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ABSTRACT

Context. To directly image rocky exoplanets in reflected (polarized) light, future space- and ground-based high-contrast imagers and
telescopes aim to reach extreme contrasts at close separations from the star. However, the achievable contrast will be limited by
reflection-induced polarization aberrations. While polarization aberrations can be modeled with numerical codes, these computations
provide little insight into the full range of effects, their origin and characteristics, and possible ways to mitigate them.
Aims. We aim to understand polarization aberrations produced by reflection off flat metallic mirrors at the fundamental level.
Methods. We used polarization ray tracing to numerically compute polarization aberrations and interpret the results in terms of the
polarization-dependent spatial and angular Goos-Hänchen and Imbert-Federov shifts of the beam of light as described with closed-
form mathematical expressions in the physics literature.
Results. We find that all four beam shifts are fully reproduced by polarization ray tracing. We study the origin and characteristics
of the shifts as well as the dependence of their size and direction on the beam intensity profile, incident polarization state, angle of
incidence, mirror material, and wavelength. Of the four beam shifts, only the spatial Goos-Hänchen and Imbert-Federov shifts are
relevant for high-contrast imagers and telescopes because these shifts are visible in the focal plane and create a polarization structure
in the point-spread function that reduces the performance of coronagraphs and the polarimetric speckle suppression close to the star.
Conclusions. Our study provides a fundamental understanding of the polarization aberrations resulting from reflection off flat metallic
mirrors in terms of beam shifts and lays out the analytical and numerical tools to describe these shifts. The beam shifts in an optical
system can be mitigated by keeping the f-numbers large and angles of incidence small. Most importantly, mirror coatings should not
be optimized for maximum reflectivity, but should be designed to have a retardance close to 180◦. The insights from our study can be
applied to improve the performance of SPHERE-ZIMPOL at the VLT and future telescopes and instruments such as the Roman Space
Telescope, the Habitable Worlds Observatory, GMagAO-X at the GMT, PSI at the TMT, and PCS (or EPICS) at the ELT.

Key words. polarization – telescopes – instrumentation: high angular resolution – instrumentation: polarimeters –
methods: analytical – methods: numerical

1. Introduction

To directly image rocky exoplanets in (polarized) reflected visi-
ble and near-infrared light, future space telescopes and extremely
large ground-based telescopes and instruments aim to reach
extreme planet-to-star contrast ratios at diffraction-limited angu-
lar separations from the star. Even though the optical systems
of these high-contrast imagers will minimize scalar aberra-
tions, the coronagraphic performance and achievable contrast
will still be limited by polarization aberrations (e.g., Chipman
1989; McGuire & Chipman 1990, 1994a,b; Sanchez Almeida
& Martinez Pillet 1992; Breckinridge et al. 2015). Polariza-
tion aberrations are minute, polarization-dependent variations
of the amplitude and phase of the electromagnetic field across
a beam of light that result in a polarization structure in the
point-spread function (PSF). Polarization aberrations are pre-
dominantly caused by reflection off oblique and/or curved metal-
lic mirrors and originate directly from the Fresnel reflection
coefficients. The first-order polarization aberrations, that is, the
sub-wavelength, polarization-dependent shifts of the beam of
light, most negatively affect the achievable contrast. Because

polarization aberrations are different for orthogonal polarization
components of unpolarized light, adaptive optics cannot fully
correct these aberrations (Breckinridge et al. 2015).

Recently, it has become clear that high-angular-resolution
polarimeters are also affected by polarization aberrations. The
polarization aberrations of the Gemini South telescope appear
to be limiting the polarimetric contrast achieved by the Gemini
Planet Imager at the smallest angular separations from the
star (Millar-Blanchaer et al. 2022). Moreover, the polarimetric
speckle suppression of the high-contrast imaging polarime-
ter SPHERE-ZIMPOL at the Very Large Telescope, which is
specifically designed to search for the reflected, polarized vis-
ible light of giant exoplanets, is limited by reflection-induced,
polarization-dependent beam shifts (Schmid et al. 2018). Such
shifts also affect interferometric polarization measurements with
the SPeckle Polarimeter at the Sternberg Astronomical Insti-
tute 2.5-m telescope (Safonov et al. 2019). The beam shifts
become apparent for these instruments due to the unprecedented
polarimetric sensitivity and spatial resolution they achieve.

The polarization aberrations of an astronomical telescope
and instrument can be numerically computed with polarization
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ray tracing (Breckinridge et al. 2015). First, the paths of the rays
of light are traced through the optical system using geometrical
optics, but instead of the intensity, the electric field components
of the rays are computed upon each reflection or transmission
(e.g., Waluschka 1989; Chipman 1989; Yun et al. 2011a,b). Each
point in the exit pupil is then associated with a Jones matrix. In
this way, the Jones pupil, which maps the changes in the elec-
tric fields between the entrance and exit pupils of the system,
is calculated (Totzeck et al. 2005). Finally, the intensity in the
focal plane (i.e., the PSF) is computed in the Fraunhofer approx-
imation through spatial Fourier transforms over the Jones pupil.
Several studies have used polarization ray tracing to model the
polarization aberrations of proposed and future high-contrast
imagers and telescopes, such as the Roman Space Telescope
(Krist et al. 2017), HabEx (Davis et al. 2018; Breckinridge et al.
2018), LUVOIR (Sabatke et al. 2018; Will & Fienup 2019),
PICTURE-C (Mendillo et al. 2019), and the three extremely large
telescopes (Anche et al. 2018, 2023). However, these numerical
computations give little insight into the full range of aberrations,
their origin and characteristics, and the relative importance of
amplitude and phase effects.

Breckinridge et al. (2015) use polarization ray tracing to ana-
lyze a three-mirror system consisting of a Cassegrain telescope
followed by a flat fold mirror, and find two beam-shift effects that
both originate from the oblique reflection off the flat mirror. The
authors find phase gradients (i.e., wavefront tilts) in the Jones
pupil that have opposite directions for the linearly polarized com-
ponents parallel and perpendicular to the plane of incidence of
the fold mirror. In the focal plane, these gradients cause the
orthogonally polarized components of the PSF to shift in oppo-
site directions, thereby broadening the resulting PSF in intensity.
Furthermore, the authors find PSF components that couple the
light from one orthogonal polarization into the other. These PSF
components, which they call ghost PSFs, have two peaks, one on
either side of the plane of incidence.

Sub-wavelength, polarization-dependent shifts of a beam of
light induced by reflection off a flat metallic mirror are also
extensively described in the physics literature (for overviews,
see Aiello & Woerdman 2008; Götte & Dennis 2012; Bliokh &
Aiello 2013). These shifts are referred to as the Goos-Hänchen
(GH) and Imbert-Federov (IF) shifts and occur in the directions
parallel and perpendicular to the plane of incidence, respectively.
Both shifts are further divided into a spatial and an angular shift.
The spatial shifts are displacements of the entire beam of light
upon reflection, and the angular shifts refer to angular deviations
of the beam upon reflection. As such, the four shifts are consid-
ered first-order corrections to the laws of geometrical optics due
to diffraction within a beam of light of finite width; the Fresnel
equations only apply to infinitely extended interfaces, and a cor-
rect description of light reflected off an interface must therefore
take into account the finite beam size. The GH and IF shifts are
derived from first principles through full diffraction calculations
and are described using closed-form mathematical expressions
specifying the centroid of the intensity of a reflected Gaussian
beam (e.g., Aiello & Woerdman 2007, 2008). All four shifts have
been experimentally validated for metallic reflections (Merano
et al. 2007; Aiello et al. 2009; Hermosa et al. 2011). Schmid et al.
(2018) show in their analysis of the beam shifts of SPHERE-
ZIMPOL that the spatial GH shift is likely the same as the shift
arising from phase gradients in the Jones pupil as described by
Breckinridge et al. (2015).

In this paper, we aim to understand polarization aberrations
produced by reflection off flat metallic mirrors at the fundamen-
tal level and seek to unify the two views of the beam shifts from

polarization ray tracing and full diffraction calculations in the
physics literature. To this end, we determine the beam shifts from
the polarization ray tracing of the reflection of a beam of light
with a uniform (or top-hat) intensity profile (as applies to astro-
nomical telescopes and instruments), and compare the resulting
shifts to the spatial and angular GH and IF shifts as predicted
by the closed-form expressions derived for Gaussian beams. We
investigate whether the GH and IF shifts are reproduced by polar-
ization ray tracing or whether they are additional effects that we
need to take into account for astronomical instruments. In addi-
tion, we study the origin and characteristics of the shifts and
determine how the size and direction of the shifts depend on
the beam intensity profile, incident polarization state, angle of
incidence, mirror material, and wavelength. Finally, we examine
how these shifts affect the performance of high-contrast imagers
and how we can mitigate them in (future) diffraction-limited
astronomical telescopes and instruments.

The outline of this paper is as follows. In Sect. 2, we
describe the conventions and definitions of the mathematics used
throughout the paper. Subsequently, in Sect. 3, we outline the
polarization ray tracing of the reflection of a beam of light off a
flat metallic mirror and the determination of the beam shifts. In
Sect. 4, we then explain the origin and characteristics of the spa-
tial and angular GH and IF shifts and their relation to shifts found
using polarization ray tracing. We also show the dependence of
the size and direction of the shifts on the incident polarization
state and angle of incidence. In Sect. 5, we investigate the polar-
ization structure in the PSF induced by the beam shifts and the
effect of the beam shifts on polarimetric measurements. In the
same section we also examine the size of the beam shifts for var-
ious mirror materials and wavelengths, and discuss and refine the
approaches to mitigate the beam shifts. Finally, we show a table
summarizing the properties of the four beam shifts at the end of
Sect. 5 and present conclusions in Sect. 6.

