
FFCSA - Finite Field Constructions, Search, and Algorithms
Zidaric, N.; Gong, G.; Aagaard, M.; Jurisic, A.; Konovalov, O.

Citation
Zidaric, N., Gong, G., Aagaard, M., Jurisic, A., & Konovalov, O. (2023). FFCSA - Finite Field
Constructions, Search, and Algorithms. Acm Communications In Computer Algebra, 57(2),
57-64. doi:10.1145/3614408.3614416

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3718467

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3718467

ACM Communications in Computer Algebra, Vol. 57, No. 2, Issue 224, June 2023

FFCSA – Finite Field Constructions, Search, and Algorithms

Nuša Zidarič1⇤, Guang Gong2, Mark Aagaard2, Aleksandar Jurǐsić3, Olexandr Konovalov4

1 Leiden Institute of Advanced Computer Science (LIACS), Leiden University,
Leiden, The Netherlands

2 Electrical and Computer Engineering, University of Waterloo
Waterloo, Canada

3 Faculty of Computer and Information Science, University of Ljubljana
Ljubljana, Slovenija

4 School of Computer Science, University of St Andrews,
St Andrews, Scotland

Abstract

In this work we present the new GAP package FFCSA – Finite Field Constructions, Search, and
Algorithms. It was designed to enable Design Space Exploration for hardware implementations of
cryptographic algorithms defined over finite fields. FFCSA constructions and searches are used to
produce the design space, and FFCSA algorithms, parameterized for the current candidate field, are
used to generate expressions needed for implementation in hardware.

CCS Concepts: Computing methodologies ! Symbolic and algebraic manipulation.
Keywords: FFCSA, GAP, FSR, finite field arithmetic, cryptographic hardware

1 Introduction

In this work we present the new GAP package FFCSA – Finite Field Constructions, Search, and Al-
gorithms. It was designed to enable Design Space Exploration (DSE) for hardware implementations of
cryptographic algorithms defined over finite fields. With the rise of new technologies, such as Internet of
Things, Cyber-Physical Systems, automotive, to name just a few, microchips with communication capabil-
ities are extremely common. Furthermore, they have diverse hardware implementation requirements, and
DSE is mandatory to select suitable parameters and trade-o↵s. FFCSA is a part of a larger framework
[15, 19], which includes packages for automated generation of hardware modules; the entire framework
is beyond the scope of this paper. To build such a framework we need a Computer Algebra System for
symbolic computation that supports finite fields; we chose the open-source system GAP [5]. Our approach
opens numerous possibilities for automated generation and optimization of hardware guided by the math-
ematical properties, and to change mathematical properties of cryptographic algorithms based on their
hardware cost and performance.

2 Background

2.1 GAP

GAP [5] is an open source system for discrete computational algebra. It was selected as a platform
for the implementation due to multiple reasons, in particular, for its excellent support for finite fields,

⇤Corresponding author: Nuša Zidarič n.zidaric@liacs.leidenuniv.nl . The majority of this work was done when Nuša
Zidarič was a�liated with the University of Waterloo. She is currently a�liated with LIACS, Leiden University.

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3614408.3614416&domain=pdf&date_stamp=2023-08-07

FFCSA – Finite Field Constructions, Search, and Algorithms ISSAC 2023 software presentations

which includes their constructions, arithmetic operations, factorization of polynomials, irreducibility check,
conjugates, decomposition of elements w.r.t. a given basis, etc.. GAP also has a well-defined mechanism of
extending it with packages, which are managed by their authors and maintainers, and may be submitted
for the redistribution with GAP. One of such packages is the JupyterKernel package [9] which adds Jupyter
support to GAP and allows to make interactive and engaging demonstrations. Finally, GAP and a number
of its packages are included in the SageMath [14].

FFCSA package [16] requires FSR package [18], designed for cryptographic modules with filtering
structures [17], such as the WG cipher [8]. FFCSA package adds support for tower fields to the hardware
design flow in [17]. FSR and FFCSA were used during design stage of authenticated encryption scheme
WAGE [1, 2, 15].

