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Abstract

Background - Accurate predictions of hemoglobin deferral for whole-blood donors

could aid blood banks in reducing deferral rates and increasing efficiency and donor

motivation. Complex models are needed to make accurate predictions, but predictions

must also be explainable. Before the implementation of a prediction model, its impact

on the blood supply should be estimated to avoid shortages.

Methods - Donation visits between October 2017 and December 2021 were se-

lected from Sanquin’s database system. The following variables were available for each

visit: donor sex, age, donation start time, month, number of donations in the last 24

months, most recent ferritin level, days since last ferritin measurement, hemoglobin at

nth previous visit (n between 1 and 5), days since the nth previous visit. Outcome

hemoglobin deferral has two classes: deferred and not deferred. Support vector ma-

chines were used as prediction models, and SHapley Additive exPlanations values were

used to quantify the contribution of each variable to the model predictions. Perfor-

mance was assessed using precision and recall. The potential impact on blood supply

was estimated by predicting deferral at earlier or later donation dates.

Results - We present a model that predicts hemoglobin deferral in an explainable

way. If used in practice, 64% of non-deferred donors would be invited on or before

their original donation date, while 80% of deferred donors would be invited later.

Conclusions - By using this model to invite donors, the number of blood bank

visits would increase by 15%, while deferral rates would decrease by 60% (currently

3% for women and 1% for men).
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Introduction

Sanquin, the Dutch national blood service, collects over 400 000 whole-blood donations

from non-remunerated, voluntary blood donors every year. Women may donate a

maximum of three times per year, and men five times. Hemoglobin levels are tested

before every donation to prevent blood collection from donors with insufficient iron.

The minimum hemoglobin level for blood donation is 7.8 mmol/L for women and 8.4

mmol/L for men; if the capillary hemoglobin test (HemoCue) shows a lower value,

the donor is deferred for 3 months, that is, sent home without donating blood. If the

hemoglobin value is more than 0.5 mmol/L below the donation threshold, the donor

is referred to a donor physician. Additionally, since October 2017, ferritin levels have

been measured in each new donor, as well as after every fifth donation in repeat donors.

Donors are deferred for 6 months if their ferritin level is between 15 and 30 µg/L, or
for 12 months if their ferritin level is below 15 µg/L. This ferritin deferral policy was

implemented because hemoglobin is a poor indicator of iron stores, as iron deficient

donors can still present with sufficient hemoglobin levels until the iron deficiency is

very severe.

While it is important to defer donors that do not meet donation requirements,

sending donors home without giving them the opportunity to donate is discourag-

ing and costly. Previous studies have shown that donors are less likely to return to

the blood bank after a deferral for low hemoglobin than after a successful donation,

especially if it concerns their first blood bank visit. [28] This is less likely after de-

ferral for low ferritin levels, which occurs by letter after the donation, indicating that

post-donation deferral is less demotivating for donors than on-site deferral. [95] The

implementation of ferritin testing has had a considerable impact on the blood supply,

as a large part of the existing donor population (53% of women and 42% of men) were

found to have ferritin levels below 30 µg/L and had to be deferred. [96] However, this

has had the intended positive impact on donor deferral rates due to low hemoglobin,

which decreased from 8% for women and 3% for men in 2016 to 3% for women and

1% for men in 2021. [97]

Although percentage-wise, hemoglobin deferral rates are quite low in the Nether-

lands, they still amount to about 8000 deferrals each year, and there is a risk of

permanently losing these donors. To reduce deferral rates and improve donor moti-

vation, we should re-think hemoglobin deferral policies. One tool that can be used

for this purpose is a hemoglobin deferral prediction model. Many of these prediction

models have already been developed, including models that predict personalised do-
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nation intervals. [98, 99, 100] Prediction models can be used in the donor invitation

process by predicting hemoglobin deferral for eligible donors and only inviting those

donors that are predicted to not be deferred. Because deferred donors are only a small

proportion of the total donor population, it has proven difficult to accurately identify

them, and hence prediction models are not used in practice yet.

