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ABSTRACT

Contact. Strong lenses are a biased subset of the general population of galaxies.
Aims. The goal of this work is to quantify how lens galaxies and lensed sources differ from their parent distribution, namely the strong
lensing bias.
Methods. We first studied how the strong lensing cross-section varies as a function of lens and source properties. Then, we simulated
strong lensing surveys with data similar to that expected for Euclid and measured the strong lensing bias in different scenarios. We
focused particularly on two quantities: the stellar population synthesis mismatch parameter, αsps, defined as the ratio between the true
stellar mass of a galaxy and the stellar mass obtained from photometry, and the central dark matter mass at fixed stellar mass and size.
Results. Strong lens galaxies are biased towards higher stellar masses, smaller half-mass radii, and higher dark matter masses. The
amplitude of the bias depends on the intrinsic scatter in the mass-related parameters of the galaxy population and on the completeness
in Einstein radius of the lens sample. For values of the scatter that are consistent with observed scaling relations and a minimum
detectable Einstein radius of 0.5′′, the strong lensing bias in αsps is 10%, while that in the central dark matter mass is 5%. The bias
has little dependence on the properties of the source population: samples of galaxy-galaxy lenses and galaxy-quasar lenses that probe
the same Einstein radius distribution are biased in a very similar way.
Conclusions. Given current uncertainties, strong lensing observations can be used directly to improve our current knowledge of the
inner structure of galaxies, without the need to correct for selection effects. Time-delay measurements of H0 from lensed quasars can
take advantage of prior information obtained from galaxy-galaxy lenses with similar Einstein radii.
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1. Introduction

Strong gravitational lensing is a powerful tool for studying
galaxies and cosmology. Strong lenses have been used to
probe the mass structure of massive galaxies (Auger et al. 2010;
Oguri et al. 2014; Sonnenfeld et al. 2015; Shajib et al. 2021),
to detect substructure (Vegetti et al. 2012; Hezaveh et al. 2016;
Nierenberg et al. 2020), to carry out detailed studies of mag-
nified star-forming galaxies (Jones et al. 2013), and to mea-
sure the expansion rate of the Universe with time delays (see
Treu & Marshall 2016, for a review).

Strong lenses, however, are a biased subset of the general
population of galaxies and background sources. In order for a
lens-source pair to be included in a strong lensing survey, the
following conditions must be met: (1) the lens must produce
multiple images of the source, (2) the multiple images must be
detected and resolved, and (3) the system must be recognised as
a lens by the survey.

Condition 1 poses constraints on the mass distribution of
the lens, as well as on the geometry of the system. First of

? NHFP Einstein fellow.

all, not all lenses are capable of producing multiple images,
only those whose surface mass density, Σ(θ), is higher than the
critical surface mass density for lensing, Σcr, at least one posi-
tion, θ (Schneider et al. 1992). This condition excludes objects
with a very diffuse mass distribution from the population of
lenses. Second, objects with a higher concentration of mass
allow for a larger portion of the source plane to be multi-
ply imaged and are therefore over-represented in lens sam-
ples. Third, with fixed lens properties, sources that are located
farther away along the line of sight are more likely to be
lensed.

Condition 2 sets limits on the observable properties of the
sources and, again, the lens mass distribution, in a way that
depends on the survey characteristics. On the one hand, brighter
sources are more likely to be detected when lensed. On the
other hand, lensing magnification allows the detection of fainter
objects with respect to the field. However, if the angular separa-
tion between the multiple images is too small, the system may
not be classified as a lens. Since the image separation increases
with lens mass, this means that the lens sample is biased against
low-mass objects.
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Condition 3 can introduce additional biases, depending on
the efficiency of the lens finding process on which the survey
is based. Most commonly, lenses with a smaller image separa-
tion are more difficult to identify even if detected and resolved,
because of contamination from the lens galaxy. This introduces
an additional bias towards lenses with a higher or more concen-
trated mass.

The cumulative effect of these conditions can be summarised
as follows. The probability distribution, PSL, of a sample of
strong lenses from a given survey with selection criterion S is
given by (Sonnenfeld 2022)

PSL(ψg,ψs|S ) ∝ Pg(ψg)Ps(ψs)Psel(ψg,ψs|S ). (1)

In this equation, ψg is the set of parameters describing the prop-
erties of foreground galaxies that are relevant for lensing, such
as their redshift and mass distribution; ψs is the set of parame-
ters describing background sources; Pg and Ps describe the par-
ent distribution of foreground galaxies and background sources
in the absence of lensing; and Psel describes the probability of
selecting a lens-source system with parameters ψg and ψs given
the criterion, S, used to define a lens. This last factor takes
both physical and survey selection effects into account, that is,
whether a lens with parameters ψg produces a strongly lensed
image of a source with parameters ψs, and whether such an
image can be detected and recognised as a strong lens.

The information needed for the left-hand side of Eq. (1) is
directly accessible from strong lensing observations. If the main
goal of a lensing survey is to characterise the properties of the
strong lens population, then it can be accomplished by directly
analysing this term. For many applications of strong lensing,
however, the aim is to constrain the properties of the general
galaxy or source population, Pg and Ps, which are coupled in a
non-trivial way via the lens selection probability, Psel. In order
to obtain an unbiased estimate of either Pg or Ps, it is necessary
to invert Eq. (1). In principle, this can be done with a Bayesian
hierarchical formalism (Sonnenfeld 2022), but knowledge of the
lens selection probability, Psel, is required. This factor can be
written as the following product:

Psel(ψg,ψs|S ) = Pdet(ψg,ψs)Pfind(ψg,ψs|S ), (2)

where Pdet is the probability of detecting a strong lensing event,
and Pfind(ψg,ψs|S , det) is the probability of correctly classify-
ing it as such1. The detection probability, Pdet, can be obtained
via simulations. The main challenge is characterising Pfind: in
most of the existing strong lensing surveys, the process of deter-
mining whether a system is included in a strong lens sample is
typically a combination of several cuts, usually involving a non-
trivial visual selection step.

For the above reasons, the problem of inverting Eq. (1) is a
difficult one to tackle exactly. A few studies have attempted to
explicitly account for strong lensing selection effects, usually by
making ad hoc simplifying assumptions (Sonnenfeld et al. 2015,
2019; Oldham et al. 2017). Whether it is necessary to invert
Eq. (1), however, depends on the severity of the strong lensing
bias that needs to be corrected and on the accuracy requirements
for the key quantities of interest.

In this paper we aim to quantify the strength of the strong
lensing bias on a series of foreground galaxy and background
source parameters. In particular, we aim to determine how strong
lenses differ from the parent population of foreground galaxies

1 Sonnenfeld (2022) implicitly assumed Pfind ≡ 1; therefore, Pdet and
Psel can be used interchangeably in the context of that work.

and background sources in terms of (a) the radial mass structure
of the lenses (i.e. their stellar and dark matter mass density pro-
files), (b) the ellipticity of the lenses, and (c) the size-magnitude
distribution of the lensed sources. This determination depends on
(1) how the lens detection probability, Pdet, varies as a function
of galaxy and source properties, (2) the efficiency of a survey
in correctly classifying detected strong lenses (i.e. Pfind), and (3)
the shape of the galaxy and source parameter distribution, Pg
and Ps. To understand this third point we can imagine the limit-
ing case in which both Pg and Ps are Dirac delta functions (i.e.
all lenses and sources are identical): in this limit, PSL simply
reduces to the product PgPs up to a scaling constant; this corre-
sponds to a case in which there is no lensing bias.

Mandelbaum et al. (2009) carried out a thorough study of
point (1): they quantified how the properties of a lens galaxy
determine its probability of creating a lensing event with a point
source. In this work we revisit the Mandelbaum et al. (2009)
study, expanding it to the extended source case. We simulated
individual lenses and examined how the lens detection probabil-
ity varies with lens and source properties. In addition, we address
points (2) and (3): we simulated large populations of strong
lenses using empirical models, we simulated the lens detection
and finding phase, and we quantified the lensing bias under vari-
ous scenarios. We explored how the results change as a function
of the efficiency of a lens survey in discovering small image sep-
aration lenses, and as a function of the scatter in mass parameters
at fixed light.

Finally, we considered galaxy-quasar lenses. The
strong lensing bias of lensed quasars was studied by
Collett & Cunnington (2016) in the context of power-law
lens mass models with external convergence. Here we address
the question of how different galaxy-quasar lenses are from
galaxy-galaxy lens samples. This point is relevant for time-delay
cosmography studies, in which measurements of the time delay
between the multiple images of a strongly lensed quasar are used
to constrain the expansion rate of the Universe. Galaxy-galaxy
lenses can in principle be used to help break some of the model
degeneracies affecting these measurements (Birrer et al. 2020;
Birrer & Treu 2021), but any difference between the two lens
classes can introduce biases if not corrected for. With this study
we aim to quantify this bias.

The structure of this paper is as follows. In Sect. 2 we intro-
duce the basics of gravitational lensing. In Sect. 3 we study indi-
vidual lens systems. In Sect. 4 we describe our simulations of
lens surveys. In Sect. 5 we show the results of our analysis of the
simulated lens survey data. We discuss the results in Sect. 6 and
draw conclusions in Sect. 7.

The Python code used for the simulation and analysis of the
lens sample can be found in a dedicated section of a GitHub
repository2.

2. Strong lensing basics

The lensing properties of an object with respect to a source
depend solely on its dimensionless surface mass density distribu-
tion, κ(θ) (also referred to as the convergence). This is the ratio
between the surface mass density and the critical surface mass
density for lensing:

κ(θ) =
Σ(θ)
Σcr
· (3)

2 https://github.com/astrosonnen/strong_lensing_tools/
tree/main/papers/selection_effects
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The latter quantity is defined as

Σcr =
c2Ds

4πGDdDds
, (4)

where c is the speed of light, G the gravitational constant, and
Dd, Ds, and Dds are the angular diameter distances between the
observer and the lens, the observer and the source, and the lens
and the source, respectively.

Given a source at angular position β, images of it form at the
positions θ that are solutions of the lens equation

β = θ−α(θ), (5)

where α is the deflection angle of the lens. This can be expressed
in terms of the dimensionless surface mass density by means of
the following integral over the whole sky:

α(θ) =
1
π

∫
R2

d2θ′κ(θ′)
θ − θ′

|θ − θ′|2
· (6)

The images of the background source are in general magnified
in total flux and in size, while preserving the original surface
brightness.

2.1. The axisymmetric lens

In the special case of an axisymmetric lens we can simplify the
notation by considering a single coordinate axis with origin at
the centre of the lens. We label the components of the image
position, source position and deflection angle along this axis as
θ, β, and α, respectively. The lens equation for an axisymmetric
lens then becomes

β = θ−α(θ), (7)

and the expression for the deflection angle reduces to

α(θ) =
2
θ

∫ θ

0
dθ′κ(θ′)θ′. (8)

This can also be expressed in terms of the total projected mass
enclosed within a circle with angular radius equal to θ:

α(θ) =
1
πθ

M(<θ)
ΣcrD2

d

· (9)

A very important quantity for describing the strength of a
strong lens is the Einstein radius, θEin. For an axisymmetric lens,
this is the radius corresponding to the solution of Eq. (7) for a
source placed at the same angular position as the lens centre (β =
0). The circle with radius equal to θEin is known as the tangential
critical curve. Images that form there have infinite magnification
in the tangential direction. It can be shown that θEin satisfies the
following condition,

κ̄(<θEin) = 1, (10)

where κ̄(<θ) is the average surface mass density within a radius
equal to θ:

κ̄(<θ) ≡
2
θ2

∫ θ

0
dθ′κ(θ′)θ′. (11)

Axisymmetric lenses of the kind considered in this work
typically produce either one or three images of a point source.
Figure 1 helps visualise this property. Plotted in Fig. 1 is the
quantity θ−α(θ) as a function of the position in the image plane

θ − α(θ)

θθE−θE

fDM = 0.5, γDM = 1.0

fDM = 0.5, γDM = 1.5

fDM = 0.5, γDM = 2.0

fDM = 0.2, γDM = 1.5

fDM = 0.8, γDM = 1.5

Fig. 1. Lens equation of axisymmetric lenses. Solid lines represent the
right-hand side of Eq. (7) for five lenses with different density profiles.
Given a source at position β, its lensed images form at the values of θ
where the solid line intersects a horizontal line located at β on the verti-
cal axis. Dotted lines represent positions of the radial caustics. Sources
located within the radial caustic of a given lens produce three images.
The lens models used in this simulation consist of a stellar component
and a dark matter halo, as described in Sect. 3.1. Their density profile is
plotted in Fig. 4.

θ, for a few lens models. According to Eq. (7), images form at the
locations where this quantity equals the position of the source.
Therefore, given a source position β, the number of images and
their location can be determined by drawing a horizontal line at
the value β on the vertical axis, and finding the points where this
line intersects the θ−α(θ) curve.

For small values of β (for sources close to the lens centre),
the number of images that are produced is three: the source is
strongly lensed. For large values of β, instead, only one image
is formed. The value of β where the transition occurs is known
as the radial caustic, which is marked by the horizontal dotted
line in Fig. 1. As can be seen from Fig. 1, a source at this loca-
tion is mapped to the stationary point of the θ−α(θ) curve. That
location on the image plane is known as the radial critical curve.
Images that form there have a formally infinite magnification in
the radial direction3.

