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N. Zidarič1 · K. Mandal2 · G. Gong3 ·M. Aagaard3

Received: 2 November 2022 / Accepted: 3 June 2023 / Published online: 5 August 2023
© The Author(s) 2023

Abstract
This survey presents the rich history of the Welch-Gong (WG) Stream cipher family. It has
been a long journey that lead the WG stream ciphers to become practical. The evolutionary
path is a combination of mathematical endeavour and engineering striving to transfer pure
mathematical functions to practical encryption algorithms for various applications. This path
began as the pioneering work onWG transformation sequences with 2-level autocorrelation,
leading to important breakthroughs in the early 2000’s, such as the submission of the first
WG stream cipher to the eSTREAM competition in 2005 and the subsequent introduction of
the WG stream cipher family W G(m, l), followed by extensive work on particular instances
proposed for various (mostly lightweight) applications. A recent construction using a WG
permutation is the authenticated encryptionWAGE, submitted to the NIST LWC competition
in 2019. The story of the WG stream cipher is by far not finished. The future opens numer-
ous possibilities for WG stream ciphers and WAGE, with applications in both lightweight
environments and in high-performance computing. We conclude the survey with new ideas
and open problems.
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1 Introduction

This work is presenting the rich and long history of the Welch-Gong (WG) Stream cipher
family, imperative for the design of the authenticated encryption scheme WAGE, a Round
2 NIST LWC Candidate. The WG stream ciphers are based on the WG transformations on
m-sequences and generate keystreamswith proven randomness and cryptographic properties.
The theoretical foundations for theWG transformationswere laid in the 90’s and early 2000’s.
TheWG stream cipher was first proposed byNawaz andGong in 2005 and the candidateWG-
29 reached the phase 2of the eSTREAMcompetition.W G(m, l) streamciphers are composed
of a linear feedback shift register (LFSR) of degree l and a (decimated) WG transformation,
defined over the same extension field F(2m). WG cipher’s security depends on the length of
the LFSR and the cryptographic strength of the WG transformation used in the cipher. In
order to achieve the highest security against existing generic passive attacks, such as algebraic
attacks,DFTattacks and distinguishing attacks,we studied the cryptographic and randomness
properties for 7 ≤ m ≤ 16 and presented criteria for optimal selection of parameters. In the
past decade, the lightweight variants WG-5, WG-7, and WG-8, suitable for constrained
environments, such as RFID, were proposed and subjected to rigorous cryptanalysis. The
bigger instance WG-16 was designed for use in confidentiality and integrity algorithms in
mobile communications, such as 4G-LTE networks.

In 2017, we answered the NIST LWC call for submissions and designed a new lightweight
authenticated encryption WAGE. The nameWAGE is a permutation of WG-AE. TheWAGE
permutation is based on a 37-stage Galois NLFSR over F(27) with decimated WG permu-
tations and newly designed 7-bit Sboxes. We use the WAGE permutation in the unified
sponge-duplex mode to achieve the authenticated encryption functionality that provides
128-bit security. Our security analysis shows that WAGE resists diffusion, algebraic, dif-
ferential, linear, and meet-in-the-middle distinguishers. Finally, we present possible future
directions forWAGE in modern applications using multi-party computation, fully homomor-
phic encryption schemes, and zero-knowledge proofs.

This survey is organized as follows. In Section 2we present basic concepts and definitions.
In Section 3we introduce pioneeringwork onWG transformation sequences, and in Section 4
the important breakthroughs from the early 2000’s, such as the WG stream cipher family
and submission to the eSTREAM competition. In Section 5, we present instances WG-5,
WG-7, WG-8, WG-16 and WG-29, their applications, hardware implementations and some
cryptanalysis. Thenwe present the authenticated encryptionWAGE in Section 6. In Section 7,
we discuss cryptographic primitives with polynomial Sboxes and propose to use the WAGE
structure in MiMC.

2 Some basic concepts and definitions

This section provides basic concepts and definitions that are important for understanding,
analyzing, and constructing sequences and WG stream ciphers. We introduce feedback shift
register sequences (Section 2.1), properties of periodic binary sequences, such as linear
span (Section 2.2), and correlation of sequences (Section 2.3). Then we introduce Boolean
functions and vector Boolean functions in polynomial form, and present nonlinearity and
resiliency (Section 2.4), followed by differential uniformity (Section 2.5), propagation (Sec-
tion 2.6) and finally algebraic immunity (Section 2.7).
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The following notation will be used throughout the paper.

– For a positive integer N , ZN = {0, 1, · · · , N − 1} is the residue class ring modulo N .
– For positive integers n, r , q = 2r , Fqn = G F(qn) denotes a finite field with qn elements;
F

∗
qn , the multiplicative group of Fqn .

– For positive integers m, n, such that m | n, the trace function from Fqn to Fqm is given

as T rn
m(x) = ∑n/m−1

i=0 xqmi
, x ∈ Fqn . For m = 1, we use the notation T r(x) when

the parameter n is clear, i.e., the trace function from Fqn to Fq is defined as T r(x) =
x + xq + · · · + xqn−1

.
– For a positive integer n, Fn

2 = {x = (x0, x1, · · · , xn−1)|xi ∈ F2} is a vector space over
F2 of dimension n.

– a = {ai }, ai ∈ F2, a sequence over F2, is called a binary sequence. If a is a periodic
sequence with period v, then we also denote a = (a0, a1, · · · , av−1), an element in F

v
2.

– Decimated sequences: Let bi = aid , i = 0, 1, · · · . Thenb = {bi } is called a d-decimation
of a. For example, a = 1001011 and 3-decimation of a is given by b = 1110100.

– The Hamming weight of a binary vector a = (a0, a1, · · · , an−1), or a binary number
a = ∑n−1

i=0 ai2i , or an element in F2n a = ∑n−1
i=0 aiαi , where {α0, · · · , αn−1} is a basis

of F2n over F2, is given by w(a) = w(a) = w(a) = |{i | 0 ≤ i < n, ai = 1}|.
– Let A be a matrix, and AT be its transpose.

2.1 Feedback shift register (FSR) sequences over Fq

A feedback shift register contains n memory cells, a feedback function from Fqn to Fq , as
shown in Fig. 1 [36]. The n-tuple (a0, a1, · · · , an−1) is referred to as an initial state of the
FSR, the state transition is given as

(a0, a1, · · · , an−1) −→ (a1, a2, · · · , an)

where the feedback element is computed by

an = f (a0, a1, · · · , an−1),

and the output sequence isa0, a1, · · · , an, · · · which satisfies the following recursive relation:
ak+n = f (ak, ak+1, · · · , ak+n−1), k = 0, 1, · · ·

(ak, ak+1, · · · , ak+n−1), thekth state.

When f is an nonlinear function, the output a = {ai } is referred to as an nonlinear feed-
back shift register (NFLSR) sequence, otherwise, as a linear feedback shift register (LFSR)
sequence.

Fig. 1 A general model of FSR
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In the LFSR case, we have

f (x0, · · · , xn−1) =
n−1∑

i=0

ci xi , ci ∈ Fq → f (x) = xn −
n−1∑

i=0

ci xi ,

where f (x) is referred to as the characteristic polynomial of the LFSR. The n × n matrix
given by

A =

⎛

⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

c0 c1 c2 · · · cn−1

⎞

⎟
⎟
⎟
⎠

(1)

is called a state transition matrix. We have

(a1, · · · , an)T = A · (a0, · · · , an−1)
T ,

(ak, · · · , ak+n)T = Ak · (a0, · · · , an−1)
T .

In this survey, we only consider q = 2m where m is a positive integer. Let n = m�. When
m = 1, i.e., the binary FSR, n = �. So, we will use n for the binary case. Thus, the feedback
function f is a Boolean function in n variables when m = 1 (i.e., q = 2).

2.2 Properties of periodic binary sequences

2.2.1 Cyclotomic cosets modulo 2n − 1

Let C = {1, 2, 22, · · · , 2n−1}. Then C is a subgroup of the multiplicative group of Z2n−1. In
terms of C , we define a relation, say∼, onZ2n−1 as follows: for any a, b ∈ ZN (N = 2n −1)

a ∼ b ⇐⇒ a ≡ 2i b (mod N ) for somei : 0 ≤ i < n.

The relation ∼ is an equivalence relation, which induces a partition on ZN . We denote the
equivalence class containing s by Cs . It can be represented as

Cs = {s, s2, s22, · · · , s2ns−1},
where ns is the smallest positive integer such that

2ns s ≡ s (mod N ). (2)

Definition 1 The set Cs is called a (cyclotomic) coset modulo N, the smallest number in Cs

is called a coset leader modulo N, and ns , the size of the coset Cs, is called the order of s
with respect to 2 modulo N.