We present a novel machine learning hemoglobin deferral prediction model based

on donor characteristics and donation history. New in our approach is that we use

SHapley Additive exPlanations [101] to explain how the model uses the variables in

its predictions and relate these explanations to known physiological processes. This

gives valuable insight into the associations that are learned by the model; if prediction

models are to be used to make decisions in practice, the user must understand how the

model makes these decisions. Moreover, we show the potential impact that prediction

models can have on the total blood supply, if these are to be used to guide donor

invitations, by calculating deferral probabilities at multiple time points for each donor.

By both explaining the predictions and assessing the impact of the model on the blood

supply, we remove two important limitations that currently prevent blood services from

implementing prediction models.

Methods

Data

Data on blood bank visits by whole-blood donors were extracted from Sanquin’s

database system eProgesa, for donations. Only data from donors who explicitly pro-

vided informed consent for the use of their data for scientific research were used. This

consent is given by more than 99% of all donors. For each visit, the following informa-

tion was collected: donor sex, donor age, donation date, donation (registration) time,

hemoglobin level and ferritin level. Ferritin is measured at every new donor intake and

upon every fifth donation in repeat donors. Therefore, ferritin levels are unavailable

for most donations. By using these data, predictor variables were calculated for each

visit, as described in Table 7.1.

In total, 938 710 blood bank visits (excluding new donor intakes and donation types

other than whole blood) by 241 131 unique donors were registered between October

2017 and December 2021. After excluding visits for which no previous ferritin mea-

surement was available, 458 615 blood bank visits by 157 423 unique donors remained

for the analysis.
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Variable Unit or values Description

Sex male, female Biological sex of the donor; separate models are
trained for men and women

Age years Donor age at time of donation
Time hours Registration time when the donor arrived at the

blood bank
Month 1–12 Month of the year that the visit took place
NumDon count Number of successful (collected volume >250 ml)

whole-blood donations in the last 24 months
FerritinPrev µg/L Most recent ferritin level measured in this donor
DaysSinceFer days Time since this donor’s last ferritin measurement
HbPrevn mmol/L Hemoglobin level at nth previous visit, for n

between 1 and 5
DaysSinceHbn days Time since related hemoglobin measurement at nth

previous visit, for n between 1 and 5

Table 7.1: All predictor variables used in the prediction models.

The outcome variable HbOK is dichotomous; deferral (hemoglobin level below the

eligibility threshold for donation) or non-deferral (hemoglobin equal to or above the

threshold).

Analyses

Support vector machines (SVMs) [102] are used to predict hemoglobin deferral. SVMs

are supervised machine learning models that find the optimal hyperplane separating

the outcome classes based on the predictor variables of a so-called training set. After

fitting the model on the training set, the model can predict the outcome class of

unseen observations called the test set. It also gives the probability of an observation

belonging to each outcome class. We chose SVMs as a classification algorithm because

all predictor variables are numeric, and it is computationally less expensive than, for

instance, K-nearest neighbours or (dynamic) linear mixed models.

For each sex, five SVMs were trained, named SVM-n for n between one and five,

indicating the number of previous blood bank visits (HbPrevn and DaysSinceHbn)

used as predictor variables. Donors are only included in SVM-n if they have at least

n previous visits; therefore, sample sizes decrease from SVM-1 to SVM-5. Blood bank

visits before 2021 were used as the training set, while visits in 2021 were used as the test

set to validate performance on unseen data. This division was chosen over a random

training/test division because if these models were used in practice, they would be
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Metric Outcome class Definition

Precision Deferral The proportion of donations correctly classified as de-
ferrals by the model, out of all donations classified as
deferrals.

Recall Deferral The proportion of donations correctly classified as defer-
rals by the model, out of all donations classified as true
deferrals.

Precision Non-deferral The proportion of true non-deferrals, out of all predicted
non-deferrals.