2.2. The elliptical lens

In this paper we focus mostly on lens galaxies with elliptical
isodensity contours. Given a surface mass density profile Σ(R),
a lens with an elliptical mass distribution can be obtained by
replacing the radial coordinate with the circularised radius:

R→

√
qx2 +

y2

q
, (12)

3 The slope of the θ−α(θ) curve is the inverse of the radial magnifi-
cation. This can be understood by taking the derivative of Eq. (7) with
respect to θ.
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−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8
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0.0
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0.6

0.8

β
y
/θ

E
in

Major axis

q = 1.0

q = 0.9

q = 0.8

q = 0.7

q = 0.6

Fig. 2. Caustics of lenses with fixed radial structure and different ellip-
ticity. Source-plane angular coordinates are in units of the Einstein
radius. The outer curve is the radial caustic, while the inner diamond
is the tangential caustic. Point sources located outside the caustic are
not strongly lensed. Sources that lie in the region enclosed by the two
caustics produce three images, while sources inside the tangential caus-
tic produce five images. The lens model adopted for this experiment
consists of a stellar component and a dark matter halo, as described in
Sect. 3.1. The two components have the same ellipticity.

where x and y are Cartesian axes centred on the lens centre, with
x pointing towards the major axis, and where q is the minor-to-
major axis ratio.

Figure 2 shows the source-plane caustics of elliptical lenses
with different values of the axis ratio. We used the software
Glafic (Oguri 2021) to obtain the caustic curves. The outermost
curves are radial caustics, while the inner ones are tangential
ones. The most striking difference with respect to the axisym-
metric case (blue curves in Fig. 2) is the fact that the tangential
caustic is transformed from a point into a diamond-like curve.
Sources located within the diamond produce five images (one
of which is usually highly de-magnified). Sources that lie in the
region enclosed between the two caustics are imaged three times.
Sources outside the radial caustic are imaged only once, as in the
axisymmetric case. The fact that the number of images changes
by two at a caustic crossing is a general feature of gravitational
lenses with no singularities (Schneider et al. 1992).

2.3. Lensing event definition: point sources

In order to compute the probability of a lensing event we must
provide an exact definition for it. A necessary condition for a
lens-source system to qualify as a strong lens is the presence of
multiple images of the source. As we showed above, this requires
the source to lie within the region enclosed by the radial caus-
tic. In order to recognise a strong lens in a real survey, how-
ever, it is not sufficient for multiple images to exist: they must
be detected. For this reason, given the detection limit for a point
source, mlim, we define as strong lensing event any lens-source
system with at least two images brighter than mlim. This is the
same definition used by van de Ven et al. (2009), upon which the

Mandelbaum et al. (2009) work is based. Labelling with m2 the
magnitude of the second-brightest image, then, in the absence of
photometric noise the lens detection probability Pdet becomes

Pdet(ψg,ψs) =

{
1 if m2(ψg,ψs) < mlim
0 otherwise . (13)

2.4. Lensing event definition: extended sources

Defining a strong lensing event in the case of an extended source
is less straightforward. In principle, we should require parts of
the source to be multiply imaged. In practice, it is not always
easy to determine whether a lensed image contains multiple
images or not. This is because, when the source is extended,
some of the images can be blended together. In real strong lens-
ing surveys, it is common to find lens candidates in which the
lensed source consists of only a single arc. In those cases it is
difficult to establish whether the arc is a set of blending images
or not, and the decision of including such systems in a strong lens
sample is often arbitrary. Here we adopt the following working
definition: an extended source is strongly lensed if the number
of surface brightness peaks that are detected is larger than its
intrinsic number of peaks in the absence of lensing.

We explain how this definition applies in practice with a few
examples. For simplicity, we focus on the case of a source with a
single surface brightness peak, such as a Sérsic profile. All of the
sources considered in this work belong to this family of surface
brightness models. We adopt the following procedure to deter-
mine the number of detected peaks. Given the observed image
of a lensed source, we define its footprint as the ensemble of
pixels where the source is detected with S/N > 2. The foot-
print is in general composed of multiple disconnected regions,
corresponding to the different images. In order to only include
images that can be clearly identified, we add the condition that
the integrated S/N of each separate region must be S/N > 10.
This condition has the effect of removing from the source foot-
print any isolated region consisting only of a very small number
of pixels. In a real-world application, it would be very hard to
classify such marginal detections as images. If, after applying
this cut, the source footprint is spread over multiple separated
regions, then the system is classified as a lens. If the source foot-
print consists instead of a single region, we iteratively increase
the surface brightness threshold used to define the footprint and
count the number of isolated regions with S/N > 10. The maxi-
mum number of detected regions defines the number of detected
peaks.

Figure 3 shows a few examples of how this criterion can be
used to classify lenses. The first column shows the caustic struc-
ture and source position. The second column shows an image
of the lensed source. The third column shows the source foot-
print defined with the procedure described above. Pink pixels
correspond to the largest footprint that maximises the number of
detected images, while purple pixels belong to the 2σ detection
footprint. In the first, second and sixth example, these two foot-
prints coincide. In the third, fourth and fifth example, instead, the
2σ detection footprint consists of a single region, but an increase
of the surface brightness threshold leads to the detection of addi-
tional images.

Strictly speaking, our lens definition criterion fails for a per-
fect Einstein ring. In order to cover such a scenario, we also clas-
sify as strongly lensed any sources that produce a footprint with
a hole.

We point out that, although our lens definition relies on peak
detections, it is not necessary for the peak of the source surface
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Caustics

Source

Lens

2σ detection

Max. # images

Not a lens

Lens

Lens

Lens

Not a lens

Fig. 3. Criterion used to classify lensed images of extended sources.
Six examples are shown. First column: caustics (red curves) and source
position (blue circle). The radius of the circle corresponds to the radius
at which the surface brightness is equal to 2σ the sky background rms
fluctuation for a single pixel. In other words, the blue circle delim-
its the area of the source that can be detected. Second column: mock
image of the lensed source, with added noise. Third column: footprint
of the source. The purple footprint is obtained with a 2σ detection cri-
terion. The coral region is the largest footprint with the highest number
of detected images.

brightness to lie within the caustics in order for the source to
be strongly lensed. This can be observed in the fourth example
of Fig. 3: although the source centroid lies outside of the caustic
(as shown in the first column), the outskirts of the source overlap
with the lens, and therefore multiple images are produced.

We can identify three different regimes in strong lensing of
extended sources, depending on the relative size of the source
and of the lens caustics. In the limit of a very small source, the
image configurations that are produced are qualitatively similar
to those that can be obtained in the point-source case. When the
source and caustic size are comparable, the multiple images tend
to be blended into arcs or rings. Most, if not all, of the galaxy-
scale strong lenses known belong to these two categories. How-
ever, there is a third regime in strong lensing, corresponding to
the case in which the source size is much bigger than the caus-
tics, such as in the fifth example of Fig. 3. In this regime, the
overall size and total flux of the source are roughly preserved,
and the lens produces only a relatively minor perturbation on
a localised region of the image. Strong lenses of this kind can
be difficult to detect, especially if the region of the image sub-
ject to strong lensing overlaps with the light from the foreground
galaxy. The ultimate limiting factor to the detection of strong
lenses in the large source size regime, however, is the ability to
spatially resolve the multiple images. This limit is set by the size
of the point spread function (PSF).

All of the examples that we considered were based on
sources with a single surface brightness peak. In general this
is not necessarily the case, and the intrinsic number of surface
brightness peaks of a strongly lensed source is not known a pri-
ori. When dealing with a real lens candidate, applying our lens
definition criterion requires showing that the observed number
of surface brightness peaks can be reproduced with a lens model
in which the source has a smaller number of peaks. In samples of
lenses defined via visual inspection this process is typically done
implicitly, by identifying multiply imaged blobs that belong to
the same source element.

To our knowledge, we are the first to propose a surface
brightness peak-based definition of a strong lensing event. A
popular alternative definition of a strong lens is one based on
magnification: only images that are magnified by more than
a given threshold are considered as strongly lensed (see e.g.
Hilbert et al. 2007). The problem with a definition of this kind
is that magnification cannot be determined unambiguously from
observations, unless the intrinsic properties of the lensed source
are known from other means (e.g. if the source is a standard can-
dle or a standard ruler). Because of the mass-sheet degeneracy
(Falco et al. 1985), it is possible to vary the magnification of a
lensed image while keeping its observed properties fixed: this
could lead to the paradox of two identical-looking lenses that
are classified differently on the basis of the underlying magnifi-
cation. Although we could still use a magnification-based defi-
nition for the sake of carrying out our experiments, it would then
be difficult to apply our results to real data. Our definition of a
strong lensing event, instead, is robust with respect to the mass-
sheet degeneracy.

3. Individual lenses

In this section we study how the probability of a strong lensing
event varies as a function of lens and source properties. In order
to do so, it is useful to introduce the concept of strong lensing
cross-section. Given a foreground galaxy with parameters ψg, a
background source with parametersψs, and a criterion S to define
a strong lensing event, the strong lensing cross-section is defined
as (Sonnenfeld 2022)

σSL =

∫
R2

dβPdet(ψg,ψ
(−β)
s ,β|S ), (14)
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where β is the position of the background source, ψ(−β)
s is the

ensemble of source parameter except for the position, and the
integral is carried out over the whole sky. The definition above
is valid for both a point source and an extended source: although
there is no unique way of defining the position of an extended
source, the integral over the sky ensures that the result is inde-
pendent of how the source position is defined. In the limit of low
density of background sources, which is satisfied in all practical
cases, the probability of a lensing event is proportional to σSL.
The lensing cross-section defined via Eq. (14) depends solely on
the lens detection probability Pdet and does not take into account
whether the lens can be correctly classified by a lens finder. This
separate selection step is captured by the term Pfind in Eq. (2). In
this section we consider exclusively the detectability of a lens,
and therefore focus only on σSL. In Sect. 4, when considering
specific lens survey simulations, we introduce Pfind.

We computed σSL in a series of different scenarios of
increasing complexity. The model family adopted to describe
the radial density profile of the lenses was the same in all of
our experiments. We describe this in Sect. 3.1. In Sect. 3.2 we
show calculations of the strong lensing cross-section in the case
of axisymmetric lenses and point sources. In Sect. 3.3 we gener-
alise the lens geometry to elliptical, while in Sect. 3.4 we replace
point sources with extended sources.

3.1. Lens density profile

In this work we focus on massive early-type galaxies as lenses,
as these make up the vast majority of known strong lenses. We
describe their mass distribution with a model consisting of two
concentric components, one describing the baryons and one for
the dark matter. We assume that the baryonic component con-
sists entirely of stars, thereby neglecting gas, which is known
to contribute very little to the mass of early-type galaxies in the
inner regions that are probed by strong lensing. We then assume
that the stars follow a Sérsic profile, with projected surface mass
density given by

Σ(R) = Σ0 exp

−b
(

R
Re

)1/n
· (15)

In the above equation,

Σ0 =
M∗b2n

2πnR2
eΓ(2n)

, (16)

M∗ is the total mass, Re is the radius enclosing half of the total
mass, n is the Sérsic index, Γ is the incomplete Gamma function,
and b is given by (Ciotti & Bertin 1999)

b(n) ≈ 2n −
1
3

+
4

405n
+

46
25515n2 + O(n−3). (17)

Throughout this paper we indicate with θe the angular size of the
half-light radius.

We fix the Sérsic index of the lenses to n = 4, correspond-
ing to a de Vaucouleurs model. Although early-type galaxies are
often described with a free Sérsic index, a de Vaucouleurs pro-
file is able to reproduce their surface brightness distribution to
a few percent in the radial range 1 kpc < R < 30 kpc (see e.g.
Sonnenfeld 2020), which is the region that is most relevant for
strong lensing. Finally, we assume that the light distribution of
the stellar component follows its mass distribution exactly. That
is, we do not allow for the presence of gradients in the stellar
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Fig. 4. Dimensionless surface mass density profile of Sérsic + gNFW
composite models. The Sérsic index of the baryonic component is fixed
to n = 4, and the scale radius of the dark matter component is fixed
to ten times the half-light radius. All of the profiles are normalised in
such a way that the Einstein radius is equal to the half-light radius. Solid
lines show the total density profile, dotted lines the dark matter density
profile, and dashed lines the baryonic density profile. The dashed blue,
orange, and green lines are identical, as they correspond to profiles with
the same fraction of baryonic mass within the half-light radius.

mass-to-light ratio. In Sect. 6.5 we discuss qualitatively what the
implications of relaxing this assumption would be.

We describe the dark matter halo with a generalised Navarro,
Frenk, and White (gNFW) profile. We first define it by its three-
dimensional distribution, which for a spherically symmetric pro-
file is

ρ(r) =
ρ0

(r/rs)γDM (1 + r/rs)3−γDM
· (18)

The parameter γDM is the inner density slope, ρ0 is a normalisa-
tion parameter, while rs is the scale radius. The logarithmic slope
of the density profile transitions from −γDM to −3 at a radius
r ≈ rs. The projected surface mass density of a gNFW profile
can be expressed in terms of the following integral (Wyithe et al.
2001):

Σ(R) = 2rsρ0

(
R
rs

)1−γDM ∫ π/2

0
dx sin x(sin x + R/rs)γDM−3. (19)

Figure 4 shows the dimensionless surface mass density pro-
file of Sérsic + gNFW models with various values of the inner
dark matter density slope γDM and of the fraction of projected
dark matter mass within the half-light radius, fDM. All of the pro-
files have a dark matter scale radius equal to ten times Re, and
are normalised in such a way that the Einstein radius is equal
to the half-mass radius of the stellar component (these assump-
tions are dropped later). Two main features emerge from Fig. 4.
First, the baryons generally dominate the total density in the
inner regions (θ < θEin), while the dark matter is the main com-
ponent at large radii. Second, models with different dark matter
fractions and inner dark matter slopes can conspire to produce
very similar total density profiles. This is the case, for example,
of the ( fDM = 0.5, γDM = 1.5) and the ( fDM = 0.2, γDM = 2.0)
models (green and blue lines in Fig. 4).