2. Conventions and definitions

In this section, we outline the conventions and definitions used
throughout this paper. In the literature, the mathematical def-
initions underlying the descriptions of polarization aberrations
and beam shifts are often incomplete and not consistent among
different studies. This can lead to errors in the physical interpre-
tation, for example with the handedness of the circular polariza-
tion or the direction of the beam shifts. We therefore describe our
definitions extensively and have carefully checked our equations
for consistency. As such, this paper provides a complete refer-
ence for the correct computation of the polarization aberrations
and beam shifts. To enable easy comparison of our results with
those from the physics literature, we use the same definitions as
Aiello & Woerdman (2007, 2008), Merano et al. (2007), Aiello
et al. (2009), and Hermosa et al. (2011). For the description of
the polarization of light, these definitions are consistent with
the definitions adopted by the International Astronomical Union
(see e.g., Hamaker & Bregman 1996). We present the mathemat-
ics to describe light and its polarization in Sect. 2.1 and discuss
metallic reflection in Sect. 2.2.

2.1. Polarization of light

We shall consider a monochromatic, polarized light wave prop-
agating in the positive z-direction of a Cartesian reference frame
(or basis) xyz as shown in Fig. 1. The transverse electric field
components of this light wave in the vertical x- and horizontal
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Fig. 1. Definition of the three reference frames (or bases) and the Stokes
parameters to describe the electric field components and polarization
of an electromagnetic wave. The light propagates along the z-axis out
of the paper toward the reader. In the xyz-basis, the x-axis (y-axis) is
oriented in the vertical (horizontal) direction. In the daz-basis, the
d-axis (a-axis) is oriented in the diagonal (antidiagonal) direction, at
45◦ counterclockwise (clockwise) from the x-axis. In the rlz-basis, r
and l represent the right-handed and left-handed circularly polar-
ized components. For each reference frame, the basis Jones vectors,
expressed in the xyz-bases, are indicated. The Stokes parameters are
shown in orange with the plus sign (minus sign) indicating that the
Stokes parameter is positive (negative) in that direction. The angle of
linear polarization χ is defined positive for a counterclockwise rotation
from the x-axis.

y-directions can then be described as follows (see e.g., Born &
Wolf 2013):

Ẽx(z, t) = Ax cos (kz − ωt + φx) = Re
[
Axeiφx ei(kz−ωt)

]
, (1)

Ẽy(z, t) = Ay cos
(
kz − ωt + φy

)
= Re

[
Ayeiφyei(kz−ωt)

]
, (2)

where t is time, ω > 0 is the angular frequency, k = 2π/λ is the
wave number with λ the wavelength, Ax and Ay are the ampli-
tudes, φx and φy are the initial phases, Re[. . . ] denotes the real
part, and i is the imaginary unit. On the right side of Eqs. (1)
and (2), the factor exp [i(kz − ωt)] only describes the propaga-
tion of the light wave. The polarization of the wave can therefore
be described by a Jones vector E:

E =
[
Ex
Ey

]
=

[
Axeiφx

Ayeiφy

]
, (3)

where Ex and Ey are the complex electric field components.
As an alternative way to describe the polarization, we can

define a set of Stokes parameters (see Fig. 1):

I = ExE∗x + EyE∗y = A2
x + A2

y = Ix + Iy = Id + Ia

= Ir + Il = 1, (4)

Q = ExE∗x − EyE∗y = A2
x − A2

y = Ix − Iy, (5)

U = ExE∗y + EyE∗x = 2AxAy cos δ = Id − Ia, (6)

V = i
(
ExE∗y − EyE∗x

)
= 2AxAy sin δ = Ir − Il, (7)

where the asterisk denotes the complex conjugate, δ = φy − φx
is the phase difference between the y- and x-components of the
electric field, and Ix and Iy are the intensities of the x- and
y-components of the electric field. The variables Id and Ia are
the intensities of the d- and a-components in the basis of
the diagonal and antidiagonal polarizations, daz, and Ir and

Il are the intensities of the r- and l-components in the basis
of the right-handed and left-handed circular polarizations, rlz
(see Fig. 1). Stokes I is the total intensity, positive (negative)
Stokes Q describes linear polarization in the vertical x-direction
(horizontal y-direction), positive (negative) Stokes U describes
linear polarization in the diagonal (antidiagonal) direction, 45◦
counterclockwise (clockwise) from the x-direction, and positive
(negative) Stokes V describes right-handed (left-handed) circu-
lar polarization. Whereas the xyz-basis is the natural basis of
Stokes Q, the daz- and rlz-bases are the natural bases of Stokes
U and V , respectively. Because we normalize the total inten-
sity, that is, we set I = 1 in Eq. (4), Q, U, and V have values
between 1 and −1. We note that Eqs. (4)–(7) are strictly speaking
only valid for 100% polarized, monochromatic light. However,
for quasi-monochromatic light, whether 100% polarized, par-
tially polarized, or unpolarized, we simply need to take the time
averages over the terms in the equations.

From Eqs. (4) and (5), we can derive expressions for the
intensities of the x- and y-components of the electric field:

Ix =
1 + Q

2
, (8)

Iy =
1 − Q

2
. (9)

Although these two equations are simple, they are important, and
we use them in all closed-form expressions for the beam shifts in
Sect. 4. Finally, we assemble the Stokes parameters in a Stokes
vector S:

S =


I
Q
U
V

 , (10)

and define the degree of linear polarization P (which for I = 1
is equal to the linearly polarized intensity) and angle of linear
polarization χ (see Fig. 1) as follows:

P =
√

Q2 + U2, (11)

χ =
1
2

arctan
(

U
Q

)
. (12)

2.2. Metallic reflection

Using this mathematically consistent description of light and
its polarization, we can describe the reflection of light using
the Fresnel equations in the geometric polarization ray-tracing
approximation. We shall consider the central ray of a beam
of light incident on a flat metallic mirror as shown in Fig. 2.
Describing this ray as a plane electromagnetic wave, we decom-
pose the incident electric field into the p- and s-polarized
components that are parallel and perpendicular to the plane
of incidence, respectively. For this central ray, the p- and
s-directions correspond to the x- and y-directions, respectively.
Assuming the refractive index of the incident medium (air)
to be equal to 1, we compute the complex Fresnel reflection
coefficients rp and rs as follows (see e.g., Born & Wolf 2013):

rp =
n̂2 cos θ −

√
n̂2 − sin2 θ

n̂2 cos θ +
√

n̂2 − sin2 θ
= Rpeiϕp , (13)

rs =
cos θ −

√
n̂2 − sin2 θ

cos θ +
√

n̂2 − sin2 θ
= Rseiϕs , (14)
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Fig. 2. Schematic of the reflection of a beam of light off a flat metallic
mirror with complex refractive index n̂ = n + iκ. The central ray of the
beam hits the mirror at an angle of incidence θ measured with respect
to the normal to the surface of the mirror. The orientation of the xyz
reference frame before and after reflection is indicated.

where θ is the central angle of incidence (see Fig. 2) and n̂ =
n+ iκ is the complex refractive index of the mirror material, with
n and κ the real and complex parts, respectively. The amplitudes
Rp/s = |rp/s| specify the ratios of the amplitudes of the reflected
and incident electric fields, while the phases ϕp/s = arg (rp/s)
describe the phase shifts between the reflected and incident
electric fields.

Two important quantities related to the reflection coefficients
are the diattenuation and the retardance, which can be considered
to be the zeroth-order polarization aberrations. The diattenuation
ϵ is defined as follows:

ϵ =
R2

s − R2
p

R2
s + R2

p
, (15)

which ideally equals 0. When unpolarized light is incident
on the mirror, a nonzero value of the diattenuation quanti-
fies the amount of linearly polarized light that is created, that
is, the instrumental polarization. The retardance ∆ is defined
as follows:

∆ = ϕs − ϕp, (16)

which ideally equals 180◦. The latter value comes from the
requirement that the electromagnetic wave before and after
reflection is described by a right-handed triplet in terms of the
electric field, the magnetic field, and the wave vector. For values
other than 180◦, retardance results in the conversion of incident
linearly polarized light into circularly polarized light and vice
versa, that is, it produces polarimetric crosstalk.

The physics of the beam shifts as described in Sect. 4
depends on the diattenuation and retardance as well as on the
gradients of the amplitude and phase of the reflection coeffi-
cients with the angle of incidence. Figure 3 shows the amplitude
and phase of the reflection coefficients as a function of the
angle of incidence for gold with n̂ = 0.188 + i5.39 at a wave-
length of 820 nm, corresponding to the configuration studied in
Sects. 3–5. From Fig. 3 (left) it follows that the diattenuation,
which is roughly the difference between the curves of Rs and Rp
(see Eq. (15)), is zero at θ = 0◦, increases with increasing angle
of incidence until it reaches a maximum around θ = 80◦, and
then decreases again to zero at θ = 90◦. In Fig. 3 (right) we see
that the retardance, which is the difference between the curves
of ϕs and ϕp (see Eq. (16)), is 180◦ at θ = 0◦ and remains close
to this value for small values of θ. For large θ, the retardance

Fig. 3. Amplitude (left) and phase (right) of the Fresnel reflection coef-
ficients in the p- and s-directions as a function of the angle of incidence
for gold with n̂ = 0.188 + i5.39 at a wavelength of 820 nm. The gra-
dients in the amplitude and phase for an angle of incidence of 45◦ are
indicated in blue for the p-direction and in red for the s-direction.

decreases rapidly to 0◦ at θ = 90◦. Figure 3 (left and right) also
shows the gradients in amplitude and phase at θ = 45◦ (similar to
the phase gradients shown by Breckinridge et al. 2015). Whereas
the amplitude gradient ∂Rs/∂θ is always positive for θ > 0◦,
∂Rp/∂θ is initially negative, then becomes zero, and finally is
positive for very large angles of incidence. Lastly, for θ > 0◦
the phase gradients ∂ϕs/∂θ and ∂ϕp/∂θ are negative and posi-
tive, respectively, and monotonically decrease and increase with
increasing angle of incidence.

3. Beam shifts from polarization ray tracing

In this section, we describe the polarization ray tracing of a
beam of light that reflects off a (flat) metallic mirror, following
the methodology outlined in Breckinridge et al. (2015), and the
determination of the beam shifts that result. In Sect. 4, we com-
pare the resulting shifts for various incident polarization states
and angles of incidence to the predicted spatial and angular GH
and IF shifts as derived for Gaussian beams. We determine the
centroid shifts of both the focal-plane intensity (i.e., the PSF)
and the intensity in the exit-pupil plane because these planes
are where the spatial shifts (shifts of the complete beam) and
angular shifts (angular deviations as measured from the focus)
should be visible. To enable a direct comparison of our results
with the experimental measurements of the GH and IF shifts by
Merano et al. (2007), Aiello et al. (2009), and Hermosa et al.
(2011), we consider a (practically) identical configuration to the
one used in those studies: a converging, monochromatic beam
of light with an f-number of 61.3 that reflects off a flat gold
mirror at a wavelength of 820 nm and with a focal distance of
11.9 cm. Our configuration differs in that the beam of light is not
Gaussian but has a uniform (or top-hat) intensity profile across
the entrance pupil as is the case for astronomical telescopes
and instruments.

