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Abstract
A currently overlooked application of the latent curve model (LCM) is its use in assessing the consequences
of development patterns of change—that is as a predictor of distal outcomes. However, there are additional
complications for appropriately specifying and interpreting the distal outcome LCM. Here, we develop a
general framework for understanding the sensitivity of the distal outcome LCM to the choice of time coding,
focusing on the regressions of the distal outcome on the latent growth factors. Using artificial and real-data
examples, we highlight the unexpected changes in the regression of the slope factor which stand in contrast
to prior work on time coding effects, and develop a framework for estimating the distal outcome LCM at a
point in the trajectory—known as the aperture—which maximizes the interpretability of the effects. We also
outline a prioritization approach developed for assessing incremental validity to obtain consistently inter-
pretable estimates of the effect of the slope. Throughout, we emphasize practical steps for understanding
these changing predictive effects, including graphical approaches for assessing regions of significance sim-
ilar to those used to probe interaction effects. We conclude by providing recommendations for applied
research using these models and outline an agenda for future work in this area.

Translational Abstract
Growth models which estimate the developmental trajectory of phenomenon of interest (i.e., unconditional
models), and then potentially use covariates to predict individual variability in growth (i.e., conditional mod-
els), are common in both applied and methodological work. However, models which in turn use individual
variability in growth to predict a distal outcome remain relatively rare. In both unconditional and conditional
models, one well-described decision point is how to code time in order to set an intercept location, with
known effects on the parameters associated with the intercept based on that decision. However, in distal out-
come growth models, changes in time coding instead impact the effect of the slope on the distal outcome—
not the effect of the intercept—due to changes in the growth factor correlation. We propose two solutions to
address this issue and generate maximally interpretable effects: (a) a framework for estimating the distal out-
come LCM at a point known as the aperture, and (b) a prioritization approach for assessing incremental
validity to obtain invariant and unique effects of both intercept and slope. Throughout the article, we empha-
size practical steps for understanding these changing predictive effects, including graphical approaches for
assessing regions of significance, similar to those used to probe interaction effects. Code for estimating these
model is provided to assist readers in implementing these models with their own data.
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Motivating goals common to nearly all longitudinal research
involve the evaluation of the course, cause, and consequence of
change over time (Curran et al., 2010; Singer & Willett, 2003). This
is particularly true in the examination of interindividual differences
in intraindividual change, primarily in the form of the broad class
of growth curve models. For example, we might be interested in mod-
eling trajectories of reading ability in a sample of children followed
throughout the primary school years. Each individual trajectory repre-
sents intraindividual (or within-person) change, while the means and
variances of the set of sample trajectories represents interindividual
(or between-person) differences in change over time. The first goal
of establishing the course of reading ability includes characterizing
the shape of the trajectory (e.g., linear vs. quadratic vs. exponential);
the fixed and random effects associated with the trajectory (e.g., mean
and variance in starting point and rate of change over time); and the
potential covariation of reading ability with some other developmental
process (e.g., how reading and math ability “travel together” through
time, Curran & Hancock, 2021). These considerations all involve
characterizing the pattern of change over time for a construct, and
we have well-developed and widely used methods for examining
these issues in practice (Bollen & Curran, 2006; Grimm et al.,
2016; Meredith & Tisak, 1990; Raudenbush & Bryk, 2002; see
McCormick, Byrne et al., 2023, for an overview).
The second goal of growth modeling is the systematic evaluation of

the causes of developmental change.1 In practice, one often first estab-
lishes the course of development (i.e., identifying the optimal func-
tional form that captures the structure of the repeated assessments)
and then extends the model to include one or more exogenous covar-
iates that predict different components of change over time. Covariates
can be time-invariant and represent person-level characteristics that
are constant over time (e.g., biological sex, birth order, and treatment
condition) or time-varying and represent person- and time-specific
characteristics that can take on different numerical values and predic-
tive impact of the repeated outcome over time (e.g., stress, negative
affect, and substance use). Time-invariant covariates shift the condi-
tional mean of the trajectories themselves (e.g., starting point and/or
rate of change), while time-varying covariates directly influence the
time-specific assessments above-and-beyond the underlying trajec-
tory. As with modeling the course of trajectories, there are readily
available methods for including both time-invariant and time-varying
covariates into our models of growth (Curran et al., 2004; McNeish &
Matta, 2020; Stoel & Hox, 2004).
However, despite decades of remarkable methodological progress

in nearly all applications of the growth curve modeling, the third
goal remains vexingly elusive2: namely, the principled modeling
of the consequences of individual variability in developmental
change. Whereas the course reflects the pattern of change unfolding
over time, and the causes reflect potential determinants of the devel-
opmental process, we can think of the consequences such that the
growth trajectories themselves serve as predictors of one or more dis-
tal outcomes. To continue our example, we might be interested in
predicting the consequence of whether children performed at
grade level in mathematics upon transition to middle school using
their trajectories of math and reading ability from kindergarten to
the fifth grade (e.g., initial abilities in kindergarten and rates of
change over primary school) in order to understand how ability
development might influence later success.
Models of growth with distal outcomes are not new and have been

hypothesized within the methodological literature for quite some time

(e.g.,Muthén&Curran, 1997, Figure 3; Seltzer et al., 1997; von Soest
& Hagtvet, 2011), and published substantive applications of these
trajectories-as-predictors models exist in numerous fields. For exam-
ple, studies in education are often concerned with predicting
end-of-schooling achievement or employment status (e.g., Hammer
et al., 2007; Rowe et al., 2012), while clinical applications have stud-
ied the effect of early psychopathology on later mental health
(Koukounari et al., 2017) and substance use trajectories on rates of
risky sexual behavior (Spoth et al., 2014). In political science, this
approach has been used to model the effect of adolescent trajectories
of prosocial behavior on later civic engagement (Taylor et al., 2018).
These studies concern the prediction of observed variables at some
time either concurrent with the final repeated measure or truly distal
from the estimated trajectories.3 A related approach known as the par-
allel process latent growth curve mediation model (Cheong et al.,
2003; O’Laughlin et al., 2018) uses factors from the latent growth
curve models fit for two constructs as the mediator and outcome in
a single model. While this approach has been used to investigate
the mediating role of trauma on externalizing behavior (Barboza et
al., 2017), as well as pathways to depression (Koukounari et al.,
2017) and nonsuicidal self-injury (Gandhi et al., 2019), there is a
lack of temporal precedence between intercepts and slopes across con-
structs when the repeated measures of the two constructs co-occur,
potentially hampering valid causal conclusions.

Despite the obvious importance of this entire class of potential
research hypothesis, virtually nothing is known about the optimal
estimation and subsequent interpretation of the consequences of
intraindividual change over time. Our motivating goal is to system-
atically examine the complexities that underlie this critically
important pillar of the course, cause, and consequence triad. We
begin with a review of the latent curve model (LCM, Meredith &
Tisak, 1990). While growth curve models can also be estimated
within the multilevel modeling framework (Bauer, 2003; Curran,
2003), the standard multilevel growth model does not allow for
simultaneous estimation of both the growth model and the distal
outcome prediction (Liu et al., 2021; McNeish & Matta, 2018).
Given the ubiquity of this method in practice (for a full treatment,
see Bollen & Curran, 2006; Grimm et al., 2016; Newsom, 2015),
we will focus on the elements most relevant to the use of trajecto-
ries in the prediction of distal outcomes. We also briefly review
what is known about the rescaling of time in growth models and
its well-understood impact on unconditional and conditional
growth trajectories. We then expand our notational scheme to
define the distal outcome growth model and demonstrate the unex-
pected and concerning impact that the choice of time coding can
exert on the use of growth trajectories in the prediction of distal

1 Here we use the term cause broadly, fully realizing that the validity of
causal inferences lies predominantly in the features of the experimental
design and not in the statistical model (e.g., Shadish et al., 2002). A less
loaded term might be determinants, or—even more anemic still—predictors
of change over time.