A4, page 6 of 26



Sonnenfeld, A., et al.: A&A 678, A4 (2023)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
β/θEin

10−1

100

101

|µ
2
|

fDM = 0.5, γDM = 1.0

fDM = 0.5, γDM = 1.5

fDM = 0.5, γDM = 2.0

fDM = 0.2, γDM = 1.5

fDM = 0.8, γDM = 1.5

Fig. 5. Magnification of the secondary image as a function of the source
position. The lenses are axisymmetric composite models. Their density
profile is plotted in Fig. 4. Vertical dotted lines mark the position of the
radial caustic.

3.2. Axisymmetric lenses, point sources

Axisymmetric lenses with a density profile of the kind intro-
duced in Sect. 3.1 can produce either one or three images of a
point source. This can be seen in Fig. 1, which shows the lens
equation for various values of the dark matter fraction and the
inner dark matter slope. All of the lenses shown in this figure
have the same Einstein radius, which is equal in size to the half-
mass radius of the stellar component. The radius of the radial
caustic, marked by the dotted lines in Fig. 1, is a strong func-
tion of the lens properties: it is largest in lenses with a smaller
dark matter fraction or steeper dark matter slopes. As a result,
the source plane area that is subject to strong lensing is an even
stronger function of these properties, since it scales with the
square of the radial caustic radius. In order to compute the lens-
ing cross-section, however, we must take the magnification into
account because it determines whether multiple images can be
detected or not.

Figure 5 shows the magnification of the secondary image as
a function of source position. The secondary image is the one
located in the region between the radial and tangential critical
curves, opposite to the source with respect to the lens centre. In
most practical cases this is the second brightest image. As Fig. 5
shows, the magnification is very large for sources close to the
lens centre (small values of β), decreases with increasing source
position and then increases in close proximity to the radial caus-
tic. While for the model with fDM = 0.8 (purple curve) the mag-
nification is above unity everywhere, other lens models can pro-
duce highly de-magnified secondary images for large values of
β. Depending on the intrinsic brightness of the lensed source,
these images may or may not be detected.

Using the definition of Eq. (14), we computed the lens-
ing cross-section of a set of axisymmetric lenses, with respect
to point sources with different brightnesses. In particular, we
considered model lenses with fixed Einstein radius, with angu-
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Fig. 6. Strong lensing cross-section of an axisymmetric lens and a point
source. The lens galaxy is a composite model, introduced in Sect. 3.1,
with an angular half-light radius equal to the Einstein radius. The left
panel shows the effect of varying the slope γDM for fixed fDM; con-
versely, the right panel shows variations as a function of fDM with γDM
fixed. The system is defined as a strong lens if at least two images are
detected. Different lines correspond to the difference, ∆m, between the
source magnitude and the survey detection limit for a point source.

lar half-mass radius θe fixed to θEin, and varying values of the
dark matter fraction and dark matter inner slope. The results are
shown in Fig. 6. Each line corresponds to a source with a given
intrinsic (i.e. unlensed) magnitude, ms. The difference between
this magnitude and the limiting magnitude of the survey is indi-
cated as follows:

∆m ≡ ms − mlim. (20)

We can see a clear trend between ∆m and the lensing cross-
section, in both panels of Fig. 6: σSL is larger for brighter
sources. The trend saturates below a certain ∆m, for sufficiently
small values of γDM or for sufficiently large values of fDM. In
these cases the lensing cross-section coincides with the full area
enclosed within the caustic, and further increasing the source
brightness does not result in an increased value of σSL.

At fixed source brightness, trends with the dark matter inner
slope or dark matter fraction are generally weak. The lines of
Fig. 6, however, have been computed by keeping the Einstein
radius fixed while varying γDM or fDM. This is achieved by
adjusting other properties of the lens, such as the total mass of
the baryonic or the dark matter component (see Fig. 4). In prac-
tice, when varying one ingredient of the lens density profile, the
Einstein radius varies in response. To get a complete view of how
the lensing cross-section depends on different lens properties, we
also computed how σSL responds in absolute terms by varying
one lens parameter at a time. Figure 7 shows σSL as a function
of stellar mass, half-light radius, inner dark matter slope, and
projected dark matter mass enclosed within an aperture of 5 kpc,
MDM,5.

The lensing cross-section increases with increasing stellar
mass and dark matter mass, decreases with increasing Re for
bright sources, while is only a weak function of γDM. The lack
of a clear trend between σSL and γDM appears to be in contra-
diction with the result of Mandelbaum et al. (2009), who found
a strong positive correlation between σSL and γDM. The origin of
this discrepancy lies in the different ways in which γDM is var-
ied in the two experiments. While we varied γDM at fixed MDM,5,
Mandelbaum et al. (2009) kept fixed the virial mass of the dark
matter halo. At fixed virial mass, increasing the inner dark mat-
ter slope results in a correspondingly larger dark matter mass
in the inner regions, which naturally results in a larger lensing
cross-section.
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Fig. 7. Absolute value of the strong lensing cross-section as a function of various lens properties. The reference lens is a galaxy at z = 0.3 with
log M∗ = 11.5, Re = 7 kpc, γDM = 1.5, log MDM,5 = 11.0, rs = 100 kpc, and a source at z = 1.5 In each panel, only one property of the lens is
varied, as indicated on the label of the horizontal axis. Each curve corresponds to a different value of ∆m, in accordance with Fig. 6. The dashed
line in each panel shows the quantity πθ2

Ein.

Figures 6 and 7 show that the trends between lens properties
and the strong lensing cross-section can be different for sources
with different brightnesses. The net effect in a strong lensing sur-
vey is an average over the source population, weighted by the
source luminosity function. This implies that surveys that target
different families of sources, with different luminosity functions
(for instance, galaxies or quasars), can have different strong lens-
ing biases. We explore this possibility in Sect. 5.

3.3. Elliptical lenses, point sources

We measured σSL for lenses with a fixed radial density profile
and different ellipticities, with respect to point sources of differ-
ent brightnesses. In particular, we set fDM = 0.5, γDM = 1.5,
rs = 10Re, θEin = θe, and set the ellipticities of both the baryonic
and dark matter components to be the same, with the same ori-
entation of the major axis. This is the lens model used to produce
the caustics plot of Fig. 2. Figure 2 suggests that the size of the
source plane area subject to strong lensing, the area enclosed
within the outermost caustic, does not vary strongly with the
ellipticity of the lens. Therefore, we expect the strong lensing
cross-section to be a weak function of ellipticity.

We carried out the computation of σSL by means of simu-
lation: we generated a large number of point sources randomly
distributed over a given area that includes the caustic, then used
Glafic to solve the lens equation, find the number of images and
their magnification. We then measured the fraction of sources
that are strongly lensed according to the criterion of Eq. (13) and
multiplied this value by the area over which sources are located.
The resulting σSL is shown in Fig. 8 as a function of the minor-
to-major axis ratio, q.

For bright sources the strong lensing cross-section is approx-
imately constant with axis ratio. This is because, as pointed out
earlier, in the bright source regime the cross-section is deter-
mined by the area enclosed within the radial caustic, which does
not vary much with lens ellipticity. For faint sources we observe
a larger variation with q, with a factor of two difference between
the largest and smallest value of σSL at fixed source brightness.

Most of the sources that result in detectable lenses produce
two detectable images. These are sources that are located in the
region enclosed between the radial and the tangential caustic. If
the source is located within the tangential caustic, however, four
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Fig. 8. Point source strong lensing cross-section as a function of lens
axis ratio. Solid lines show the cross-section based on the lens event
definition of Eq. (13) and dashed lines the cross-section based on the
detection of four images (quad cross-section). Lines of different colours
correspond to sources of different intrinsic magnitudes. The dashed blue
line, corresponding to the brightest source magnitude, overlaps com-
pletely with the dashed orange line. The dashed purple line is zero:
very faint sources cannot produce any detectable quads. The parame-
ters of the lens density profile are fDM = 0.5, γDM = 1.5, rs = 10Re,
and θe = θEin. The baryonic and dark matter components have the same
ellipticity and direction of the major axis.

detectable images are usually created. Lenses with four visible
images, usually referred to as quad lenses, are sometimes given
a high priority in certain lensing studies, because they offer more
constraints compared to double lenses. For instance, quads make
up the majority of the lenses used so far in time-delay studies
(Millon et al. 2020). For this reason we also computed an alter-
native lensing cross-section, in which the definition of a lensing
event requires the detection of four images, instead of two. This
is plotted in Fig. 8 with dashed lines. The cross-section for quads
is a strong function of lens ellipticity, for bright sources. This is
a consequence of the fact that the area enclosed within the tan-
gential caustic, which is where a source needs to be in order
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to produce four images, increases with increased lens ellipticity,
as Fig. 2 shows. For sources that are intrinsically fainter than
the detection limit, however, the quad cross-section is extremely
small, regardless of ellipticity.

3.4. Elliptical lenses, extended sources

In the case of an extended source, the complexity of the problem
is increased due to the addition of a series of features: the source
surface brightness distribution, with its radial profile, shape and
orientation, and the PSF. Moreover, as we discussed in Sect. 2.4,
there are different regimes in strong lensing of extended sources,
depending on the relative size of the source and the caustics of
the lens. For this reason, we split our analysis into two parts.
First, we explore the small source size regime, where the source
size is comparable to or smaller than the lens caustics. Then, we
consider cases in which the source size is bigger than the lens
caustics, which we refer to as the large source regime.

3.4.1. Small source sizes

For the sake of reducing the dimensionality of the analysis, we
focused on circularly symmetric sources. We also fixed the sur-
face brightness profile to an exponential disk (i.e. a Sérsic model
with n = 1). We then took a lens model with the same parame-
ters used in Sect. 3.3 and a minor-to-major axis ratio of q = 0.7.
We simulated a large number of images of extended sources with
Glafic and measured the fraction of them that results in a strong
lens, according to the definition of Sect. 2.4. For the small source
size experiment, we used pixels with a size equal to 1/20θEin and
convolved the images with a Moffat PSF with a full width at half
maximum (FWHM) of two pixels and a β parameter of 5.0. We
also assumed that the background noise is an uncorrelated Gaus-
sian field. We carried out experiments with sources with differ-
ent values of the total unlensed flux, f , and half-light radius, θe,s.
The results are shown in Fig. 9. The total flux of the source, indi-
cated in the legend, is measured in units of the sky background
rms fluctuation within an area equal to the square of the Einstein
radius.

As in the point source case, the lensing cross-section
increases with increasing total flux, at fixed source size. At fixed
flux, σSL stays approximately constant with increasing source
size until a given value, then drops rapidly for larger sizes. From
a qualitative point of view, this behaviour can be observed also
in the absence of lensing: increasing the size of a galaxy while
keeping its flux fixed lowers its average surface brightness. If
the surface brightness drops below the sky rms fluctuation level,
then it becomes very difficult to detect it. In order to determine
whether there are lensing-specific features in the σSL−θe,s rela-
tion of Fig. 9, we computed, for each source flux, the maximum
half-light radius for which it can be detected in the absence of
lensing. We used the same criterion as that of Sect. 2.4 to define
a detection: we defined the source footprint as the ensemble of
pixels that are 2σ above the background and required the total
signal-to-noise ratio within the footprint to be larger than ten.
The resulting limiting sizes are shown as vertical lines in Fig. 9.
For each given total flux, the non-lensing size limit is similar to
the value of θe,s at which the lensing cross-section drops.

This result suggests that, to the first approximation, lensing
does not introduce a strong selection in source size. While per-
haps surprising, this follows from the fact that gravitational lens-
ing preserves surface brightness: a source that can be detected in
the absence of lensing will produce images with the same sur-
face brightness when lensed, which can be detected as well. In
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Fig. 9. Strong lensing cross-section of an extended source: small source
size regime (θe,s < θEin). The cross-section is plotted as a function of the
ratio between the half-light radius of the source and the Einstein radius
of the lens. The lens model is fixed to be the same as in Fig. 8, with
axis ratio q = 0.7. The source is a circular exponential profile. Each
solid line corresponds to a different value of the total unlensed flux of
the source. The flux, f , is expressed in terms of the background noise
rms fluctuation measured over an area equal to θ2

Ein. The vertical dashed
lines correspond to the maximum size for which a galaxy with a given
flux can be detected in the absence of lensing. The horizontal dotted
line indicates the cross-section for a very bright point source (i.e. the
area enclosed within the caustics).

order to classify a source as strongly lensed, however, we require
that multiple images are observed. Only sources that lie within
a well-defined region give rise to a strong lensing configuration.
If part of the source extends outside of this region, then only
a fraction of its flux contributes to creating a set of strongly
lensed images. This lowers the signal-to-noise ratio of the multi-
ple images compared to the point source case. The result is that
σSL starts to decrease with increasing source size at values of θe,s
that are smaller than the no-lensing detection limit, as observed
in Fig. 9.