As the first step in our analysis, we compute the Jones pupil
that describes the electric-field response in the exit pupil upon
reflection. We only describe this computation briefly here (for
detailed descriptions see e.g., Waluschka 1989; Götte & Dennis
2012). We use the definitions as shown in Fig. 2 and decompose
the beam of light into a set of rays that each can be described by a
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plane electromagnetic wave. For each ray, we compute the angle
of incidence and, using Eqs. (13) and (14), the corresponding
Fresnel reflection coefficients in the local p- and s-directions.
Subsequently, we calculate the orientation of the local plane of
incidence for each ray. Finally, we compute the Jones pupil as the
set of Jones matrices describing the reflection of each ray, taking
into account the orientation of the local plane of incidence and
the change of sign of the x-coordinate of the ray upon reflection.
The resulting Jones pupil Jxyz, which is expressed in the xyz-
basis, can be written as follows:

Jxyz =

[
Jxx Jxy
Jyx Jyy

]
=

[
Rxxeiϕxx Rxyeiϕxy

Ryxeiϕyx Ryyeiϕyy

]
, (17)

where Jxx to Jyy are the complex Jones-pupil elements describing
the contribution of the x- or y-polarized components of the inci-
dent electric field (in the entrance pupil) to the x- or y-polarized
components of the reflected electric field (in the exit pupil). The
amplitudes and phases of the Jones-pupil elements, which define
the ratios of the amplitudes and the phase shifts of the reflected
and incident electric fields, are denoted Rxx to Ryy and ϕxx to ϕyy,
respectively. The Jones pupil Jxyz for reflection with an angle of
incidence of 45◦ is shown in Fig. 4 (top).

The Jones pupil is a crucial ingredient for our understanding
of the beam shifts in Sect. 4. In that context, it is useful to also
express the Jones pupil in the basis of the diagonal and antidi-
agonal polarizations, daz, and the basis of the right-handed and
left-handed circular polarizations, rlz, as defined in Fig. 1. The
Jones pupils in the daz- and rlz-bases, Jdaz and Jrlz, are defined
as follows:

Jdaz = TdazJxyzT−1
daz =

[
Rddeiϕdd Rdaeiϕda

Radeiϕad Raaeiϕaa

]
, (18)

Jrlz = TrlzJxyzT−1
rlz =

[
Rrreiϕrr Rrleiϕrl

Rlreiϕlr Rlleiϕll

]
, (19)

where Rdd to Rll and ϕdd to ϕll are the amplitudes and phases of
the Jones-pupil elements and −1 denotes the inverse of a matrix.
The matrices Tdaz and Trlz describe the transformations from the
xyz-basis to the daz- and rlz-bases, respectively, and are given
by:

Tdaz =
1
√

2

[
1 1
1 −1

]
, (20)

Trlz =
1
√

2

[
1 −i
1 i

]
. (21)

The Jones pupils Jdaz and Jrlz for reflection with an angle of inci-
dence of 45◦ are shown in Fig. 4 (center) and Fig. 4 (bottom),
respectively.

As the next step, we compute the amplitude-response
matrix (ARM) specifying the electric-field response in the focal
plane (expressed in the xyz-basis). The ARM is computed
as follows:

ARM =
[
F (Jxx) F (Jxy)
F (Jyx) F (Jyy)

]
=

[
R′xxeiϕ′xx R′xye

iϕ′xy

R′yxeiϕ′yx R′yye
iϕ′yy

]
, (22)

where F (. . . ) denotes the spatial Fourier transform over a Jones-
pupil element and R′xx to R′yy and ϕ′xx to ϕ′yy denote the amplitudes
and phases, respectively, of the ARM elements. By using the
spatial Fourier transform for the computation of the ARM we

assume that the Fraunhofer approximation to diffraction applies,
which is the case for beams with absolute f-numbers larger
than ∼5 (see e.g., McGuire & Chipman 1990). The ARM for
reflection with an angle of incidence of 45◦ is shown in Fig. A.1.

Next, we calculate the point-spread matrix (PSM), which is
the Mueller-matrix representation of the PSF and describes the
intensity response in the focal plane for any incident Stokes vec-
tor, whether 100% polarized, partially polarized, or unpolarized.
The PSM is calculated as follows:

PSM = C(ARM ⊗ ARM∗)C−1 (23)

where ⊗ denotes the Kronecker product, the asterisk indicates
the element-wise complex conjugate, and the matrix C is given
by (see e.g., Espinosa-Luna et al. 2008):

C =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (24)

The PSM can be written as follows:

PSM =


I→ I Q→ I U→ I V→ I
I→Q Q→Q U→Q V→Q
I→U Q→U U→U V→U
I→V Q→V U→V V→V

 , (25)

where each element A→B describes the contribution of the inci-
dent Stokes parameter A to the resulting Stokes parameter B. The
PSM for reflection with an angle of incidence of 45◦ is shown in
Fig. 5. We note that the same PSM can also be obtained by com-
puting the ARM (Eq. (22)) from the Jones pupil expressed in the
daz- or rlz-bases and replacing the matrix C in Eqs. (23) and (24)
with the appropriate matrix corresponding to those bases.

As the final step, we determine the beam shifts in the exit
pupil and the focal plane. To this end, we define an incident Jones
vector or Stokes vector with a uniform intensity profile and polar-
ization state. For the determination of the shift in the exit pupil,
we right-multiply the Jones pupil by the incident Jones vector
to obtain the Jones vector in the pupil plane. Subsequently, we
compute the intensity distribution in the pupil plane as the sum
of squares of the amplitudes of the latter Jones vector. Finally, we
calculate the beam shift as the offset of the centroid of the inten-
sity distribution with respect to the beam position in the absence
of diffraction and aberrations. To determine the beam shift in
the focal plane, we compute the Stokes vector after reflection
by right-multiplying the PSM by the incident Stokes vector. We
then retrieve the intensity image from the first element of the
resulting Stokes vector and determine the shift as the offset of
the centroid with respect to the beam position in the absence of
diffraction and aberrations.

4. Explanation of beam shifts and comparison
to polarization ray tracing

In this section, we explain the spatial and angular GH and IF
shifts and compare them to the shifts found using polariza-
tion ray tracing. We analytically describe the four shifts using
the closed-form expressions from Aiello & Woerdman (2008).
These expressions are derived (see Aiello & Woerdman 2007) by
decomposing an incident, uniformly polarized Gaussian beam of
light into the angular spectrum of plane waves (e.g., Born & Wolf
2013) and computing the effect of the reflection on each wave.
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Fig. 4. Jones pupil expressed in the xyz- (top), daz- (center), and rlz-bases (bottom) at a wavelength of 820 nm for a converging beam of light with
an f-number of 61.3 that reflects off gold at an angle of incidence of 45◦. The panels in the first and second (third and fourth) columns show the
amplitude (phase) of the Jones-pupil elements. The positive x- and y-directions are upward and to the left, respectively. The values of the color
maps are different among the panels. The red, orange, blue, and green borders around the panels indicate the gradients that are visible and the
specific beam shifts that these gradients cause (see the legend above the top panels). The panels of Rda, Rad, ϕda, and ϕad have two colored borders
because these panels show a combination of two gradients. To reveal the gradient in the panels of ϕxy and ϕyx, π has been added to the phase in the
left and right halves of the pupil, respectively.
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Fig. 5. Point-spread matrix (PSM) at a wavelength of 820 nm for a converging beam of light with an f-number of 61.3 that reflects off gold at an
angle of incidence of 45◦. The panels show the central 100 µm × 100 µm of the PSM elements. The positive x- and y-directions are upward and to
the left, respectively. The gray plus signs indicate the centroids of the PSM elements in the absence of diffraction and aberrations. The values of
the color maps are different among the panels.

Because the plane waves are infinitely extended, the Fresnel
equations can be applied without making any approximations.
The decomposition into plane waves is equivalent to a Fourier
transform of the electric field at the mirror interface. The result-
ing reflected plane waves are then integrated over, and the shift is
calculated as the shift of the centroid of the intensity of the beam.
The expressions depend on the Fresnel reflection coefficients
at the central angle of incidence and the complex electric-field
components of the incident beam. We have rewritten the expres-
sions in terms of the more familiar Stokes parameters to make
the expressions easier to understand and enable the computation
of the shifts for any incident polarization state.

For each of the four shifts, which generally occur simultane-
ously, we explain the origin and characteristics, and analytically
compute the size and direction as a function of the angle of
incidence for different incident polarization states. We consider
100% linearly polarized light with angles of linear polarization χ
ranging from 0◦ to 180◦ in steps of 22.5◦, 100% right-handed and
left-handed circularly polarized light (i.e., V = 1 and V = −1,
respectively), and unpolarized light. For these same polarization

states, we numerically compute the shifts from the polarization
ray tracing as outlined in Sect. 3 and compare the results to the
analytical computations. We also explain the shifts using the
Jones pupil and the PSM. We discuss the spatial and angular
GH shifts in Sects. 4.1 and 4.2 and the spatial and angular IF
shifts in Sects. 4.3 and 4.4. For easy reference, an overview of
the properties of the four beam shifts is shown in Table 1 of
Sect. 5.5.

