

Freezing conditions in warm disks: snowlines and their effect on the chemical structure of planet-forming disks Leemker, M.

Citation

Leemker, M. (2024, February 14). *Freezing conditions in warm disks: snowlines and their effect on the chemical structure of planet-forming disks*. Retrieved from https://hdl.handle.net/1887/3717617

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3717617

Note: To cite this publication please use the final published version (if applicable).

Freezing conditions in warm disks snowlines and their effect on the chemical structure of planet-forming disks

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op woensdag 14 februari 2024 klokke 10:00 uur door

Margot Leemker

geboren te Zwijndrecht, Nederland in 1996

Promotores:

Prof. dr. E. F. van Dishoeck	
Prof. dr. M. R. Hogerheijde	Universiteit Leiden
	Universiteit van Amsterdam

Co-promotor:

Dr. A. S. Booth	Harvard & Smithsonian	Center for Astrophysics

Promotiecommissie:

Prof. dr. I. A. G. Snellen	
Prof. dr. H. V. J. Linnartz	
Prof. dr. E. A. Bergin	University of Michigan
Prof. dr. H. Nomura	National Astronomical Observatory of Japan
Dr. V. V. Guzmán	Pontificia Universidad Católica

ISBN:

Cover design: Marta Paula Tychoniec

The universe is made of stories, not of atoms. - *Muriel Rukeyser*

Table of contents

1	Intr	oduction	1						
	1.1	Star and planet formation							
	1.2	Protoplanetary disks	4						
		1.2.1 Evolution of disks	4						
		1.2.2 Dust evolution and planet formation	6						
		1.2.3 Observations of disks with ALMA	8						
		1.2.4 Disks are not smooth in dust	9						
		1.2.5 Disks are not smooth in gas $\ldots \ldots \ldots$	1						
		1.2.6 Dust traps are ice traps	2						
		1.2.7 Vertical structure in disks	3						
	1.3	Astrochemistry	3						
		1.3.1 Gas-phase chemistry $\ldots \ldots \ldots$	4						
		1.3.2 Grain surface chemistry	5						
		1.3.3 Inheritance or reset	5						
		1.3.4 Snowlines	7						
		1.3.4.1 Tracers of snowlines $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1$	8						
	1.4	Thermometers in disks	0						
		1.4.1 Brightness temperature	0						
		1.4.2 Line ratios	1						
	1.5	Modelling of protoplanetary disks using DALI	2						
	1.6	This thesis	4						
		1.6.1 Outlook	5						
2	Che	mically tracing the water snowline in protoplanetary disks							
-	with	$^{\rm HCO+}$ HCO ⁺	7						
	2.1	Introduction 2	9						
	$\frac{2.1}{2.2}$	Protoplanetary disk model 3	1						
		2.2.1 Disk structure 3	1						
		2.2.2 Chemical models	4						
		2.2.3 Badiative transfer	5						
	2.3	Modelling results 3	7						
	2.0	2.3.1 Chemistry 3	.7						
		2.3.1.1 Water versus electrons	8						
	2.3	2.2.2 Chemical models 3 2.2.3 Radiative transfer 3 Modelling results 3 2.3.1 Chemistry 3 2.3.1.1 Water versus electrons 3	4 5 7 7 8						

		2.3.1.2 Effect of the CO, H_2O abundance, and cosmic ray	
		ionisation rate on the HCO^+ abundance 3	39
		2.3.2 HCO ⁺ and $H^{13}CO^+$ emission	40
		2.3.2.1 Continuum optical depth	12
		2.3.2.2 Molecular excitation	13
		2.3.2.3 Chemistry	15
		2.3.2.4 What causes HCO^+ rings?	15
		2.3.3 Line profiles	15
	2.4	Comparison with observations	46
		2.4.1 $H^{13}CO^+$ observations	18
		2.4.2 HCO^+ observations $\ldots \ldots 5$	60
		2.4.3 Model HCO ⁺ images: locating the snowline $\ldots \ldots \ldots \ldots 5$	50
	2.5	Conclusions	53
	App	ndices	54
	2.A	Freeze-out and desorption coefficients	54
	$2.\mathrm{B}$	Chemical network	55
		2.B.1 Analytical approximation for network NW	55
		2.B.2 Initial conditions	6
	$2.\mathrm{C}$	HCO^+ and $H^{13}CO^+$ $J = 1 - 0$, $J = 3 - 2$, and $J = 4 - 3$ transitions 5	57
	$2.\mathrm{D}$	V883 Ori	57
3	Res	lving snow surfaces of water and methanol in the V883 Ori	
	disk	6	3
	3.1	Introduction	i5
	3.2	$Methods \dots \dots$	<i>i</i> 7
	3.3	Results	i8
	3.4	Discussion	0
		3.4.1 Layered or mixed ices on the grains	0
		3.4.2 HDO and methanol snow surfaces in other disks 7	'1
	3.5	Conclusions	2
	3.6	Acknowledgements	2
	App	ndices \ldots \ldots \ldots 7	'4
	$3.\mathrm{A}$	Channel maps 7	'4
	$3.\mathrm{B}$	Optical depth	'4
	a		
4	Gas	temperature structure across transition disk cavities 7	7
	4.1		9
	4.2	Ubservations	51 \1
		4.2.1 The sources	51
	4.0	$4.2.2 \text{Data} \dots \dots \dots 8$	54 00
	4.3	Kesuits	59 20
		$4.3.1 \text{Dust} \dots \dots$	59 50
		4.3.2 Gas	۱Ü
		4.3.2.1 Radial profiles	10
		4.3.2.2 Brightness temperatures	<u>И</u>
		$4.3.2.3 \text{Spectra} \dots \dots \dots \dots \dots \dots \dots \dots \dots $) 3