Example 1 For n = 4, we have the following cosets modulo 15:

C0 = {1},
C1 = {1, 2, 4, 8},
C3 = {3, 6, 12, 9},
C5 = {5, 10},
C7 = {7, 14, 13, 11},
Z15 = C0 ∪ C1 ∪ C3 ∪ C5 ∪ C7, and
the coset leaders: {0, 1, 3, 5, 7}.

(3)
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For the theory of sequences, the reader is referred to [37] for details and the references
therein.

2.2.2 Trace representation and linear span of sequences and functions

Let a = (a0, a1, a2, · · · ) be a binary sequence satisfying the following recursive relation:

ak+n =
n−1∑

i=0

ci ak+i , k = 0, 1, · · · . (4)

The polynomial t(x) = xn +∑n−1
i=0 ci xi , where ci ∈ F2, is called a characteristic polynomial

of a and n is the length or order of the LFSR. If t(x) is the characteristic polynomial with
minimal degree, then t(x) is called the minimal polynomial of a. In this case, the LFSR given
by t(x) has the shortest length. The linear span or linear complexity of a sequence a, denoted
L S(a), is defined as the length of the shortest LFSR which generates this sequence.

If t(x) is primitive, then a has period 2n − 1 and a is called an m-sequence. For example,
for n = 3, t(x) = x3 + x + 1, then a = 1001011 is an m-sequence of period 7.

For any binary sequence {ai } of period p with p|2n − 1, we have the following trace
representation:

ai = f (αi ), i = 0, 1, . . . ,

where
f (x) =

∑

s∈I

T rns
1 (βs xs), βs ∈ F

∗
2ns , (5)

s is the coset leader of Cs with order ns , and I is the subset of the set consisting all the coset
leaders modulo 2n − 1. The linear span of a, can be determined as follows:

L S(a) =
∑

s∈I

ns .

Any function mapping from F2n to F2 has the polynomial form of (5). The algebraic
degree of f is defined as

deg( f ) = max
s∈I

w(s).

If I = {d} with gcd(d, 2n − 1) = 1, then we have

ai = T r(βαdi ), i = 0, 1, · · · , β ∈ F
∗
2n ,

where f (x) = T r(βxd), which produces an m-sequence of period 2n − 1.

2.2.3 m-sequences over extension fields and filtering sequences

We now define m-sequences over an extension field. Let p(x) = xl +∑l−1
i=0 pi xi , pi ∈ F2m ,

a primitive polynomial over F2m and b = {bi } with

bk+l =
l−1∑

i=0

pi bk+i , k = 0, 1, · · · ,

then b is an m-sequence over F2m of degree l with period ql − 1 (q = 2m). The elements of
the m-sequence b can be represented by the following trace representation

bi = T rn
m(βαi ), β ∈ Fql , (6)
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where α is a root of p(x) in Fql .
Let g(x) be a polynomial function from F2m to F2 with the trace representation given by

(5) where n is replaced by m and the other parameters are also changed accordingly, i.e.,

g(x) =
∑

s∈I

T rms
1 (βs xs), βs ∈ F

∗
2ms , (7)

where ms = |Cs |, the coset size of the coset Cs with the coset leader s modulo 2m − 1, so
ms | m. In the following, for simplicity, we may set β = 1 in (6). We define a binary sequence
u = {ui } whose elements given by

ui = g(bi ) = g(T rn
m(αi )), i = 0, 1, · · · .

The sequence u is a binary sequence with period 2n − 1, which is referred to as a geometric
sequences in [49].

Proposition 1 (Linear span of geometric sequences) With the above notation, the linear span
of u can be computed as follows:

L S(u) =
∑

s∈I

mslw(s). (8)

Remark 1 Note that for a binary geometric sequence the linear span is determined by the
sizes of the cosets modulo 2m − 1 and � for n = m�.

2.3 Correlation of sequences

Let a = {ai } and b = {bi } be two binary sequences with period v. The (periodic) cross
correlation function of two sequences a and b is defined as

Ca,b(τ ) =
v−1∑

i=0

(−1)ai +bi+τ , τ = 0, 1, · · ·

where i + τ is reduced by modulo v. When a = b, it becomes the (periodic) autocorrelation
function of a:

Ca(τ ) =
v−1∑

i=0

(−1)ai +ai+τ , τ = 0, 1, · · · .

If

Ca(τ ) =
{

v if τ ≡ 0 mod v

−1 otherwise,

then we say that the sequence a has (ideal) 2-level autocorrelation function, shortened as
C(τ ) if the context is clear.

Any binary m-sequence has 2-level autocorrelation. For example, a = 1001011 is an
m-sequence of period 7, whose autocorrelation function is given by C(τ ) = 7 for τ ≡
0 mod 7 and C(τ ) = −1 otherwise. All known constructions of binary sequences with
2-level autocorrelation were collectively introduced in [37], and no new binary sequences
with 2-level autocorrelation have been found since. Note that binary 2-level autocorrelation
sequences of period v correspond to the cyclic Hadamard difference sets in combinatorics.

There are only a few known constructions of 2-level autocorrelation sequences. These
include the number theory based constructions and the finite field based constructions. The
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number theory based 2-level autocorrelation sequences are Legendre sequences, twin prime
sequences, and Hall’s sextic residue sequence. For the finite field based constructions, there
are four types of constructions:m-sequences andGMWsequences using subfields, hyperoval
constructions, theWelch-Gong (WG) transformation construction, and the Dillon-Dobbertin
Kasami power function construction, including 3-term and 5-term sequences. Dillon and
Dobbertin also established that the three constructions of WG sequences, given in Section 3
are the same class.

Notes for Table 1

– We omit the linear span of twin prime sequences.
– GMW∗: we only list one type of the GMW sequences. For other types of GMW or
generalized GMW and subfield constructions, the reader is referred to Section 8.4 in
[37].

In Subsections 2.4-2.7 we will introduce some important definitions of cryptographic
properties for functions (either in Boolean form or in polynomial form), i.e., nonlinearity,
resiliency, differential property, propagation and algebraic immunity in general designs of
cipher algorithms.

2.4 Nonlinearity and resiliency of Boolean functions and vector Boolean functions
in polynomial form

2.4.1 Polynomial functions and Boolean functions

Note that for any polynomial function from F2n to F2, there is a one-to-one correspondence
to a Boolean function in n variables. In this survey, we will use polynomial representations
of functions from F2n to F2 to define cryptographic terms. Let � = {γ0, γ1, · · · , γn−1} be a
basis of F2n over F2. If T r(γiγ j ) = δi j , where δi j is the Kronecker delta function, defined as

δi j =
{
1 if i = j
0 otherwise,

then � is a self-dual basis.
For two elements x, y ∈ F2n and the basis � = {γ0, γ1, · · · , γn−1} of F2n over F2, where

x = ∑n−1
i=0 xiγi and y = ∑n−1

i=0 yiγi , and where xi , yi ∈ F2, we have the following relation:

Lemma 1 With the above notation, denoting x = (x0, · · · , xn−1) and y = (y0, · · · , yn−1),
then

T r(xy) =
∑

0≤i, j<n

xi y j T r(γiγ j ).

Especially, when � is self-dual,

T r(xy) = x · y =
n−1∑

i=0

xi yi ,

where x · y is the inner product of x and y.
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2.4.2 Hadamard transform and nonlinearity

Let f (x) be a function from F2n to F2. The Hadamard (or Walsh or Fourier) transform of f
is defined by

f̂ (λ) =
∑

x∈F2n

(−1) f (x)+T r(λx), λ ∈ F2n .

For a polynomial function f (x) from F2n to F2, we also use f to represent the evaluation
of f in F2n under some order of the elements in F2n . For example, we can write f =
( f (0), f (1), f (α), · · · , f (α2n−2)). Recall that α is a primitive element in F2n .

The distance between two binary vectors a = (a0, · · · , av−1) and b = (b0, · · · , bv−1),
denoted by d(a,b), is defined as the number of disagreements of terms of a and b, i.e.,

d(a,b) = |{i | ai �= bi , 1 ≤ i < n }| or equivalently
d(a,b) = w(a + b),

where w(x) is the Hamming weight of x.
The nonlinearity of f , denoted as N f , is defined by the minimum distance between f and

all affine functions. In other words,

N f = min
λ∈F2n ,c∈F2

d( f , T r(λx) + c)

or equivalently

N f = 2n−1 − 1

2
f̂max,

where
f̂max = max

λ∈F2n
| f̂ (λ)|.

The function f is said to have k-order correlation immunity if f̂ (λ) = 0 for all 1 ≤
w(λ) ≤ k. If f (x) is balanced, i.e., there are 2n−1 zeros in the evaluation of f (x), and is
k-order correlation immune, then we say that f is k-order resilient.