2 As an anecdotal example of the long-standing elusiveness of this topic,
Patrick J. Curran received a grant to study these models in 1999 that ulti-
mately did not achieve its stated goals due to limitations in computational
methods at the time. Ethan M. McCormicks anecdotal examples from this
time are slightly less relevant as they were in the second grade.

3While truly distal outcomes are clearly preferable for causal inference, it
is likely that outcomes concurrent with the final time point will continue to be
prevalent due to the constraints of funding and effort.
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outcomes. Using both artificial and real empirical data, we high-
light how this issue can be identified, outline a set of potential solu-
tions and recommendations for applied researchers, and suggest
future directions for work within this area.

The Latent Curve Model

Many approaches exist for modeling interindividual differences
in intraindividual change, including key exemplars within the
multilevel model (MLM) and the structural equation model
(SEM). Whereas the MLM approaches the repeated measures
data as a source of nonindependence among observations (multi-
ple assessments nested within individuals, Bryk & Raudenbush,
1987), the SEM approaches the same repeated measures data
from a latent variable perspective (the repeated measures serve
as manifest indicators to define the underlying latent growth fac-
tors, Meredith & Tisak, 1990). Decades of research has shown
that there is significant overlap—and often isomorphism—

between these two approaches (Bauer, 2003; Curran, 2003), but
key points of difference do exist in their ability to model certain
effects (McCormick, Byrne et al., 2023; McNeish & Matta,
2018). While methods have been proposed for using MLM to esti-
mate individual trajectories that are then used as predictors in sub-
sequent models, this requires a two-step procedure that is
characterized by a number of unavoidable limitations (Liu et al.,
2021). The SEM-based growth model has been referred to by
many names, but the most common is the LCM, first developed
and described by Meredith and Tisak (1990; but also see
McArdle & Epstein, 1987). The LCM represents a powerful ana-
lytic framework for assessing a broad class of questions relating to
interindividual differences in developmental trajectories over
time. LCMs are strikingly flexible and have been a mainstay of
longitudinal modeling for several decades. Given the ubiquity of
these methods in practice, we will leave a comprehensive review
of the LCM to prior work (Biesanz et al., 2004; Bollen &
Curran, 2006; Curran et al., 2010; Ghisletta & McArdle, 2012;
Hancock et al., 2013; MacCallum et al., 1997; McCormick,
Byrne et al., 2023). Instead, here we focus on the notational
scheme that will allow us to develop the LCM with distal out-
comes in subsequent sections.

The Unconditional LCM

We begin by defining yi to represent a vector of a repeatedly
assessed outcome y that is unique to individual i (i = 1, 2, ..., N)
of length T (t = 1, 2, ..., T). We assume the outcome to be continu-
ously scaled, but several options exist for estimating LCMs with dis-
crete outcome that we do not discuss here (Masyn et al., 2014; Mehta
et al., 2004). We can define one or more latent growth factors under-
lying the observed repeated measures as

yi = Lhi + 1i, (1)

where Λ is a T×K factor loading matrix containing the numerical
values of time for k = 1, 2, ..., K growth factors, ηi is a K-length
vector of latent growth factor scores, and the time-specific residuals
are distributed as 1i � MVN(0, Q1). In SEM parlance, we can think
of this as the measurement equation that maps the observed items
onto the latent factor(s) (Bollen, 1989). We can also express the
structural equation that defines and related the latent factors

themselves. The unconditional model (in which there are no exoge-
nous predictors of the latent factors) is defined as

hi = a+ zi, (2)

where α is a vector of length K containing the means of the latent
scores, and ζi is a vector of lengthK and captures the individual devi-
ations around the factor means that are assumed distributed ζi�
MVN(0, Ψ).

Following standard rules of covariance algebra, we can gather all
of the model parameters into vector θ and derive the model-implied
covariance and mean structure (e.g., Bollen, 1989, pp. 85–88):

S(u) = LΨL′ +Q1, (3)

m(u) = La, (4)

where Σ(θ) and μ(θ) represent the implied covariance and mean
structures, respectively. Estimates of the parameters in θ can be
obtained in a variety of ways, the most ubiquitous of which is the
maximum likelihood (ML). Given the plethora of existing resources
on model estimation and evaluation, we do not dwell on this topic
here; see Bollen (1989) and Enders (2001) for additional details.

The model defined thus far is sometimes called an unconditional
growth model in that we have yet to incorporate any exogenous pre-
dictors of growth. This structure represents the first component of
our triad: the unconditional model captures the course of change
over time. The latent factor means (or the “fixed effects”) of the
growth trajectories reside in α, the individual variability around
these means (or the “random effects”) reside inΨ, and the residuals
of the time-specific repeated measures are captured in Q1. The
unconditional LCM might consist of just an intercept factor (reflect-
ing the lack of systematic change over time), or it may be character-
ized by some polynomial linear or quadratic change, or even a
more-complex exponential, piecewise, or latent basis change
model (e.g., see Bollen & Curran, 2006, Chapter 4). Regardless of
specific structure, this unconditional model provides an estimate of
where individuals begin and where they go over time.

The Conditional LCM

The unconditional model can easily be extended to include one or
more exogenous predictors, either of the growth factors themselves
(i.e., time-invariant covariates [TICs]) or of the time-specific
repeated measures (i.e., time-varying covariates [TVCs]). Given
our focus is on the latent factors we only consider TICs here, but
all of our developments readily extend to the TVC model as well.
We can expand Equation 2 to include one or more TICs such that

hi = a+ Gxi + zi, (5)

whereΓ is aK×Qmatrix of regression coefficients and xi is a vector
of length q = 1, 2, ..., Q of exogenous predictors. The optimal lin-
ear combination of these predictors serves to shift the conditional
means of the latent factors while assuming the residuals’ distribu-
tions are constant over xi. Whether a set of exogenous covariates pre-
dicts higher versus lower initial levels or steeper versus less steep
changes over time, the conditional model attempts to characterize
the optimal linear combination of determinants of change over
time. Much is known about the estimation, evaluation, and interpre-
tation of conditional LCMs (for further details, we refer the reader to
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Biesanz et al., 2004; Curran et al., 2004). Importantly, these condi-
tional models represent the second component of our triad: the con-
ditional LCM captures the causes of change over time. However,
before we proceed on to the third component—consequences—we
must first think a bit more carefully about how time is scaled within
the LCM.

The Scaling of Time

Within the LCM the numerical values assessing the passage of
time are typically set as fixed quantities in the factor loading matrix
Λ, although in some cases, a subset of values can be estimated from
the sample data (Meredith & Tisak, 1990). The first column of Λ is
set to unity to represent the intercept of the trajectory, and additional
columns can be used to define a wide variety of functional forms of
interest. For example, for a linear growth model with time originally
coded as t = 1, 2, ..., T , Λ is defined as

L =
1 1+ a
1 2+ a

..

. ..
.