2.2 Preliminaries

Let Fq be a binary extension field with q elements, where q = 2m and m � 1. We consider multivariate
polynomial functions f : Ft

q ! Fq in t � 1 variables x0, . . . , xt�1 with their corresponding integer exponents
ij (0  j  t � 1) and coe�cients �i0,...,it�1 2 Fq:

f(x0, . . . , xt�1) =
X

(i0,...,it�1)2Zt
q�1

�i0,...,it�1x
i0
0 . . . x

it�1

t�1 . (1)

The exponents ij are reduced modulo q�1 by the generalization of the Fermats little theorem [7] (i.e., xq =
x 8x 2 Fq) and hence the t-tuple (i0, . . . , it�1) 2 Zt

q�1 uniquely describes each monomial. For the remainder
of this text, the term expression is of the form given in Equation (1).

Let K be a finite field and F its extension of degree m, i.e., F/K and m = [F : K]. Let BF/K =

{⇢(0), ⇢(1), . . . , ⇢(m�1)}, where ⇢ 2 F , be an arbitrary basis of F/K. The following are the representation
of A 2 F w.r.t. BF/K, its vector form and the notation for the i-th coordinate of A, where ai 2 K
(0  i  m � 1):

A=
m�1P
i=0

ai⇢
(i), [A]BF/K=[a0, a1, . . . , am�1], [A](i)=ai.

We use the term “field instance” to refer to a particular finite field and its basis, i.e., one of the many
candidates for the DSE. We will use ↵e to abbreviate a finite field element.

3 Basic structure of FFCSA

Di↵erent algorithms for finite field arithmetic that have been developed over the years will be simply
referred to as “algorithms” (the letter ”A” in ”FFCSA”, Section 3.1). To list a few examples: classic two-
step multiplication, Massey-Omura multiplication, Itoh-Tsuji inversion, . . . Some algorithms were optimized
for software applications, and will not necessarily perform well in hardware. An example of an algorithm
optimized for hardware implementations is the reduced redundancy Massey-Omura parallel multiplier [11].

For DSE we need to generate many field instances, and for hardware design automation we need to
extract submodules and generate expressions for their implementation. From the perspective of DSE, a
candidate field instance is the finite field and its basis; FFCSA construction and search methods were
designed to find the candidates (letters ”CS” in ”FFCSA”, Section 3.2).

To define Fqm it is enough to construct the basis BFqm/Fq
[7]. We introduce a notion of direction for the

basis as To and Downto. This is adopted from a hardware description language called VHDL: its signals
are specified by their domain, range and direction. In order to merge the worlds of digital hardware design
and finite fields, we map the domain to the subfield and the range to the degree of extension F/K, and
generate our bases according to the desired direction: To for (0 to m-1) or Downto for (m-1 downto 0).

58

N. Zidarič, G. Gong, M. Aagaard, A. Jurǐsić, O. Konovalov

3.1 Finite field arithmetic algorithms

In this section we explain how we use symbolic computation to generate datapaths. We use a simple
expression over Fq, where q = 2m, m > 1, as an example:

f(x0, x1, x2) = �1 x0 · x1 · x2 + x2
0 + �2. (2)

Expression (2) has variables x0, x1, x2 2 Fq and two arbitrary, not necessary distinct, constants �1, �2 2 F⇤
q .

BA C

Z

E M

M

x

map GAP variables to input ports:
x0 !A, x1 !B, x2 !C

map function f to the output port:
f !Z

Submodules: squarer E, two multipliers M,
and constant multiplier ⇥�1.
Addition modulo 2: XOR gates,
also used for the additive constant +�1

Figure 1: Circuit schematics for the example in Equation (2).

Figure 1 shows submodules for arithmetic operations needed to implement expression (2) as top-level
hardware module. To generate the datapath, first all field parameters and constants are set, then:

1. Extract submodule. To extract the submodules, we parse the top-level expression. GAP uses
algebraic normal form for expressions such as the right hand side in Equation (1). We ensure all
exponents are reduced modulo q � 1, then split the expression into two vectors: monomials and
coe�cients. We obtain (i.) the multiplicative and additive constants from the coe�cients, and (ii.)
finite field multiplications and exponentiations from the monomials.