2.4.3 Vectorial Boolean functions in polynomial form and their nonlinearity

We say that F is an (n, m)-vectorial Boolean function in polynomial form or simply an
(n, m)-function if it is a function mapping from F2n to F2m . Let � = {α0, α1, · · · , αm−1} be
a basis of F2m over F2 (not necessary self-dual). For

b = (b0, · · · , bm−1) ∈ F
m
2 ↔ β =

m−1∑

i=0

biαi ∈ F2m ,

an (n, m)-function F can be written as

F(x) = ( f0(x), · · · , fm−1(x)) ↔ F(x) =
m−1∑

i=0

fi (x)αi , x ∈ F2n ,

where fi ’s are polynomial functions from F2n to F2. According to Lemma 1, we may have
b · F = T rm

1 (ξ F) for some ξ ∈ F
∗
2m . In particular, b · F = T rm

1 (βF) when � is self-dual.
(Here we misuse the notation F as both an m dimensional vector and an element in F2m .)

123



138 Cryptography and Communications (2024) 16:129–165

The nonlinearity of F , denoted as NF , is defined by

NF = min
ξ∈F∗

2m

NT rm
1 (ξ F).

Equivalently,

NF = 2n−1 − 1

2
F̂max,

where
F̂max = max

λ∈F2n ,ξ∈F∗
2m

|T̂ r
m
1 (ξ F)(λ)|.

Example 2 For n = 4 and m = 2, let F24 be defined by t4(x) = x4 + x + 1 with t4(γ ) = 0
and F22 , defined by t2(x) = x2 + x + 1 with t2(α) = 0. Thus {α, α2} is a self-dual basis of
F4 over F2. Let

F(x) = T r41 (x3)α + T r41 (x7)α2

which is a (4, 2)-vectorial Boolean function in the polynomial form. For β ∈ F4,

gβ(x) = T r21 (βF) = T r41 (x3)T r21 (βα) + T r41 (x7)T r21 (βα2), x ∈ F16

a function from F16 to F2. The Hadamard transform of gβ(x) is given by

ĝβ(λ) =
∑

x∈F16
(−1)gβ (x)+T r41 (λx).

For λ = γ and β = α, we have gβ(x) = T r41 (x3) and

ĝβ(λ) =
∑

x∈F16
(−1)T r41 (x3)+T r41 (λx) = 0.

When β ∈ {1, α, α2}, the nonlinearity of gβ(x) is equal to 4 which is maximum.

2.5 Differential k-uniform

Let F be an (n, m)-vectorial boolean function in the polynomial form. For any a ∈ F
∗
2n , b ∈

F2m , we denote
�(a, b) = |{x |x ∈ F2n , F(x) + F(x + a) = b}|.

We say that F is differentially k-uniform distributed if there are at most k solutions in F2n of
the equation

F(x) + F(x + a) = b

i.e., �(a, b) ≤ k.

2.6 Propagation of boolean functions

Let f be a function from F2n to F2. The additive autocorrelation of f is defined as

A f (a) =
∑

x∈F2n

(−1) f (x)+ f (x+a), a ∈ F2n .

We say that f has k-order propagation if A f (a) = 0 for 1 ≤ w(a) ≤ k.
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2.7 Algebraic immunity of functions

Let Bn be the set consisting of all functions mapping from F2n to F2, i.e., of all Boolean
functions in n variables. The algebraic immunity of f , denoted by AI ( f ), is defined as

AI ( f ) = min
g∈Bn

{deg(g) | f · g = 0 or ( f + 1) · g = 0},

where f · g is the multiplication of two Boolean functions f and g. The algebraic immunity
is upper bounded by  n

2 � [19].

3 WG transformation sequences with 2-level autocorrelation (1998 -
2004)

The Welch-Gong (WG) transformation sequences are binary sequences of period 2n − 1
with 2-level autocorrelation. They were discovered by Golomb, Gong, and Gaal in 1998
[74]. The work in [74] presents five new classes of binary sequences of period 2n − 1 with
ideal 2-level autocorrelation. According to the historic development of those conjectures,
Dr. Golomb named the sequences conjectured in Conjectures 4 and 5, Welch-Gong trans-
formation sequences. All of the conjectured sequences correspond to new cyclic Hadamard
difference sets. The 2-level autocorrelationwas verified for 5 ≤ n ≤ 20 in the case n = 3k−1,
and for 5 ≤ n ≤ 19 in the case n = 3k−2. Shortly after, the authors of [73] gave another con-
struction of WG transformation sequences and verified the autocorrelation for 5 ≤ n ≤ 23.
In 1999 [20], Dillon proved WG sequences for odd n using the representation from [73].
Finally, in 2004, Dillon and Dobbertin provided a new general construction which includes
all the conjectured sequences in their milestone work presented in [21].

In this section we present the first, the second and the third definition of WG sequences
in Sections 3.1, 3.2, and 3.3, respectively. We conclude with a brief note on unified study of
sequences, Boolean functions and univariate polynomials in Section 3.4.

3.1 First definition ofWG sequences

The first definition of Welch-Gong transformation was presented in [74] as follows.

Definition 2 Let α be a primitive element in F2n , a = {ai }, a binary sequence of period
2n −1 with 2-level autocorrelation, and f (x), the trace representation of a, i.e., ai = f (αi ).
Then, W GT (x) = f (x +1)+ T r(1) is called a Welch-Gong transformation and a sequence
b = {bi }, bi = W GT (αi ) = f (αi + 1) + T r(1), a Welch-Gong transformation sequence,
WG sequence for short.

Unfortunately, when a is a 2-level autocorrelation sequence, there exists only one case
that the WG transformation produces the sequence with 2-level autocorrelation.

Fact 1 (WG sequences conjectured, 1998 [74]) Let f (x) = T r(x+xq1+xq2+xq3+xq4), x ∈
F2n , where the qi ’s are defined by

n = 3k − 1 n = 3k − 2

q1 = 2k + 1 q1 = 2k−1 + 1
q2 = 22k−1 + 2k−1 + 1 q2 = 22k−2 + 2k−1 + 1
q3 = 22k−1 − 2k−1 + 1 q3 = 22k−2 − 2k−1 + 1
q4 = 22k−1 + 2k − 1 q4 = 22k−1 − 2k−1 + 1
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and W GT (x), the WG transformation of f , i.e., W GT (x) = f (x + 1) + T r(1). Then two
sequences a = {ai } and b = {bi } defined by

ai = f (αi ), i = 0, 1, · · · , (9)

bi = W GT (αi ) = f (αi + 1) + T r(1), i = 0, 1, · · · . (10)

have 2-level autocorrelation, which is verified for 5 ≤ n ≤ 20.

Proposition 2 (1998 [74]) The trace representation of the WG sequences is given by

W GT (x) =
∑

s∈I

T r(xs),

where I = I1 ∪ I2 and where for m = 3k − 1,

I1 = {22k−1 + 2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3}
I2 = {22k + 3 + 2i |0 ≤ i ≤ 2k−1 − 2} (11)

and for m = 3k − 2,

I1 = {2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3}
I2 = {22k−1 + 2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3}. (12)

In order to introduce the other forms of the definitions ofWG sequences, we first introduce
the following well known exponents.

Definition 3 (Kasami, 1971 [52]) The power function xd on Fq (q = 2n) is called a Kasami
power function and d a Kasami exponent when

d = 22k − 2k + 1where k < n and gcd(k, n) = 1.

3.2 Second definition ofWG sequences

Fact 2 (Conjecture, 1998 [73]) Let

σ(x) = (x + 1)d + xd , 3k ≡ 1 (mod n).

Then σ(x) is a 2-to-1 map on F2n . Let

N =
{

I m(σ ) = {σ(x) | x ∈ Fq} if n is even
Fq \ I m(σ ) if n is odd,

(13)

and b = {bi } where

bi =
{
0 if αi ∈ N
1 otherwise.

(14)

Then b has 2-level autocorrelation, which is verified for 5 ≤ n ≤ 23.

The following assertion has been also experimentally verified in [73]. Shortly after, Dob-
bertin proved that in [25].

Property 1 (Dobbertin, 1999 [25]) The sequence constructed in Fact 2 is the same as the
WG sequence class constructed in Fact 1.
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3.3 Third definition ofWG sequences

Fact 3 (Dillon and Dobbertin, 2004 [21]) Let gcd(k, n) = 1, k < n and

�k(x) = (x + 1)d + xd + 1, x ∈ F2n , (15)

where d is the Kasami exponent. Let

Bk = I m(�k) = {�k(x)|x ∈ F2n }
and a = {ai } where

ai =
{
0, αi ∈ Bk

1, otherwise
(16)

Then a is a 2-level autocorrelation. Furthermore, the trace representation of a has the form
T r(t(x)), where t(x) is a permutation on F2n .

Lemma 2 (Dillon and Dobbertin, 2004 [21]) With 3k ≡ 1 mod n, let

r1 = 2k + 1

r2 = 22k + 2k + 1

r3 = 22k − 2k + 1

r4 = 22k + 2k − 1.

and
t(x) = x + xr1 + xr2 + xr3 + xr4 .