Recall Non-deferral The proportion of predicted non-deferrals, out of all true
non-deferrals.

Table 7.2: Interpretation of performance metrics.

trained on all historical data and applied to future data. We used a paired t-test to

assess the difference in deferral rates between training and test sets of donors of the

same sex with the same number of previous donations. To assess the generalisability

of the model to new donors, we did a separate experiment in which the test set is

comprised of the last blood bank visit of 20% of all unique donors, and the training

set includes all donations from the remaining 80% of donors.

For each of the 10 models, that is, SVM-1 through SVM-5 for both sexes, hyperpa-

rameters were optimised separately, using stratified (on the outcome variable) five-fold

cross-validation within the training set data (and thus not using the test data). Hy-

perparameters were optimised using grid search, using balanced accuracy as a scoring

method, defined as the weighted average of recall in both classes (see Table 7.2 for

the definition of recall). This method is especially suitable for imbalanced datasets

because it uses class-balanced sample weights to determine the average recall.

Precision and recall were determined and compared for training and test datasets

for each model. Both metrics are calculated for both outcome classes. A practical

interpretation of these metrics is given in Table 7.2.

To explain the model predictions, we used SHapley Additive exPlanations (SHAP)

values, a model agnostic explainer. SHAP values show the contribution of each variable

to the prediction for each individual observation, which is even more informative than

coefficients returned by, for example, linear models. By summarizing observation-

based contributions, we obtain variable importance measures for a model that does

not have interpretable coefficients.

100



7

Explainable hemoglobin deferral prediction models

Potential impact on the blood supply

We assessed the potential impact of using SVMs to guide donor invitations by predict-

ing deferral for all blood bank visits that took place in 2021 (the test set). For each

observation, we used information of all previous blood bank visits (up to five) available

as predictor variables. This means that SVM-1 is used when only one previous visit

is available, SVM-2 if there are two previous visits, etc.

If prediction models are to be used in practice, they should estimate the deferral

probability for different days in the future and invite a donor for the first occurrence

where the non-deferral probability would exceed a preset value. To simulate this,

we predicted hemoglobin deferral each week from 1 year before the original donation

date to 1 year after, by adjusting all time-related variables. If the predicted donation

interval were to be less than the minimum donation interval (57 days for men, 122

days for women), the latter would be applied.

We compare all original donation intervals with the donation intervals as proposed

by the model. Dividing the sum of the original donation intervals by the sum of the

model-guided donation intervals gives the relative change in blood bank visits per time

unit and hence the relative yield of blood donations.

Software

All analyses were performed in Python 3.9, using modules numpy [103] and pandas

[104] for data processing, sklearn [105] for model training and predictions, shap [101]

for calculating SHAP values, and matplotlib [106] for creating graphs. The analy-

sis code is available as a GitHub repository and indexed on Zenodo at https://doi-

org.ezproxy.leidenuniv.nl/10.5281/zenodo.6938112.

Results

Table 7.3 shows the sample sizes of training and test datasets for each model. Deferral

rates in the training datasets are 3.19% (SD 0.28) for women and 1.22% (SD 0.09)

for men; in the test sets, they are 3.42% (SD 0.24) for women and 1.21% (SD 0.08)

for men. Using a paired t-test, the difference in deferral rate between the training

and test datasets is significant for women (p = 0.002) but not for men (p = 0.070).

No correction was made for the differing deferral rates, as the models are intended

for future predictions, and in practice, the deferral rate of future blood bank visits is

unknown. Also, a change in deferral rate should be correctly predicted by the model if
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Training Test
Model Women Men Women Men

SVM-1
128 173

(4084; 3.19%)
121 746

(1339; 1.10%)
110 372

(3696; 3.35%)
98 324

(1074; 1.09%)

SVM-2
83 532

(2884; 3.45%)
96 441

(1133; 1.17%))
85 131

(3065; 3.60%)
84 000

(984; 1.17%)

SVM-3
59 720

(2032; 3.40%)
79 690

(997; 1.25%)
67 167

(2451; 3.65%)
72 576

(902; 1.24%)