At the brightest flux explored in the experiment (green line
in Fig. 9), the lensing cross-section at small source sizes is larger
than the area enclosed within the radial caustic (black dotted line
in Fig. 9). This is because, when the source is very bright, it
can give rise to multiple images even while its centroid lies out-
side of the radial caustic, as long as its surface brightness dis-
tribution extends into it. This also explains why σSL increases
with increasing source size, before dropping to zero: the more
extended the source, the farther away from the lens centre it can
be while still producing multiple images.

3.4.2. Large source sizes

For the large source size case we fixed the surface brightness
profile of the source and varied the Einstein radius of the lens.
In particular, we set the source half-light radius to 20 pixels and
adjusted its total flux in such a way that the 2σ detection foot-
print in the absence of lensing extends out to the half-light radius.
Then, starting from the lens model used in the previous section,
we progressively increased the critical surface mass density to
reduce the Einstein radius down to values comparable to the
pixel size. Figure 10 shows the resulting strong lensing cross-
section as a function of the ratio between lens Einstein radius and
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Fig. 10. Strong lensing cross-section of an extended source: large source
size regime (θe,s & θEin). The cross-section is plotted as a function of the
ratio between the Einstein radius of the lens and the half-light radius of
the source. The source model is fixed to a circular Sérsic profile with
n = 1, detected out to the half-light radius. The source half-light radius
measures 20 pixels, and the PSF has an FWHM of two pixels. The lens
model is varied: starting from the model of Fig. 9, the critical surface
mass density is increased to produce progressively smaller values of
θEin. The solid line shows the lensing cross-section, in units of the foot-
print area of the source in the absence of lensing, as a function of the
ratio between the lens Einstein radius and the source half-light radius.
The dashed line delimits the area enclosed within the lens caustics, and
the dotted line shows the value of the cross-section corresponding to the
area of the source. The dash-dotted line is the FWHM of the PSF.

source half-light radius. For values of the Einstein radius close
to the size of the PSF, the lensing cross-section (blue solid line)
is very small: this is because the perturbations caused by lensing
are not well resolved. For larger values, σSL stays approximately
constant, around values that are comparable to the source size
(horizontal dotted line) and much larger than the area enclosed
within the caustics (red dashed line). We conclude that, in the
large source size regime, the main factor that determines the
lensing cross-section is the area of the background source, pro-
vided that the Einstein radius of the lens is larger than the PSF.

4. Lens population simulations

In the previous section we showed how the lensing cross-section,
which is closely related to the lens detection probability Pdet,
varies as a function of lens and source properties. From here
on we focus on the effect that those trends have on popula-
tions of lenses. We addressed this question by simulating popu-
lations of foreground galaxies and background sources, selecting
strong lenses among them, and comparing the properties of the
strong lens sample with the parent galaxy population. We sim-
ulated a lens-based search (as opposed to a source-based one),
in which strongly lensed images are searched among a stellar
mass-selected sample of galaxies. Our simulations are based on
empirical models, in which existing observations of the baryonic
component of galaxies are complemented with a set of assump-
tions on the mass distribution of the lenses. In Sect. 4.1 we
explain how we built our foreground galaxy sample, while in
Sect. 4.2 we describe the simulation of the background source
population. In Sect. 4.3 we describe how our mock observations
of lenses are generated. In Sect. 4.4 we apply a further selection
step, based on the angular size of the Einstein radius.

4.1. Foreground galaxies

Our foreground galaxy population consists of a volume-limited
sample of early-type galaxies, complete above a minimum
observed stellar mass of 1011 M�. We chose to focus on early-
type galaxies because many strong lensing surveys have prefer-
entially targeted this class of objects in their lens-finding phase
(e.g. Bolton et al. 2006; Gavazzi et al. 2012; Sonnenfeld et al.
2018). This, in turn, had a dual motivation: first, early-type
galaxies are among the most massive objects in the Universe,
and therefore they are more likely to be lenses; second, their
smooth surface brightness distribution and red colour makes it
easier to detect arcs from strongly lensed star forming galaxies
around them.

We describe lenses with elliptical versions of the two-
component model introduced in Sect. 3.1. In the following sec-
tions we explain how their parameters are generated.

4.1.1. Stellar mass and redshift distribution

We generated lens galaxies over a finite redshift range, 0.1 < z <
0.7. We chose these lower and upper limits because the value of
the critical surface mass density Σcs becomes very large outside
of this range, and the fraction of galaxies that act as strong lenses
drops substantially as a result.

We drew stellar masses from the stellar mass function of qui-
escent galaxies measured by Muzzin et al. (2013). In particular,
we used the following comoving number density distribution:

Φ(M(obs)
∗ ) = Φ∗

 M(obs)
∗

M∗∗

α exp

−M(obs)
∗

M∗∗

· (21)

We set Φ∗ = 1.009×10−3 Mpc−3, α = −0.92 and log M∗∗ = 11.21:
these are the best-fit values measured by Muzzin et al. (2013).

We refer to the stellar masses drawn from this distribution
as the observed stellar masses, M(obs)

∗ , as opposed to the true
stellar masses. The observed stellar mass is meant to represent
an estimate of M∗ based on stellar population synthesis mod-
elling, which is the method used by Muzzin et al. (2013) to mea-
sure the galaxy stellar mass function. Stellar population synthe-
sis measurements, however, are subject to systematic uncertain-
ties, since they have not been calibrated on galaxies whose stel-
lar mass is known by other means. We quantify the discrepancy
between the observed and true stellar mass by means of the stel-
lar population synthesis mismatch parameter αsps, defined as fol-
lows:

αsps ≡
M∗

M(obs)
∗

· (22)

The most important source of systematic uncertainty in the mea-
surement of the stellar mass is the assumption of the stellar initial
mass function (IMF). Muzzin et al. (2013) assumed a Kroupa
IMF (Kroupa 2001) to derive their measurements. This means
that, in the absence of other systematic effects, a galaxy with a
Kroupa IMF has a value of αsps = 1.

For each galaxy in the sample, we randomly drew a value of
logαsps from the following distribution:

P(logαsps) ∼ N(0.1, σ2
sps), (23)

where the notation N(µ, σ2) indicates a Gaussian with mean
µ and variance σ2. We set the mean of logαsps to 0.1, as
this is an intermediate value among estimates of αsps from the
literature (Conroy & van Dokkum 2012; Cappellari et al. 2013;
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Smith et al. 2015; Sonnenfeld et al. 2015, 2019). We adopted a
few different values for the scatter σα. We explain in Sect. 4.1.4
how these were chosen.

4.1.2. Stellar mass density distribution

We described the surface mass density distribution of each
galaxy as an elliptical de Vaucouleurs profile (a Sérsic profile
with n = 4). Given the observed stellar mass of a galaxy, we
assigned a half-mass radius by drawing it from the following
distribution in log Re:

P(log Re) ∼ N(1.20 + 0.63(log M(obs)
∗ − 11.4), 0.142). (24)

Then, we assigned an axis ratio q by drawing it from the follow-
ing beta distribution:

P(q) ∝ qα−1(1 − q)β−1, (25)

with α = 6.28 and β = 2.05. The choice for these distri-
butions was motivated by observations of a sample of early-
type galaxies. In Appendix A we explain how this sample was
defined and how the coefficients of Eqs. (24) and (25) were
determined.

4.1.3. Dark matter distribution

We modelled the dark matter distribution of each lens galaxy
with an elliptical gNFW halo (see Sect. 3.1 for its definition).
The parameters of the radial density profile were assigned as
follows. Given the stellar mass of a lens, we first determined
the value of its halo virial mass, Mh. We defined this as the mass
enclosed within a spherical shell with average density equal to
200 times the critical density of the Universe. Using current
weak lensing constraints on the halo mass of elliptical galax-
ies as a reference (Sonnenfeld et al. 2022), we drew halo masses
from the following distribution:

P(log Mh) ∼ N(13.0 + 1.0(log M∗ − 11.5), σ2
h), (26)

which is a Gaussian in log Mh with a mean that scales with stellar
mass and scatter σh. The intrinsic scatter in halo mass is not
well constrained observationally; therefore, we ran simulations
with different values of σh, as for the stellar population synthesis
mismatch parameter.

To determine the density profile of the halo we relied on a
theoretically motivated model that takes into account the effect
of baryons on the dark matter. We assumed the dark matter dis-
tribution to be initially described by an NFW profile with a con-
centration4 of five, then used the prescription of Cautun et al.
(2020) to model the response of the halo to the infall of baryons.
In the Cautun et al. (2020) model the halo response is approx-
imated with an analytical function that depends on the present
stellar mass distribution, and typically results in a more concen-
trated and steeper density profile compared to the original NFW
model. Finally, we fitted a gNFW profile to the surface mass
density of the contracted halo. By doing this, we were able to
fully describe the dark matter density profile with three param-
eters: Mh, γDM and rs. The dark matter density profile defined
in this way is determined uniquely by the halo mass, the stellar
mass and the half-light radius (the more concentrated the stellar
distribution, the stronger the halo response and the steeper the

4 The concentration is the ratio between the halo virial radius and the
scale radius, rs.

dark matter density profile). In principle we could have allowed
for additional degrees of freedom, for instance by relaxing the
assumption of a fixed initial halo concentration. In practice, as
we explain in Sect. 6.5, our main results are not affected by this
choice.

Given the radial profile of the dark matter halo, we obtained
an elliptical version of it by applying a transformation of the kind
of Eq. (12) to its projected surface mass density. We assumed that
the axis ratio and orientation of the halo is the same as that of the
stellar component.

4.1.4. Intrinsic scatter

The distribution in stellar mass, halo mass and dark matter inner
slope of our sample of simulated foreground galaxies depends
on parameters describing the intrinsic scatter in these properties,
namely σsps and σh. Direct observational constraints on these
quantities are poor. However, we can derive upper limits on them
on the basis of observed scaling relations.

Early-type galaxies lie on the stellar mass fundamental plane,
a scaling relation between stellar mass, half-light radius and cen-
tral velocity dispersion (Hyde & Bernardi 2009; de Graaff et al.
2021):

σe ∝ M(obs)βσ
∗ Rξσ

e . (27)

The existence of a fundamental plane relation is a conse-
quence of the virial theorem: the velocity dispersion of a
galaxy in dynamical equilibrium is directly related to the three-
dimensional mass distribution in its inner regions, which is typ-
ically dominated by the stellar component. At fixed observed
stellar mass distribution, however, the central velocity dispersion
can vary depending on the stellar population synthesis mismatch
parameter, on the dark matter mass and on the dark matter den-
sity profile. This gives rise to a spread in the values of the veloc-
ity dispersion given M(obs)

∗ and Re. Therefore, we can use the
observed scatter in velocity dispersion to put an upper limit on
the intrinsic scatter in the stellar population synthesis mismatch
parameter, halo mass and dark matter slope.

We used Jeans modelling for this purpose. We generated
samples of early-type galaxies with the recipes described above
and with different values of σsps and σh. Using the spherical
Jeans equation under the assumption of isotropic orbits, we pre-
dicted the central velocity dispersion of each galaxy in the sam-
ple. Then, we fitted a fundamental plane relation to this mock
sample and measured the predicted scatter in velocity dispersion
at fixed M(obs)

∗ and Re. We then varied σsps and σh to match the
observed and the predicted scatter. We did not attempt to match
the other parameters of the fundamental plane (i.e. the constant
of proportionality of Eq. (27) and the power-law indices βσ and
ξσ), because these are sensitive to the orbital anisotropy of the
galaxies, which we are asserting to be zero. The details of this
procedure are given in Appendix B.

We settled on three different sets of intrinsic scatter parame-
ters, as indicated in Table 1. We label them the fiducial, the low-
scatter and the high-scatter scenarios. The high-scatter scenario
is ruled out both by the fundamental plane and by weak lens-
ing constraints (Sonnenfeld et al. 2022). Moreover, our dynami-
cal model is quite simplistic, as it neglects the effects of orbital
anisotropy and departures from spherical symmetry, which are
additional sources of scatter. Nevertheless, we use it in our exper-
iment in order to obtain a more conservative upper limit on the
amplitude of the strong lensing bias.
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Table 1. Intrinsic scatter scenarios.

Model name σsps σh Predicted FP
scatter

Fiducial 0.08 0.20 0.034
Low scatter 0.05 0.10 0.021
High scatter 0.10 0.30 0.043

Notes. Adopted values of the intrinsic scatter parameters σsps and σh in
different simulations. For each set of values, the fourth column indicates
the scatter around the fundamental plane predicted via the spherical
Jeans analysis of Appendix B. The observed fundamental plane scat-
ter is 0.035.

4.2. Background sources

4.2.1. Galaxies

Our background galaxy population is taken from the surfs-
based KiDS-Legacy-Like Simulation (SKiLLS) input catalogue,
a hybrid simulation catalogue integrating cosmological simu-
lation with high-quality imaging observations (Li et al. 2023).
The cosmological simulation is obtained from the Synthetic Uni-
veRses For Surveys (surfs) simulations, a set of N-body simu-
lations from Elahi et al. (2018). The galaxy properties, including
the star formation history and the metallicity history, are from an
open-source semi-analytic model named Shark5 (Lagos et al.
2018). The original photometry is drawn from a stellar popu-
lation synthesis technique using stellar synthesis libraries with
physically motivated dust attenuation and re-emission mod-
els (Robotham et al. 2020). Li et al. (2023) further applied an
empirical correction to the original synthetic photometry to
better agree with the COSMOS2015 observations (Laigle et al.
2016). The galaxy morphology is described by a Sérsic pro-
file with three parameters: the half-light radius in angular units
θe,s, the Sérsic index ns, and the axis ratio qs. These structural
parameters are learned from the imaging data obtained with
the Advanced Camera for Surveys (ACS) instrument on the
Hubble Space Telescope (Griffith et al. 2012). We refer to
Li et al. (2023) for details on the learning algorithm and vali-
dation.

