2330163.2330273
http://citeseer.ist.psu.edu/153431.html
https://doi.org/10.1145/3205455.3205539
https://arxiv.org/abs/2107.06475
https://arxiv.org/abs/2107.06475
https://doi.org/10.1007/978-3-540-92910-9_50
https://doi.org/10.1007/s10710-021-09413-9
https://doi.org/10.1109/ICES.2014.7008732
https://doi.org/10.1109/ICES.2014.7008732
https://doi.org/10.1007/s10710-009-9093-2
https://doi.org/10.1007/s10710-009-9093-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2

	Abstract
	Acknowledgments
	1 Introduction
	2 Logic Synthesis in Genetic Programming
	2.1 Learning of Boolean Functions with Known Input-output Mapping
	2.2 Learning of Cryptographic Boolean Functions

	3 Towards a Benchmark Suite for Boolean Function Synthesis
	3.1 General Motivation
	3.2 Main Objectives and Properties
	3.3 Problem Selection
	3.4 Evaluation Methods (Fitness Calculation)
	3.5 Interfaces and Resources
	3.6 Benchmarks and Baseline Results

	4 Conclusions and Future Work
	References