1 T + a

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, (6)

where the first column defines the intercept factor and the second the
linear slope factor. Here we introduce a scaling factor denoted a that
allows us to systematically scale time in a variety of principled ways
by changing the zero point of the second column inΛ (we expand on
this further below). As with any regression-like equation, the latent
intercept factor captures the mean and variance of the trajectory
when time is equal to zero. Thus, if time is originally coded as
t = 1, 2, ..., T , setting a=−1 will define the intercept as the expec-
tation of the outcome at the initial time point; setting a=−T will
define the intercept as the expectation of the outcome at the final
time point; and setting a = −t̄ will define the intercept as the expec-
tation of the outcome at the middle time point. The impact of chang-
ing the scale of time was a vexing issue in early applications of the
LCM but is now well understood (Biesanz et al., 2004; for a detailed
summary, see Bollen & Curran, 2006, pp. 113–120).
Biesanz et al. (2004) thoroughly explored this issue and allowed

several general conclusions to be drawn. For both the unconditional
and the conditional LCMs, any choice of a results in an equivalently
fitting model; that is, any choice of a results in the same
log-likelihood value and no scaling fits any better or worse than
any other scaling. However, seemingly paradoxically, despite iden-
tical model fit, changes in certain model parameter estimates and
associated standard errors often result. For example, in an uncondi-
tional linear LCM, the mean and variance of the slope factor are
unchanged across different values of a. However, the mean and var-
iance of the intercept factor, as well as the covariance between the
intercept and slope factor differ over different choices of a, some-
times substantially so. For instance, the covariance between the
intercept and slope (c21) changes across different time codings
(c21→ c*21) by the magnitude of the slope factor variance (c22)
per unit change in a (Δa; we will delve into where these transforma-
tions originate in greater detail in later sections):

c∗
21 = c21 + c22Da. (7)

These parameter changes make logical sense because if there
is random variability in the slope then the relative ordering of

individuals at any given time point can, and almost always does,
change. As such, the mean and variance of the intercept factor, as
well as the covariance of the intercept with other growth factors
(of key importance in later developments) change as a function of
where the zero-point of time is defined.

These relations extend to the conditional LCM in which any pre-
dictors of the slope factor are invariant to the choice of a and predic-
tors of the intercept factor vary as a function of a. As with the
unconditional LCM, the conditional LCM remains likelihood equiv-
alent over choice of a and the changes in the effects of the predictors
(both the parameter estimates and the standard errors) are determin-
istically scaled as a function of the numerical values of time, as dis-
cussed comprehensively by Biesanz et al. (2004). Indeed, everything
we have described thus far is fully developed and well understood.
We review this here because we next extend the model to include
a distal outcome where we will find that the choice of a exerts a sub-
stantial and somewhat unexpected impact on both parameter esti-
mates and on substantive conclusions.

The Distal Outcome LCM

We return to the unconditional LCM and expand the notation to
include a single distal outcome measure zi. For simplicity, we assume
the distal outcome is continuously scaled, although discrete outcomes
could easily be incorporated. Similarly, we assume a single outcome,
although this too could easily be extended to a vector of observed out-
comes, or even one or more multiple-indicator latent factors. The mea-
surement model defined in Equation 1 remains unchanged, but we
expand the structural equation (Equation 2) such that

hi = a+ Bhi + zi. (8)

For a linear model with a single distal outcome, the elements of
Equation 8 are

h1i
h2i
zi

⎡
⎣

⎤
⎦ =

a1

a2

az

⎡
⎣

⎤
⎦+

0 0 0
0 0 0
bz1 bz2 0

⎡
⎣

⎤
⎦ h1i

h2i
zi

⎡
⎣

⎤
⎦+

z1i
z2i
zzi

⎡
⎣

⎤
⎦, (9)

where the distal outcome is included as a third element of vector ηi.
4

This model is presented in Figure 1.
As before, we assume ζi�MVN(0, Ψ) is partitioned such that

part relates to the growth factors and part to the distal outcome.
For our example, this partitioned matrix takes the following form:

Ψ =
c11 c12 0
c21 c22 0
0 0 czz

⎡
⎣

⎤
⎦, (10)

where the upper two-by-two quadrant represents the variances and
covariance among the growth factors, and the lower czz represents
the residual variance of the distal outcome zi. This example is for
a simple linear LCM with a single manifest distal outcome, but Ψ
would expand accordingly to accommodate additional growth fac-
tors or additional outcomes.

4We could have defined zi as a constrained single-indicator latent factor so
that the third element was denoted as η3i, but we see this as an unnecessary
complication for now, and will return to this idea in when we consider an
alternative incremental validity specification.
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Of key interest here are the two parameters capturing the regression
of the outcome on the intercept factor (bz,h1

) and on the slope factor
(bz,h2

). As with any regression coefficient, these capture the prediction
of outcome zi per unit-change in each growth factor net the effects of
the other growth factor. We italicize this because here is where things
begin to depart from the unconditional and conditional models we
have examined thus far. As we noted earlier, each component of the
growth trajectory (e.g., the intercept and linear slope) jointly define
the trajectory in its entirety; the trajectory can only be reconstituted
by the combination of the set of components. Imagine two trajectories
with linear slope scores both equal to 5.0, yet one has an intercept of
1.0 and the other of 10; it makes no sense to treat the two slopes as
equivalent without also considering the associated intercepts. What
then does it mean to examine the prediction of a distal outcome
from one trajectory component net the effects of the other compo-
nent(s)? Of critical importance when thinking about this issue is the
relation between the intercept and slope factor, a relation that we ear-
lier showed is dependent on the scaling of time (Equation 7).
To see this more clearly, let us briefly consider a simple ordinary

least squares (OLS) regression with two correlated predictors:

yi = b0 + b1x1i + b2x2i + 1i. (11)

Note the similarity in form to the two correlated growth factors pre-
dicting the distal outcome in Equation 8. The expression of the stan-
dardized regression coefficients based on the correlations among the
two predictors and the outcome are:

bstd,1 = ry1−ry2 r12
1−r212

, bstd,2 = ry2−ry1 r12
1−r212

. (12)

It is clear that the correlation between the two predictors (ρ12) plays a
critical role in the calculation of the partial regression coefficients.
Indeed, no partialing occurs only when ρ12= 0. However, whereas
in the OLS regression model, it is well known that the correlation
between the predictors is invariant to linear transformations of the pre-
dictors (e.g., centering or standardizing x1i or x2i does not affect ρ12),
the correlation between the growth factors can—and will—change as

a function of linear transformations of time (e.g., placing zero at the
beginning, middle, or end of the span of time). If the correlation
between growth factors is in part determined by choice of zero-point,
and this same correlation plays a critical role in the calculation of the
partial regression coefficients, this begs the logical question: At what
time point should the effects be partialed? Or, even more vexingly,
should the effects be partialed at all? To better appreciate these chal-
lenges, we briefly turn to an illustrative, simulated data set.

Impact of Time Coding on Distal Outcome Regressions

To demonstrate the impact of the changing correlation on the cal-
culation of partial regression coefficients, we began by creating a sin-
gle simulated data set. We simulated data from known population
moments corresponding to a linear LCM and a single continuous
distal outcome reflected in Figure 1.5 We defined the intercept factor
to have amean (α1) of 3.0 and a variance (c11) of 1.0, the slope factor
to have a mean (α2) of 0.20 and a variance (c22) of 0.25, and the
intercept and slope factor to have a covariance (c21) of 0.075 (repre-
senting a small positive correlation of 0.15). We then generated five
continuous repeated measures with a normally distributed, hetero-
scedastic residual variance that resulted in a constant communality
of 0.50 for each repeated measure in a sample of 5,000 cases.
Finally, defining the intercept to represent the beginning of the tra-
jectory, we generated a single continuous and normal dependent dis-
tal outcome variable (zi) that was in part determined by the intercept
and slope factors. More specifically,

zi = 5+ 0.1h1i + 0.2h2i + zzi , (13)

with a residual variance ζzi scaled to result in a multiple R2 value of
0.50. We fit two standard linear LCMs in which the growth factors pre-
dicted the distal outcome: one inwhich the interceptwas set to the initial
time point (t1) and one in which the intercept was set to the final time
point (t5). As expected, results confirm that the recoding of time has no
effect onmodel fit (see Table 1). However, there are several striking dif-
ferences in parameter estimates that warrant closer consideration.