4.1. Spatial Goos-Hänchen shift

The spatial GH shift, XsGH, is a displacement of the entire beam
of light upon reflection and occurs in the plane of incidence (e.g.,
Goos & Hänchen 1947; Merano et al. 2007; Aiello & Woerdman
2008; Aiello et al. 2009; Götte & Dennis 2012; Bliokh & Aiello
2013). Figure 6 (top) shows a schematic with the definition of the
spatial GH shift. The shift is independent of the divergence angle
of the incident beam (i.e., the f-number) and does not depend on
whether the reflection occurs in the focus or the converging or
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Fig. 6. Schematic showing the definitions of the spatial and angular GH
shifts, XsGH and ΘaGH (top), and the spatial and angular IF shifts, YsIF
and ΘaIF (bottom), for an (initially converging) beam of light incident
on a metallic mirror. Darker colors within the reflected beam indi-
cate a higher relative intensity. The orientation of the xyz reference
frame before and after reflection is indicated. Positive spatial GH and
IF shifts are directed in the positive x- and y-directions, respectively,
after reflection (the spatial GH shift is shown in the negative direction).
The angular GH and IF shifts are positive for a right-handed rotation
around the y-axis and a left-handed rotation around the x-axis, respec-
tively. For clarity the size of the shifts is shown extremely exaggerated.

diverging parts of the beam. From the perspective of the plane-
wave decomposition, the spatial GH shift can be understood
from a 2D picture of the beam of light, looking from a direc-
tion perpendicular to the plane of incidence (i.e., the side view as
shown in Fig. 6, top). Each plane wave of the beam has a differ-
ent angle of incidence and therefore acquires a correspondingly
different phase shift upon reflection. This results in a gradient in
phase over the range of angles of incidence (see Fig. 3, right).
Integrating over all reflected plane waves, this then results in a
shift of the entire beam parallel to the plane of incidence. The
integration is equivalent to an inverse Fourier transform, which
explains how a phase gradient is equivalent to a shift of the entire
beam on the mirror.

The spatial GH shift can be computed as follows:

XsGH =
λ

2π

∂ϕp

∂θ
R2

pIx +
∂ϕs

∂θ
R2

s Iy

R2
pIx + R2

s Iy
, (26)

where Rp and Rs (from Eqs. (13) and (14)) and the phase gradi-
ents ∂ϕp/∂θ and ∂ϕs/∂θ (see Fig. 3, right) are computed at the
central angle of incidence of the beam, and Ix and Iy are the
intensities of the components of the light polarized in the x- and
y-direction, respectively. These intensities only depend on the
incident Stokes Q and follow from Eqs. (8) and (9). The factor
R2

pIx + R2
s Iy in Eq. (26) is the intensity of the reflected beam and

returns in the expressions of all shifts. The spatial GH shift is

Fig. 7. Spatial GH shift as a function of the angle of incidence for
reflection off gold at a wavelength of 820 nm as obtained from the
closed-form expression of Eq. (26), (curves) and polarization ray trac-
ing (data points). The shift is shown for an incident beam of light that
is completely unpolarized, 100% linearly polarized with various angles
of linear polarization χ, and 100% right-handed (V = 1) or left-handed
(V = −1) circularly polarized.

produced by the phase gradients, whereas Rp and Rs can be con-
sidered to be small corrections. Indeed, if we set either Ix or Iy
equal to zero in Eq. (26), we obtain:

XsGH,x/y =
λ

2π
∂ϕp/s

∂θ
, (27)

which shows that the spatial GH shift consists of two compo-
nents: XsGH,x for the light polarized in the x-direction and XsGH,y
for the light polarized in the y-direction. The total spatial GH
shift as computed from Eq. (26) can then be understood as the
intensity-weighted average of these two shifts.

Figure 7 shows the spatial GH shift as a function of the angle
of incidence for different incident polarization states as com-
puted from Eq. (26). The figure also shows the shifts in the focal
plane (data points) as obtained from the numerical computations
using the polarization ray tracing as outlined in Sect. 3. The
close agreement between the analytical and numerical results
shows that the spatial GH shift is reproduced very closely by
the polarization ray tracing and that Eq. (26) is not only valid
for Gaussian beams, but is also accurate for beams with a uni-
form intensity profile. Small deviations between the analytical
and numerical results are only visible for very large angles of
incidence (θ ≳ 80◦). These deviations are higher-order effects
due to the beam intensity profile deviating from a Gaussian pro-
file. Indeed, when performing the polarization ray tracing for a
Gaussian beam, the data points agree exactly with the analytical
curves for all angles of incidence.

Figure 7 shows that, although the size of the spatial GH shift
is generally less than the wavelength, the shift can be larger
than a wavelength for large angles of incidence and certain inci-
dent polarization states. At normal incidence, the shift is always
zero. The spatial GH shift is largest for light polarized in the
x-direction (i.e., for χ = 0◦ and χ = 180◦, or Q = 1) and
increases with increasing angle of incidence. Because the shift
for light polarized in the x-direction is directly proportional to
∂ϕp/∂θ (see Eq. (27)), this behavior can be understood from the
increasing gradient seen in Fig. 3 (right). For incident light polar-
ized in the y-direction (i.e., for χ = 90◦ or Q = −1), the shift is
much smaller and in the opposite direction, which also agrees
with ∂ϕs/∂θ being smaller than and opposite to ∂ϕp/∂θ in Fig. 3
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(right). In case of light with Q = 0 (e.g., for unpolarized light or
100% polarized light with χ = 45◦, χ = 135◦, V = 1, or V = −1),
the intensities of the light polarized in the x- and y-directions
are equal and the resulting shift is the intensity-weighted aver-
age of the shifts of the x- and y-polarizations. Finally, for
light with 0 < |Q| < 1 (e.g., for 100% polarized light with
χ = 22.5◦, χ = 67.5◦, χ = 112.5◦, or χ = 157.5◦, and also par-
tially polarized light), the resulting shift is in between the three
aforementioned shifts.

As can be seen from Fig. 4 (top), which shows the Jones
pupil expressed in the xyz-basis, the spatial GH shift produces
gradients in the phase of all Jones-pupil elements (blue borders).
These phase gradients represent wavefront tilts in the exit pupil
and as such result in shifts of the centroid of the PSF in the
focal plane. This confirms the claim by Schmid et al. (2018)
that the spatial GH shift is the shift that arises from the phase
gradient in the x-direction in the Jones pupil as described by
Breckinridge et al. (2015). However, we note that Fig. 27 of
Schmid et al. (2018) suggests that the spatial GH shift is caused
by both a shift on the mirror and a directional change of the
beam due to a wavefront tilt induced upon reflection. This depic-
tion is inaccurate: The spatial GH shift is a shift of the entire
beam that occurs on the mirror surface, which, in the Fraunhofer
approximation, can be described as a wavefront tilt in the
exit pupil.

From the Jones pupil, it may seem that the spatial GH shift
depends on the f-number, but this is not the case. Although
a two times smaller f-number gives a two times larger phase
gradient in the pupil plane, the focal distance is also two times
smaller, resulting in the same shift in the focal plane. Similarly,
for a diverging beam (i.e., a beam with a negative f-number) the
phase gradients have the opposite sign but then the focal plane is
virtual and located in front of the mirror (i.e., the focal distance
is negative), again yielding the same shift. A more mathematical
approach to showing the independence of the shift from the
f-number is presented in Schmid et al. (2018). We note that the
size of the shift (which scales with λ, see Eq. (26)) relative to the
size of the PSF (which scales with λ|F|, with F the f-number)
does depend on the f-number and is proportional to 1/|F|. This
means that a more strongly converging or diverging beam results
in a larger shift relative to the PSF.

Finally, we show that the spatial GH shift is visible in
the PSM as well (see Fig. 5). As described in Sect. 3, the
focal-plane shifts are determined from the intensity image con-
structed by right-multiplying the PSM by the incident Stokes
vector. In other words, the shifts are determined from the image
constructed as a linear combination of the PSM elements in
the top row, weighted with the incident Stokes parameters.
Whereas the (I→ I)-, (U→ I)-, and (V→ I)-elements have their
centroids shifted in the x-direction by the same small amount,
the (Q→ I)-element exhibits a much larger shift in this direction.
For incident unpolarized light (Q = U = V = 0), the shift we
find is that of the (I→ I)-element. On the other hand, for incident
light with Q nonzero, a scaled version of the (Q→ I)-element,
which shows a relatively large shift, is added to or subtracted
from the (I→ I)-element. This results in a larger, smaller, or
opposite shift compared to that of the (I→ I)-element, in agree-
ment with the curves in Fig. 7. Finally, for incident light with
nonzero U and/or V , scaled versions of the (U→ I)- and (V→ I)-
elements are added to or subtracted from the (I→ I)-element.
However, in this case the resulting shift is the same as that
for incident unpolarized light because the centroid shifts of the

(U→ I)- and (V→ I)-elements are equal to that of the (I→ I)-
element.

4.2. Angular Goos-Hänchen shift

The angular GH shift, ΘaGH, is an angular deviation of the beam
of light upon reflection and, similar to the spatial GH shift,
occurs in the plane of incidence (e.g., Aiello & Woerdman 2008;
Aiello et al. 2009; Götte & Dennis 2012; Bliokh & Aiello 2013).
The definition of the angular GH shift is shown in Fig. 6 (top).
Similar to the spatial GH shift, the angular GH shift can be
understood from a 2D picture of the beam of light. Each ray
in the incident beam hits the mirror at a different angle of inci-
dence and therefore experiences a different reflection coefficient.
Over the range of angles of incidence this results in a gradient in
the amplitude across the reflected beam (see Fig. 3, left), which
translates into a shift of the centroid in intensity. Contrary to
the spatial GH shift, the size of the angular shift depends on the
divergence angle, and thus the f-number, of the incident beam.
This is because a more strongly converging or diverging beam
covers a larger range of angles of incidence and therefore yields
a larger gradient. The angular GH shift is truly a deflection of
the beam centroid as described by an angle, which is the same
whether the reflection occurs in the focus or the converging or
diverging part of the beam (see Fig. 6, top). The resulting physi-
cal displacement of the beam centroid vanishes in the focus and
increases with distance from the focus. That the physical dis-
placement of the beam centroid is zero in the focus can easily
be understood in the Fraunhofer approximation: The amplitude
gradient in the exit pupil will lead to a point-symmetric change
in the PSF, which cannot change the centroid of the intensity
distribution.