2. Generate expressions. To implement the submodules, we need an expression for each output of the
submodule. Figure 2 shows an example of extracted finite field multiplication on top and generated
multiplication expressions, i.e., the compoenent functions, on the bottom. The basis B must be
known and the designer must select one of the FFCSA algorithms for the arithmetic operation in
basis B.

c =f (a , ... ,a ,0 m-1 b , ... ,b)0 m-100

c =f (a , ... ,a ,0 m-1 b , ... ,b)0 m-1m-1m-1

extract
submodule

generate
submodule

A CB
A B

[c ,c , ... ,c]0 1 m-1
[a ,a , ... ,a]0 1 m-1
[b ,b , ... ,b]0 1 m-1

[]B []B

user-specified multiplication
algorithm for basis B

generate expressions - symbolically

generate testvectors - evaluate

Figure 2: Extracted and generated multiplication

FFCSA implements a collection of methods to generate the required expressions according to a specified
algorithm, parameterized for the current field instance. The package currently supports basic functionality
(Section 3.1.2).

59

FFCSA – Finite Field Constructions, Search, and Algorithms ISSAC 2023 software presentations

3.1.1 Symbolic computation

The ChooseFieldElms(F) method prepares vectors avec = [a0, . . . , am�1] and bvec = [b0, . . . , bm�1] with
default direction To, where m = [F : K] is the degree of extension. Method ChooseFieldElmsDownto

creates vectors avec = [am�1, . . . , a0] and bvec = [bm�1, . . . , b0]. Note that ai, bj are not coe�cients, but
GAP variables [5] to allow symbolic computation.

3.1.2 Generalized algorithm for multiplication

To compute the product C = A · B, where A, B 2 F/K and m = [F : K], we begin by forming the
matrix U for a given basis BF/K. Expressions obtained with matrix U follow the Generalized algorithm
for multiplication [6]. This method produces a matrix-vector multiplier, where one of the factors is merged
into the matrix U and then multiplied by the other factor. We chose this algorithm for multiplication as
it is universal in the sense that it works for an arbitrary basis.

The matrix U is an m⇥m matrix with components ui,j (0  i, j  m� 1) obtained by multiplying an
element A with the j-th basis element ⇢(j) and then taking the i-th coordinate of ⇢(j) · A:

ui,j = [⇢(j) · A](i). (3)

The columns of matrix U are exactly the vectors [⇢(j)A]. The product C = A · B can be written in matrix
form as

2
6664

c0

c1
...

cm�1

3
7775 =

2
6664

u0,0 u0,1 . . . u0,m�1

u1,0 u1,1 . . . u1,m�1
...

...
. . .

...
um�1,0 um�1,1 . . . um�1,m�1

3
7775 ·

2
6664

b0

b1
...

bm�1

3
7775 . (4)

The expressions for the product C can then be obtained by multiplying the right hand side of equation
(4):

ci =
m�1X

j=0

ui,jbj (0  i  m � 1). (5)

This generates the expressions ci = fi(a0, . . . , am�1, b0, . . . , bm�1), which are used for the implementation
of a circuit, where a combinational datapath is implemented for each output, e.g., each ci for the multiplier
in Figure 2. Similarly, we can generate expressions for arbitrary exponents of A, including the inverse.
Since these methods use the avec variables ai more than once, we must ensure their exponents are reduced
modulo |K| � 1 on each step.

FFCSA contains the following methods:

• MatrixUExpression(B, avec) computes the matrix U with elements obtained based on Equation
(3).

• FFA mult matrixU(B, avec, bvec) first computes U with MatrixUExpression and avec, and then
returns U ⇤ bvec.

• FFA sq matrixU(B, avec) first computes U with the method MatrixUExpression and avec, and then
returns U ⇤ avec.

• FFA exp matrixU(B, avec, e) computes the expressions for exponentiation Ae, using a classic square
and multiply with methods FFA mult matrixU and FFA sq matrixU.

• FFA inv matrixU(B, avec) computes the inverse expressions as exponentiation FFA exp matrixU

with e = |F| � 2.

60

N. Zidarič, G. Gong, M. Aagaard, A. Jurǐsić, O. Konovalov

Example 3.1 (Multiplication expressions for F24) We use irreducible polynomial f(x) = x4 + x + 1 with
root ⇢ 2 F24 and the polynomial basis PB = {1, ⇢, ⇢2, ⇢3}. The GAP code below shows the setup and the
outputs of FFA mult matrixU: the expressions used for the hardware implementation. For example, to drive
the multiplier output c0, the expression a0b0 + a1b3 + a2b2 + a3b1 must be implemented in hardware. No
submodules are needed to compute aibj terms, since multiplication in F2 is implemented with an AND gate.