Then t(x) is a permutation on F2n . In this case, a is a 5-term sequence with the trace
representation T r(t(x)), and W GT (x) = T r(t(x+1)+1), the WG transformation, produces
the WG sequence.

Definition 4 We call t(x + 1) + 1, a WG permutation, denoted as W G P(x):

W G P(x) = t(x + 1) + 1.

From Lemma 2, this set of {ri }4i=1 unifies the two cases given in Fact 1. Although they
have different exponents, they are identical after applying the trace function because they
belong to the same cosets modulo 2n − 1. In WG cipher design, we will use the Dillon and
Dobbertin set, since W G P(x) is a permutation, which will be used in the key initialization
algorithm of the WG stream cipher family. These exponents are in the same cosets as those
in first representation.

In 2014, Mandal et al. found a set of new exponents from Lemma 2, along with the
algebraic degree and linear span [63, 64].

Proposition 3 (Mandal et al., 2014 [64]) The trace representation of the WG sequences
given in Lemma 2 is shown as

W G P(x) = ∑
i∈J xi , x ∈ F2n

W GT (x) = T r(W G P(x)) = ∑
i∈J T r(xi ), x ∈ F2n ,

(17)

where J = J1 ∪ J2 and for n = 3k − 1

J1 = {22k−1 + 2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3}
J2 = {22k + 3 + 2i |0 ≤ i ≤ 2k−1 − 2}
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and for n = 3k − 2

J1 = {2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3} ∪ {1}
J2 = {22k−1 + 2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3}.

The total number of exponents in J for both cases is equal to (2 n
3 � − 3).

Property 2 (2014 [64]) The algebraic degree of W GT (x) in (17), denoted as deg(W GT (x)),
is given by deg(W GT (x)) =  n

3 � + 1 and the linear span of WG sequences is n(2 n
3 � − 3).

Note that the exponents in J in Proposition 3 and I in Proposition 2 belong to the same
cosets modulo 2n − 1. However,

∑
i∈I xi is not a permutation polynomial on F2n .

To achieve the maximum level of security of a WG cipher against different attacks, the
authors in [64] presented all optimal parameter instances of the (decimated) WG transforma-
tions over F2n for 7 ≤ n ≤ 16. The optimality is defined with respect to the cryptographic
properties such as low Hamming weight decimations, high algebraic immunity, high alge-
braic degree, high nonlinearity, and high resiliency.

3.4 Unified study of sequences, Boolean functions and univariate polynomials

Theoretical results on WG sequences rely on earlier work, such as [18], where the authors
established the first connection between

binary sequences with period 2n − 1,

polynomial functions F2n �→ F2, and (18)

Boolean functions in n variables.

They also provided theoretical results on the linear structure, strict avalanche condition, and
the nonlinearity of exponential Boolean functions and exponential permutations on F(2)n .
In [40] Gong and Golomb successfully used the connection (18), together with the tools for
pseudorandom sequence analysis, to analyze DES S-boxes. When they considered the rela-
tionship between sequences and functions, they realized that monomials, which correspond
to m-sequences, are not secure when used as component functions in block ciphers. This lead
to a concept of linear span for polynomial functions introduced in [40].

4 Cryptographic properties of WG sequences andWG stream cipher in
eSTREAM (2000 - 2008)

This section is divided into three major parts. First, the WG transformation sequence gener-
ators, formalized in the year 2000 (Section 4.1). Second, the generators matured to the WG
stream cipher, introduced and submitted to the eSTREAM competition in 2005 (Section 4.3).
And third, the WG stream cipher family, introduced in 2008 (Section 4.2). The WG stream
cipher submitted to eSTREAM competition is an instance of the WG stream cipher family,
which is why in this work, we introduce the family first and this instance later, instead of
following a chronological order.
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4.1 WG transformation sequence generators

The WG sequence generators were formalized by Gong and Youssef [43] in the year 2000.
Their work provides the definition of WG transformation sequences and presents their
randomness properties, such as (ideal) 2-level auto correlation, cross correlation with m-
sequences, and the balance property, and their cryptographic properties, such as nonlinearity,
resilience property, linear span and degree when regarded as Boolean functions.

It is well-known that a sequence can also be viewed as a Boolean function [37], and
the WG transformation can be viewed as a WG sequence as well as a Boolean function.
Table 2 provides a summary of the WG transformation’s sequence properties and Boolean
function properties. As shown in the first two columns of Table 2, a WG sequence has the
following randomness properties: period 2n − 1, it is balanced, it has 2-tuple distribution, 2-
level autocorrelation, 3-level (optimal) cross-correlationwith respect to anm-sequence, and a
high linear span n(2 n

3 �−3).When theWG transformation is viewed as an n-variableBoolean
function, it is balanced, it has an algebraic degree ( n

3 � + 1), 3-valued Hadamard transform

{0,±2
n+1
2 }, high nonlinearity 2n−1 − 2

n−1
2 and r -th order resiliency with 1 ≤ r ≤ n −  n

3 �
for a suitable decimation, as shown in the last two columns of Table 2.

The authors of [43] note that the WG sequence b can be obtained using the decimation
property: the 5-term sequence a can be generated by using five linear feedback shift registers
and one AND gate. This property of the WG sequences allows them to have an efficient
implementation for small n by operating decimation on a together with a table look-up.

4.2 WG stream cipher family

4.2.1 Stream cipher design principles

A stream cipher is an analogue of one-time-pad encryption scheme where the key with
uniform distribution is replaced by a key stream generator. A key stream generator is imple-

Table 2 Profiles of WG transformations [43, 44]

WG sequences WG Transformation WG Transformation
profile WG sequence as Booleamn func. Boolean profile

2n − 1 Period ↔ Boolean n variables

� Balance ↔ Balance �
� 2-tuple distribution NC

2-level Auto correlation NC

0, ±2(n+1)/2 ‡ Hadamard transform spectrum 0, ±2(n+1)/2 ‡

{−1,−1 ± 2(n+1)/2} ‡ Cross correlation ↔ Non-linearity 2n−1 − 2(n−1)/2 ‡

optimal w.r.t. with m-sequences

the Welch bound.

n(2n/3� − 3) † Linear span ↔ Linear span n(2n/3� − 3) †

NC Degree n/3� + 1

NC 1-resilient

‡ for n odd † increases exponentially in n NC - no corresponding concept
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mented by a pseudorandom bit or sequence generator (PSG). The attacker’s goal is to recover
a secret key (called seed) used in the key stream generator.

In stream cipher design there are two phases. One is the key initialization algorithm (KIA),
and the other is the pseudorandom sequence generation (PSG). The KIA takes two inputs:
one is an initial vector (IV), a public information, and the other is a secret key k, a pre-shared
encryption key. The goal of KIA is to scramble key bits with the IV in order to get a bit
stream as random as possible. The output of KIA is provided as an initial value to the PSG.
The KIA is executed only once for each encryption session. After the key initialization,
the PSG starts to output a key stream which is used in encryption. For the message m =
(m0, m1, · · · , m N−1), mi ∈ F2 and the output of PSG (s0, s1, · · · , sN−1), si ∈ F2, the
ciphertext is given by

ci = mi + si , i = 0, 1, · · · , N − 1.

In the WG stream cipher family, the KIA (initialization phase) is a nonlinear feedback
shift register and the PSG (running phase) is a filtering generator.

4.2.2 WG stream cipher familyWG(m, l)

The WG stream cipher family was first introduced in 2008 [72]. The authors show how
to rewrite the exponents of the polynomial t(x) in order to avoid implementing finite field
inversion modules, which are very expensive in hardware. This trick was used in subsequent
implementations of WG-29 and in implementations of instances WG-8, WG-16.

The KIA and PSG are specified as follows.

Updating process

ak+� =

⎧
⎪⎪⎨

⎪⎪⎩

∑�−1
i=0 ci ai+k + W G P(ak+�−1), 0 ≤ k < 2�

(in KIA phase, NLFSR)
∑�−1

i=0 ci ai+k k ≥ 2�
(in PSG running phase)

Output: sk = W GT (ak+2�+�−1), k = 0, 1, · · · (filtering generator)
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This is referred to as a WG(m, l) stream cipher family, shortened as a WG-m stream
cipher family.

We list the randomness properties of WG keystreams as follows.

1. An output sequence has period 2n − 1 and is balanced.
2. It has the ideal 2-level autocorrelation function.
3. The output sequence has ideal t-tuple distribution, i.e., each t-tuple is equally likely

distributed for 1 ≤ t ≤ �.
4. The linear span exponentially increases with m, which can be determined exactly as

L S =
∑

s∈T

mlw(s)

where T = I or J which is given in Proposition 2 or 3, respectively.

The following cryptographic properties of WG transformations for odd m are known.