The angular GH shift can be computed as follows:

ΘaGH =
−α2

2

Rp
∂Rp

∂θ
Ix + Rs

∂Rs

∂θ
Iy

R2
pIx + R2

s Iy
, (28)

where, similar to the spatial GH shift, Ix and Iy are functions of
Stokes Q (see Eqs. (8) and (9)), and Rp, Rs, and the amplitude
gradients ∂Rp/∂θ and ∂Rs/∂θ (see Fig. 3, left) are evaluated at
the central angle of incidence. The divergence angle of the beam,
α, is given by:

α = arctan
(

1
2|F|

)
, (29)

with F the f-number of the beam. Contrary to the spatial GH
shift, the angular GH shift only depends on the amplitude of the
reflection coefficients, and not on the phase. The angular GH
shift is produced by the amplitude gradients, whereas Rp and Rs
only have a small effect. The structure of Eq. (28) is quite similar
to that of Eq. (26), which describes the spatial GH shift. Indeed,
when setting Ix = 0 or Iy = 0 in Eq. (28), we see that the angular
GH shift also consists of two components for the light polarized
in the x- and y-directions:

ΘaGH,x/y =
−α2

2
1

Rp/s

∂Rp/s

∂θ
. (30)

Equation (28) therefore constitutes the intensity-weighted aver-
age of these two shifts. Finally, the physical displacement of the
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Fig. 8. Angular GH shift as a function of the angle of incidence at a
wavelength of 820 nm for a beam of light with an f-number of 61.3
that reflects off gold as obtained from the closed-form expression of
Eq. (28) (curves) and polarization ray tracing (data points). The shift
is shown for an incident beam that is completely unpolarized, 100%
linearly polarized with various angles of linear polarization χ, and 100%
right-handed (V = 1) or left-handed (V = −1) circularly polarized.

beam centroid at a distance zf from the focus of the beam is
given by:

XaGH = zf ΘaGH, (31)

where zf > 0 in the diverging part of the beam and zf < 0 in
the converging part. We can compute the physical displacement
of the centroid of the intensity in the pupil plane by inserting
zf = − f in Eq. (31), where f is the focal distance ( f > 0 in a
converging beam and f < 0 in a diverging beam).

Figure 8 shows the angular GH shift as a function of the
angle of incidence for different incident polarization states as
computed from Eq. (28). The figure also shows the shifts as
obtained from the exit pupil (data points) using the polariza-
tion ray tracing as explained in Sect. 3. We have computed these
numerical shifts by dividing the physical displacements of the
centroid in the pupil plane by the negative value of the focal
distance (see Eq. (31)). Contrary to the analytically computed
shifts, we have computed the numerical shifts only for 100%
polarized light (i.e., not for unpolarized light) because the Jones
calculus used cannot describe unpolarized or partially polarized
light. Similar to the spatial GH shift, the analytical and numerical
results in Fig. 8 agree closely and small deviations are only vis-
ible for very large angles of incidence. These deviations are due
to the angular GH shift depending on the precise beam intensity
profile and vanish when performing the polarization ray tracing
for a Gaussian beam.

Figure 8 indicates that the angular GH shift is on the order
of microradians for the particular configuration studied. For nor-
mal incidence, the shift is zero. The largest shifts are found for
light polarized in the x-direction (i.e., for χ = 0◦ and χ = 180◦,
or Q = 1), whereas the shifts of the light polarized in the
y-direction (i.e., for χ = 90◦ or Q = −1) are much smaller. The
curves can be understood from the amplitude gradients govern-
ing the angular GH shift as shown in Fig. 3 (left): Whereas
∂Rs/∂θ increases monotonically with increasing angle of inci-
dence, ∂Rp/∂θ is initially negative, reaches a value of zero, and
then attains large positive values. The curves in Fig. 8 follow a
similar pattern as those of the spatial GH shift (see Fig. 7), with
the shifts for incident light that is not 100% x- or y-polarized

being an intensity-weighted average of the shifts of the x- and
y-polarizations.

As shown in the Rxx- and Ryy-elements of Fig. 4 (top; red
borders), the amplitude gradients associated with the angular GH
shift are visible in the Jones pupil expressed in the xyz-basis. In
the antidiagonal elements Rxy and Ryx these amplitude gradients
also exist, but they are overshadowed by the left-right symmetric
structure visible in those elements. For a diverging rather than
converging beam, the amplitude gradients have opposite signs
(see also Fig. 6, top). Because a diverging beam implies a nega-
tive focal distance, that is, the focal plane is virtual and located
in front of the mirror, the signs of the angular shifts themselves
do not change (see Eq. (31)). Finally, the angular GH shift is not
visible in the PSM (Fig. 5) because it is zero in the focus.

4.3. Spatial Imbert-Federov shift

The spatial IF shift, YsIF, is a displacement of the entire beam of
light upon reflection and occurs in the direction perpendicular to
the plane of incidence (e.g., Federov 1955; Imbert 1972; Bliokh
& Bliokh 2006; Aiello & Woerdman 2008; Hermosa et al. 2011;
Götte & Dennis 2012; Bliokh & Aiello 2013; Bliokh et al. 2015).
A schematic with the definition of the spatial IF shift is shown
in Fig. 6 (bottom). Similar to the spatial GH shift, the spatial IF
shift is independent of the f-number of the beam and the position
within the beam where the reflection occurs. To understand the
spatial IF shift from a plane-wave decomposition, it is necessary
to consider the full 3D picture (e.g., Aiello & Woerdman 2008;
Bliokh & Aiello 2013). Each plane wave in the incident beam
has a different (3D) propagation direction. Therefore, not only
the angles of incidence (and thus the reflection coefficients) are
different among the waves, but also the orientations of the local
planes of incidence. These rotations of the planes of incidence
induce different geometric (Berry) phases among the circularly
polarized components of the waves. This results in a gradient of
the geometric phases in the direction perpendicular to the plane
of incidence, with the gradient having opposite sign for the right-
handed and left-handed circular polarizations. Accounting for
the reflection coefficients of each wave as well as the geometric
phases within the reflected beam, the reflected beam is found to
be shifted in the direction perpendicular to the plane of incidence
when integrating over all waves.

The spatial IF shift is more easily understood in terms of
conservation of total angular momentum (e.g., Bliokh & Bliokh
2006; Bliokh & Aiello 2013; Bliokh & Nori 2015; Bliokh et al.
2015). Disregarding vortex beams, the total angular momentum
of a beam of light consists of the spin angular momentum (SAM)
and the external orbital angular momentum. In the quantum-
mechanical description of light, photons carry one of two spin
states that correspond to right-handed and left-handed circular
polarization. The SAM of a beam of light is a vector quantity
pointing in the direction of propagation that is proportional to the
difference between the number of right-handed and left-handed
photons, that is, it is proportional to Stokes V . The external
orbital angular momentum is given by the cross product of the
radius vector of the beam centroid with respect to some origin
and the linear momentum of the beam, with the latter pointing
in the direction of propagation. Upon reflection, the total angular
momentum in the direction normal to the surface of the mirror
is conserved. As a result, any change in the SAM of the beam,
that is, in the circular polarization, must be compensated for by
a shift of the beam in the direction perpendicular to the plane
of incidence. This shift is the spatial IF shift, which is therefore
considered to be a spin-orbit interaction of light.
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Fig. 9. Spatial IF shift as a function of the angle of incidence for
reflection off gold at a wavelength of 820 nm as obtained from the
closed-form expression of Eq. (32) (curves) and polarization ray trac-
ing (data points). The shift is shown for an incident beam of light
that is completely unpolarized, 100% linearly polarized with various
angles of linear polarization χ, and 100% right-handed (V = 1) or left-
handed (V = −1) circularly polarized. The shifts for χ = 67.5◦ and
χ = 157.5◦ are not shown, but are very close to the shifts for χ = 22.5◦
and χ = 112.5◦, respectively. The colors indicate different polarization
states than in Figs. 7 and 8.

The spatial IF shift can be calculated as follows:

YsIF =
−λ

2π
cot θ

R2
pIx + R2

s Iy

V R2
p + R2

s

2

 + RpRs (V cos∆ + U sin∆)

 ,
(32)

where Rp, Rs, and the retardance ∆ (see Eq. (16) and Fig. 3) are
evaluated at the central angle of incidence θ, and cot θ is the
transverse gradient of the induced geometric phase. Although
the spatial IF shift has a weak dependence on Stokes Q through
Ix and Iy (see Eqs. (8) and (9)), the shift depends primarily on the
incident Stokes U and V . So, whereas the GH shift consists of
two separate shifts for light polarized in the x- and y-directions,
the spatial IF shift comprises separate and opposite shifts for the
diagonally and antidiagonally polarized components (because
U = Id − Ia, see Eq. (6)) as well as for the right-handed and left-
handed circularly polarized components (because V = Ir − Il,
see Eq. (7)). For metallic reflections, the spatial IF shift results
primarily from the retardance, whereas Rp and Rs can be con-
sidered to be small corrections. Indeed, we can simplify Eq. (32)
by assuming that the incident beam is totally reflected. Setting
Rp = Rs = 1 and inserting Ix + Iy = 1 (see Eq. (4)), we obtain:

YsIF =
−λ

2π
cot θ

[
V (1 + cos∆) + U sin∆

]
. (33)

In this equation, the factor [V(1 + cos∆) + U sin∆] is propor-
tional to the change of the SAM upon reflection, with V(1)
proportional to the incident SAM and −(V cos∆ + U sin∆),
which gives Stokes V after reflection, proportional to the SAM
of the reflected beam. The spatial IF shift thus depends on the
crosstalk from U to V (U sin∆) and the crosstalk from V to U or
even the crosstalk creating a change of handedness of the circular
polarization (V cos∆).

Figure 9 shows the spatial IF shift as a function of the angle
of incidence for different incident polarization states as com-
puted from Eq. (32). Also shown are the shifts in the focal plane
(data points) as numerically determined using polarization ray
tracing (see Sect. 4), which agree closely with the analytical
computations. The small deviations among the results vanish
when performing the polarization ray tracing with a Gaussian
beam.