The complete SKiLLS catalogue contains ∼108 deg2 of
galaxies with redshift up to 2.5 and r-band apparent magnitude
down to 27. We applied a lower limit to the source redshift, by
selecting only sources with zs > 0.8. This ensures that all of
the sources lie behind all of the lenses. A similar cut could be
applied to a real survey using photometric redshifts, to reduce
the incidence of false positives (e.g. arc-like features physically
associated with the lens galaxy) in the lens finding phase. The
resulting number density of sources is 70 arcmin−2. We approxi-
mated their spatial distribution as uniform in the sky, that is, we
neglected clustering of the sources.

4.2.2. Quasars

We described the population of background quasars with the fol-
lowing double power-law luminosity function in the rest-frame
UV absolute magnitude, M:

Φ(M, zqso) =
Φ(M∗)

100.4(αQ+1)(M−M∗) + 100.4(βQ+1)(M−M∗) · (28)

Following Manti et al. (2017), we set αQ = −1.35 (faint-end
slope), βQ = −3.23 (bright-end slope), and adopted a redshift-

5 https://github.com/ICRAR/shark

evolving normalisation

log Φ∗ = −6.0991 + 0.0209zqso + 0.0171z2
qso (29)

and characteristic magnitude

M∗ = −22.5216 − 1.6510zqso + 0.2869z2
qso. (30)

Given the redshift and rest-frame UV luminosity of a quasar,
we then computed the apparent magnitude in the observed i-
band, mqso, using a quasar spectral template6 built from optical
and near-infrared spectra obtained by Vanden Berk et al. (2001),
Glikman et al. (2006).

For the sake of consistency with the population of back-
ground extended sources, we limited the redshift distribution of
quasars to the range 0.8 < zqso < 2.5. We then truncated the
distribution in mqso at two magnitudes fainter than the detec-
tion limit (which is specified in Sect. 4.3). Finally, we randomly
placed quasars in the source plane with a projected number den-
sity of 70 arcmin−2. This is a much larger number density than
observed in the real universe, but we are allowed to do so because
we are not interested in predicting the absolute number of strong
lenses, so this is a legitimate choice. The advantage of boosting
the number density of quasars is that it allows us to produce a
large number of lenses without the need for generating too big a
population of foreground galaxies.

4.3. Observations

For each of the three intrinsic scatter scenarios, we drew a popu-
lation of foreground galaxies covering 1000 sq. deg. The expec-
tation value of the number of galaxies in the corresponding
volume, given the redshift and stellar mass cuts described in
Sect. 4.1.1, is around 300 000. We approximated the foreground
galaxies as isolated: when determining whether a galaxy acts as
a strong lens, we only modelled the contribution to the lensing
signal from the galaxy itself, and neglected that of the environ-
ment. We discuss the possible implications of this approximation
in Sect. 6. For each lens, we determined its caustics relative to
the highest source redshift, zs = 2.5. We then placed sources
randomly behind the lens. If at least one source fell within a cir-
cular region enclosing the caustics, we proceeded to compute its
lensed images.

For the simulation with extended sources, we produced
images with properties similar to those expected for the Euclid
Wide survey (Euclid Collaboration 2022). We used a pixel size
of 0.1′′ and we applied a Moffat PSF with an FWHM of 0.2′′ and
a β parameter of 5.0. Finally, we assumed a background noise
level such that an extended source with half-light radius 0.5′′
and an apparent magnitude in the absence of lensing of ms = 25
is detected with S/N = 10. We then applied the peak detection-
based lens selection criterion introduced in Sect. 2.4 to find the
strong lenses.

The fiducial scatter simulation with extended background
sources produced a sample of 2113 lenses, corresponding to
a number density of 2.1 deg−2. This is about a factor of five
smaller than the number density predicted by Collett (2015) for
the Euclid survey. This is a result of differences in the description
of the source population, in the criteria used to define a strong
lensing event, and in the redshift and stellar mass cuts that we
applied to define the foreground galaxy population.

6 https://archive.stsci.edu/hlsps/reference-atlases/
cdbs/grid/comp_qso/
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Fig. 11. Einstein radius distribution of the simulated lens samples.
These are: galaxy-galaxy lenses in the fiducial, high scatter, and low
scatter scenarios and galaxy-quasar lenses with fiducial scatter, consid-
ering all lenses or only lenses that produce four images.

For the lensed quasars we did not simulate pixel-level data,
but simply computed the observed magnitudes of the multi-
ple images. Following the definition of Sect. 2.3, we included
in the sample of strong lenses only systems with at least
two images brighter than a limiting magnitude mlim. We set
mlim = 23.3, which corresponds to the 10σ detection limit of
the Legacy Survey of Space and Time (LSST) in a single visit
(Oguri & Marshall 2010). This is motivated by the fact that the
quasar lenses are meant to simulate a sample assembled for the
purpose of carrying out time-delay measurements, which in turn
require combining single-visit detections over many epochs. The
scenario that we are simulating, then, is that of a lens search in a
Euclid-like survey, followed-up with LSST time-domain obser-
vations.

The resulting number of quasar lenses in our simulation with
the fiducial scatter is 1621. This number is meaningless, given
that the simulation was created with an unrealistically large num-
ber density of quasars. More interesting is the relative number of
quad lenses with respect to the total, which is about 9%. This is
a slightly smaller value than the fraction of quads predicted by
Oguri & Marshall (2010). The reason for this discrepancy lies in
the differences between the lens mass models in the two simula-
tions.

4.4. Lens finding probability

Figure 11 shows the distribution in Einstein radius of the simu-
lated lens samples. In all cases, the distribution peaks at θEin ≈

0.7′′. Although all of the lenses in these samples are detected,
it does not necessarily follow that they would all be included in
a strong lensing study. There can be a few reasons for exclud-
ing certain lenses from a sample. One is the low accuracy of
lens finders: current automated lens finding algorithms tend
to produce lens candidates samples with low purity (see e.g.
Sonnenfeld et al. 2018; Petrillo et al. 2019; Savary et al. 2022).
Such samples are then visually inspected, and only those candi-
dates that can be clearly distinguished from false-positives are
kept. This visual inspection step tends to disfavour lenses with a
small image separation, because of the contamination from the
light of the lens galaxy.

Another possible reason for refining a sample of lens can-
didates is the availability of redshift measurements. Redshifts
of both the lens and the source are needed in order to convert
a lens model into a measurement of mass. When working with
large samples of lenses, obtaining spectroscopic measurements
is not a viable option, and photometric redshifts are a necessity.
Measuring the photometric redshift of a strongly lensed source,
however, is challenging, especially when the Einstein radius is
small and the source light is blended with the light from the lens
(Langeroodi et al. 2023).

Both of these scenarios can result in samples that are incom-
plete below a certain value of the Einstein radius. We simulate
this situation via the following Einstein radius-dependent lens
finding probability:

Pfind(θEin|S , det) =

{
1 if θEin > θEin,min
0 otherwise . (31)

In words, all lenses with Einstein radii larger than θEin,min are
included in the sample, while all those with smaller Einstein
radius are excluded. We refer to θEin,min as the completeness
limit: our simulated lens samples are complete down to θEin =
θEin,min. We explored scenarios with different values of θEin,min.
As the next section shows, the larger the minimum Einstein
radius, the higher the strong lensing bias.

5. Results

In this section we present the results of the lens population sim-
ulations. Section 5.1 shows the results of the galaxy-galaxy lens
experiment, while Sect. 5.2 focuses on the population of galaxy-
quasar lenses. Given the number of parameters that are needed
to describe our model, providing a complete characterisation of
the strong lensing bias is a problem with relatively high dimen-
sionality, and is beyond the scope of this paper. For the sake of
conciseness, we focus instead on the quantities that we consider
most important. Nevertheless, the output of our simulations is
available online7. We encourage readers who are interested in
studying aspects of the strong lensing bias that are not covered
in this section to download our data and analyse them directly.

5.1. Galaxy-galaxy lenses

In this section we show the results of the experiments with pop-
ulations of galaxy-galaxy lenses. We first present the results in
a qualitative way, then proceed to quantify the amplitude of the
strong lensing bias in various quantities of interest.

Figure 12 shows the distribution in the parameters of the
foreground galaxies of the lens systems, compared to those of
the parent population, for the fiducial scatter scenario with two
different values of the minimum Einstein radius: 0.5′′ and 1.0′′.
A completeness limit of 0.5′′ is close to what can currently be
achieved via visual inspection of high-resolution space-based
images (Garvin et al. 2022), while the 1.0′′ limit can be seen as
a more conservative case.

The most striking difference between the samples is in the
stellar mass: strong lensing selects preferentially galaxies with
larger values of M(obs)

∗ . Lenses tend to also have a larger halo
mass, a smaller half-light radius at fixed stellar mass, and a larger
stellar population synthesis mismatch parameter. The distribu-
tion in ellipticity and inner dark matter slope of the lenses instead

7 https://github.com/astrosonnen/strong_lensing_tools/
tree/main/papers/selection_effects
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Fig. 12. Comparison between the properties of lens samples and the parent population: distribution in foreground galaxy parameters. Filled
contours represent the distribution of the parent sample, solid green lines the distribution of the lenses with Einstein radii larger than 0.5′′, and
solid red lines the distribution of the lenses with Einstein radii larger than 1.0′′.

look very similar to that of the parent population. Additionally,
we can see that the amplitude of the strong lensing bias appears
to be always larger in the lens sample with the more restrictive
selection on Einstein radius. We quantify the amplitude of these
biases later in this section.

Figure 13 shows the distribution in parameters describing
the background source population, for the same simulations of
Fig. 12. Additionally, Fig. 13 shows the subset of the parent
population that consists of detectable sources. These are back-
ground galaxies that, in the absence of lensing, can be detected
according to the same criterion used for the lensed sources (i.e.
the S/N over their 2σ footprint is larger than ten). The detection
limit of the survey is at ms ≈ 25 (the actual limit varies depend-
ing on the surface brightness distribution parameters). Because
our simulated background source population extends to much
fainter magnitudes, the distribution of detectable sources differs
substantially from that of the parent population. We can then
consider two different strong lensing bias definitions: one that
quantifies the difference in lensed source properties with respect
to the parent population, and one that describes the difference
with respect to the detectable source population. We are mostly
interested in the second definition.

Strong lensing tends to preferentially select sources at higher
redshift, especially in the more restrictive case with θEin > 1.0′′.
This is because, at fixed lens properties, increasing the source

redshift lowers the critical surface mass density and, conse-
quently, increases the size of the caustics and the Einstein radius.
The distribution in the magnitude of the lensed sources is also
very different from that of the parent distribution, as it drops
rapidly for values larger than ms ≈ 25. Interestingly, however,
there does not seem to be a large difference with respect to the
distribution of detectable sources in the absence of lensing. This
result can appear to be somewhat counter-intuitive: lensing mag-
nification should allow the detection of sources that are intrinsi-
cally fainter than the detection limit. To some extent, this is the
case: the distribution of lensed sources shows a slight excess of
fainter galaxies compared to the unlensed case. However, as we
quantify later in this section, the difference is far from large. The
reason for this behaviour lies in the fact that, in the detection of
both lensed and unlensed sources, the most important quantity
is surface brightness, which is preserved by gravitational lensing
when the source is larger than the PSF size. As we showed in
Sect. 3.4, the lensing cross-section drops to zero once the sur-
face brightness of the source reaches a value that would make
it undetectable in the absence of lensing. For this reason, also
the distribution in half-light radius is very similar between the
lensed sources and the detectable source population.

Qualitatively, the results shown in Figs. 12 and 13 match our
expectations from Sect. 3. In the rest of this section we quantify
the lensing bias. We present the results in three different parts.

A4, page 14 of 26



Sonnenfeld, A., et al.: A&A 678, A4 (2023)

General population

Detectable w/o lensing

Lenses, θEin > 0.5′′

Lenses, θEin > 1.0′′

0.0 0.5 1.0

qs

22
24
26
28

m
s

0.0

0.5

1.0

θ s
,e

0

2

4

n
s

1 2
zs

0.0

0.5

1.0

q s

22 24 26 28

ms

0.0 0.5 1.0

θs,e

0 2 4
ns

Fig. 13. Comparison between the properties of lens samples and the parent population: distribution in background source parameters. Filled
contours show the distribution of the parent sample, solid black lines the distribution of the detectable sources, solid green lines the distribution of
the lenses with Einstein radii larger than 0.5′′, and solid red lines the distribution of the lenses with Einstein radii larger than 1.0′′.

First, we focus on the properties of the lens galaxies that can
be observed directly. These are quantities that can be derived
from photometry and spectroscopy with minimal assumptions:
the lens redshift, the observed stellar mass, the half-light radius
and the axis ratio8. Any bias in these quantities can be deter-
mined relatively easily in a real strong lens survey. In the second
part, we consider the parameters related to the mass distribu-
tion: the stellar population synthesis mismatch parameter and
the dark matter distribution parameters. Determining the bias on
these parameters is much more difficult, but these are quantities
of great interest from a galaxy science point of view. In the third
part, we focus on source distribution parameters.