	4.4	Analys	\sin	94
		4.4.1	Temperature and column density determination	94
		4.4.2	Results for LkCa15	96
		4.4.3	Results for HD 169142	100
	4.5	Therm	ochemical models	101
	4.6	Discus	sion	103
		4.6.1	Comparing models and observations	103
		4.6.2	Comparison to other sources	105
		4.6.3	Implications for the cause of the gas cavity	106
	4.7	Conclu	isions	108
	App	endices		110
	4.A	Observ	vations	110
		4.A.1	Channel maps ¹³ CO $J = 6 - 5$	110
		4.A.2	Azimuthally averaged radial profiles	110
		4.A.3	Brightness temperature	110
		4.A.4	Spectra	112
	4.B	Line ra	atio analysis	114
		4.B.1	Temperature and column density	114
		4.B.2	Optical depth	114
	$4.\mathrm{C}$	DALI		116
		4.C.1	Model setup	116
		$4.\mathrm{C.2}$	DALI models for other parameters	123
-	A	•		
5	An Niti	najor a ric oxic	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and	195
5	An Niti aC	najor a ric oxic /O rat	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1	125
5	A n Nit a C 5.1 5.2	najor a ric oxic /O rat Introd	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127
5	A m Nitr a C 5.1 5.2	najor a ric oxic /O rat Introd Observ	asymmetric ice trap in a planet-forming disk. IV. de gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129
5	A n Nit a C 5.1 5.2	najor a ric oxic /O rat Introd Observ 5.2.1	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 129
5	A n Nit a C 5.1 5.2	najor a ric oxic /O rat Introd 0bserv 5.2.1 5.2.2 5.2.3	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 129 132
5	A m Nit a C 5.1 5.2	najor a ric oxid /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 129 132 133 135
5	A n Niti a C 5.1 5.2 5.3	major a ric oxio $/\mathbf{O}$ rat Introd Observe 5.2.1 5.2.2 5.2.3 Observe 5.3.1	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 129 132 133 135 135
5	A m Nit a a C 5.1 5.2	$\begin{array}{c} \textbf{najor} \\ \textbf{sic oxio} \\ \textbf{/O rat} \\ \textbf{Introd} \\ \textbf{Observ} \\ 5.2.1 \\ 5.2.2 \\ 5.2.3 \\ \textbf{Observ} \\ 5.3.1 \\ 5.3.2 \\ \end{array}$	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 129 132 133 135 135 135
5	A n Niti a C 5.1 5.2	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 135 137
5	A m Niti a C 5.1 5.2	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 135 137 137
5	A m Niti a C 5.1 5.2 5.3	najor a ric oxid /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 137 137 137 139 140
5	A m Nith a C 5.1 5.2 5.3	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Modela 5.4.1	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 137 137 139 140 143
5	A m Nith a C 5.1 5.2 5.3	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 137 137 139 140 143 146
5	A m Nith a C 5.1 5.2 5.3	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2 5.4.3	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 135 137 137 139 140 143 146 149
5	A m Nith a C 5.1 5.2 5.3	najor a ric oxio /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2 5.4.3 5.4.4	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 137 137 137 139 140 143 146 149 150
5	A m Nitn a C 5.1 5.2 5.3 5.4	najor a ric oxid /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model: 5.4.1 5.4.2 5.4.3 5.4.4 Discus	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 132 133 135 135 137 137 137 139 140 143 146 149 150 150
5	A m Niti a C 5.1 5.2 5.3 5.3	najor a ric oxid /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2 5.4.3 5.4.4 Discus 5.5.1	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	125 127 129 129 132 133 135 135 137 137 137 139 140 143 146 149 150 150
5	A m Nith a C 5.1 5.2 5.3 5.4	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2 5.4.3 5.4.4 Discuss 5.5.1 5.5.2	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	$\begin{array}{c} 125 \\ 127 \\ 129 \\ 129 \\ 132 \\ 133 \\ 135 \\ 135 \\ 137 \\ 137 \\ 139 \\ 140 \\ 143 \\ 146 \\ 149 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 152 \end{array}$
5	A m Nith a C 5.1 5.2 5.3 5.4 5.4 5.5 5.6	najor a ric oxic /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2 5.4.3 5.4.4 Discus 5.5.1 5.5.2 Conch	asymmetric ice trap in a planet-forming disk. IV. le gas and a lack of CN tracing sublimating ices and io <1 uction	$\begin{array}{c} 125 \\ 127 \\ 129 \\ 129 \\ 132 \\ 133 \\ 135 \\ 135 \\ 137 \\ 137 \\ 137 \\ 137 \\ 140 \\ 143 \\ 146 \\ 149 \\ 150 \\ 150 \\ 150 \\ 152 \\ 154 \end{array}$
5	A m Nith a C 5.1 5.2 5.3 5.4 5.5 5.6 5.7	najor a ric oxid /O rat Introd Observ 5.2.1 5.2.2 5.2.3 Observ 5.3.1 5.3.2 5.3.3 5.3.4 Model 5.4.1 5.4.2 5.4.3 5.4.4 Discus 5.5.1 5.5.2 Conclu Acknow	asymmetric ice trap in a planet-forming disk. IV. the gas and a lack of CN tracing sublimating ices and io <1 uction	$\begin{array}{c} 125 \\ 127 \\ 129 \\ 129 \\ 132 \\ 133 \\ 135 \\ 135 \\ 137 \\ 137 \\ 137 \\ 139 \\ 140 \\ 143 \\ 146 \\ 149 \\ 150 \\ 150 \\ 150 \\ 150 \\ 152 \\ 154 \\ 154 \end{array}$