Figure 9 illustrates that the spatial IF shift is (somewhat)
smaller than the spatial GH shift and is always smaller than
the wavelength. At normal incidence, where ∆ = 180◦ (see
Fig. 3), the spatial IF shift is zero. For nonzero angles of inci-
dence, where ∆ , 180◦, changes in the SAM occur for incident
U- or V-polarized light, thus leading to spatial IF shifts. The
spatial IF shifts are in opposite directions for opposite signs of
U (e.g., for χ = 45◦ and χ = 135◦) and V (for right-handed and
left-handed circular polarization). The shifts initially become
larger with increasing angle of incidence (because ∆ monoton-
ically decreases), but then become smaller again for (very) large
angles of incidence as cot θ → 0 when θ → 90◦, resulting in
no shift at θ = 90◦. The spatial IF shift for U (χ = 45◦ and
χ = 135◦) reaches larger values than that of V with the maxi-
mum of U occurring at a smaller angle of incidence than the
maximum of V . The maxima of the curves are lower for partially
polarized light or light with both Q and U nonzero (e.g., χ =
22.5◦, χ = 67.5◦, χ = 112.5◦, or χ = 157.5◦). Although the light
with χ = 22.5◦ and χ = 67.5◦ (and similar for χ = 112.5◦ and
χ = 157.5◦) have the same value for U, small differences in the
size of the shifts occur due to the dependence on Q via Ix and
Iy. The curves of incident light with both U and V nonzero (not
shown in Fig. 9) are combinations of the curves for the individual
Stokes parameters. Finally, for unpolarized light or light polar-
ized in the x- or y-direction (i.e., Q-polarized light), the spatial
IF shift is always zero because the incident beam overall carries
no SAM and no SAM can be created upon reflection.

Similar to the spatial GH shift, the spatial IF shift is expected
to create gradients in phase in the Jones pupil. However, in
the Jones pupil expressed in the xyz-basis (see Fig. 4, top),
phase gradients in the y-direction are not visible. This is because
the spatial IF shift primarily depends on Stokes U and V (see
Eq. (33)), and therefore results from the complex linear combina-
tion of all four Jones-pupil elements in this basis. Nevertheless,
a hint of a gradient in the y-direction is visible in the Rxy-, Ryx-,
ϕxy-, and ϕyx-elements when considering that a phase difference
of π between the left and right sides of the pupil implies that the
reflection coefficients on either side have opposite signs. Actual
phase gradients in the y-direction naturally appear in the Jones
pupils expressed in the bases of Stokes U and V , that is, in the
Jones pupils expressed in the daz- and rlz-bases (see Fig. 4, cen-
ter and bottom). The gradients are visible in the ϕda-, ϕad-, ϕrr-,
and ϕll-elements (green borders). The Jones pupils also show the
phase gradient in the x-direction produced by the spatial GH
shift (blue borders), with the ϕda- and ϕad-elements exhibiting
a combination of gradients in the x- and y-directions. In Fig. 4
(center and bottom), the amplitude gradient in the x-direction
due to the angular GH is visible as well (red borders). Lastly,
we note that although the spatial IF shift does not depend on the
f-number, its size relative to the PSF scales as 1/|F|, analogous
to the spatial GH shift (see Sect. 4.1).

Finally, we show how the spatial IF shift is visible in the
PSM (see Fig. 5). As explained in Sect. 4.1, the focal-plane shifts
are determined from the image created as a linear combination
of the PSM elements in the top row, weighted with the incident
Stokes parameters. Because the (I→ I)- and (Q→ I)-elements are
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symmetric with respect to the x-axis (i.e., they are left-right sym-
metric in Fig. 5), no shift results for unpolarized light or light that
is polarized in the x- or y-direction. The (U→ I)- and (V→ I)-
elements on the other hand are asymmetric, with positive and
negative signals on opposite sides of the x-axis. For incident
light with nonzero U and/or V , scaled versions of these elements
are added to or subtracted from the (I→ I)-element, producing
a PSF with the centroid shifted in the y-direction. We note that
the relative intensity of the (U→ I)-element is larger than that of
the (V→ I)-element, in agreement with the spatial IF shift being
larger for U than for V at an angle of incidence of 45◦ (see Fig. 9).

4.4. Angular Imbert-Federov shift

The angular IF shift, ΘaIF, is an angular deviation of the beam
of light upon reflection directed away from the plane of inci-
dence (e.g., Bliokh & Bliokh 2007; Aiello & Woerdman 2008;
Hermosa et al. 2011; Götte & Dennis 2012; Bliokh & Aiello
2013). The definition of the angular IF shift is shown in Fig. 6
(bottom). The angular IF shift is related to the conservation of
linear momentum in the direction perpendicular to the plane of
incidence, and, similar to the spatial IF shift, results from the dif-
ferences in induced geometric phase across the beam. Similar to
the angular GH shift, the size of the angular IF shift depends on
the f-number of the incident beam and is the same whether the
beam is reflected in the focus or in the converging or diverging
parts of the beam. The physical displacement of the centroid of
the beam is zero in the focus and increases with distance from
the focus.

The angular IF shift can be calculated as follows:

ΘaIF =
α2

4
cot θ

R2
pIx + R2

s Iy
U

(
R2

p − R2
s

)
, (34)

where Rp and Rs are computed at the central angle of incidence,
and the divergence angle α is given by Eq. (29). Similar to the
angular GH shift, the angular IF shift does not depend on the
phases of the reflection coefficients, but only on the amplitudes.
Although the angular IF shift has small Q-dependent corrections
through Ix and Iy (see Eqs. (8) and (9)), the shift depends pri-
marily on the incident Stokes U. The angular IF shift consists
of separate and opposite shifts for the diagonally and antidiag-
onally polarized components (because U = Id − Ia, see Eq. (6))
and results primarily from the diattenuation. Indeed, if Q = 0,
that is, Ix = Iy = 1/2, Eq. (34) reduces to:

ΘaIF =
−α2

2
Uϵ cot θ, (35)

with ϵ the diattenuation from Eq. (15). Finally, the physical
displacement of the centroid of the beam is given by:

YaIF = zf ΘaIF, (36)

with zf the distance from the focus, similar to Eq. (31).
Figure 10 shows the angular IF shift as a function of the

angle of incidence for different incident polarization states as
computed from Eq. (34). The shifts as obtained from the exit
pupil (data points) using polarization ray tracing (see Sect. 3) are
also shown. These numerical shifts are computed using Eq. (36)
and are only calculated for 100% polarized light, similarly to the
angular GH shifts (see Sect. 4.2). The analytical and numerical
results agree closely, with the small deviations vanishing when
performing the polarization ray tracing for a Gaussian beam.

Figure 10 shows that the angular IF shift is on the order of
less than a microradian for the particular configuration consid-
ered. For incident light with U nonzero, angular IF shifts occur

Fig. 10. Angular IF shift as a function of the angle of incidence at a
wavelength of 820 nm for a beam of light with an f-number of 61.3
that reflects off gold as obtained from the closed-form expression of
Eq. (34) (curves) and polarization ray tracing (data points). The shift is
shown for an incident beam that is completely unpolarized, 100% lin-
early polarized with various angles of linear polarization χ, and 100%
right-handed (V = 1) or left-handed (V = −1) circularly polarized. The
shifts for χ = 67.5◦ and χ = 157.5◦ are not shown, but are very close to
the shifts for χ = 22.5◦ and χ = 112.5◦, respectively. Except for the cir-
cular polarization, the colors used indicate the same polarization states
as in Fig. 9.

that are in the opposite direction for opposite signs of U. The
shifts are zero for angles of incidence of 0◦ and 90◦. The shape
of the curves is related to the diattenuation (roughly the dif-
ference between Rs and Rp in Fig. 3), which initially increases
with increasing angle of incidence, reaches a maximum, and then
decreases again to zero at θ = 90◦. For incident light with U = 0
(i.e., χ = 0◦, χ = 90◦, χ = 180◦, V = 1, V = −1, or unpolarized
light), the shift is zero for any angle of incidence.

Finally, the amplitude gradients in the y-direction associated
with the angular IF shift are visible in the Rda- and Rad-elements
of the Jones pupil expressed in the daz-basis (see Fig. 4, center).
The gradients of these elements are a combination of gradients
in the y-direction and the x-direction, with the latter due to the
angular GH shift (red borders). Because the angular IF shift is
zero in the focus, it is not visible in the PSM.

5. Discussion

In Sect. 4, we explained the origin and characteristics of the
spatial and angular GH and IF shifts and investigated their size
and direction as a function of the angle of incidence and inci-
dent polarization state. We also showed that all four beam shifts
are fully reproduced by polarization ray tracing as described in
Sect. 3 and that the exact beam intensity profile (i.e., whether
it is Gaussian or uniform) has a negligible effect. Of the four
beam shifts, only the spatial GH and IF shifts are relevant for
high-contrast imagers and telescopes because these shifts are
visible in the focal plane; the angular GH and IF shifts are not
important because, besides a small point-symmetric deformation
of the PSF for angles of incidence close to grazing incidence
(which do not occur in high-contrast imagers), they have no
effect in the focus. We thus find that the polarization structure
in the PSF that limits the performance of coronagraphs and
the speckle suppression of polarimetric imagers is created by
the spatial GH and IF shifts. We note that the effect of these
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shifts on high-resolution spectroscopy and astrometry of plan-
ets should generally be small. The fiber-positioning system of
a high-resolution spectrograph maximizes the amount of planet
light that enters the fiber, thereby automatically correcting for the
beam shifts. And because the beam shifts are similar for astro-
nomical objects at different locations on the science detector,
relative astrometry is almost not affected.

In Sect. 5.1, we investigate the polarization structure in the
PSF created by the spatial GH and IF shifts. Subsequently, in
Sect. 5.2, we examine the effect of the spatial GH and IF shifts on
polarimetric measurements. In Sect. 5.3 we then briefly discuss
the size of the spatial GH and IF shifts for various mirror mate-
rials and wavelengths. After that, in Sect. 5.4, we use our under-
standing of the spatial GH and IF shifts to discuss and refine
the approaches to mitigate the shifts. Finally, we present a table
summarizing the properties of the four beam shifts in Sect. 5.5.

5.1. Polarization structure in the PSF due to beam shifts

In this section, we investigate the polarization structure in the
PSF created by the spatial GH and IF shifts. This polarization
structure must be taken into account when designing the coro-
nagraphs of high-contrast imagers that aim to detect planets in
reflected light (Breckinridge et al. 2015). For our analysis, we
consider the reflection off a single flat mirror at an angle of
incidence of 45◦, using the same configuration as examined in
Sects. 3 and 4.