5.1.1. Bias in observable lens parameters

Figure 14 shows the median redshift, median M(obs)
∗ , median size

for a given M(obs)
∗ , and median axis ratio of various lens popula-

tion simulations, as a function of the minimum Einstein radius.
We defined the median size at fixed M(obs)

∗ by fitting the follow-
ing mass-size relation to the Re−M(obs)

∗ distribution:

log Re ∼ µR,0 + βR(log M(obs)
∗ − 11.4). (32)

8 Strictly speaking, the axis ratio in mass is not necessarily observable,
but in the context of our simulations it is, since light and mass have the
same ellipticity.

The quantity shown in the third panel of Fig. 14 is the parame-
ter µR,0, which is the average log Re at an observed stellar mass
of log M(obs)

∗ = 11.4. The horizontal dashed line in each panel
shows the value of the parent population: the larger the distance
between the curve of a simulation and this line, the higher the
strong lensing bias.

As was already visible in Fig. 12, there is a clear bias towards
lower redshift, higher stellar mass and smaller sizes, with the
bias becoming stronger for more restrictive cuts in Einstein
radius. Biases in stellar mass and size are stronger for the simu-
lation with low scatter in αsps and Mh. This can be explained as
follows. For a given value of the observed stellar mass, strong
lensing selection favours galaxies with a larger αsps or Mh, or
with a smaller half-light radius. Since the galaxy stellar mass
function of the parent population is steep, lenses tend to have a
relatively small M(obs)

∗ and large values of αsps or Mh for their
observed stellar mass (this is shown more clearly in the next
section). If the intrinsic scatter in αsps and Mh is low, however,
the number of galaxies with a small M(obs)

∗ and a large stellar or
halo mass is greatly reduced. Only galaxies with a large M(obs)

∗

or a small size can therefore act as strong lenses. This is an inter-
esting result, because it suggests that it is in principle possible to
use the strong lensing bias on M(obs)

∗ or Re, which is observable,
as a way to constrain the amplitude of the intrinsic scatter in the
mass parameters, which is poorly known.
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5.1.2. Bias in lens mass parameters

Figure 15 shows the median of the distribution in various
mass-related quantities, as a function of the minimum Einstein
radius. The top panel is the median stellar population synthe-
sis mismatch parameter. In all simulations, strong lenses are

biased towards larger values than the parent population. The
bias is larger the higher the intrinsic scatter in αsps and Mh, and
increases with increasing θEin,min. For the fiducial model, the bias
on αsps can be as small as 0.03 dex (7%), if no cut on Einstein
radius is applied. However, it can rise up to 0.09 dex (23%) when
considering only lenses with θEin > 2′′. For comparison, we also
show two reference values of αsps, corresponding to a Chabrier
IMF (Chabrier 2003) and a Salpeter IMF (Salpeter 1955). These
values roughly bracket the current systematic uncertainty on
αsps.

The second panel of Fig. 15 shows the median halo mass
of galaxies with an observed stellar mass of log M(obs)

∗ = 11.4.
We measured this quantity by fitting the following relation to the
Mh−M(obs)

∗ distribution,

log Mh ∼ µh,0 + βh(log M(obs)
∗ − 11.4), (33)

and taking the resulting value of the parameter µh,0. Similarly to
the αsps case, the strong lenses are biased towards larger values
of the halo mass, with the bias being larger for higher-scatter
simulations and more restrictive cuts on θEin. In the fiducial scat-
ter scenario with a completeness limit of θEin,min = 1.0′′, the halo
masses of lenses are on average 0.16 dex larger than those of
their parent population.

The third panel of Fig. 15 shows the median projected dark
matter mass enclosed within an aperture of 5 kpc, MDM,5, at fixed
observed stellar mass and half-light radius. We obtained this
quantity by fitting the following relation to the MDM,5−M(obs)

∗ −Re
distribution:

log MDM,5 ∼ µDM,0 + βDM(log M(obs)
∗ − 11.4) + ξDM(log Re − 1.2).

(34)

Figure 15 shows the value of µDM,0. The bias on this quantity
is qualitatively similar to that on the total halo mass, but much
smaller in amplitude. There are two reasons for this. First, the
dependence of MDM,5 on Mh is shallower than linear. This is
because, as the virial mass increases, the virial radius increases
as well: the extra mass is spread over a larger volume, and
therefore the mass within the inner region does not increase
proportionally. Second, while µh,0 is the halo mass at fixed stel-
lar mass, µDM,0 is measured at fixed half-light radius as well.
The density profile of the dark matter halos in our simulation
have a dependence on galaxy size: the response of dark mat-
ter to baryons is stronger for more concentrated stellar distri-
butions (see Sect. 4.1.3). By capturing this dependence in the
model of Eq. (35), the residual scatter in MDM,5 around the
mean is reduced, and so is the strong lensing bias. This, how-
ever, is a minor effect: we repeated the analysis while setting the
dependence on size to zero and found minimal differences on
the derived values of µDM,0. In the fiducial scenario, the bias on
MDM,5 is as small as 0.02 dex for θEin,min < 0.5′′, and is negligible
in the low-scatter scenario.

In the fourth panel of Fig. 15 we show the average inner dark
matter slope at fixed observed stellar mass and half-light radius,
which we measured by fitting the following model

γDM ∼ µγ,0 + βγ(log M(obs)
∗ − 11.4) + ξγ(log Re − 1.2), (35)

and taking the resulting value of µγ,0. Different simulations show
different trends in the average γDM. These are the results of
underlying correlations between the dark matter density profile
and the stellar and halo mass. In our model, galaxies of a given
size with a larger stellar mass have a steeper dark matter slope,
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Fig. 15. Bias on lens mass properties as a function of the minimum Ein-
stein radius. First panel: median logαsps. Dotted lines indicate values
of αsps corresponding to a Chabrier and a Salpeter IMF (αsps = 1 cor-
responds to a Kroupa IMF). Second panel: median Mh at log M(obs)

∗ =

11.4. Third panel: median MDM,5 at log M(obs)
∗ = 11.4 and log Re = 1.2.

Fourth panel: median γDM at log M(obs)
∗ = 11.4 and log Re = 1.2. In each

panel, the dashed line indicates the value of the parent population. Error
bars indicate the standard deviation of the mean of the lens sample.

because the response of the dark matter to the infall of baryons
is stronger. Vice versa, galaxies with a larger halo mass have a
shallower density slope. At fixed M(obs)

∗ and Re, strong lenses
have both a larger stellar mass (because their αsps is larger) and

a larger halo mass. In the simulation with low scatter, the bias
in stellar mass is more important; therefore, γDM has a positive
bias. In the simulation with large scatter, the bias in halo mass
dominates, and therefore γDM is negatively biased.

5.1.3. Bias in source parameters

Figure 16 shows the lensing bias in source-related parameters,
with respect to the population of sources that are detectable
without lensing. As previously seen in Fig. 13, lensed sources
are biased towards higher redshift (top panel of Fig. 16), with
the trend being larger for more restrictive cuts on the Einstein
radius. The second panel shows the bias in the source magnitude.
This bias is negative for small values of θEin,min, that is, lensed
sources tend to be brighter than their field counterparts. Naively
one might have expected the opposite trend, as strong lensing
magnification allows the detection of sources that are intrinsi-
cally fainter than the detection limit. However, as the analysis of
Sect. 3 clearly shows, the lensing cross-section is always larger
for brighter sources, and that explains the sign of the bias. At
the same time, the median does not capture the whole picture of
the bias in ms. For instance, in the fiducial simulation with no
cut on the Einstein radius, the 90th percentile of the ms distribu-
tion is 26.05, while that of the population of detectable sources
is 0.14 mag brighter: indeed, strong lensing allows the detection
of fainter sources.

The third and fourth panels of Fig. 13 show the bias in half-
light radius and Sérsic index, respectively, for sources within a
magnitude bin centred on ms = 25 and with a 0.4 mag width. We
detected no clear sign of bias. Finally, the fifth panel shows the
bias in source axis ratio. Also in this, case no obvious sign of
bias was detected, except in the largest values of θEin,min.

5.2. Galaxy-quasar lenses

5.2.1. Bias in lens parameters

The main goal of the experiment with lensed quasars is to check
whether there are any differences in the strong lensing bias
with respect to the extended source case, at fixed properties
of the foreground galaxy population. For this reason, we only
ran simulations with lensed quasars in the fiducial scatter sce-
nario and compared the results with those from the extended
source simulation. We are also interested in understanding how
the subset of quad lenses differs from the entire population of
quasar lenses; therefore, we also analysed that subsample on
its own.

The first four rows of Fig. 17 show the strong lensing bias as
a function of minimum Einstein radius in the following quanti-
ties: stellar population synthesis mismatch parameter, halo mass
at fixed stellar mass, enclosed dark matter mass at fixed stel-
lar mass and half-light radius, and axis ratio. The biases of the
population of lensed quasars (red curves) are very similar to
that of lensed galaxies (blue curves), especially for values of
θEin,min < 1′′, When considering only quad lenses, however,
there are some differences, the most remarkable of which is the
bias in the axis ratio: quad lenses tend to be on average galax-
ies with a higher ellipticity. This is a well-known effect (see e.g.
Keeton et al. 1997) that can be explained in the context of the
results of Sect. 3.2: the higher the ellipticity, the larger the area
enclosed within the inner caustic, which is where a source needs
to lie in order to produce four or more images. Quad lenses tend
to also have a slightly larger halo mass at fixed stellar mass, for
θEin,min < 1′′.
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5.2.2. Impact on H0

A measurement of the time delay between the images of a lensed
quasar can be converted into an estimate of the expansion rate of
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Fig. 17. Bias in the population of quasar lenses (all and quads only),
compared to the extended source simulation. First panel: median
logαsps. Second panel: median Mh at log M∗ = 11.5. Third panel:
median MDM,5 at log M∗ = 11.5 and log Re = 1.2. Fourth panel: median
lens axis ratio. Fifth panel: median mass-sheet transformation parame-
ter, defined in Appendix C. In each panel, the dashed line indicates the
value of the parent population. Error bars indicate the standard deviation
of the mean of the lens sample.

the Universe, H0. In general, though, the value of H0 is degen-
erate with the mass distribution of the lens (and of matter along
the line of sight), which can be difficult to constrain on an indi-
vidual lens basis. One possible strategy to break this degeneracy
is to use information gathered from a larger set of lenses as a
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prior for the time-delay lenses. This was the strategy adopted
by Birrer et al. (2020) in the most recent measurement of H0 by
the TDCOSMO Collaboration: they combined a larger sample of
extended source lenses with a smaller set of time-delay lenses.
In this section we want to quantify the possible bias on H0 that
can result from this approach.

The lens mass model used by Birrer et al. (2020) consists in
a power-law density profile modified by a mass-sheet transfor-
mation. The corresponding projected density profile is

κ(θ) ∝ λmstθ
1−γ + (1 − λmst), (36)

where λmst is called the mass-sheet transformation parameter.
Strong lensing data can constrain the power-law index γ very
well, but not at all λmst. Given the time delay, the inferred
value of the Hubble constant H0 scales linearly with 1/λmst.
Birrer et al. (2020) measured the population distribution of λmst
on the sample of extended source lenses, by combining strong
lensing and stellar kinematics data, and then used it as a prior
in the time-delay analysis. Although the mass model used in our
work is different from that of Eq. (36), we can estimate the bias
associated with this approach by computing the value of λmst for
each lens and then comparing the strong lensing bias on λmst of
extended source and quasar lenses. Appendix C explains how
we obtained λmst for each lens. The strong lensing bias on the
median value of λmst is shown in the fifth panel of Fig. 179.

At fixed minimum Einstein radius, there is a small differ-
ence between the median λmst in extended source and quasar
lenses, typically of order 1%. The associated bias on H0 is, there-
fore, equally small. The value of λmst, however, increases with
increasing minimum θEin. This implies that if the two samples
probe different ranges in Einstein radius, the bias on H0 can
be larger than that. The bias can also be larger if the properties
of the general population of galaxies (as opposed to the strong
lenses) are used to inform the structure of time-delay lenses
(see Collett & Cunnington 2016). This is simply because quasar
lenses are on average more similar to galaxy-galaxy lenses than
they are to the underlying galaxy population (the blue and red
curves in Fig. 17 are closer to each other than they are to the
dashed horizontal lines).

6. Discussion

6.1. Key results

In order for a galaxy-source pair to be included as a strong lens
in a survey, three conditions must be met. First of all, at least
part of the source must be multiply imaged. Second, the multiple
images must be detectable. Third, the lens must be recognised as
such. Each one of these conditions introduces a bias with respect
to the parent population of foreground galaxies and background
sources. Together, they define the lens selection probability term
Psel of Eq. (1). The first two points are intrinsic to a strong lens-
ing survey and constitute an unavoidable source of bias. The best
case scenario occurs when the efficiency of including a detected
strong lens in a survey is always one, and the sample is 100%
complete. In this case, the third condition does not introduce
any further selection and the strong lensing bias is minimised.
We explore this scenario in Sect. 5 when setting the minimum
Einstein radius to zero. If only lenses with Einstein radii larger
than a given threshold are selected, however, the bias generally
increases.
9 Since λmst is only defined for strong lenses, the median value of λmst
of the general population of galaxies is not defined.