GAP code 3.1

gap> K := GF(2);; x := X(K, "x");;

gap> f := x^4+x+1;; F := FieldExtension(K, f);; ChooseFieldElms(F);

variables

["a_0", "a_1", "a_2", "a_3"]

... OMITTED ...

gap> PB := GeneratePB(F, RootOfDefiningPolynomial(F));;

gap> mult := FFA_mult_matrixU(PB, avec, bvec);;

gap> for i in mult do Display(i); od;

a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1

a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2

a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3

a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3

FFCSA package can also generate other expressions commonly needed for implementations.
MatrixMultByConstExpression(B, ffe, avec) returns the expressions for implementing a constant multi-
plier submodule ⇥�, where ↵e = � 2 F and B the basis. The method TransitionMatrixExpression(B1,
B2, avec) returns the expressions needed to implement the basis transition B1 ! B2.

3.2 Finite field constructions and searches

To produce a candidate list for DSE, we first search for defining polynomials or normal elements, and then
generate the polynomial or normal bases, respectively. Current version of FFCSA can generate polynomial
bases, normal bases, and their dual bases, and finally, di↵erent tower-field bases (Section 3.2.1). We
implemented a set of methods to find normal elements. FindNormalFFEs�(F) checks the elements of F
one by one using the method IsNormalFFE(F, ffe). The symbol � stands for optional IgnoreConjugates
and reduces the search space. Many FFCSA methods use cyclotomic coset leaders to reduce search space
[4]. IsNormalFFE check for ↵e = ⇢ computes the polynomial T⇢(x) =

Pm�1
i=0 �i(⇢)xi, where � is the

Frobenius map of F , and returns true i↵ gcd(T⇢(x), xm � 1) = 1 (by Theorem 5.2.11(1.) in [7]).

3.2.1 Generating tower field bases

For a composite integer m = n1 · . . . · nk, where ni (1  i  k) is a positive integer (not necessarily prime),
it is possible to build Fpm as a tower of extensions F(...((pn1)n2)...)nk over its prime subfield Fp:

Fp = K0 ⇢ K1 ⇢ · · · ⇢ Kk�1 ⇢ Kk = F(...((pn1)n2)...)nk
⇠= Fpm .

We allow di↵erent options using either the same type of basis on each level, or mixed bases, e.g., polynomial
basis on one level and normal basis on the next. In FFCSA package we make a distinction between reference
field defining polynomials (RDP) and extension field defining polynomial (EDP). For example, the reference
field for F((22)2)2 is the isomorphic F28 with a RDP of degree 8. The tower field is obtained with EDPs
f1, f2, f3 of degree 2, see Table 1.

61

FFCSA – Finite Field Constructions, Search, and Algorithms ISSAC 2023 software presentations

With each new extension Kj/Kj�1 (1  j  k) we find the “per-level” basis (PLB). For an arbitrary
expression over Kj/Kj�1 we extract and generate all its submodules, as was described in Section 3.1. We
repeat the submodule extraction and generation for each level of the tower field until K0 = Fp is reached.
For each lower level, we have to call ChooseFieldElms anew. In example 3.2 we need F(22)2 multiplier
submodules to compute aibj terms appearing in the generated expressions.

Table 1: Tower construction of F((22)2)2

F2
f1(x)���! F22

f2(x)���! F(22)2
f3(x)���! F((22)2)2

Finite field Extension defining “per-level” PB Comments

Fq2 polynomial (EDP) fi(x) BFq2/Fq
= {1, ⇢} fi(⇢) = 0

F((22)2)2 f3(x) = x2 + �x + �2µ {1, ⌫} f3(⌫) = 0

F(22)2 f2(x) = x2 + �x + 1 {1, µ} f2(µ) = 0

F22 f1(x) = x2 + x + 1 {1, �} f1(�) = 0

The PLBs lead to the construction of a tower field basis (TFB) of the isomorphic field F28/F2 obtained
as products of PLB elements as TFBF28/F2

= {t0, t1, . . . , t7} = {1, �, µ, µ�, ⌫, ⌫�, ⌫µ, ⌫µ�}. When needed,
the TFB is used for transition matrices between the tower field construction and the isomorphic field,
construced with a single extension, e.g., between F((22)2)2 and F28 . TFB is also used to generate the
testvectors for the top-level hardware modules.

Example 3.2 shows the interplay of di↵erent parts of the FFCSA package: search for irreducible poly-
nomials, extension fields, bases, expressions for a multiplier, and finally the TFB for testvectors.