The observed light of the stars around which high-contrast
imagers search for planets is unpolarized or has a degree of polar-
ization of only several percent (see e.g., Heiles 2000). For this
case of (nearly) unpolarized incident light, the Stokes vector after
reflection off a flat mirror is given by the elements in the left col-
umn of the PSM in Fig. 5, that is, the (I→ I)-, (I→Q)-, (I→U)-,
and (I→V)-elements. These elements are the same as those in
the top row of the PSM, except for the (I→U)-element which has
opposite sign. Because the spatial GH and IF shifts follow from
these top-row elements (see Sects. 4.1 and 4.3), the polarization-
dependent structures visible in the Stokes vector for reflection
of incident unpolarized light must be created by the spatial GH
and IF shifts. In the following, we refer to the (I→ I)-, (I→Q)-,
(I→U)-, and (I→V)-elements as the intensity image and the Q-,
U-, and V-images, respectively.

As outlined in Sect. 4.1, the spatial GH shift is described
by two opposite shifts of different size for the incident light
polarized in the x- and y-directions, that is, for the incident
Ix- and Iy-components of the light. Because unpolarized light
can be described as the sum of equal amounts of the Ix- and
Iy-components (see Eqs. (4), (8), and (9)), the intensity image
consists of two PSF components that are slightly shifted in
opposite directions along the x-axis. As a result, the PSF in
intensity is not only shifted (by 15 nm or 1.8% of the wave-
length for the configuration considered; see Fig. 7, black curve),
but also broadened in the x-direction. The Q-image is equal to
the difference of the Ix- and Iy-components (see Eq. (5)). Due
to the diattenuation (see Eq. (15)), the two components are not
reflected by an equal amount. Therefore, an overall negative sig-
nal with a minimum of ∼0.9% remains in the image, which
constitutes the instrumental polarization. But because the Ix-
and Iy-components are also shifted in opposite directions, this
instrumental-polarization signal itself also has a large shift (see
also Breckinridge et al. 2015).

As explained in Sect. 4.3, the spatial IF shift is opposite
for incident diagonally (d) and antidiagonally (a) polarized light
(i.e., for positive and negative 100% U-polarized light) as well
as for incident right-handed (r) and left-handed (l) circularly

polarized light (i.e., for positive and negative 100% V-polarized
light). Unpolarized light can be described as the sum of equal
amounts of these Id- and Ia-components as well as the sum of
equal amounts of the Ir- and Il-components (see Eqs. (4), (6),
and (7)). Therefore, the intensity image consists of PSF com-
ponents that are slightly shifted by equal amounts in opposite
directions parallel to the y-axis. So although the PSF in inten-
sity is not shifted by the spatial IF shift when the incident
light is unpolarized (see Fig. 9, black curve), it is broadened in
the y-direction in addition to the broadening in the x-direction
(due to the spatial GH shift). The opposite shifts of the Id-
and Ia-components and the Ir- and Il-components can also be
seen in the U- and V-images, respectively, where they cre-
ate asymmetric structures with positive and negative signals on
opposite sides of the x-axis. For the configuration considered,
these structures have values below 0.1% of the intensity (with the
U-image having larger values than the V-image as can be
expected from Fig. 9). The asymmetric structures are also vis-
ible in the R′xy-, R′yx-, ϕ′xy-, and ϕ′yx-elements of the ARM (see
Fig. A.1). Breckinridge et al. (2015) refer to these structures in
the ARM as ghost PSFs (see Sect. 1). Our results therefore show
that these ghost PSFs are created by the spatial IF shifts and are
elliptically polarized. Finally, we note that due to the splitting
of the orthogonal circular polarization states in the V-image, the
spatial IF shift is often also referred to as the spin Hall effect of
light (e.g., Hermosa et al. 2011; Bliokh & Aiello 2013; Bliokh &
Nori 2015; Bliokh et al. 2015).

The PSM in Fig. 5 as calculated with polarization ray trac-
ing includes all orders of polarization aberrations. Still, we find
that the polarization structure in the PSF for the case of incident
unpolarized light is adequately described by the diattenuation
(i.e., the instrumental polarization) and the first-order polariza-
tion aberrations in the focus, that is, the spatial GH and IF shifts.
We therefore conclude that only for curved mirrors the higher-
order polarization aberrations, such as polarization-dependent
astigmatism (Breckinridge et al. 2015), come into play. For a
discussion on the combined effect of a series of flat mirrors
and the polarization aberrations of curved mirrors with normal
incidence, we refer to Breckinridge et al. (2015).

5.2. Effect of beam shifts on polarimetric measurements

In this section, we investigate the effect of the spatial GH and IF
shifts on polarimetric measurements with high-contrast imagers.
The physics literature does not describe beam shifts for the case
where unpolarized light is incident on a mirror and where the
reflected light is subsequently measured by a polarimeter. How-
ever, we can understand this case from our insights into the beam
shifts and our results from the polarization ray tracing.

We shall consider a rotatable linear polarizer placed behind
the mirror that we analyzed in Sect. 5.1. In that case, the Stokes
vector incident on the polarizer is the same Stokes vector as
examined in Sect. 5.1: It is equal to the left column of the PSM
in Fig. 5. If we then align the transmission axis of the polar-
izer with the x-, y-, d-, and a-directions, we measure the Ix-,
Iy-, Id-, and Ia-components of the beam. Also, if we replace the
polarizer with a right-handed or left-handed circular polarizer,
we measure the Ir- and Il-components of the beam. As a result,
these six measurements are sensitive to exactly the same spatial
GH and IF shifts of these components as described in Sect. 5.1.
Therefore, when we compute the differences of the x- and y-, d-
and a-, and r- and l-measurements, we obtain the Q-, U-, and
V-images of the Stokes vector after reflection.

Because stars are generally unpolarized, polarimetric mea-
surements strongly suppress the light from the star, thereby
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Fig. 11. PSF structures visible in normalized Stokes q (without instru-
mental polarization), u, and v (top), degree of linear polarization P,
angle of linear polarization χ, and intensity (bottom) at a wavelength
of 820 nm for a converging beam of light with an f-number of 61.3 that
reflects off gold at an angle of incidence of 45◦. The images are con-
volved with a top-hat kernel with a diameter equal to the full width at
half maximum of the PSF in intensity. The images show the core of
the PSF and the first three complete Airy rings. The positive x- and
y-directions are upward and to the left, respectively.

making the detection of planets in reflected light easier. However,
the maximum gain in contrast from polarimetry is limited by the
spatial GH and IF shifts and the polarization structure that
they create. Although the instrumental polarization is a larger
aberration, this effect is routinely subtracted in the data reduc-
tion and/or removed by using a half-wave plate in front of
the optical path in current high-contrast imaging polarimeters
(Witzel et al. 2011; Canovas et al. 2011; Wiktorowicz et al. 2014;
Millar-Blanchaer et al. 2016; de Boer et al. 2020; van Holstein
et al. 2020a,b).

To quantify the maximum gain in contrast from polarime-
try as limited by the spatial GH and IF shifts, we compute
the mirror-induced fractional polarization in Q, U, and V over
the PSF. To this end, we convolve the intensity image and the
Q-, U-, and V-images using a top-hat kernel with a diame-
ter equal to the full width at half maximum of the PSF in the
intensity image. This diameter is equal to the diameter of the
apertures one would use to extract the fluxes of detected plan-
ets and determine the noise level in the images (e.g., Mawet
et al. 2014). After convolving the images, we compute the instru-
mental polarization in the Q-image by dividing the total flux in
the Q-image by the total flux in the intensity image. We then
subtract the instrumental polarization from the Q-image by mul-
tiplying the intensity image by the instrumental polarization and
subtracting the resulting image from the Q-image. Subsequently,
we compute the images of the normalized Stokes parameters
q = Q/I, u = U/I, and v = V/I by dividing the (instrumental-
polarization-subtracted) Q-, U-, and V-images by the intensity
image. The resulting images as well as the images of the inten-
sity and the degree and angle of linear polarization P and χ (see
Eqs. (11) and (12)) are shown in Fig. 11.

Figure 11 (top) shows that the spatial GH and IF shifts create
a significant polarization structure in the PSF. In all images the

PSF core and the Airy rings show an asymmetric structure with
successive positively and negatively polarized regions. In case
of the u- and v-images, we found that these structures are created
by the spatial IF shifts and identified them as the ghost PSFs
described by Breckinridge et al. (2015; see Sect. 5.1). However,
by subtracting the instrumental polarization, we have revealed an
even stronger asymmetric structure or ghost PSF in the q-image.
In this case, the structure is produced by the spatial GH shifts and
is oriented orthogonally to the structures in the u- and v-images.

Figure 11 (top) also shows that the PSF has significant
fractional-polarization levels, with the largest values in the
q-image and the smallest values in the v-image. The relative
strengths of the fractional polarization in the q-, u-, and v-images
are directly related to the relative sizes of the spatial GH and
IF shifts at an angle of incidence of 45◦ (see Figs. 7 and 9).
Figure 11 (bottom) indicates that the degree of linear polariza-
tion in the PSF reaches a maximum of 0.56%. Finally, we see
that the angle of linear polarization rotates 180◦ when moving in
a circle around the center of the PSF and that it differs by 90◦
between the inner and outer regions of the Airy rings.

The polarization structure in the q-, u-, and v-images limit the
local gain in contrast achievable with polarimetry. The degree
of (linear) polarization is several tenths of a percent on aver-
age; hence the average contrast gain is a factor of ∼350, which
is the gain compared to the contrast in intensity including the
effects of seeing. This is because any speckles due to the see-
ing are also polarized at approximately this level. We stress that
the exact numerical values presented in Fig. 11 are only valid for
the specific configuration considered. For example, for a series
of mirrors and/or beams with smaller f-numbers, the fractional-
polarization levels are much higher and therefore the gain in
contrast due to polarimetry is much lower.