The strong lensing bias affects all quantities that are related
to the mass distribution of the lens, as well as the redshifts of
lens and source and the source surface brightness parameters.
Some of these quantities, such as the observed stellar mass and
half-light radius of the lenses, can be directly measured, and it
is straightforward to quantify their lensing bias. Other quanti-
ties, however, such as the stellar population synthesis mismatch
parameter or the dark matter content, are difficult to obtain via
traditional, non-lensing, observations. Our simulations are par-
ticularly useful to quantify the bias on these properties.

In the fiducial scatter scenario, the one consistent with the
observed scatter around the fundamental plane, the bias on αsps
varies from 0.03 dex, when no restrictions on the lens Einstein
radius are applied, to 0.09 dex, corresponding to the extreme
case in which only lenses with θEin > 2.0′′ are selected (see
Fig. 15). A reasonable value for the minimum Einstein radius
in a space-based survey like Euclid or the Chinese Space Sta-
tion Telescope is θEin,min = 0.5′′. In this case, the bias on αsps
is slightly smaller than 0.04 dex. The current systematic uncer-
tainty on αsps is 0.2−0.3 dex: this is roughly the difference in
measurements of the stellar mass of a galaxy obtained with a
Chabrier or a Salpeter IMF. Compared with this uncertainty, the
amplitude of the strong lensing bias on αsps is small: strong lens-
ing observations can be used directly to discriminate between
these two alternative choices of IMF, without the need to correct
for selection effects. Such a goal could be reached with a sam-
ple size of a thousand lenses and a statistical study of the kind
proposed by Sonnenfeld & Cautun (2021).

Strong lenses are also biased towards larger halo masses.
Nevertheless, when focusing on the dark matter content in the
inner regions, the amplitude of the strong lensing bias is rela-
tively small, especially when controlling for the stellar distribu-
tion of the lens galaxies. For instance, at fixed observed stellar
mass and half-light radius, the bias on the projected dark mat-
ter mass enclosed within 5 kpc, MDM,5, is only a few percent in
the fiducial scatter scenario with θEin,min < 1.0′′. This means that
strong lenses can indeed be used to understand the inner dark
matter distribution of galaxies, as long as the dependence of the
dark matter distribution on the properties of the baryonic com-
ponent is accurately modelled (for example, by following the
approach of Sonnenfeld & Cautun 2021).

We also looked at the bias on source-related parame-
ters. Strong lensing causes the luminosity function of back-
ground sources to be broadened, compared to the distribution
of detectable sources. On the one hand, it preferentially selects
brighter sources, because the lensing cross-section increases
with increasing source brightness. On the other hand, it allows
for the detection of sources that are intrinsically fainter than the
detection limit in the absence of lensing. Interestingly, we did
not find any significant bias on the source size, at fixed magni-
tude. This result follows from the fact that our lens detection
criterion relies on a surface brightness threshold, and surface
brightness is preserved by lensing. However, it appears to be
in contradiction with the work of Oldham et al. (2017), who
argued that their strong lens sample selected preferentially com-
pact sources. The origin of this discrepancy probably lies in the
differences between the criteria used to define a strong lens in the
two studies. The Oldham et al. (2017) sample was selected pri-
marily via spectroscopy, by looking for signatures of two galax-
ies at different redshifts in the Sloan Digital Sky Survey (SDSS;
York et al. 2000) data. SDSS spectra were taken in fibres with a
1.5′′ radius. Lensed galaxies that are comparable in size to this
scale, or larger, are less likely to be detected, because part of their
flux extends outside of the fibre. Compact galaxies with a large
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overall magnification, instead, are more likely to be detected (see
the discussion in Sect. 5.3 of Oldham et al. 2017). We refer the
reader to Arneson et al. (2012) for a thorough study of selection
effects associated with spectroscopy.

There is also an indirect way in which strong lensing could
preferentially probe more compact sources than possible in the
field. Sources that are smaller than the size of the PSF can be
easily confused as stars in our own Galaxy. Since these stars
cannot be strongly lensed into multiple images, the detection of
a strong lens automatically confirms the extragalactic nature of
a lensed source. This type of selection effect could explain, for
example, the detection of an apparent outlier in the magnitude-
size relation of Lyman-break galaxy by means of strong lens-
ing, by Jaelani et al. (2020). It is, however, improper to refer to
this effect as strong lensing bias, since the star-galaxy separation
is a bias that primarily affects field observations. Our analysis
showed that the tendency to select compact sources is not a gen-
eral feature of strong lens samples.

6.2. Combining lensed quasars with lensed galaxies

Our experiments were also useful for understanding the possi-
ble biases that might incur when combining information from
samples of galaxy-galaxy lenses with samples of galaxy-quasar
lenses. On the one hand the biases in the mass-related quantities
(αsps and MDM,5) are very similar in simulations with the same
foreground galaxy population and different background sources
(see Fig. 17). On the other hand, these biases are a function of the
completeness limit. In order to use a sample of strong lenses as
a prior for another sample, then, it is important to make sure that
(1) the parent population of foreground galaxies among which
lenses are searched for is the same in both surveys, and (2) the
two surveys can probe the same distribution in Einstein radius.

The above argument applies to samples of quasars selected
regardless of the number of multiple images. When dealing with
quad lenses, however, the situation is more complicated. First of
all, because our experiment revealed differences in the bias on
the dark matter distribution between quads and the entire sam-
ple of lensed quasars. Second, because quad lenses tend to have
a preferentially higher ellipticity. The ellipticity is important in
the context of stellar dynamical analyses, which are often used in
combination with strong lensing to constrain lens mass param-
eters (see e.g. Yıldırım et al. 2020). In order to correctly inter-
pret stellar dynamics data, assumptions on the three-dimensional
structure of a lens must be made. This is directly related to the
projected ellipticity: galaxies with an axis ratio close to one tend
to be preferentially elongated in the line-of-sight direction, and
vice versa. When using stellar dynamics-based mass measure-
ments to inform the properties of a sample of quad lenses, it is
therefore important to take into account possible biases due to
the different three-dimensional structure of the two samples.

6.3. The importance of the source population properties

Strictly speaking, the results shown in Sect. 5 apply only to sam-
ples of lenses and background sources with the same properties
as our simulations. Real lens samples can have more complex
source distributions. For example, many existing lens-finding
algorithms are tuned to identify sources with different colours
from the lenses, introducing a selection that can modify the
source distribution in redshift-magnitude space. However, the
comparison of Sect. 5.2 shows that, at fixed foreground galaxy
population, the strong lensing bias for the sample of extended
sources is indistinguishable from that of the lensed quasar popu-

lation, at least for values of θEin,min < 1.0′′. This result suggests
that the dependence of the strong lensing bias on the details of
the background source population is very weak, as long as no
additional selection on the image configuration is applied (e.g.
by selecting only quad lenses). This is not a coincidence, but is a
consequence of the fact that the dependence of the strong lensing
cross-section on the lens parameters is a weak function of source
magnitude10, especially for magnitudes close to the detection
limit (see Sect. 3.2). We can then conclude that the details of the
properties of the background source population play a secondary
role in determining the strong lensing bias. A selection aimed at
specific kinds of sources, such as blue star-forming galaxies or
quasars, results primarily in different numbers of lenses being
discovered, but does not change how biased the lenses are with
respect to the general galaxy population.

6.4. Mitigation strategies

As we discussed throughout this paper, the amplitude of the
strong lensing bias depends on the intrinsic scatter in the mass
parameters of the foreground galaxy population. One way to
minimise the bias, therefore, is to identify scaling relations
between observable quantities and mass-related properties that
can account for part of the scatter. Describing the inner dark
matter distribution as a function of stellar mass and half-light
radius, as we did in Sect. 5.1, is the first step in this direction:
the bias in MDM,5 at fixed M∗ and Re is smaller than the over-
all shift in the median MDM,5 of the lens population (albeit by
a marginal amount, as we pointed out earlier). This description
could be extended by including the central velocity dispersion
as an additional control parameter. The velocity dispersion is
directly related to the mass distribution of the lens galaxy, which
means that, for example, the distribution in αsps at fixed veloc-
ity dispersion should be narrower than its global distribution
marginalised over the whole population. The central velocity dis-
persion, however, is very sensitive to the orbital anisotropy, to the
three-dimensional structure, and to gradients in stellar mass-to-
light ratio, which are not well known. Therefore, it is difficult to
quantitatively estimate the benefit of including it in the descrip-
tion of the lensing bias.

If one wishes to directly account for the strong lensing
bias, the formally correct procedure is to explicitly model all
of the selection steps in a Bayesian hierarchical formalism, as
explained by Sonnenfeld (2022). Although this can be com-
putationally challenging, machine learning can offer an effi-
cient alternative (Legin et al. 2023). In order for either of these
approaches to work, however, it is essential that the lens selec-
tion procedure can be simulated. This, in turn, requires having
an objective definition of a strong lensing event. A peak-based
definition such as that introduced in Sect. 2.4 could be used for
this purpose.

Nevertheless, it can still be difficult to fully forward model
strong lensing selection if visual inspection by humans is
involved in the definition of the lens sample. In that case, a
possible alternative is to approximate the lens finding probabil-
ity Pfind. For example, we can make the assumption that Pfind
depends purely on the Einstein radius. This is a reasonable
assumption, as long as the lens finding procedure does not selec-
tively pick lenses with different image configurations depending
on their Einstein radius. The dependence of Pfind on θEin could
then be described empirically and inferred during the analysis.

10 The cross-section itself is a strong function of source magnitude, but
the trends between σSL and the lens parameters are not.
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This is essentially the approach adopted by Sonnenfeld et al.
(2019) in the analysis of strong and weak lensing data from the
Hyper Suprime-Cam Survey.

6.5. Limitations of our analysis

The simulations on which our analysis is based are as complex
as required by the goal of the analysis itself, which is to estimate
the amplitude of the strong lensing bias in a few key quantities.
We did, however, make some simplifying assumptions. One such
assumption consisted in neglecting the contribution from line-of-
sight structure and the environment to the lensing signal, which
typically introduce an external shear and convergence. The effect
of including external shear in a lens model is similar to that of
changing the ellipticity of the lens. External convergence mim-
ics the effect of adding or removing a constant sheet of invisible
mass, producing an effect similar to varying the distribution of
dark matter. Typical values of the external shear and external
convergence are |γ| < 0.1 and |κext| < 0.1 (Millon et al. 2020):
these values are small compared to the typical ellipticities and
dark matter fractions of our simulated lenses. Therefore, while
including them might modify slightly the amplitude of the strong
lensing bias in the axis ratio and dark matter distribution param-
eters, the conclusions of our analysis would not be affected.

We also assumed that the dark matter density profile of the
galaxies is completely determined by the halo mass and by the
stellar mass distribution (see Sect. 4.1.3). In reality we expect
there to be a range of density profiles, for example as a result
of halos having a non-zero scatter in their initial (i.e. before
baryonic infall) concentration parameter. We could in princi-
ple carry out an experiment with such an additional source of
variation in the dark matter profile. Adding a scatter in concen-
tration while keeping the halo mass scatter parameter σh fixed
results in a larger spread in the inner dark matter distribution,
which would increase the amplitude of the lensing bias. How-
ever, the value of σh that we chose for our fiducial experiment
was tuned on the basis of the predicted scatter in velocity dis-
persion around the fundamental plane. That scatter would also
be increased by adding flexibility to the dark matter density pro-
file. Then, in order to be consistent with the analysis carried out
in this paper, the value of σh would need to be lowered accord-
ingly. This, in turn, would reduce the amplitude of the strong
lensing bias and introduce a bias on the halo concentration. Since
lensing and dynamics are sensitive to the mass distribution at
comparable scales (the half-light radius and Einstein radius are
similar for most of the lenses), we expect these two effects to
cancel out to first approximation. The lensing bias on quanti-
ties directly related to the inner mass distribution, such as αsps
and MDM,5, would be left roughly unchanged. The main effect
of adding scatter to the concentration is to reduce the correlation
between the total halo mass and the dark matter mass enclosed
within the Einstein radius. This would then reduce the amplitude
of the strong lensing bias on the halo mass.

Another simplifying assumption that we made was that of
adopting a constant mass-to-light ratio for the stellar compo-
nent. Massive galaxies are known to have colour gradients, the
main effect of which is to cause the stellar half-mass radius
to be smaller than the half-light radius (Szomoru et al. 2013;
Suess et al. 2019). Since, as shown in Sect. 5, strong lensing bias
tends to select galaxies with a more compact stellar distribution,
it would also preferentially select galaxies with a steeper mass-
to-light ratio gradient. However, testing for the amplitude of the
strong lensing bias on the mass-to-light ratio gradient is beyond
the scope of this paper.

6.6. Lens versus source selection

The simulations described in Sect. 4, on which our experiment is
based, are examples of so-called lens-selected surveys: the lens
samples are built by first defining a population of possible lens
galaxies and then searching for strong lenses among them. Pho-
tometric lens searches are typically carried out in this way (see
e.g. Gavazzi et al. 2012; Sonnenfeld et al. 2018; Petrillo et al.
2019). An alternative approach is to build a source-selected sam-
ple, by first searching for signatures of strong lensing within a
population of possible background sources and then obtaining
information on the lens galaxies (see e.g. Hezaveh et al. 2013).
In principle, these two approaches lead to different strong lens-
ing biases. For example, from Fig. 12 we can see that the stellar
mass distribution of the lenses extends below the minimum mass
cut that we applied to the population of foreground galaxies: a
source-based search that is able detect those lenses would result
in a different sample and a different associated strong lensing
bias. However, when considering only lenses with θEin > 1′′,
lens-selection and source-selection yield the same sample (see
the red histogram in Fig. 12): in the limit of large Einstein radius,
the two operations (identifying suitable lens galaxies and detect-
ing a strongly lensed source) commute.