	App	endices		56
	5.A	Obser	vations $\ldots \ldots 1$	56
	$5.\mathrm{B}$	DALI	1!	57
		5.B.1	Model setup	57
			5.B.1.1 Gas and dust density structure	57
			5.B.1.2 Stellar spectrum	32
			5.B.1.3 Chemical network	32
		5.B.2	Model results	38
			5.B.2.1 Initial distribution of nitrogen	38
			5.B.2.2 Effect of evaporating ices on CN and C_2H 10	<u> </u>
			5.B.2.3 Chemical composition of the non-dust trap side . 1'	70
			5.B.2.4 Time evolution $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1$	70
6	Che	emistry	across dust and gas gaps in protoplanetary disks:	
	mod	delling	the co-spatial molecular rings in the HD 100546 disk 17	79
	6.1	Introd	$uction \dots \dots$	31
	6.2	Metho	$ds \dots \dots$	34
		6.2.1	Source: HD 100546	34
		6.2.2	ALMA data covering [C I]	35
		6.2.3	DALI 18	35
			6.2.3.1 Gas density structure	35
			6.2.3.2 Dust density structure	36
		6.2.4	Stellar spectrum	37
		6.2.5	Chemistry	37
		6.2.6	Raytracing 18	38
		6.2.7	The fiducial model	38
	6.3	Result	5s1) 1
		6.3.1	2D abundance maps	92
		6.3.2	Integrated intensity maps 19	93
		6.3.3	A deeper gas gap	95
			$6.3.3.1 \text{Column densities} \dots \dots$	95
			$6.3.3.2 \text{Emission maps} \dots \dots \dots \dots \dots 19$	97
			6.3.3.3 Molecular column densities and line ratios 19	97
		6.3.4	Different C/O ratios	99
			6.3.4.1 Column densities and emission profiles 19	99
			6.3.4.2 Column density and emission line ratios 20)3
		6.3.5	Background UV)3
		6.3.6	Flaring 20)4
	6.4	Discus	ssion \ldots \ldots \ldots \ldots 20)5
		6.4.1	Radial structures)5
			6.4.1.1 CO isotopologues, HCO^+ , and $HCN \ldots 20$)5
			6.4.1.2 CN, C_2H , and NO)6
		6.4.2	Chemistry in the rings and gap)7
	6.5	Conch	usions $\ldots \ldots 20$)9
	6.6	Ackno	wledgements $\ldots \ldots 2$	10
	App	endices		11

6.A	Observ	ved lines		211
$6.\mathrm{B}$	DALI			212
	6.B.1	Model se	etup	212
		6.B.1.1	Radial and vertical structure	212
		6.B.1.2	Initial conditions of the chemical networks	213
	6.B.2	Model p	redictions	218
		6.B.2.1	Emission profiles and emitting heights of CO iso-	
			topologues	218
		6.B.2.2	Emission profiles and column densities of [C I],	
			HCN, CN, C_2H , NO, and HCO^+ for different gas	
			gaps	219
		6.B.2.3	Column densities of [C I], HCN, CN, C ₂ H, NO,	
			and HCO^+ for different C/O ratios	222
	6.B.3	Molecula	ur ratios	222
		6.B.3.1	Column density ratios for different gap depths $\ . \ .$	222
		6.B.3.2	Emission line ratios for different gap depths	224
		6.B.3.3	Column density and line ratios for different C/O	
			ratios	225
	6.B.4	Backgrou	und UV	226
	6.B.5	Flaring		226
Bibliog	raphy			226
Nederla	andse	samenva	tting	255
Publica	tions			263
Curricu	ılum V	/itae		267
Acknowledgements 26				269