Finally, as discussed in Sect. 1, the polarimetric speckle
suppression of the high-contrast imaging polarimeter SPHERE-
ZIMPOL is limited by polarization-dependent beam shifts
(Schmid et al. 2018). Indeed, the structures visible in the on-sky
polarimetric images of Fig. 26 of Schmid et al. (2018) agree very
well with the asymmetric structures (ghost PSFs) in the q- and
u-images of Fig. 11 (top). Therefore, the polarimetric contrast of
SPHERE-ZIMPOL at small angular separations from the star is
clearly limited by both the spatial GH and IF shifts.

5.3. Size of beam shifts for various mirror materials
and wavelengths

So far we have only considered the beam shifts for reflection
off gold at a wavelength of 820 nm. Here we briefly discuss the
maximum size of the spatial GH and IF shifts as a function of
wavelength from the ultraviolet to the near-infrared for the three
most common (bulk) mirror materials used in astronomical tele-
scopes and instruments. We note, however, that actual mirrors in
astronomical telescopes and instruments are likely to consist of
a stack of thin films and so the exact sizes of the shifts will be
different. To compute the shifts, we use the complex refractive
indices of gold, silver, and aluminum for the range of wave-
lengths from Rakić et al. (1998). Figure 12 shows the spatial GH
shift for x-polarized light (from Eq. (26)) and the spatial IF shift
for antidiagonally polarized light (from Eq. (32)), both normal-
ized with the wavelength, for angles of incidence θ equal to 45◦
and 70◦.

Figure 12 shows that the spatial GH shift is larger than the
spatial IF shift for all mirror materials, that the size of the shifts
is always less than the wavelength, and that the shifts relative to
the wavelength are larger for shorter wavelengths. Of the three
materials, aluminum produces the smallest shifts, whereas gold
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Fig. 12. Maximum wavelength-normalized spatial GH (top) and IF
(bottom) shifts as a function of wavelength at an angle of incidence θ of
45◦ and 70◦ for reflection off gold, silver, and aluminum. The legend in
the bottom panel is valid for both panels. The shifts for gold and silver
are only shown for wavelengths longer than 600 nm and 400 nm, respec-
tively, because the reflectivity drops below 90% at shorter wavelengths.

and silver create larger shifts. For all materials and wavelengths,
the spatial GH shift is smaller for θ = 45◦ than for θ = 70◦. The
same is true for the spatial IF shift, except for the shortest wave-
lengths where the shift for θ = 45◦ becomes larger than that for
θ = 70◦.

5.4. Mitigation of beam shifts

Breckinridge et al. (2015) provide possible approaches to miti-
gate polarization aberrations in optical systems, which include
using beams of light with large f-numbers, keeping the angles
of incidence small, and tuning the coatings of the mirrors. In
this section, we discuss and refine these approaches based on
our fundamental understanding of the beam shifts. Breckinridge
et al. (2015) also discuss the use of possible optical devices
that could compensate polarization aberrations (see also Clark
& Breckinridge 2011; Sit et al. 2017; Dai et al. 2019), but a dis-
cussion of these devices is beyond the scope of this paper. We
also note that Schmid et al. (2018) and Hunziker et al. (2020) are
able to correct the beam shifts of SPHERE-ZIMPOL by measur-
ing them from on-sky data. This correction significantly reduces
the speckle noise at angular separations >0.6′′ from the star, but
residuals remain at separations <0.6′′. These residuals are par-
ticularly strong for broadband data because the beam shifts are
wavelength dependent and thus cannot be corrected with a sim-
ple shift for a broad wavelength range. Therefore, mitigating the
beam shifts already during the optical design is the preferred
approach.

The size of the spatial GH and IF shifts is independent of the
f-number F of the beam of light incident on a mirror. However,

as explained in Sect. 4.1, the size of these shifts relative to the
size of the PSF is inversely proportional to the f-number. There-
fore, to limit the effect of the beam shifts and the polarization
structure they create, the absolute f-numbers of the beams falling
onto the mirrors in the optical system should be large; the beams
should converge or diverge slowly. In the limit of a perfectly col-
limated beam (F = ∞), the spatial GH and IF shifts are even
negligibly small compared to the size of the PSF. Because any
beam of finite extent corresponds to an angular spectrum of
plane waves, the spatial GH and IF shifts still occur for a per-
fectly collimated beam, but the PSF is located at an infinite
distance and is infinitely large. We note that magnifications in
the optical system after the reflection off the mirror do not affect
the size of the beam shifts relative to the PSF, because magni-
fications change the size of the shifts and the PSF by an equal
amount.

The spatial GH and IF shifts are created by respectively the
phase gradient and the retardance of the mirror at the central
angle of incidence of the beam; the amplitudes of the reflec-
tion coefficients have only a marginal effect and are therefore not
important. Hence, to minimize the spatial GH and IF shifts, the
phase gradient should be kept small and the retardance should
have a value close to 180◦ (see Eqs. (26) and (33)). Fortunately,
the values of the phase gradient and the retardance are closely
related: A retardance close to 180◦ automatically implies small
phase gradients in both the p- and s-directions. Figure 3 (right)
shows that this situation occurs at small angles of incidence.
Therefore, to minimize the spatial GH and IF shifts, the central
angle of incidence of the beams should be kept small.

Keeping the f-numbers large and the central angles of inci-
dence small may not always be possible because optical systems
need to fit in a limited volume. Therefore, also the design of
the coatings of the mirrors should be considered to minimize
the spatial GH and IF shifts. In general, mirror coatings are
optimized for large reflectivity to maximize the throughput of
the optical system. However, highly reflective coatings almost
always have retardances significantly different from 180◦ and
therefore such coatings produce large spatial GH and IF shifts.
But for high-contrast imaging, a high system throughput is of lit-
tle use when one cannot attain the contrast to image exoplanets.
Therefore, a paradigm shift in the design of the mirror coatings
for high-contrast imagers is necessary: Rather than maximizing
the reflectivity, the retardance should be optimized to have values
close to 180◦ for the central angle of incidence of the mirror and
the wavelength range of interest. For linear polarimeters such a
design philosophy has the added advantage that it also prevents
large losses of signal due to strong polarimetric crosstalk, such as
those found for the image derotators of SPHERE and SCExAO-
CHARIS (de Boer et al. 2020; van Holstein et al. 2020a,b; ’t Hart
et al. 2021). The larger instrumental polarization resulting from
the suboptimal reflectivity is not an issue because it can be eas-
ily removed by adding a half-wave plate to the optical path or
subtracting it in the data reduction.

5.5. Table summarizing properties of beam shifts

In Table 1 we present an overview of the properties of the four
beam shifts discussed in this paper. For each shift, the table
shows the type and nature of the effect, the plane or direction of
occurrence, the origin of the shift, the parameters that the shift
depends on, the typical size, the effect in the focal plane, and
whether or not the shift is important for high-contrast imaging.
Table 1 therefore provides a clear summary of the beam shifts
and is a useful reference to compare the effects.
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6. Conclusions

We used polarization ray tracing to numerically compute the
beam shifts for reflection off a flat metallic mirror and com-
pared the resulting shifts to the closed-form expressions of
the spatial and angular GH and IF shifts from the physics
literature. We find that all four beam shifts are fully repro-
duced by polarization ray tracing. In particular, we find that
the phase gradients in the Jones pupil and the ghost PSFs as
described by Breckinridge et al. (2015) are produced by the
spatial GH and IF shifts. We also studied the origin and char-
acteristics of the four shifts and the dependence of their size
and direction on the beam intensity profile, incident polariza-
tion state, angle of incidence, mirror material, and wavelength.
An overview of the properties of the four beam shifts is shown
in Table 1.

Whereas the spatial GH and IF shifts depend on the phase of
the Fresnel reflection coefficients, the angular GH and IF shifts
depend on the amplitude. Only the spatial GH and IF shifts are
relevant for high-contrast imagers and telescopes because these
shifts are visible in the focal plane. The angular GH and IF shifts
on the other hand are not important because they only change
the intensity distribution across the reflected beam. As such, the
angular shifts have no significant effect in the focus and only
create a small point-symmetric deformation of the PSF. We thus
conclude that only phase aberrations are important; amplitude
aberrations have an almost negligible effect.

The spatial GH and IF shifts create a polarization structure in
the PSF that reduces the performance of coronagraphs. In fact,
we find that the polarization structure for the case of unpolarized
light incident on a flat metallic mirror is adequately described by
the diattenuation (i.e., the instrumental polarization) and the spa-
tial GH and IF shifts. The polarization structure created by the
spatial GH and IF shifts can also significantly reduce the speckle
suppression of polarimetric measurements, thereby limiting the
maximum attainable gain in contrast from polarimetry. To mit-
igate the spatial GH and IF shifts in optical systems, the beams
of light reflecting off the mirrors should have large f-numbers
and small central angles of incidence. Most importantly, mir-
ror coatings should not be optimized for maximum reflectivity,
but should instead be designed to have a retardance close
to 180◦.

Our study provides a fundamental understanding of the
polarization aberrations resulting from reflection off flat metallic
mirrors in terms of beam shifts. In addition, we have created the
analytical and numerical tools to describe these shifts. The next
step is to study the combined effect and wavelength dependence
of the beam shifts of complete optical paths of (polarimetric)
high-contrast imaging instruments and telescopes with multiple
inclined and rotating components, including half-wave plates.
In particular, we plan to use our tools to create a detailed
model of the beam shifts affecting the polarimetric mode of
SPHERE-ZIMPOL and enable accurate corrections of on-sky
observations. The insights from our work can be applied to
understand and improve the performance of many future space-
and ground-based high-contrast imagers and polarimeters, such
as the Roman Space Telescope, the Habitable Worlds Observa-
tory, GMagAO-X at the Giant Magellan Telescope, PSI at the
Thirty Meter Telescope, and PCS (or EPICS) at the Extremely
Large Telescope.
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Appendix A: Amplitude-response matrix

Figure A.1 shows the amplitude-response matrix for reflection with an angle of incidence of 45◦.

Fig. A.1. Amplitude-response matrix (ARM) expressed in the xyz-basis at a wavelength of 820 nm for a converging beam of light with an f-number
of 61.3 that reflects off gold at an angle of incidence of 45◦. The panels in the first and second (third and fourth) columns show the amplitude
(phase) of the central 500 µm × 500 µm of the ARM elements. The positive x- and y-directions are upward and to the left, respectively. The values
of the color maps are different among the panels in the first and second columns.
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