To begin, some parameters behave in predictable ways similar to
the unconditional and conditional LCMs across changing time cod-
ing. For example, the intercept mean (ah1

), intercept variance
(c11), and intercept-slope covariance (c21) all differ as a function
of choice of time scale (given that they reflect estimates of level
at different points in the growth trajectory), whereas the slope
mean (ah2

) and slope variance (c22) remain invariant. This is as
expected. However, examining the effects of the growth factors
on the distal outcome reveals a wholly different finding. Whereas
the conditional linear LCM in which the prediction of the intercept
factor by an exogenous predictor varies as a function of the scaling
of time and the prediction of the slope does not (Biesanz et al.,
2004), here the opposite holds: the effect of the intercept on the dis-
tal outcome is invariant to scale of time whereas the effect of the
slope is not.6 Indeed, not only does the effect of the slope factor
in the prediction of the outcome change across different time cod-
ing schemes, in our simulated example it even reverses in sign. If
we were to define the intercept to represent the initial time point,

Figure 1
The Latent Curve Model With a Distal Outcome

Note. In this extension of the unconditional model, we include a distal out-
come zi which is predicted by both the intercept (η1i) and slope (η2i) factors.
Of key interest here are the regressions of the distal outcome on the growth
factors (bz,h1

and bz,h2
, respectively). Note that the factor loadings follow

the form in Equation 6 where we can arbitrarily rescale the location of the
intercept.

5 Code to replicate all analyses is available online: https://osf.io/fzubt/.
6 Note that this invariance applies to the unstandardized effects—the stan-

dardized effect is non-invariant due to the change in the variance of the inter-
cept factor.
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we would interpret a positive effect of the slope on the outcome
(indicating steeper slopes predict higher levels of zi) whereas if
we were to define the intercept to represent the last time point we
would obtain the opposite interpretation (indicating that steeper
slopes predict lower levels of zi), even though the parameters of
the slope factor itself are invariant to the different codings of
time. To compound the issue, both estimates would be deemed
“highly significant”with large, standardized effect sizes. To under-
stand these unexpected results, we need to start by expanding the
derivations outlined by Biesanz et al. (2004) to apply to the
distal-outcome model.

Deriving Parameter Estimate Transformations

Although these initial results may be somewhat surprising,
the parameter transformations are far from mysterious and can
be straightforwardly derived in a similar way to the unconditional
and conditional LCM transformations (Biesanz et al., 2004).
For any arbitrary coding of time in a linear growth model,
we can linearly transform either the zero-point or the spacing
interval such that t*= a + bt. The matrix expression for these
coefficients is

T = 1 a
0 b

[ ]
, (14)

where a rescales the intercept and b rescales the slope (or inter-
val of time). We can generalize this to the LCM in matrix form,
such that for a given growth model specification with factor
loading matrix Λ, we can define a general transformation
matrix denoted T that allows us to reexpress the parameters
as a function of the choice of time scale via a from Equation
6.7 As a simple example say that for the linear function defined
in Equation 6 that defines the initial time assessment as zero,
we can rescale this to end in zero by defining the transformation
matrix as8:

T = 1 −4
0 1

[ ]
, (15)

such that

L∗ = LT =

1 0
1 1
1 2
1 3
1 4

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

1 −4
0 1

[ ]
=

1 −4
1 −3
1 −2
1 −1
1 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦. (16)

Biesanz et al. (2004, p. 35) then showed that if the transformed
factor-loading matrix can be expressed as a function of the
original loading matrix and transformation matrix

L∗ = LT, (17)

then the transformed covariance matrix (Ψ*) can likewise be
expressed as

Ψ∗ = T−1ΨT−1′, (18)

and the transformed mean vector (α*) can be computed as

a∗ = T−1a, (19)

where the inverse transformation matrix (T−1) has the form

T−1 = L∗′L∗( )−1
L∗′L. (20)

These expressions demonstrate the deterministic effect of rescaling
time on the resulting latent covariance matrix and mean vector. The
above expressions are for the unconditional LCM, and these can be
expanded further to apply to the conditional LCM as well as resulting
standard errors. Important to our discussion here, however, these can
also be expanded to include the effect of the transformation of time on
the regression of the distal outcome zi on the latent growth factors.

Table 1
Parameter Recovery: Initial and Final Status Models

Initial status Final status

T df p T df p

9.908 13 .701 9.908 13 .701

Param. Pop. θ Est. SE Std. Est. p Est. SE Std. Est. p

bz,h1
0.100 0.098 0.003 0.465 ,.001 0.098 0.003 1.096 ,.001

bz,h2
0.200 0.196 0.007 0.468 ,.001 −0.195 0.018 −0.465 ,.001

ah1
3.000 2.991 0.019 2.966 ,.001 3.817 0.040 1.606 ,.001

ah2
0.200 0.207 0.010 0.408 ,.001 0.207 0.010 0.408 ,.001

c11 1.000 1.017 0.041 1.000 ,.001 5.652 0.163 1.000 ,.001
c21 0.075 0.068 0.016 ,.001 1.091 0.039 ,.001
r21 0.150 0.133 0.035 ,.001 0.907 0.005 ,.001
c22 0.250 0.256 0.011 1.000 ,.001 0.256 0.011 1.000 ,.001
R2
z 0.500 0.493 0.493

Note. T is the χ2 test statistic and df is the model degrees of freedom. Pop. θ is the population parameter used to generate
the data. Est. is the sample-recovered parameter. SE is the standard error of the estimate. Std. Est. is the standardized estimate.
Beta (β) denotes the regression coefficients, alpha (α) denotes factor means, psi (c) denotes the factor variances and
covariances, and r21 denotes the factor correlation. R2

z is the proportion of variance explained in the distal outcome.

7 For those familiar with exploratory factor analysis, this is similar to the
idea of factor rotation.

8 For our purposes here, we will retain the metric of time by setting b= 1,
although it is possible to compute these transformations across different units
of time (e.g., monthly vs. annual vs. biannual change).
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Here we present the final results, with associated details for the
derivations of both parameter estimates and standard errors
delineated in the Appendix. As above, define Λ as the original
coding of time (whatever that might be), T as the transformation
matrix, and Λ* as the rescaled factor loading matrix—just as in
Equation 17. Define B to represent the regression of the distal
outcome on the set of growth factors under the original coding
of time (as was defined in Equation 8). We can show that

B∗ = T′B. (21)

If we then use T from Equation 15, we can show that with an orig-
inal

B = bz,h1

bz,h2

[ ]
= 0.1

0.2

[ ]
, (22)

then B* is

B∗ = T′B = 1 −4
0 1

[ ]′
0.1
0.2

[ ]
= 1 0

−4 1

[ ]
0.1
0.2

[ ]

= 0.1
−0.2

[ ]
. (23)

This expression thus follows from the process outlined by Biesanz
et al. (2004), but with results that are opposite of what Biesanz et al.
(2004) described. Specifically, whereas parameters for predictors of
the slope factor are invariant as a function of the rescaling of time,
parameters for the regression of distal outcomes on the slope factor
vary as a function of the rescaling of time.
We can further show (see the Appendix for full details) that the

effect of the slope on the outcome is

b∗
z,h2

= bz,h2
+ bz,h1

Da, (24)

where Δa represents the shift in the intercept of the growth trajectory
between alternative time codings.9 In comparison, we can show that
the effect of the intercept on the outcome is invariant across time
codings, or:

b∗
z,h1

= bz,h1
. (25)

These equations show that we can estimate the regression of
the distal outcome on the slope and intercept factors across the
continuum of zero points of time, and for each of these infinite
points we can compute a confidence interval. Using existing
methods to compute and plot regions of significance (e.g.,
Bauer & Curran, 2005; Curran et al., 2004, see online supple-
mental material for practical implementation), we can graphi-
cally display these effects over the continuum of potential
zero-points (Figure 2).
When considering the difference in substantive interpretation that

adopting different time coding schemes would engender, these
results are stunning. For our simulated data—which were generated
to be typical of what might be encountered in practice—if we define
the intercept to represent the initial value, the slope has a significant
and positive prediction of the distal outcome; as we move the zero-
point to the middle assessment, this effect becomes nonsignificant;
and as we move toward defining the intercept as the final time
point, the effect becomes significant and negative. In contrast, the
effect of the intercept on the distal outcome is invariant across all

choices of a (b̂z,h1
= 0.098 ∀:a). Although this pattern of numerical

results reflects the characteristics of our simulated data, changes in
bz,h2

relative to bz,h1
generalize, and highlight the deterministic rela-

tion between the centering of time and the role of the slope as a pre-
dictor of some distal outcome. Under conditions where the effect of
the intercept is substantial, changes across time codings this large—
or even larger—can be expected (Equation 7). Additionally, across
many repeated measures, even small effect sizes of bz,h1

can com-
pound, as the change in slope effect is linear and unbounded. As
such, we recommend that this regions-of-significance approach
should be adopted as standard practice in these models to better
understand the range of potential effects across time coding
alternatives.