1. They are 1-order resilient.
2. Their algebraic degree is equal to �m/3�.
3. Their nonlinearity is given by 2m−1 − 2(m−1)/2.
4. Their additive autocorrelation between f (x +a) and f (x) has three values: 0,±2(m+1)/2.
5. They have 1-order propagation property.

In terms of security analysis, we have the following general features for WG stream
ciphers.

1. They have guaranteed keystream randomness properties.
2. They are secure against time/memory/data tradeoff attacks, algebraic and correlation

attacks.
3. They can be implemented in hardware with reasonable complexity.

4.3 The eSTREAM submission

In 2005, Nawaz and Gong submitted theWG stream cipher [71] as a Profile 2 (stream ciphers
for hardware applications with highly restricted resources) candidate to the eSTREAM com-
petition. The submitted instance WG-29, defined over F229 and using an 11-stage LFSR,
reached Phase 2 of the competition. A normal basis was given to reduce hardware imple-
mentation area: terms x2

i
can be implemented using simple cyclic shifts. The schematic of

WG-29 transformation is shown in Fig. 2. According to our notation,WG-29 is W G(29, 11).
The initial state of the LFSR contains 319 bits. For a 128-bit key and 128-bit IV, the rule

for loading the LFSR, where each register holds 29 bits, is as follows.

Registers 29-bit Format

0,2,4,6,8 16 bits from the key||8 bits from IV||padding zeros
1,3,5,7,9 8 bits from the key||16 bits from IV||padding zeros
10 8 bits from the key||8 bits from IV||padding zeros

The WG-29 stream cipher has the following randomness properties for keystream.

– Period 2319 − 1
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Fig. 2 Block diagram of WG transformation: F229 → F2[71]

– Balanced
– 2-level autocorrelation
– Ideal t-tupledistribution (1 ≤ t ≤ 11)
– Linear complexity ≈ 245.04

Cryptographic properties of the WG transformation over F229 are listed as follows.

– 1-order resilient
– Algebraic degree 11
– Nonlinearity = 228 − 214 = 268419072
– Additive autocorrelation between f (x + a) and f (x) has three values: 0,±215

– 1-order propagation

The attack complexities against some known attacks are summarized as follows.

– Time/Memory/Data tradeoff attacks: size of internal state is 2319.
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– Algebraic attacks: the number of linear equations ≈
(
319
11

)

; and the attack complexity

≈ 2182.
– Correlation attacks: WG transformation is 1-order resilient, and nonlinearity is very high
228 − 214.

– Some detailed security analysis has been done in the literature, say [41, 43, 44, 70, 88,
95, 96]

5 WG instances for lightweight cryptography (2008 - )

In this section we present instances of the WG stream cipher family with focus on their
hardware implementations and applications for oddm (Section 5.1) and evenm (Section 5.2).
Details about randomness properties of generated keystreams, cryptographic properties and
known-attack complexities for each particular instance are omitted from this work, however,
we summarize some newly proposed attacks and countermeasures (Section 5.3). Then we
present applications of WG transformations to generate span n sequences (Section 5.4) and
conclude this section with design automation (Section 5.5).

5.1 WG-5,WG-7,WG-11, andWG-29

The first implementations of WG stream cipher instance WG-29, with hardware opti-
mizations, such as pipelining and component reuse, were presented in [55]; the WG-29
implementations were subjected to various formal verification techniques. In 2009, the hard-
ware implementations of Multi-Output WG cipher (MOWG) were reported by Lam et al.
[56]. The MOWG ciphers use only WGP. The authors implemented instances MOWG-7,
MOWG-11, and MOWG-29 in several different ways, ranging from designs using expo-
nent rewrites (Fig. 3), combinational logic, ROM, and finite field multipliers, which were
pipelined, superpipelined, and superpipelinedwith reuse. Themulti-output bit-width depends
on the instance and the hardware design; for example the MOWG-29 was designed for 17
output bits. Furthermore, the authors identified performance-area differences between imple-
mentation technologies used (ASIC and FPGA).

In 2014, El-Razouk et al. [27] presented hardware implementations of WG-29 using
an optimal normal basis for F229 . This work is an extension of their preliminary results
reported in [26]. After using properties of the trace function, the W GT requires only five
multiplications (instead of nine), four of which are needed to compute exponentiation to
210 − 1 (Fig. 4). In 2015, the same group published further optimized hardware designs
of WG-29 using polynomial basis [28]. They used traditional and Karatsuba polynomial
basis finite field multipliers. The authors also presented a serialized implementation with
a single multiplier for the area-constrained environments, and a pipelined design for the

Fig. 3 MOWG-29: computation of x2
i −1 in [56], using the trick from [71, 72]
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Fig. 4 WG-29 hardware architecture [28], using the trick from [71, 72]

high-throughput environments. Additional designs for WG-29 were presented, but never
implemented, in [54] and [11].

In 2010, the authors of [16, 57] proposed the use of the instance WG-7 for encryption and
authentication in RFID applications. They provide software implementation results of WG-
7 on 4-bit and 8-bit microcontrollers, showing that WG-7 outperforms the state-of-the-art
ultra-lightweight ciphers, such as PRESENT, Hummingbird and Grain. Another instance of
the WG stream cipher family, explored for the use in RFID systems by Aagaard et al. in [3],
is the smallest family member WG-5. The hardware implementations of WG-5 and WG-7
use the cyclotomic coset leaders optimization [3, 69, 91]. The work in [3] presents hardware
implementations of WG-5, Grain and Trivium using the same technology and design flow:
the results show that WG-5 outperforms both in terms of area and power consumption. The
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work in [91] designed a cryptographic engine WGLCE for generation of pseudorandom
numbers and for data confidentiality in passive RFID systems. The smallest post place-and-
route area for the CMOS 65nm implementation of WG-5 is 890GE. WG-7 was used to build
WG-NLFSR, a pseudorandom number generator for securing RFID applications [61]. This
work investigates the cycle structure, period, and randomness properties of the composited
recurrence relation and its sequences over F27 and F25 . In 2021, WG-5 was used as a part
of an optimized application-specific instruction set processor (ASIP) for ultralight Hardware
Security Module (HSM) [12]. An EPC RFID tag was chosen as the prototype device for the
HSM. The HSM includes custom instructions and dedicated hardware for the WG-5 cipher.

WG(7,23) parameters [57]
m = 7, Bit-width of LFSR r1 = 25 + 1 = 33
g(x) = x7 + x + 1, defining F(2m ) r2 = 23 + 25 + 1 = 41
g(α) = 0, α is a root of g(x) r3 = 23 − 25 + 1 = 104
p(x) = x23 + x11 + α r4 = 23 + 25 − 1 = 39

t(x) = x + x33 + x39 + x41 + x104

W G P(x3) = t(x3 + 1) + 1, where
x ∈ F(2m ) and decimation d = 3

W GT (x3) = T r(W G P(x3))
= T r(x3 + x9 + x21 + x57 + x87)

WG(5,32) parameters [3]
m = 5, Bit-width of LFSR r1 = 22 + 1 = 5
g(x) = x5 + x4 + x2 + x + 1, defining F(2m ) r2 = 24 + 22 + 1 = 21
g(α) = 0, α is a root of g(x) r3 = 24 − 22 + 1 = 13
p(x) = x32 + x7 + x6 + x4 + x3 + x2 + ω,

where ω = α4 + α3 + α2 + α + 1,
r4 = 24 + 22 − 1 = 19

t(x) = x + x5 + x13 + x19 + x21

W G P(x11) = t(x11 + 1) + 1,where
x ∈ F(2m ) and decimation d = 11

W GT (x11) = T r(W G P(x11))
= T r(x15)

WG(5,32) parameters [91]
m = 5, Bit-width of LFSR r1 = 22 + 1 = 5
g(x) = x5 + x4 + x3 + x + 1, defining F(2m ) r2 = 24 + 22 + 1 = 21
g(α) = 0, α is a root of g(x) r3 = 24 − 22 + 1 = 13
p(x) = x32 + x7 + x6 + x5 + x4 + x + ω, r4 = 24 + 22 − 1 = 19

where ω = α15, t(x) = x + x5 + x13 + x19 + x21

W G P(x) = t(x + 1) + 1, where W GT (x) = T r(W G P(x))

x ∈ F(2m ) = T r(x7)

5.2 WG-8 andWG-16

In 2013, Fan et al. proposed the lightweight instance WG-8 for the use in embedded devices,
RFID, smart cards, and wireless sensor nodes [31]. The authors presented efficient imple-
mentations of WG-8 on low-power 8-bit and 16-bit microcontrollers, demonstrating high
throughput and energy efficiency. They used three different implementation methods for
implementation of theWG-8 permutation: direct look-up table (DLT) with polynomial basis,
coset leader based look-up table (CLT) with normal basis, and tower-field arithmetic based
approach (TFA) with look-up tables for the subfield F24 . On both microcontrollers, the DLT
approach outperformed both other methods. Moreover, the software implementations on the
low-power microcontrollers demonstrated high performance and low energy consumption
of the WG-8 stream cipher, when compared to the most previous block ciphers and stream
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ciphers. The instance WG-8 was also recognized as a suitable lightweight cipher for IoT
[79].