In general, there is no such thing as a purely lens- or source-
selected sample. A lens-based search is always also source-
based, because a detection of the lensed source is required to
identify a lens. A source-based search is also lens-based, because
the lens properties determine important observational features of
the lensed source, such as the number of images, the image sep-
aration and the total flux.

6.7. Alternative lens definitions

Our extended source analysis was based on a peak detection cri-
terion to define strong lensing events, as explained in Sect. 2.4.
However, many previous studies aimed at simulating populations
of lenses adopted a magnification-based definition, in which a
lens-source system is classified as a strong lens if the magni-
fication of the source is larger than a minimum value (see e.g.
Collett 2015; Robertson et al. 2020). In order to check whether
our results are robust to the choice of definition of a strong lens-
ing event, we re-analysed the fiducial sample with this alternative
definition. In particular, we defined as strong lenses all systems
with a detected background source and µtot > 3, where µtot is the
total magnification (obtained by integrating the flux of all of the
lensed images and dividing it by the intrinsic source flux). The
total number of strong lenses increased by 34% with this new
definition, mostly due to the inclusion of fainter sources with
no detected multiple images. Figures 18 and 19 show the strong
lensing bias on a series of lens- and source-related properties.
Besides the change in the source redshift and magnitude (first
two panels in Fig. 19), we see very little differences in the bias
with respect to the peak-based definition of the fiducial analysis.
We then conclude that the exact definition of a strong lensing
event does not have a big impact on the strong lensing bias of
lens-related properties. We stress, however, that magnification
is not a directly observable quantity, and therefore we advise
against applying magnification-based lens definitions to define
lens samples, for the reasons discussed in Sect. 2.4.

7. Conclusions

Strong lensing is a very active line of research, but a comprehen-
sive understanding of the selection effects associated with it has
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Fig. 18. Lens strong lensing bias in the case of a magnification-based
lens definition (brown curves), compared to that of the fiducial anal-
ysis (blue curves). First panel: median logαsps. Second panel: median
MDM,5 at log M∗ = 11.5 and log Re = 1.2. Third panel: median γDM at
log M(obs)

∗ = 11.4 and log Re = 1.2. Fourth panel: median axis ratio.
Fifth panel: median mass-sheet transformation parameter, defined in
Appendix C. In each panel, the dashed line indicates the value of the
parent population.

so far been lacking. This work takes a major step towards fill-
ing that knowledge gap. After a thorough investigation, we have
learned several lessons regarding the strong lensing bias in pho-
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ysis (blue curves). First panel: median source redshift. Second panel:
median source magnitude. Third panel: median half-light radius in the
magnitude bin 24.8 < ms < 25.2. The dashed line indicates the median
value of the population of sources detectable in the absence of lensing.

tometrically selected lens samples. The following are the most
important ones.
1. The strong lensing cross-section increases primarily with

increasing lens mass, with decreasing half-mass radius, and
with increasing source brightness. At fixed stellar distribu-
tion and fixed dark matter mass enclosed within a given aper-
ture, varying the inner dark matter slope has little impact
on the strong lensing cross-section (as long as the aperture
within which the dark matter mass is normalised is compa-
rable to the Einstein radius).

2. The strong lensing cross-section has little dependence on the
size of the source if the former is smaller than the Einstein
radius and is detectable in the absence of lensing. Sources
with a surface brightness that is too low to be detected are
still undetected when strongly lensed.

3. Lens galaxies tend to be more massive and more compact
than their non-lens counterparts. Their redshift distribution
also differs from that of the general galaxy population. At
fixed observed stellar mass (i.e. inferred by means of stellar
population synthesis), lens galaxies have a higher intrinsic
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stellar mass (i.e. a larger stellar population synthesis mis-
match parameter, αsps) and a higher dark matter halo mass.
At fixed stellar mass and size, lens galaxies are still biased
towards a larger dark matter content.

4. The amplitude of the strong lensing bias depends on how
broad the distribution of the parameters describing the lens
population is. Important quantities in this regard are the
intrinsic scatter in the stellar population synthesis mismatch
parameter, σsps, and in the dark matter halo mass, σh.
Increasing the values of σsps and σh results in a stronger bias
on αsps and on the dark matter mass, and a weaker bias on the
observed stellar mass and half-light radius. This implies that,
in principle, we could constrain the intrinsic scatter param-
eters, which are currently poorly known, by measuring the
amplitude of the strong lensing bias on M(obs)

∗ and Re, which
is easily observable.

5. The strong lensing bias varies depending on the complete-
ness of the lens sample as a function of the Einstein radius.
Surveys that can discover lenses with a smaller Einstein
radius have a smaller associated strong lensing bias in all
quantities.

6. Under reasonable assumptions regarding the intrinsic scatter
parameters, for a Euclid-like survey that is complete down
to θEin = 0.5′′ the bias on αsps is smaller than 0.04 dex
(10%). This bias is much smaller than the current systematic
uncertainty on the stellar population synthesis-based stellar
masses. Therefore, strong lensing measurements could be
used directly to calibrate stellar mass measurements of mas-
sive galaxies to 10% accuracy, without the need to correct
for selection effects. Under the same assumptions, the strong
lensing bias on the average halo mass at fixed stellar mass is
0.07 dex, while that on the inner dark matter distribution at
fixed stellar mass and size is 0.02 dex.

7. Strong lensing selection broadens the magnitude distribu-
tion of background sources, compared to the population of
objects that are detectable without lensing. At the same time,
we did not find any evidence for a bias in the size distribution
of background sources at fixed magnitude.

8. Simulations with lensed quasars in place of extended sources
showed that the amplitude of the strong lensing bias in the
lens-related parameters is not very sensitive to the details
of the source population. This result has positive implica-
tions for time-delay lensing studies: it means that informa-
tion from a sample of galaxy-galaxy lenses can be used as
a prior on the properties of a set of galaxy-quasar lenses, as
long as the two samples probe the same range in Einstein
radius and lens observable properties. The associated bias on
the inference of H0 is of the order of 1%.

9. Samples of quad lenses are biased towards galaxies with
larger ellipticities, which implies that their three-dimensional
structure is also biased. This means that particular care must
be taken when stellar dynamics measurements obtained on
galaxy-galaxy lenses are used to inform the properties of
quads.

In conclusion, strong lensing selection introduces unavoidable
biases in the properties of the lens galaxy and background source
populations. Biases that affect observable properties, such as
the redshift and the light distribution of the lens, can be easily
quantified. Biases on mass-related quantities, such as the stel-
lar mass-to-light ratio or the dark matter distribution, are more
difficult to measure directly and must be modelled taking selec-
tion effects into account. Designing strong lensing surveys with
clearly defined and easily modellable selection criteria would
help greatly in this task.
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Appendix A: Lens galaxy surface brightness
distribution

To assign half-light radii and ellipticities to the simulated lenses
we relied on observations of a sample of early-type galaxies
selected from the SDSS (York et al. 2000). This sample was
selected as follows. Starting from the SDSS spectroscopic sam-
ple, we defined a narrow redshift slice around z = 0.2. Then we
applied a selection in colour, by choosing objects with g − r >
1.2, and on Sérsic index, by selecting only galaxies with n > 2.5.
We used the Sérsic fit measurements by Meert et al. (2015) for
this purpose. These cuts produced a sample of 8078 galaxies. We
then focused on the r−band de Vaucouleurs model-based photo-
metric measurements of Meert et al. (2015). Using the r−band
total flux from the de Vaucouleurs model and the stellar mass-to-
light ratio estimates of Mendel et al. (2014), we obtained mea-
surements of M(obs)

∗ . Finally, we fitted the stellar mass-size rela-
tion with the following model:

log Re ∼ N(µR,0 + βR(log M(obs)
∗ − 11.4), σ2

R). (A.1)

We obtained µR,0 = 1.20, βR = 0.63 and σR = 0.14.
We then proceeded to fit for the axis ratio distribution of the

same sample of galaxies. Figure A.1 shows a histogram of the
observed distribution. We fitted this with a beta distribution:

P(q) ∝ qα−1(1 − q)β−1. (A.2)

We obtained α = 6.28 and β = 2.05.
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(q
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Fig. A.1. Distribution in axis ratio of a sample of early-type galax-
ies. The sample consists of 8078 galaxies from the SDSS, selected by
means of cuts in redshift, colour, and Sérsic index, as explained in the
text. Measurements of the axis ratio are taken from the de Vaucouleurs
model fits of Meert et al. (2015). The model curve is a beta distribution
(Eq. A.2) with α = 6.28 and β = 2.05.

Appendix B: Upper limits on the intrinsic scatter
parameters

We used the fundamental plane of early-type galaxies to set an
upper limit on the intrinsic scatter parameters of the simulation:
σsps, σh and σγ. First, we measured the fundamental plane of the
sample of SDSS early-type galaxies introduced in Appendix A.
We took measurements of the line-of-sight stellar velocity dis-
persion within the SDSS spectroscopic aperture, σap, from the

SDSS data release 16 catalogue (Ahumada et al. 2020). Then,
we fitted the following model to the distribution of σap of the
sample:

P(σap) ∼ N(µσ+β(log M(obs)
∗ −11.4)+ξ(log Re−1.2), σσ). (B.1)

We accounted for observational uncertainties on σap when doing
the fit; therefore, the parameter σσ describes the intrinsic scatter
in the logarithm of the velocity dispersion, deconvolved from
the observational scatter. In principle we should also account
for observational uncertainties on the stellar mass measurement,
as they too contribute to the inferred scatter in σap. In practice,
however, it is difficult to estimate observational uncertainties on
stellar population synthesis measurements (but see Dogruel et al.
2023). For this reason we chose not to propagate uncertainties on
M(obs)
∗ . As a result, the inferred scatter parameter σσ is slightly

overestimated. We obtained µσ = 2.36, βσ = 0.33, ξσ = −0.17,
and σσ = 0.035.

We then generated samples of z = 0.2 galaxies from the
model of Sect. 4.1 and used the spherical Jeans equation to pre-
dict their central velocity dispersion. The spherical Jeans equa-
tion is (Binney & Tremaine 1987)

d(ρ∗σ2
r )

dr
+
β(r)

r
ρ∗σ

2
r = −ρ∗(r)

GM(r)
r2 , (B.2)

where ρ∗(r) is the three-dimensional distribution of dynamical
tracers (i.e. the stars), σr the radial component of the velocity
dispersion, β(r) the orbital anisotropy parameter, and M(r) the
mass enclosed within a spherical shell of radius r. We assumed
isotropic orbits (β = 0), then integrated Eq. B.2 to obtain
the seeing-convolved, surface brightness-weighted line-of-sight
velocity dispersion within the SDSS spectroscopic aperture11.
Finally, we fitted the fundamental plane relation of Eq. B.1 to
the observed stellar mass, half-light radius and central velocity
dispersion of the mock sample. We repeated this procedure for
different values of the intrinsic scatter parameters σsps, σh and
σγ, then settled on the three scenarios listed in Table 1.

Appendix C: Mass-sheet transformation parameter

In the time-delay study of Birrer et al. (2020), lenses are
described with a mass density profile given by Eq. 36.
Birrer et al. (2020) defined the profile by first fitting a pure
power-law mass model to the strong lensing data, thus constrain-
ing the Einstein radius and power-law index γ, and then applying
a mass-sheet transformation of the following kind:

κ(θ)→ λmstκ(θ) + 1 − λmst. (C.1)

The mass-sheet transformation parameter λmst can be interpreted
as a quantity describing a departure from a pure power-law pro-
file. One possible way of estimating λmst for our lenses is to
fit a power-law to the simulated images and then optimise for
the value of λmst that best matches the true density profile. That,
however, would be too time-consuming. Instead, we emulate this
process as follows.

Sonnenfeld (2018) showed that, when the main arc and the
counter-image of an extended source are well resolved, their rel-
ative widths constrain the following combination of derivatives
of the lens potential at the Einstein radius:

ψ′′′

1 − ψ′′
· (C.2)

11 We used the Python code available at https://github.com/
astrosonnen/spherical_jeans for this purpose.
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In other words, the above quantity can be measured robustly (i.e.
in a model-independent way). When fitting a pure power-law
lens model to lensing data, then, the value of γ that we obtain is
the one that reproduces the true ψ′′′/(1−ψ′′)12. This is given by

γ = 2 + θEin
ψ′′′

1 − ψ′′
· (C.3)

Hence, given a lens in our sample, we first define a pure power-
law model with the same Einstein radius as the true one and
with γ given by the equation above. Then, given a pure power-
law model, we find λmst such that the first three derivatives of

12 Strictly speaking, this is only true in the limit of well-resolved arcs
and nearly axisymmetric lenses.

the lens potential match the true values. In particular, since a
mass-sheet transformation changes the second derivative of the
potential as

ψ′′ → λmstψ
′′ + 1 − λmst, (C.4)

we set

λmst =
1 − ψ′′PL

1 − ψ′′
, (C.5)

where ψ′′PL is the value of ψ′′ of the pure power-law lens model.
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