The challenge remains then, that if all time coding schemes
in real data are equally valid from a model-fit perspective, how
do we best adjudicate among alternative codings without bringing
additional information or priorities to bear? One such priority
might be generating the most interpretable parameters, begging
the question of whether there is a coding scheme that would
theoretically optimize this criterion of the parameter interpretabil-
ity in the model. We next propose a set of standard approaches that
aim to minimize the potential confusion about parameter interpre-
tation and maximize the information that each parameter conveys
about the relation between the growth factors and the distal
outcome.

Figure 2
Regions of Significance for the Effect of the Slope on the Distal
Outcome

Note. The effect of the slope on the distal outcome bz,h2
changes as a func-

tion of where in time (t) the intercept is coded, while the effect of the inter-
cept bz,h1

is invariant. The shaded blue regions represent the regions of
significance for the 99.9% confidence bands of each effect. The region in
which these confidence bands include zero are shaded red and the value
of t at the boundaries of this region are noted by the vertical dashed red
lines. See the online article for the color version of this figure.

9 One possibility this expression raises is that bz,h2
is invariant if we omit

the predictive effect of the intercept (bz,h1
). Unfortunately, unless the effect of

bz,h1
is zero, or the factors are orthogonalized, omitting this pathway will

result in bias in bz,h2
as the model attempts to reproduce that relationship

through the slope factor (see Section 3 of the online supplemental materials
for complete details).
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A Principled Time Coding Approach

It is useful here to strip away some of the apparent complexity
of the LCM in order to address the issues raised in the prior sec-
tion. As mentioned earlier, at the between-person factor level, we
have a two-predictor regression of the distal outcome. It is well-
known that correlated predictors can be problematic in multiple
regression, resulting in parameter estimate instability, lowering
power, and introducing challenges for interpretation of unique
effects (Cohen et al., 2003; see McCormick, 2021, e.g., in the lon-
gitudinal case). As such, the goal in multiple regression is to
include (relatively) weakly correlated predictors to yield stable
parameter estimates across samples, small standard errors, and
interpretable regression coefficients. Unlike observed variable
regression, however, where the correlation between predictors is
invariant to linear transformations, in the LCM, the correlation
between intercept and slope varies across the different time cod-
ing schemes (Biesanz et al., 2004). If we are unaware of the
impacts that time-coding choice has on the effect of the slope fac-
tor on the distal outcome, this can result in highly correlated pre-
dictors and regression effects that are challenging to interpret
meaningfully. Once properly understood, however, we can use
this knowledge to our advantage to specify the LCM in such a
way that we maximize the stability, power, and interpretability
of the regression effects for the distal outcome. For instance, in
our artificial data example (Table 1), the initial status intercept
model has a relatively low intercept-slope correlation (r̂21 =
0.133), while the final status model has a very high correlation
(r̂21 = 0.907). Based on our criteria for a desirable set of predic-
tors, we would prefer the former model because the unique effects
of the intercept and slope will be more stable and meaningful
However, these time codings are only two of an infinite set of
potential schemes that we could adopt, and we need a principled,
model-based method for deriving the optimal time coding scheme
that avoids searching this infinite space with needing to fit a model
multiple times.
Fortunately, such a principled approach is readily available. For

any linear growth model with a random slope (c22. 0), there is a
time point where the factor covariance is minimized. This point is
conveniently also where the variance of the intercept factor is
minimized, a location in the trajectory known as the aperture
point (Hancock & Choi, 2006). Following derivations from
Hancock and Choi (2006), we can compute the value of a
(Equation 26) needed to shift the intercept from its current
coded location to the aperture. In a linear LCM, this value can
be expressed as the ratio of the factor covariance over the variance
of the slope factor, or:

a = ch1,h2

ch2

= c21

c22
, (26)

which can be computed as a part of model estimation. For our
simulated data, both the initial (â = 0.265, SE = 0.069) and
final (â = 4.265, SE = 0.069) status models’ estimates of a sug-
gests that the aperture is 0.265 time-units prior to the first obser-
vation (note that positive a values shift the intercept backwards in
time, and vice versa). Although this aperture resides outside the
range of observed time points, we will briefly ignore this issue
and first outline how this a shift is implemented generally.

Recoding time to estimate the intercept at the aperture point
results in the following factor loading matrix:

L =

1 linitial,1 + â
[ ]

1 linitial,2 + â
[ ]

1 linitial,3 + â
[ ]

1 linitial,4 + â
[ ]

1 linitial,5 + â
[ ]

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ =

1 0+ 0.265[ ]
1 1+ 0.265[ ]
1 2+ 0.265[ ]
1 3+ 0.265[ ]
1 4+ 0.265[ ]

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

=

1 0.265
1 1.265
1 2.265
1 3.265
1 4.265

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦. (27)

When we fit this aperture time coding to the data, we can generate
a solution that minimizes the factor covariances—indeed it
orthogonalizes the intercept and slope covariance completely
(ĉ21= 0.000, SE = 0.018, p = 1.000; Table 2).10 Naturally, this
leads to an estimate of â = 0, indicating that we have estimated
the model at the aperture point. This solution allows us to inter-
pret the two distal outcome regression coefficients independently
as there is no overlapping variance between the intercept and
slope factors in this model.

Despite everything outlined thus far, we do need to exercise cau-
tion and not indiscriminately follow this aperture estimate without
considering the structure of our sample data. As we noted, the
model-implied aperture in this example is outside the range of the
observed data, and we should not expect that our model adequately
characterizes a process outside this range of time. As such, we might
alternatively estimate the intercept at the point nearest the aperture
that remains bounded within the time window covered by our mea-
surements. In this example, that would suggest that we should retain
the initial status model. Indeed for many applications where trajec-
tories diverge over time (i.e., the right side of a bowtie, Hancock
& Choi, 2006), the common practice of estimating the intercept at
the initial time point may have inadvertently been maximizing the
interpretability of these regression slopes by estimating nearest the
aperture time coding. However, this should not be taken as a given
in these models, especially when such a readily available estimation
procedure can confirm the model-implied location of the aperture in
any given data set.