SVM-4
47 317

(1494; 3.16%)
67 934

(887; 1.31%)
54 090

(1874; 3.46%)
63 447

(806; 1.27%)

SVM-5
40 604

(1113; 2.74%)
59 611

(768; 1.29%)
45 208

(1378; 3.05%)
55 582

(699; 1.26%)

Table 7.3: Sizes of training and test datasets per model. The number and percentage of
deferrals is given in brackets.

the mechanism causing this change can be learned from the data. Deferral rates differ

between models due to small differences in the data between subsets of the data (see

Table 7.4). This is not a problem as long as the same associations between predictor

variables and outcome are found in all subsets of the data, which is described in the

feature importance part of the results.

Although the training datasets consist of 3 years of data, and the test datasets

of only 1 year, their sizes are similar and sometimes the test dataset is even larger.

This is because donations are only included from donors for whom at least one ferritin

measurement was available. As ferritin screening was implemented using a stepped

wedge approach (the first blood bank locations started in October 2017, but only

in November 2019 all locations were included), the number of donors that could be

included in the training dataset was limited. [97]

Marginal distributions of predictor variables are described in Table 7.4. As the

number of previous donations increases, the median age increases from 30 to 36 years

for women and from 34 to 38 for men. The median values of the last ferritin measure-

ment decreased from 47 µg/L in SVM-1 to 39 µg/L in SVM-5 for women and from 77

to 47 µg/L for men. The median time between consecutive donations increases from

SVM-1 to SVM-5, while previous hemoglobin levels are consistent across models, as

well as different numbers of previous visits.
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Women
Previous visits ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

Age 30 (23–47) 32 (24–48) 34 (25–50) 35 (26–51) 36 (37–52)
NumDon 1 (0–3) 2 (1–3) 3 (2–4) 3 (2–4) 3 (3–4)
FerritinPrev 47 (33–74) 46 (33–70) 44 (32–65) 41 (31–59) 39 (29–55)
DaysSinceFer 237 (125–420) 329 (197–497) 383 (260–547) 400 (230–572) 372 (204–567)
HbPrev1 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9)
DaysSincePrev1 135 (105–196) 154 (132–211) 158 (132–217) 167 (133–224) 173 (133–236)
HbPrev2 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.8) 8.5 (8.1–8.8)
DaysSincePrev2 302 (255–412) 328 (271–445) 336 (273–468) 349 (280–493)
HbPrev3 8.5 (8.1–8.8) 8.4 (8.1–8.8) 8.4 (8.1–8.8)
DaysSincePrev3 482 (398–644) 511 (420–674) 528 (430–696)
HbPrev4 8.4 (8.1–8.8) 8.4 (8.1–8.8)
DaysSincePrev4 674 (553–871) 709 (581–904)
HbPrev5 8.4 (8.1–8.8)
DaysSincePrev5 877 (721–1107)

Men
Previous visits ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

Age 34 (26–48) 35 (27–49) 36 (27–50) 37 (28–51) 38 (28–51)
NumDon 3 (1–5) 4 (2–5) 4 (3–6) 5 (3–6) 5 (4–6)
FerritinPrev 77 (44–141) 66 (40–126) 57 (38–108) 52 (36–89) 47 (35–73)
DaysSinceFer 200 (100–335) 232 (151–365) 257 (177–378) 271 (186–385) 267 (173–387)
HbPrev1 9.4 (9.0–9.9) 9.4 (9.0–9.9) 9.4 (9.0–9.8) 9.4 (8.9–9.8) 9.4 (8.9–9.8)
DaysSincePrev1 81 (63–133) 90 (67–147) 92 (69–160) 98 (70–168) 105 (70–176)
HbPrev2 9.4 (9.0–9.8) 9.4 (9.0–9.8) 9.4 (8.9–9.8) 9.4 (8.9–9.8)
DaysSincePrev2 185 (128–287) 196 (147–302) 210 (153–315) 219 (158–330)
HbPrev3 9.4 (9.0–9.8) 9.4 (9.0–9.8) 9.4 (8.9–9.8)
DaysSincePrev3 302 (225–441) 322 (238–463) 335 (245–485)
HbPrev4 9.4 (8.9–9.8) 9.4 (8.9–9.8)
DaysSincePrev4 424 (315–600) 444 (330–620)
HbPrev5 9.4 (8.9–9.8)
DaysSincePrev5 552 (416–752)