WG(8,20) parameters [31, 91, 92]
m = 8, Bit-width of LFSR r1 = 23 + 1 = 9
g(x) = x8 + x4 + x3 + x2 + 1, defining F(2m ) r2 = 26 + 23 + 1 = 73
g(α) = 0, α is a root of g(x) r3 = 26 − 23 + 1 = 57
p(x) = x20 + x9 + x8 + x7 + x4 + x3+ r4 = 26 + 23 − 1 = 71

x2 + x + α t(x) = x + x9 + x57 + x71 + x73

W G P(x19) = t(x19 + 1) + 1,where

x ∈ F(2m ) and decimation d = 19

W GT (x19) = T r(W G P(x19))

= T r(x9 + x37 + x53 + x63 + x127)
using coset leaders

Later on, Yang et al. presented FPGA and ASIC hardware design and implementation
results [91, 92]. They use a look-up table design (LUT) and three different tower field con-
structions, one tailored to the FPGA cells (TF 1), one using optimal normal basis (TF 2),
and one exploiting the algebraic properties of the WG permutation and the trace function
(TF 3). All four methods use a parallel LFSR to provide data rates from 1 to 11 bits per
clock cycle. Implementation results using FPGA and ASIC technologies show that the LUT
method is best suitable for a small WG instance like WG-8. The TF 3 F((22)2)2 tower field
construction uses a normal basis for all three extensions. The exponentiations to the powers
of two x2

i
are performed as cyclic shifts in the isomorphic field F28 with the normal basis

representation, but some overhead in area and delay comes from the basis transition matrices.
The multipliers and the squarers are implemented with dedicated arithmetic circuits for each
level of the tower. For the construction F((22)2)2 , properties of the trace function allow sig-
nificant optimizations of the W GT module at the cost of reduced throughput for the W G P
computation (Fig. 5).

The instanceWG-16was proposed by [30] in 2013.Aplain lookup table design is no longer
feasible for bigger instances, such asWG-16.Amethod similar toTF3 in [92]was used byFan
et al. in [32] for the implementation ofWG-16. The design uses dedicatedmultipliers, an Itoh-
Tsujii inversionmodule, and properties of the trace function inF(((22)2)2)2 for the optimization
of the WG transformation. The integrated datapath for W G P and W GT was pipelined to
increase the performance. Different bases and field constructions were also explored in [98].
The WG-16 instance was not designed for lightweight applications, but rather to be used in
the confidentiality and integrity algorithms for 4G-LTE telecommunication systems [30, 89].
WG-16 was used to construct WGIA-128, a linear forgery attack resistant variant of EIA1
[89]. Later on, El-Razouk et al. [28] used the polynomial basis for the implementation of
the instance WG-16. Their hardware design follows the same approach as their polynomial
basis implementation of WG-29. In summary, the hardware architectures in [28] contain a
small number of finite field multipliers and no finite field inversion modules.

In 2019, Zidaric et al. [100] explored tower field constructions and hardware optimiza-
tions for the WG-16 stream cipher. The constructions F(((22)2)2)2 and F(24)4 were chosen
because their small subfields enable high speed arithmetic implementations, and because
their regularity provides flexibility in pipeline granularity. The authors presented a design
methodology where the tower field constructions guide how to proceed systematically from
the algebraic optimizations, through initial hardware implementation, selection of submod-
ules, pipelining, and finally through the fine-tuning hardware optimizations to increase the

123



Cryptography and Communications (2024) 16:129–165 151

clock speed. Eventually, the LFSRbecame the frequency bottleneck and retimingwas applied
to increase the LFSR clock speed at no cost in area (Fig. 6). With the exception of speedup,
all metric ratios favor the F(((22)2)2)2 designs, while the F(24)4 implementations are preferable
for the high-frequency applications. Speedups of 3.94× for ASIC and 1.6× for FPGA were
achieved w.r.t. the implementations in [32], and a speedup of 1.82× was achieved w.r.t. the
implementations in [28].

WG(16,32) parameters [32]
m = 16, Bit-width of LFSR r1 = 211 + 1 = 2049
g(x) = x16 + x5 + x3 + x2 + 1, defining F(2m ) r2 = 26 + 211 + 1 = 2113
g(α) = 0, α is a root of g(x) r3 = 26 − 211 + 1 = 63552
p(x) = x32 + x25 + x16 + x7 + ω, r4 = 26 + 211 − 1 = 2111

where ω = α2743

t(x) = x + x2049 + x2111 + x2113 + x63552

W G P(x1057) = t(x1057 + 1) + 1, where x ∈ F(2m ) and
decimation d = 1057

W GT (x1057) = T r(W G P(x1057))

5.3 More cryptanalysis

In 2012, Orumiehchiha et al. proposed a distinguishing attack on WG-7 by applying Walsh-
Hadamard transform to theWG transformation and deriving the linear equations for the LFSR
state [77]. Gong et al. extended their work to a general distinguishing attack and suggested
criteria to protect the WG stream cipher family from this attack [38]. The countermeasure
requires a proper choice of the minimal polynomial of the LFSR. In 2019, a distinguishing
attack on WG-8 and WG-16 was proposed [84]. The authors use a counting algorithm for

Fig. 5 The WG stream cipher WG-8: the integrated hardware architecture for W G P and W GT using the TF
3 field construction [92]
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Fig. 6 WG-16 LFSR with feedback retiming [100]

the number of zeros and the number of ones of Boolean functions to increase the attack
efficiency. The work in [23, 24] demonstrated the related key attacks on WG-8 and WG-29
based on sliding property, and proposed a new key/IV loading that provides resistance to the
proposed attacks. Distinguishing attacks on other instances were reported in [22, 50]. The
paper [97] reported the randomness tests of WG keystreams, and they passed all the NIST
15 randomness tests. The work in [82, 83] proposed improved algebraic attacks on stream
ciphers based on linear feedback shift registers over binary extension fields, and provided
new and improved bounds for the spectral immunity, proposed by Gong et al. [42], for this
class of stream ciphers.

Rohit et al., analyzed the nonlinear feedback-based 24-round reduced initialization phase
[80, 81]. The authors used a cube attack in a non-blackbox polynomial setting employing the
division property. Furthermore, the use ofMixed Integer Linear Programming (MILP)models
to theoretically bound the complexity of superpoly recovery allowed them to automate the
attack. The authors were able to recover the secret key of WG-5 with data complexity 26.32

and time complexity 276.81. Their analysis also showed, that the design choices (the feedback
and filtering tap positions) of WG-5 offer more resistance to cube attacks than Grain128a
and Trivium, where the cube attacks can cover more than half of initialization rounds.

A differential fault attack on instances WG-7, WG-8, WG-16 and WG-29 was reported
in [78]. The attack requires a precomputation phase to determine differential patters and an
online matching phase, and works under the assumption, that the adversary has the access to
the hardware implementation and is able to reset the cipher and re-run it using the same key
and IV unlimited times. However, the attack was simulated on a PC, and not performed on
the actual hardware.
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5.4 Applications ofWG to Generate (Modified) De Bruijn Sequences

In 2013, Mandal investigated generating span n sequences using WG transformations and
other orthogonal functions in nonlinear feedback shift registers (NLFSRs), and designed
the Warbler family of lightweight PRNGs with guaranteed randomness properties, such as
period and linear span, using the WG transformations as feedback and filtering functions
[58]. Later on, Mandal et al. showed how to generate a long period de Bruijn sequence (e.g.,
2128/256/1024) using the WG transformations and the composited construction [60, 65, 90].
WG transformations used to generate span n sequences from NLFSR were also investigated
in [51].

WG-5 used in Warbler-I and Warbler-II [58, 60, 65, 90, 91]
W G P(xd ) = t(xd + 1) + 1, where t(x) = x + x5 + x13 + x19 + x21

x ∈ F(2m ) and decimation d W GT (xd ) = T r(W G P(xd ))

g(x) = x5 + x4 + x3 + x + 1, defining F(2m )

g(α) = 0, α is root of g(x) p(x) = x6 + x + ω,where ω = α15

d = 1 W GT (x) = T r(x7)
d = 3 W GT (x3) = T r(x11)

d = 11 W GT (x11) = T r(x15)
d = 11 was also used with the following defining polynomials: g(x) = x5 + x3 + 1,

g(x) = x5 + x4 + x2 + x + 1, g(x) = x5 + x4 + x3 + x2 + 1

In [62], Mandal and Gong introduced a new interesting property, called WG invariance
or invariant under the WG transform of Boolean functions. It was theoretically shown that,
for a specific decimation, the WG transformation on the 5-term and 3-term functions has the
WG invariance property. It was proven that when such a WG invariance function is used as
a filtering function in a filtering de Bruijn generator, the pseudorandom sequences have an
ideal-tuple distribution of a larger length. The authors also studied the Gold and Quadratic
functions, and were able to show that the WG transformations on these two classes have the
WG invariance property. The authors performed an experiment over the WG transformation
of the Kasami power function (KPF), and claimed that except the 5-term and 3-term function,
no other KPF has the WG invariance property.