Prioritizing the Slope Using Incremental Validity

We have seen that the unique effect of the slope—captured by the
regression coefficient—on the distal outcome changes across recod-
ings of time because of the change in covariance between intercept
and slope factors, while the unique effect of the intercept is invariant.
However, we might prefer to estimate the model in such a way that
the effect of the slope remains invariant. While the intercept is an
integral part of the growth model, the slope effect is often of greater
theoretical interest. This is in part due to the allure of predicting
based on change, however, there are other reasons to prefer prioritiz-
ing the slope effect over that of the intercept. First, while often
referred to as the “starting point” (indeed we have used this language

10 If we do not restrict the range of a, this procedure will always orthogo-
nalize the factors; however, there may be good reasons to restrict this range in
practice so that a does not fall outside the observed time frame.
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ourselves), the intercept is best characterized as the point at which we
began measuring a process already in progress—that is, we may
begin measuring trajectories of mathematics skills at age 10, but
the growth and development of numerical cognition pre-dates our
study. Exceptions to this general rule are instructive. For instance,
Huttenlocher et al. (1991) investigated trajectories of vocabulary,
but importantly began observing children before they began speak-
ing. This means that at the initial time point, no children were speak-
ing—that is there was zero variance in initial level—giving a natural,
substantively meaningful, “true” aperture at which to estimate the
growth model where the effect of the slope is given theoretical pri-
ority (a zero-variance intercept cannot predict a distal outcome).
However, for most applications, we need a model-based method
for prioritizing the slope if we cannot estimate at the model-implied
aperture.
Fortunately, such a way exists, and involves the specification of

additional latent factors that measure the unique variance of each
predictor in a prespecified order (Feng & Hancock, 2021). We can
see a visual representation of this alternative approach below:
The key to setting predictive priority is to regress lower-priority pre-

dictors on higher-priority ones (Feng & Hancock, 2021) and thereby
isolate the shared variance to the higher-priority predictor; here we
will regress the intercept factor on the slope factor (bh1,h2

) to prioritize
the slope. Note that our goal in doing this regression differs fundamen-
tally from regressing one factor on another in a standard LCM. Here,
we do not wish to interpret this regression per se (although its stan-
dardized coefficient is equal to the factor correlation), we only use it
to remove any shared variance between the two factors from the lower-
priority factor (here the intercept). This partialing of variance from the
intercept then allows us to construct uniqueness factors (ξ) which are
orthogonal versions of the original growth factors. To build these
uniqueness factors, we constrain the variances of the original latent
growth factors (η) to zero, estimate the variance of the uniqueness fac-
tors (ξ), and then regress the growth factors on their respective unique-
ness factors (γη,ξ) with factor loadings of 1. We also specify a
single-indicator latent factor (η3i) for the distal outcome (zi) with a fac-
tor loading of 1, estimate the factor variance, and set the variance of
the observed distal outcome to zero (Figure 3).While this model spec-
ification ismuchmore verbose than the standard distal outcome LCM,

we can conceptualize the incremental validity model as accomplish-
ing two primary things: (a) orthogonalizing the growth factors by
removing all shared variance from the lower-priority intercept factor,
and (b) regressing the distal outcome on the unique factors to preserve
time coding-invariant predictive relationships.

This architecture allows us to obtain regression coefficients
between the unique factors and the outcome factor (gh3,j

) that
exactly correspond to those coefficients obtained in the aperture
model (ĝh3,j2

= 0.222 and ĝh3,j1
= 0.098; see Table 2). Unlike the

regressions in the usual model specification, however, these coeffi-
cients are invariant across time coding choices (see Section 4 of
the online supplemental materials in the code output for model spec-
ification and full output). This approach is a particularly attractive
model under a range of conditions. For instance, if the aperture
falls substantially outside the observed range of the data, then the
transformation of the covariance between factors into a regression
preserves the interpretability of the slope effect (given that it is the
highest-priority in the model) without sacrificing intepretability of
other parameters in the model (e.g., the factor means). This model
specification also has potential for generalized use in more complex
models (e.g., higher-order polynomials or piecewise functions)
where we might wish to prioritize different sequences of factors
depending on our purposes, or indeed to the inclusion of additional
covariates predicting the distal outcome in a specific prioritized
order. Overall, applying this incremental validity approach to the
problem of correlated growth factors allows us maximal flexibility
in specifying the growth model while maintaining interpretable
regression coefficients between the components of growth and the
distal outcome.

Real-Data Example

Thus far we have demonstrated our findings using artificial data;
however, we also wish to highlight how these issues might be
encountered in real-data settings. To this end, we drew publicly
available longitudinal data from the Midlife in the United States
(MIDUS; https://www.midus.wisc.edu/) study (n= 3,294) includ-
ing three repeated measures (spaced nine ears apart) of individuals’
subjective negative affect, and a measure of the number of chronic
health conditions experienced taken concurrent with the third
repeated measure—hence not a truly distal outcome but likely repre-
sentative of many potential applications of these models (see
Willroth et al., 2020, for a description of these data). We can first
fit an unconditional LCM to these data with time centered at the
first time point, which converges without issue and describes nega-
tive affect trends which on average decrease slowly over time
(âh2

= −0.002, p = .002) but with significant person-to-person
variation (ĉ22 = 3.15× 10−4; p, .001; see Section 6.1 and
Figure S6 of the online supplemental materials for complete output).
If we estimate the aperture as part of this unconditional model, we
see that the model-implied aperture point is 6.479-time units after
our initial zero point (SE= 1.228), between the first and second
observation (recall that observations are spaced 9 years apart).

We then fit the LCMwith distal outcomemodel with the same time
coding scheme. While the unconditional model converged without
issue, this model fails to converge. Inspecting the output reveals
that we are encountering an offending estimate (r̂21 = 1.048) and
other extreme parameter estimates (e.g., the aperture is estimated to
be .193-time units before the first observation). Given what we

Table 2
Parameter Recovery: Aperture Model

Aperture point

Param. Est. SE Std. Est. p

bz,h1
0.098 0.003 0.461 ,.001

bz,h2
0.222 0.007 0.530 ,.001

ah1
2.936 0.020 2.938 ,.001

ah2
0.207 0.010 0.408 ,.001

c11 0.999 0.046 1.000 ,.001
c21 0.000 0.018 1.000
r21 0.000 0.035 1.000
c22 0.256 0.011 1.000 ,.001
R2
z 0.493

a 0.000 0.069 1.000

Note. Est. is the sample-recovered parameter. SE is the standard error of the
estimate. Std. Est. is the standardized estimate. Beta (β) denotes the regression
coefficients, alpha (α) denotes the factor means, psi (c) denotes the factor
variances and covariances, and r21 denotes the factor correlation. R2

z is the
proportion of variance explained in the distal outcome.
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know from the methods outlined above, we can alter our time coding
approach to instead have the intercept at the final time point, which
should reduce this problematic interfactor correlation. As expected,
this final status model converges without issue, and the parameter esti-
mates return to plausible values (Table 3), consistent with those seen
in the unconditional model. We will primarily focus here on the
regressions of chronic health conditions on the growth factor which
indicate that greater negative affect at the final time point relates to
higher levels chronic health conditions (b̂z,h1

= 3.089, SE= 0.200,
p,.001), but the rate of change over time does not significantly pre-
dict levels of chronic health conditions (b̂z,h2

= 8.142, SE= 10.570,
p= .441). The model-implied aperture falls 11.472-time units before
the final time point, again somewhere between the first and second
repeated measure, and we can explain 23.4% of the variance in the
chronic health condition outcome.
Given the magnitude of the unstandardized effect of the intercept,

we can expect meaningful change in the effect of the slope across
different time coding schemes. To visualize this, we can take the
same regions-of-significance approach that we did in Figure 2.

Doing so shows that the magnitude of the slope effect would
increase—and become significant—as we shift the intercept coding
from the final towards the initial time point (Figure 4). Here, we do
not have the dramatic swing in sign that we did in the example data,
but nevertheless this example highlights many of the challenges
associated with the time coding-induced changes in parameters.
Estimating the intercept at the first time point—the most widely
used approach in practice—results in a model that will not even con-
verge, while estimating it at the final time point results in a nonsig-
nificant effect.