Example 3.2 (Multiplication expressions for F((22)2)2/F(22)2.) In this example we show the construction
F((22)2)2 with the EDPs listed in Table 1. The initial setup requires the list of EDPs selected from the output
generated by FindEDPLAllfromEDL(n1, n2, n3). The long outputs were manually shortened for this example.
The input to method FFA mult matrixU is the “per-level” polynomial basis B3, obtained for F((22)2)2/F(22)2.
It produces the expressions for the multiplication on the top level of the tower field F((22)2)2/F(22)2. Note
that ChooseFieldElms in the GAP code Example 3.2 returns vectors of length 2, not 8. The multiplica-
tions in expressions for the product need a multiplier from the lower level F(22)2/F22 (submodule). We also
need two subfield constant multipliers for �1 = �2µ 2 F(22)2 and �2 = � 2 F(22)2. Although � 2 F22, the
product a1b1 2 F(22)2, therefore we must perform ⇥�2 in F(22)2/F22.

Example 3.2

gap> K := GF(2);; listall := FindEDPLAllfromEDL([2,2,2]);

[[x^2+x+Z(2)^0], [x^2+Z(2^2)*x+Z(2)^0, ... OMITTED ...],

[x^2+Z(2^4)^3*x+Z(2)^0, ... OMITTED ... , x^2+Z(2^2)*x+Z(2^4),

... OMITTED ... , x^2+Z(2^4)^13*x+Z(2^4)^14]]

gap> EDPlist := [listall[1][1], listall[2][1], listall[3][25]];

[x^2+x+Z(2)^0, x^2+Z(2^2)*x+Z(2)^0, x^2+Z(2^2)*x+Z(2^4)]

gap> f1 := EDPlist[1];; f2 := EDPlist[2];; f3 := EDPlist[3];;

gap> F1 := FieldExtension(K, f1);; F2 := FieldExtension(F1, f2);;

gap> F3 := FieldExtension(F2, f3);; nu := RootOfDefiningPolynomial(F3);;

gap> B3 := GeneratePB(F3, nu); ChooseFieldElms(F3);

Basis(AsField(AsField(GF(2^2), GF(2^4)), GF(2^8)), [Z(2)^0, Z(2^8)^76])

62

N. Zidarič, G. Gong, M. Aagaard, A. Jurǐsić, O. Konovalov

variables

["a_0", "a_1"]

... OMITTED ...

gap> multB3 := FFA_mult_matrixU(B3, avec, bvec);;

gap> for i in multB3 do Display(i); od;

a_0*b_0+Z(2^4)*a_1*b_1

a_0*b_1+a_1*b_0+Z(2^2)*a_1*b_1

gap> lambda := RootOfDefiningPolynomial(F1);;

gap> mu := RootOfDefiningPolynomial(F2);;

gap> lambda^2*mu; lambda;

Z(2^4)

Z(2^2)

gap> Mlist := [["PB", "to"], ["PB", "to"], ["PB", "to"]];

gap> TFB2 := GenerateTFBfromEDPLwithMB(EDPlist, Mlist); nu*mu*lambda;

Basis(GF(2^8), [Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^76,

Z(2^8)^161, Z(2^8)^178, Z(2^8)^8])

Z(2^8)^8

gap> ffe := Z(2^8)^15;; VecToString(Coefficients(TFB, ffe);

"11101010"

3.3 FFCSA profiling methods

Specialized search is closely linked to the design space exploration: theoretical estimates can be used to
make architectural decisions early in the design flow and to reduce the design space. For this purpose we use
a set of Hamming weights: a theoretical estimate of area as is obtained by WeightMatrix(M) method, and
a theoretical estimate for delay by WeightMatrixMaxRow(M) method. For example, ProfileGamma(B)

computes the profiles for constants �i = !ei . The profile is [d, A, e1, e2, . . .], where d and A are the delay
and area of the matrix-vector multiplier for �i. The exponents are grouped together when their delay and
area are the same. The “special” element in this case would be �i with the smallest area.

A perfect example of optimizaing implementations based on search results is the well-known block cipher
AES with constructions F(24)2 and F((22)2)2 in [12, 13], and new results still appearing in the literature [10].
Currenlty, a lot of research is focusing on finding estimates that are more accurate than Hamming weight,
e.g., sequential XOR count [3]. We will add more sophisticated o✏ine profiling methods to FFCSA in the
future.