Table 7.4: Marginal distributions of predictor variables, represented by median and in-
terquartile ranges.
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Figure 7.1: Performance metrics for all models. (A): Precision of class non-deferral; the
proportion of successful donations among all predicted non-deferrals. The complement of the
precision is the deferral rate, should the model be used to guide invitations. (B): Recall of
class non-deferral; the proportion of successful donations that are predicted correctly. The
complement of the recall is the proportion of missed donations, should the model be used to
guide invitations. Note that the y-axes in are zoomed in to highlight the differences between
various models.

Accuracy and model fit

Figure 7.1 compares precision and recall for class non-deferral across all models. Per-

formance on the training and test sets are similar, indicating that the models are

well-fitted. Both precision and recall increase as more previous blood bank visits are

used to make predictions. Re-running all models only on donors with at least five

previous blood bank visits did not change this observed increase in performance. The

models handle the difference between the proportions of deferral in the training and

test set very well: comparing the observed difference in deferral proportion in the train-

ing and test set to the predicted difference, the mean difference of these differences is

only 0.05 percentage points (maximum: 0.12 percentage points). This indicates that

the models are robust against (modest) changes in deferral rates.
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Sex Metric Time split Random split Difference

Women
Precision 0.991 0.994 -0.003
Recall 0.698 0.701 -0.003

Men
Precision 0.997 0.996 +0.001
Recall 0.804 0.791 +0.013

Table 7.5: Precision and recall for outcome class non-deferral, compared between two
different training/test splits.

Performance on a test set of unseen donors

Precision and recall for both outcome classes are similar for the different types of splits

in training and test set. Table 7.5 shows the comparison in performance between the

time split and the random split, as described in the methods section. Metrics are

shown for SVM-5; the differences are smaller for all other models. For women, the

random split has a higher precision and recall than the time split. For men, this is the

other way around. For both sexes, the differences are minimal.

Feature importance and explanation of predictions

SHAP values were computed based on a random subset of 100 donations in the test

set. Figure 7.2 shows the SHAP summary plot for the SVM-5 models, the summary

plots for the other eight models are included in the online supplement of the published

paper.

For all models, the most important predictor variable is the previous hemoglobin

measurement (HbPrev1 ), and in general, more recent measurements are more impor-

tant than earlier ones. The time since the previous hemoglobin measurements also

ranks high on feature importance, but their chronological order is less well-preserved

than the HbPrev variables.

The association between the feature value and impact on the prediction is as

expected for most variables. For hemoglobin measurements, higher values are as-

sociated with predicted non-deferral. For DaysSinceHb, longer times since the pre-

vious hemoglobin measurement are indicative of predicted non-deferral. However,

DaysSinceHb4 shows the opposite association, meaning that when the fourth previous

measurement was long ago, the chance of predicted non-deferral becomes lower, while

higher would be expected.

Variable NumDon has the expected impact on prediction in all models but SVM-

5 for female donors; in all other models, a higher number of recent donations shifts
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Figure 7.2: SHAP summary plots for predictions made by SVM-5, on 100 random dona-
tions from the test set. Each point represents one single observed donation. The location
on the x-axis indicates the contribution of the predictor variable on the prediction (positive
value: indicative class non-deferral, negative: indicative of class deferral) while the colour of
the point indicates the relative value of the feature in that observation. The features on the
y-axis are ordered by their relative importance, measured as the mean absolute SHAP value.
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the prediction towards deferral. In most models, the number of donations is a more

important predictor for men than for women, and it is always less important than all

HbPrev variables.