5.5 Design automation

The work in [101] presents a design automation toolkit for hardware implementations of
linear and non-linear feedback shift registers (FSRs), and is partially available at [102].
The toolkit is implemented in the GAP computer algebra system [35], and generates both
the executable GAP code and the VHDL for synthesizable hardware, testbenches and test-
vectors. The primary FSR objects are LFSRs, NLFSRs and filtering functions (implemented
as multivariate polynomials). The paper demonstrates the capabilities of the toolkit using the
WG-7 and WG-8 keystream generators, among others. Two critical points in the design of
this toolkit were (i.) recognition and exploitation of structural similarities between LFSRs,
NLFSRs and filters, from both mathematical and hardware perspectives, and (ii.) modular
thinking; a cipher can be implemented as a collection of basic modules. For this purpose,
the toolkit implements all FSR objects with a regular step (for self-contained execution), and
external step, which adds an external value to the feedback for (N)LFSRs, or as a mask to the
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output of the filter. AWG keystream generator can be thus implemented as an (i.) LFSR with
external step from a WGP filter during the initialization and (ii.) LFSR with a regular step,
followed by two filters (WGP and trace), during the running mode. The extended toolkit
presented in [99] has the ability to work with polynomial, normal, and their dual bases,
and tower field bases. Furthermore, it can now generate synthesizable hardware modules
for arbitrary expressions over arbitrary finite fields, including tower fields. Many extensions
were added for the purposes of the algorithm design during the design stage of WAGE.

The profiling work in [85] compares two different hardware design approaches, discrete
component designs (using finite field arithmetic modules, such as multipliers, implemented
as parametrized VHDL) and constant array designs (using look-up tables for the WGP and
the WGT modules, generated with the toolkit [101]). The profiling explores the impact of
polynomial bases used on the hardware design area for m = 5, 7, 8, 10, 11, 13, 14, 16.

6 WAGE -WG in Authenticated Encryption in NIST Lightweight
Cryptography (2019 - )

WAGE is a hardware-friendly authenticated encryption based on the lightweightWAGE per-
mutation in the unified sponge-duplex mode [1, 2, 7, 80]. It was a round 2 candidate of the
NIST LWC competition [1, 2]. Inspired by the key initialization phase of the WG cipher, the
259-bit lightweight WAGE permutation was designed. The WAGE permutation (see Fig. 7)
consists of an LFSR with 37 stages, a WG permutation with decimation d = 13, applied 2
times in parallel, and another s-box SB over F27 , applied 4 times in parallel, and is iterated
111× (Table 3). Specification parameters of WAGE are listed in Table 3, the cryptographic
properties of WGP and SB are listed in Table 4, and WAGE security claims in Table 5. With
a simple tweak in the control circuit of WAGE, it can be turned into a WG pseudorandom bit
generator (PRBG) with proven randomness properties such as long period, balanced, ideal
2-level autocorrelation property and an ideal �-tuple (1 ≤ � ≤ 37).

The design rationale for WAGE is outlined in [7, 80]. During the design of WAGE, the
toolkit [99, 101]was used for parameter search and (automated) hardware implementations to
obtain more accurate implementation costs. This profiling dictated the size of the finite field,
basis, and candidates for the LFSR feedback polynomial. The choice of the LFSR polynomial
was finalized together with the choice of the positions of s-boxes (WGP and SB) to provide
the maximum resistance against differential attack [80]. This analysis was performed with a
MILP model, which takes as input the tap positions, the positions of s-boxes (WGP and SB),

Fig. 7 One round of WAGE permutation
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Fig. 8 WAGE: authenticated encryption

and the number of rounds, and returns a minimum number of active s-boxes. The work in
[80] also presents the (generic) AEAD algorithm (Fig. 8) and the choice of domain separators
and the rate and capacity of the state. Valuable insights were gained during earlier work on
Sponge-specific designs [8], filtering NLFSRs using WG transformations [61], and many
others [9, 10, 59, 87], to list only a few.

The hardware design of WAGE with the minimal interface is presented in [1, 2, 4].
The smallest post place-and-route area for the CMOS 65nm implementation of WAGE is
2.9kGE. The work in [4] also presents parallel implementations of WAGE with the through-
put increases of up to 8×. Later, WAGE was adapted for the LWC hardware interface and
evaluated together with other Round 2 candidates using various FPGA [67, 68] and ASIC
[5] technologies. The authors of [33] analyzed the security of WAGE against the correla-
tion power analysis. About 10000 power traces are required to recover the 128-bit secret
key. As a countermeasure, an optimized masking scheme was proposed in the t-strong non-
interference security model. Subsequent analysis of power traces obtained from the masked
implementation did not reveal first-order leakage. The proposed masking scheme was also
implemented in hardware, where we were able to observe 2.9×, 5.6× and 8.9× area increase
for 1,2, and 3-order security, respectively.

The work in [66] proposed an algebraic attack on WG-PRBG using many annihilators
simultaneously. The authors were able to recover the initial state using 216.72 keystream bits
and with the time complexity 2108.15. The WG-PRBG was proposed and analyzed in [7]: it
has guaranteed properties, but limited bits, specifically, the number of consecutive output bits
per seed should be less than 218. In response to [66] we propose to further restrict the number
of WG-PRBG output bits, and wish to remind the readers that WAGE, not WG-PRBG, was
submitted to the NIST LWC competition.

Recently, WAGE was used for KDF and MIC algorithms in WiFi and CoAP handshake
authentication protocols [93, 94]. Both protocols were embedded in the IEEE802.11a OFDM
communication protocol and implemented in software defined radio. The work in [53] pre-
sented error detection schemes for the nonlinear blocks SB and WGP.

Table 4 WGP and SB cryptographic properties

Differential Nonlinearity Minimum Maximum Fixed
S-box uniformity algebraic degree algebraic degree point

WGP 6 42 6 6 yes

SB 8 44 3 6 no
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Table 5 WAGE security claims
(in bits)

Confidentiality Integrity Authenticity Data limit

128 128 128 264

7 Cryptographic primitives with polynomial Sboxes

In the literature, as early as 1995, Nyberg-Knudsen (1995 [76]) has presented the follow-
ing DES-like block cipher design using the monomial x3 over F233 . Starting in the early
2010s, with increasing connected communication, the popularity of multi-party computation
(MPC) and fully homomorphic encryption (FHE) for applications in cloud computing and
privacy preserving machine learning has greatly advanced. More recently, zero-knowledge
proofs found applications in protecting privacy of blockchain transactions. Those schemes are
referred to as zero-knowledge succinct non-interactive argument of knowledge (zkSNARK)
proof systems, and they require hash functions with minimal multiplicative complexity
(MiMC). Especially for zkSNARK schemes for Rank-1 Constraint Satisfaction (R1CS), the
prover/verifier’s complexity only depends on the number of multiplication gates in a fan-in
two circuit, where the size of the underlying finite field is not so relevant or it can be easily
satisfied that condition without increasing the complexity (for this line of research, see more
details in Stark (2018) [14], Aurora [15] (2019), and Polaris [34] (2022) and the references
therein).

From this perspective, using a polynomial permutation in a large finite field could fulfill
this requirement, since it does not need to be ‘lightweight’. Here we briefly introduce some
work along this line, i.e., MiMC [6] (Section 7.1), HadesMiMC [47] and Poseidon [46]
as the instantiation of HadesMiMC (Section 7.2), and the relationship between WAGE and
HadesMiMC, for which the contents are from those papers (Section 7.3).

7.1 MiMC

MiMC-n/n. We use the notation MiMC-m/n to represent MiMC with block size m and key
size n. In the following, we introduce the MiMC-n/n block cipher defined over F2n . Let
x, k ∈ F2n . The round function of MiMC-n/n is as follows:

f (x) = x3, more general f (x) = xd , gcd(d, 2n − 1)
fi (x) = f (x + k + ti ), ti ∈ F2n , i = 0, · · · , r − 1, t0 = 0,

(19)

where the computation is in F2n and ti ’s are constant. The encryption function is iterated fi r
times. Note that in this case, the decryption will be a different circuit, since f −1

i = xs where
3s ≡ 1(mod2n − 1).

TheMiMC design can also use Feistel structure, i.e., an NLFSR structure. In this case, the
round number will be doubled, compared to a substitution permutation network (SPN) block
cipher. But the decryption is the same as encryption where only the order of the constants is
reversed.