To resolve these challenges, we can reestimate our model at the
aperture point estimate in our final status model (â= 11.472).
Unlike in our original simulation example, this aperture point is
within the range of observed data, and so we can proceed with this
model directly. Here we see yet another pattern of effects, where
the intercept (b̂z,h1

= 3.089, SE= 0.200, p ,.001) and the slope
(b̂z,h2

= 43.579, SE= 10.552, p, .001), significantly predict the
distal outcome. In this aperture model, we are able to orthogonalize
the growth factors (ĉ21 = 0.000, SE= 0.001, p= 1.000), which give

Figure 3
Incremental Validity Specification

Note. By regressing the lower-priority intercept factor (η1) on the higher-priority slope factor (η2)
and estimating a new set of latent variables (ξ), we can obtain regression estimates (gh3,j

) which are
not affected by the choice of time coding scheme. Note that the variances of the growth factors and
observed distal outcome are set to zero, while the variances of the ξ factors and η3 are freely estimated.

Table 3
Parameter Recovery: MIDUS Models

Final status Aperture status

Param. Est. SE Std. Est. p Est. SE Std. Est. p

bz,h1
3.089 0.200 0.459 ,.001 3.089 0.200 0.406 ,.001

bz,h2
8.142 10.570 0.049 .441 43.579 10.552 0.262 ,.001

ah1
1.471 0.010 3.143 ,.001 1.494 0.008 3.605 ,.001

ah2
−0.002 0.001 −0.106 .002 −0.002 0.001 −0.106 .002

c11 0.219 0.017 1.000 ,.001 0.172 0.010 1.000 ,.001
c21 0.004 0.001 ,.001 0.000 0.001 1.000
r21 0.465 0.058 ,.001 0.000 0.078 1.000
c22 0.000 0.000 1.000 ,.001 0.000 0.000 1.000 ,.001
R2
z 0.234 0.234

a −11.472 1.708 ,.001 −0.000 1.708 1.000

Note. Est. is the sample-recovered parameter. SE is the standard error of the estimate. Std. Est. is the
standardized estimate. Beta (β) denotes the regression coefficients, alpha (α) denotes the factor means, psi
(c) denotes the factor variances and covariances, and r21 denotes the factor correlation. R2

z is the
proportion of variance explained in the distal outcome. MIDUS=Midlife in the United States.
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us the independent contributions of intercept and slope—that is the
unique and zero-order relationships are the same (see Table 3 for
model results).
While the aperture being within the observed time range might

remove some of the motivation for adopting the incremental validity
approach, we present it here for completeness. When we use the final
time point as the intercept and adopt the incremental validity model
(Figure 3; the full model specification and results can be seen in
Section 6.2.4 of the online supplemental material), we obtain a signif-
icant and positive effect of both slope and intercept on the distal out-
come (ĝh3,j2

= 3.089 and ĝh3,j1
= 43.579), which match exactly the

regression coefficients obtained in the aperture model (Table 3) as
expected.

Recommendations for Applied Research

We have seen unexpected complexity in modeling the effect of
interindividual differences in growth model parameters on a distal
outcome. While these challenges are surmountable, they do require
greater care and a clear understanding of how time coding choices
will impact the results of a given model. Here, we provide several
practical steps that can be applied in substantive work to avoid pit-
falls of interpretation. The over-arching conclusion that can be
drawn from the current work is that we cannot expect to simply fit
a single distal outcome model and interpret its results without con-
sidering the impact of time coding on the parameter estimates.
Even for researchers who have a strong theoretical goal for placing
the intercept at a given point in the growth process, the realization
that the sign and significance of their distal outcome prediction
could change if they were to make an alternative decision should
give pause. In work without this strong theoretical imperative—
which is likely a greater percentage than would be optimal—the
default placement of the intercept should be treated with even greater
skepticism. Graphical output like a regions-of-significance plot

provide valuable information about the range of effects we can
expect to see across different codings of time, to ensure that our
interpretations of the slope effect are not contingent on arbitrary
decisions. Generating these plots will also prevent post hoc place-
ment of the intercept to obtain notionally significant effects. While
here we only plot the time coding-dependency of the regression of
the distal outcome on the slope, these plots would also be useful
as diagnostic information for other parameters in the model (e.g.,
the mean and variance of the intercept). The transformations of
these other parameters have already been described in other work
(Biesanz et al., 2004), but it is unclear how deeply these conclusions
have permeated into the broader community of applied researchers.
As such, making these plots a standard feature of output in widely
available software packages would help to raise awareness of these
effects and improve general understanding on how modeling deci-
sions impact the substantive interpretation of results.

When selecting a model for interpretation, our results strongly pref-
erence one of two approaches: (a) a model estimated at the aperture
point, or (b) a model estimated within the incremental validity frame-
work. From a theoretical standpoint, both of these approaches ensure
the most stable, powered, and interpretable effects out of possible time
coding alternatives. The aperture approach is attractive due to the prac-
tical easewith whichwe can compute the shift from any arbitrary start-
ing point model needed to reach the aperture and the ability to easily
obtain standardized and unstandardized effect estimates. Additionally,
by maintaining the relatively simple standard structure of the growth
model, it may be a more tractable model for more complex applica-
tions (e.g., with the inclusion of both predictors and distal outcomes,
or in multivariate models). However, in situations where the aperture
falls outside the observed time range, we would strongly recommend
against coding the intercept at the aperture. In such instances, placing
the intercept at the closest point to the aperture possiblemight be a log-
ical compromise. Alternatively, the incremental validity model
(Figure 3) is a welcomed alternative which can return optimal results
with any time coding approach. Based on the results we present, alter-
natives to these two time coding approaches would require compelling
justification.

Finally, while our focus has been on determining optimal strate-
gies for specifying and interpreting the effects of the growth factors
on the distal outcome, the general distal outcome LCM framework
can be expanded to include additional covariates, including direct
effects on the distal outcome and indirect effects through prediction
of the growth factors (Biesanz et al., 2004). The direct effects of
additional covariates for the distal outcome are not impacted by
time coding decisions, as the joint variance explained by the factors
is always invariant across time codings. In contrast, combining the
distal outcome model with the conditional growth model with indi-
rect covariate effects on the distal outcome through the growth fac-
tors requires additional care because time coding choices influence
the effect of the covariate on the intercept factor, but then the effect
of the slope on the distal outcome.

Directions for Future Research

The effects outlined here are suggestive of several productive
directions for future research. First, the impacts of time coding deci-
sions on distal outcome regressions were only explored in linear
models. Future work should seek to generalize these principles,
not only to higher-order polynomial models (e.g., quadratic and

Figure 4
Regions of Significance for the MIDUS Data

Note. When we estimate our model at the final time point, we get a non-
significant effect of the slope on the distal outcome (red shaded region),
while if we estimate the model at the aperture (t= 7.528), we get a significant
positive effect of the slope (blue shaded). Even though we get model-implied
values of the effect of the slope for an intercept at the first time point, in prac-
tice this model results in an improper solution (r̂21 . 1). MIDUS=Midlife
in the United States. See the online article for the color version of this figure.
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cubic), but also to more complex developmental models of change
(e.g., piecewise and latent basis). Secondly, we thresholded our
regions-of-significance plots at p-values that seemed reasonable
given the relatively large sample sizes; however, there is room for
much more rigorous research into how to threshold these plots in a
meaningful way. If the aperture time coding is used by default, how-
ever, this may alleviate some of these concerns, and regression coef-
ficients can then be interpreted as usual. Another potential area for
future consideration is whether the focus here on unique effects of
the growth factors is optimal for understanding the consequences
of development. Growth factors jointly determine the developmental
trajectory—for instance, individuals with the same initial status but
different slopes progressively diverge over time—and considering
these factors as independent predictors might miss important inter-
action effects (e.g., Kelava et al., 2011), similar to the ideas motivat-
ing the use of latent class growth models (Muthén & Muthé, 2000;
Nylund-Gibson et al., 2019). Finally, it remains to be seen how these
effects might interact with the effects that Biesanz et al. (2004)
detailed when combining a conditional and distal outcome
LCM—as would be the case in a parallel process mediation model
(Cheong et al., 2003; O’Laughlin et al., 2018)—as conditioning
the factors on a exogenous variablewould change themodel-implied
aperture point.