4 Conclusion

The FFCSA construction methods allow generation of polynomial and normal bases, their dual bases,
and bases for tower fields. The search algorithms can be classified as exhaustive search (e.g., find all
normal bases), reduced search space (e.g., ignore conjugates), and specialized search (e.g., find a primitive
polynomial with a specified number of nonzero coe�cients). Specialized search is a form of reduced
search space, but the reduction criteria is di↵erent. The main purpose of FFCSA algorithms is on-the-
fly generation of expressions needed for hardware implementations, to enable automated Design Space
Exploration. Future work entails Design Space Exploration, which requires two additional phases. First
is the automated hardware generation of extracted submodules and the implementation of the top-level
module. Second, the interaction with CAD tools to obtain post-synthesis results.

63

FFCSA – Finite Field Constructions, Search, and Algorithms ISSAC 2023 software presentations

Acknowledgements

The authors would like to thank A. Hasan for discussions and advice on the Generalized algorithm for mul-
tiplication. The research of G. Gong and M. Aagaard were supported by NSERC Canada and the research
of N. Zidaric by NSERC Canada and NWO Netherlands through the PROACT project. The research of O.
Konovalov was supported by the OpenDreamKit Horizon 2020 European Research Infrastructures project.

References

[1] M. Aagaard, R. AlTawy, G. Gong, K. Mandal, R. Rohit, and N. Zidaric. WAGE: An authenticated
cipher, nist lwc round 2, 2019.

[2] R. AlTawy, G. Gong, K. Mandal, and R. Rohit. WAGE: an authenticated encryption with a twist.
IACR Transactions on Symmetric Cryptology – Special Issue on Designs for the NIST Lightweight
Standardisation Process, pages 132–159, 2020.

[3] C. Beierle, T. Kranz, and G. Leander. Lightweight Multiplication in gf(2n) with Applications to MDS
Matrices. In CRYPTO’16, pages 625–653, 2016.

[4] S.W. Golomb and G. Gong. Signal design for good correlation. Cambridge University Press, New
York, NY, 2005.

[5] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12.2, 2022.

[6] A. Hasan. Selected topics in cryptographic computations. ECE-720/2, Lecture notes, University of
Waterloo, 2017.

[7] G. L. Mullen and D. Panario, editors. Handbook of finite fields. Discrete mathematics and its appli-
cations. CRC Press, Boca Raton, FL, 2013.

[8] Y. Nawaz and G. Gong. WG: A family of stream ciphers with designed randomness properties.
Information Sciences, 178(7):1903–1916, 2008.

[9] M. Pfei↵er, M. Martins, O. Konovalov, and the GAP Team. JupyterKernel, Version 1.5.0.
https://gap-packages.github.io/JupyterKernel/, 2023.

[10] A. Pradeep, V. Mohanty, A. M. Subramaniam, and C. Rebeiro. Revisiting AES SBox Composite Field
Implementations for FPGAs. IEEE Embedded Systems Letters, 11(3):85–88, 2019.

[11] A. Reyhani-Masoleh. A new construction of Massey-Omura parallel multiplier over GF(2m). IEEE
Transactions on Computers, 51(5):511–520, 2002.

[12] V. Rijmen. E�cient implementation of the rijndael s-box. Technical report, 2000.

[13] A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A compact rijndael hardware architecture with
s-box optimization. In ASIACRYPT’01, pages 239–254, 2001.

[14] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.8), 2023.
https://www.sagemath.org.

[15] N. Zidaric. Automated Design Space Exploration and Datapath Synthesis for Finite Field Arithmetic
with Applications to Lightweight Cryptography. UWSpace. PhD thesis, 2020.

[16] N. Zidaric. FFCSA, Version 1.0.4. https://nzidaric.github.io/ffcsa/, 2023.

[17] N. Zidaric, M. Aagaard, and G. Gong. Rapid Hardware Design for Cryptographic Modules with
Filtering Structures over Small Finite Fields. In WAIFI’18, LNCS, vol. 11321, pages 128–145, 2018.

[18] N. Zidaric, M. Aagaard, and G. Gong. FSR, Version 1.2.2. https://nzidaric.github.io/fsr/,
2019.

[19] Nuša Zidarič and Mark Aagaard. Poster: Tower field support for synthesis of datapaths. In Computing
Frontiers (CF ’23), 2023.

64