MiMC in Fp . Both MiMC block cipher and MiMC Feistel/NLFSR can be generated to
operate on Fp .

MiMC hash. MiMC can also be used as a permutation in the sponge structure for instanti-
ating a hash function (see Section 6 for a sponge structure). Let MiMCHash-q denote MiMC
in the sponge structure to instantiate a hash function with q bits of output for a given per-
mutation of size n, a desired security level s, and rate t , i.e., hash t = n − 2s bits per call to
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the permutation. For n = 4q + 1, it sets s = q , then r = 2q + 1. An instance given in [6] is
MiMC-n/n for q = 256 and n = 1025 for 128 bit security. In this case, the rate and capacity
are 513 and 512 respectively.

7.2 HadesMiMC and Poseidon

HadesMiMC is defined on Fp . Let n = lm for an n-bit plaintext block and key block,
where m = �log p�. HadesMiMC uses a general AES-like structure: with an Sbox(x) = x3,
where x ∈ Fp , repeatedly used t times. Similarly as in the case of MiMC, it can use an
Sbox(x) = xd with gcd(d, p − 1) = 1 and good cryptographic properties (Table 6).

The i th round function is defined as

Gi (x) = M Fi (x), Fi (x) = F(x + ki ) ∈ F
l
p, x, ki ∈ F

l
p, i = 0, 1, · · · , r − 1,

where ki is a round key generated by a key scheduling algorithm, and F ∈ {F f , Fp} where
both F f , called a full SPN, and Fp , called a partial SPN, are vectorial functions overFl

p where
F f ’s each component is identical Sbox(x), defined above, and for Fp’s component functions,
the first component uses Sbox(x) and the others are the identity function (in general, Fp may
have one or more components that are the Sbox).

ComparedwithMiMC,HadesMiMCwill bemore efficient, since its Sbox ismuch smaller.
HadesMiMC can also be used in the sponge structure to instantiate a hash function. Poseidon
is such an example, as shown below.

Poseidon hash - an instantiation of HadesMiMC hash. The Poseidon hash function is
designed to use the sponge structure. It uses a HadesMiMC structure where a subkey is
replaced by a round constant. Here we introduce the Poseidon-128 case. As HadesMiMC, it
works on Fp where m = �log p� = 255. Two instances are given below with the following
parameters for the Sbox(x) = x5, where rx is the number of rounds for Fx , x ∈ { f , p}.

The permutation polynomial is an n = lm = 765 for l = 3 and n = 1275 for l = 5 bit
permutation, precisely, a permutation of Fl

p, l = 3, 5.
The Poseidon hash function is designed to conjunct with BLS12-381, BN254, Ed25519

curves for zkSNARKs with trusted set-up. The above instance is for the BN254 curve, which
has 128 bit security.

7.3 Relationship betweenWAGE and HadesMiMC

From Stark, Aurora, and Polaris [14, 15, 34], we understand that there is another class of
zkSNARK schemes with transparent set-up, and the security depends on the hash functions
which do not rely on any computationally hard problems. However, they work on a binary
field, e.g.,F2256 in Polaris case for 128-bit security. Therefore, we could directly use an analog
way of HadesMiMC over F2n with the monomial terms x3, x5 or x−1 as Sboxes. However,
replacing these monomials by theWG permutations will result in a smaller number of rounds
compared with these monomials. Another case is that x3, x5 are not permutations in some

Table 6 AES like structure

1. Add the subkey

2. An Sbox over Fp

3. Mix affine layer: a l × l maximum distance separable (MDS) matrix over Fp
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n = llog p� = lm l r f r p rate r bi ts security s bits

765 3 8 57 2l = 510 �m/2� = 127
1275 5 8 60 4l = 1020 �m/2� = 127

binary fields with optimal memory access structures, such as F2m for m ∈ {16, 32, 64, 128}.
In order to demonstrate the solutions to those problems, we first look at the relationship
between the WAGE structure and the HadesMiMC. Next, we present two types of WAGE
related schemes with low multiplicative complexity.

From Section 6, with (S0, S1, · · · , S36) being the current state of the registers in WAGE,
we have n = lm = 259 where l = 37 and m = 7. Then the next state, i.e, the round function
can be represented as

x = (S0, S1, · · · , S36) → M F(x + ti ), x, ti ∈ F
37
7 (20)

where
F(x) = (σ0(S0), σ1(S1), · · · , σ36(S36))

σ16 = σ36 = W G P7
σ8 = σ15 = σ27 = σ34 = SB
σi = I for the rest of i

(21)

and M is a 37 × 37 matrix resulting from the state transition matrix (see Section 2.1) of the
LFSR with degree 37, where a few entries are permuted. (Note that this matrix may not be a
MDS matrix, but it has a good diffusion property.)

WGP in HadesMiMC. We now replace the Sbox in HadesMiMC by WGP. The resulted
structure is referred to as WAGE HadesMiMC, or WHM for short , and list some parameter
sets in Table 7.

Belowwe list some choices for such designs in order to have low number of multiplication
gates. Furthermore, the number of constrains of the followingWHMdesigns can be precisely
obtained by the hardware implementation of WGPs as shown in Sections 4 and 5.

WAGE-like permutations. Let F(x) = (σ0(x0), · · · , σl−1(xl−1)) be a function over Fl
q

(q = 2m), where x = (x0, · · · , xl−1) ∈ F
l
q and σi (xi ) is either a WGP on Fq or the identify

function on Fq . Note that F(x) can be represented as an univariate polynomial on Fql . Define

Ti (x) = Fi ◦ Fi−1 ◦ · · · ◦ F0

where
Fi (x) = A ◦ L ◦ F(x + ti ), i = 0, 1, · · · , r − 1,

Table 7 Some parameter sets of WHM hash

n = lm F2m l rate r bits security s bits comments

37 × 7 = 259 F27 37 32 113 WAGE in hash mode

7 × 37 = 259 F237 7 37 111 WAGE reversed parameters

5 × 64 = 320 F264 5 64 128 x3, x5 are not permutations

3 × 128 = 384 F2128 3 128 128 the same as above

5 × 128 = 640 F2128 5 384 128
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and where both A(x) and L(x) are linearized permutation polynomials on Fql , and A(x)

resulting from the state transfer matrix of an LFSR of degree l, and where ti are constants in
Fql . (This definition originated from (20) and (21) for WAGE’s round function.) Similarly,
like WAGE, we can have an authenticated encryption and hash function by placing Tr in the
sponge structure.

Nevertheless, those two types of new permutations deserve substantial research on their
security. For theWHM, due to the relationship betweenWAGEandHadesMiMC, the security
can also be tackled from the WAGE structure. Furthermore, their implementations in both
software and hardware will be much more efficient using the WAGE structure, thanks to the
existing efficient implementation of the LFSR.

8 Concluding remarks and open problems

It has been a long journey that lead the WG stream ciphers to become practical. The evolu-
tionary path is a combination of mathematical endeavour and engineering striving to transfer
pure mathematical functions to practical encryption algorithms for various applications.

Figure 9 depicts only a few highlights of the quarter of a century long evolutionary path
of the WG stream cipher. The evolution can roughly be summarized as the pioneering work
on the WG transformation sequences with 2-level autocorrelation, important breakthroughs
in the early 2000’s, such as the submission of WG stream cipher to the eSTREAM com-
petition and the introduction of the WG stream cipher family W G(m, l), followed by the
work on particular instances proposed for various (mostly lightweight) applications, and the
most recent construction WAGE, submitted to the NIST LWC competition in 2019. While
the story of the WG stream cipher is not finished, the future opens numerous possibili-
ties, such as the possibility of expanding WAGE into a family of authenticated encryption
schemesWAGE(m, l), suitable for applications in high-performance computing, and explor-

Fig. 9 The Welch-Gong Stream Cipher - Evolutionary Path
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ing WAGE structure in MiMC structure for the applications in multiparty computation, fully
homomorphic encryption, and zero-knowledge proofs.

As the reader may see, in theory, some cryptographic properties of WGP and WGT for
the even case are unsolved. These parameters have important applications in MiMC design
for MPC, FHE and zero-knowledge proofs.

In the following, we list the details of the open problems for those n where WGP/WGT
exist, i.e., n (mod3) �= 0.

1. The nonlinearity of WGP over F2n and the distribution of the Hadamard transform of
WGP for any n.

2. The differential uniformity of WGP for any n.
3. The nonlinearity ofWGT and the distribution of Hadamard transform ofWGT for n even.
4. Cryptographic properties in the schemes given in Table 7 for WHM.
5. Progressive bounds for nonlinearity, differential uniformity and algebraic degree for

the iterated function Ti (x), i = 1, 2, · · · in WAGE-like permutations for m ∈
{16, 32, 64, 128, 256} and l ∈ {3, 5, 7}.
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