Summary and Conclusions

Our goal here was to develop a framework for modeling the conse-
quences of intraindividual differences in intraindividual trajectories of
change, complementing prior work on methods to assess the course
and causes of developmental patterns. We demonstrated that—in con-
trast to prior work on time coding effects in unconditional and condi-
tional growth models (Biesanz et al., 2004)—the unstandardized
effect of the intercept on the distal outcome remains invariant,
while the effect of the slope changes systematically across different
time codings. We analytically derived the parameter transformations
that govern these time coding effects and show that the effect of the
slope factor on the distal outcome changes linearly at a magnitude
equal to the effect of the intercept factor. We provided a graphical
approach for assessing these changes across plausible alternative cod-
ings of time. To adjudicate between the possible time coding
approaches, we propose estimating the intercept at the aperture
(Hancock & Choi, 2006)—or the point where the variance of the
intercept, and consequently the covariance between intercept and
slope are minimized—in order to facilitate the clearest interpretation
of the unique effects of each factor, or adopting an incremental valid-
ity approach which produces orthogonal predictive effects regardless
of time coding.We then demonstrated how these issues would be con-
fronted in real data and provided recommendations for best practice in
substantive research using the distal outcome LCM.
While we have focused primarily on technical challenges related

to obtaining valid and interpretable parameter estimates from the
latent curve model with distal outcomes, we believe these mod-
els—and measuring distal outcomes generally—to be strong tools
for testing substantive causal theories. What indeed are the conse-
quences for faster versus slower math skill development in primary
school, or of the course of depression in adolescence? Distal out-
come models allow for important contextualization of individual
variability in growth trajectories by assessing the downstream conse-
quences of developmental change. Valid causal estimates depend, as

always, on design consideration as much as statistical modeling, and
so true distal outcomes that are temporally removed from the growth
model will aid in these efforts. Overall, we believe that these models
have enormous potential for addressing novel developmental ques-
tions of downstream consequences and are a fertile area for subse-
quent methodological development.
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Appendix

Parameter Estimate Transformations

The model-implied covariance matrix for all observed measures
(including the repeated measures and the distal outcome) with a
given time coding is:

Sobserved = L(I− B)−1Ψ(I− B)−1′L′. (A1)

Biesanz et al. (2004) showed that we can compute the parameters
associated with an alternative time coding using the inverse transfor-
mation matrix

T−1 = (L∗′L∗)−1L∗′L. (A2)

Because the observed repeated measures (yit) and the distal out-
come are linked only through the latent variables in this model struc-
ture, we can simplify matters by defining the considering the
covariance matrix among y variables and the covariance matrix
between the y and z variables separately. The covariance matrix
among the y variables then follows exactly the derivations from
Biesanz et al. (2004), where

L∗Ψ∗L∗′ = LΨL′ & L∗a∗ = La, (A3)

such that:

Ψ∗ = T−1ΨT−1′ & a∗ = T−1a. (A4)

While these matrix expressions generalize to higher-order models
as well, in the linear LCM case we can solve these expressions for
simple scalar equations in terms of Δa (i.e., the shift in where the
intercept is estimated between alternate time codings) for both the
means:

a∗
h1

= ah1
+ ah2

Da & a∗
h2

= ah2
, (A5)

and (co)variances of the latent growth factors:

c∗
h1

= ch1
+ 2ch1,h2

Da+ ch2
(Da)2 &

c∗
h1,h2

= ch1,h2
+ ch2

Da & c∗
h2

= ch2
.

(A6)

When we consider the covariance of the y variables and the distal
outcome (zi), the matrix expression is:

Syz = LΨB. (A7)

When considering alternative time codings, the following holds:

L∗Ψ∗B∗ = LΨB, (A8)

meaning that we can solve for B* using Equations 16 and A4, which
we detail below:

(LT)(T−1ΨT−1′)B∗ = LΨB,

(LΨT−1′)B∗ = LΨB,

T−1′B∗ = B,

B∗ = T′B,

(A9)

resulting in:

B∗ = T′B. (A10)

We reiterate Equation 23, and lay out the matrix expression for
change in the regressions of the distal outcome on the growth factors
to illustrate this transformation in practice:

B∗ = T′B = 1 −4
0 1

[ ]′
0.1
0.2

[ ]
= 1 0

4 1

[ ]
0.1
0.2

[ ]

= 0.1
−0.2

[ ]
. (A11)

Working through these matrices gives us the scalar expressions in
Equations 24 and 25:

b∗
z,h2

= bz,h2
+ bz,h1

Da & b∗
z,h1

= bz,h1
. (A2)

Standard Error Transformations

We can also derive the standard errors for these transformed
parameter estimates with a straightforward application of the princi-
ples in prior work (Biesanz et al., 2004; Curran et al., 2004). Namely
that we can use the Jacobian matrix of partial derivatives to estimate
the change in the variances of parameter estimates. Biesanz et al.
(2004) showed that the Jacobian matrix for the factor covariance
matrix is as follows:

Jvec(Ψ)�vec(Ψ∗) = dvec(Ψ∗)
dvec(Ψ)

[ ]′

= d(T−1 ⊗ T−1)vec(Ψ)
dvec(Ψ)

[ ]′

= (T−1 ⊗ T−1)′,

(A13)

where⊗ is the outer product. Applied to the factor covariance matrix
Ψ, this allows us to calculate the asymptotic covariance matrix for
the new time coding as:

ACOV(Ψ∗) = J′vec(Ψ)�vec(Ψ∗)ACOV(Ψ)Jvec(Ψ)�vec(Ψ∗). (A14)

Working out this matrix expression in the linear LCM gives us a set
of scalar equations for the new asymptotic parameter variances, of
which we can take the square root to obtain the standard errors.
Some asymptotic variances do not change across time coding trans-
formations, including for the variance of the linear slope or distal
outcome.

VAR(c∗
22) = VAR(c22) & VAR(c∗

zz) = VAR(czz). (A15)

The asymptotic variance for the covariance between intercept and
slope changes via the following quadratic expression

VAR(c∗
21) = VAR(c21)+ 2COV(c21, c22)Da

+ VAR(c22)(Da)
2, (A16)

and the asymptotic variance for the variance of the intercept factor

(Appendix continues)
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changes as a function of a complex quartic expression.

VAR(c∗
11) = VAR(c11)

+ 4COV(c11, c21)Da

+ 4VAR(c21)(Da)
2

+ 2COV(c11, c22)(Da)
2

+ 4COV(c21, c22)(Da)
3

+ VAR(c22)(Da)
4.

(A17)

We can apply the same method to the matrix of regression coeffi-
cients between the distal outcome and latent growth factors. The
result is remarkable simple

Jvec(B)�vec(B∗) = dvec(B∗)
dvec(B)

[ ]′

= dvec(T′B)
dvec(B)

[ ]′

= T′[ ]′
= T,

(A18)

being just the original transformation matrix (T). We can then pre
and postmultiply this Jacobian with the asymptotic covariance
matrix of the regression coefficients to give the transformed vari-
ances.

ACOV(B∗) = J′vec(B)�vec(B∗)ACOV(B)Jvec(B)�vec(B∗)

= T′ACOV(B)T.
(A19)

Finally, working out this matrix expression in the linear LCM gives
us a set of scalar equations for the new regression coefficients

VAR(b∗
z,h1

) = VAR(bz,h1
),

VAR(b∗
z,h2

) = VAR(bz,h2
)+ 2COV(bz,h1

, bz,h2
)Da+ bz,h1

(Da)2.

(A20)

Taking the square root of these transformed asymptotic variances
yields the relevant standard errors.
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