The variable FerritinPrev shows the same association with the prediction as HbPrev

variables: higher ferritin levels are associated with predicted non-deferral. Ferritin is a

more important predictor for men than for women. For both sexes, the time since the

previous ferritin measurement is more important than the actual ferritin level, and a

higher value for DaysSinceFer makes predicted deferral more likely.

We know that for women, higher age makes deferral less likely (due to menopause),

and the SHAP values confirm this relation. For men, age is one of the least important

predictors, and there is no clear direction of the relation. The month of donation

is of medium importance for both sexes, with predicted deferral being more likely

earlier in the year. This captures the seasonal effect of temperature on hemoglobin

as measured by the HemoCue. Donating earlier in the day (i.e., a lower value for

variable Time) increases the likelihood of predicted non-deferral, which is supported

by previous research showing that hemoglobin levels are highest in the morning and

decrease throughout the day. [107]

Impact on blood supply

Figure 7.3 shows the cumulative count of donors as invited by the models relative to

their original donation date. Once the model predicts non-deferral, it never predicts

deferral at a later date. Of non-deferred donors, 50% would be invited more than 2

weeks earlier by the model, and 26% within 2 weeks from around the original donation

date. Only 5% would not be invited within a year, causing a successful donation to

be missed. Of deferred donors, only 13% would be invited earlier, while 40% would

be invited over 3 months later. 28% would not be invited within 1 year. The majority

of donors would be invited around their original donation date. For many donors, the

original donation date was shortly after the minimum donation interval had passed,

and as such, there was no room to invite them earlier.

Because the true hemoglobin level of donors on days other than their original

donation date is unknown, we must make assumptions about the accuracy of the

predictions in order to calculate a hypothetical number of donations and deferrals.

In the most optimistic scenario, all donors who were not deferred on their original

donation date would also not be deferred if they were invited earlier; and all donors

who were deferred on their original donation date but are invited later by the model

would not be deferred by then. In that scenario, only 5% of successful donations
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would be lost because the model would (incorrectly) not invite those donors, while the

deferral rate would decrease by 60% (from 3% to 1% for women and from 1% to 0.4%

for men).

We estimate the impact on the blood supply by comparing the length of the original

donation interval to the donation interval as suggested by the model. For women,

the median time between two donations decreases from 157 to 127 days using the

prediction model. For men, the median time decreases from 92 to 63 days. Therefore,

the total number of blood bank visits per time unit would increase by a maximum

of 15%. This assumes that all donors who responded to the original invitation would

also respond to the invitation if it would be sent at an earlier or later date. We also

assume that all donors visit the blood bank within 1 week of the invitation. With the

original invitations, 15% of donors that responded to the invitation visited the blood

bank within 8 days, so the 15% increase in visits is likely to be a small overestimation.

These assumptions may not hold for mobile donation sites but are reasonable for all

regular donation sites, where 95.3% of all visits in our data occurred.

Discussion

This study presents an explainable machine learning approach to predict hemoglobin

deferral in whole-blood donors using the information on previous donations and var-

ious donor characteristics. We show that we can prevent up to 60% of on-site low

hemoglobin deferrals using the model to guide donor invitations.

To our knowledge, this is the first model using machine learning for explainable

hemoglobin deferral prediction. An explainable model outcome is crucial for prediction

models that are to be used in the context of a decision-support system concerning

humans. SHAP values show that our models are able to learn biologically sensible

associations. They support findings from other prediction models that found the

previous hemoglobin value to be the best predictor for future deferral. We add to this

by showing that including more previous donations will improve these predictions.

Although most associations found by SHAP values can be explained biologically,

some seem to be caused by organisational policies. Higher values for DaysSinceFer are

associated with predicted deferral; the opposite association is found for DaysSinceHb

variables. For donors with fewer than five donations since the start of ferritin testing,

the only ferritin measurement is the one taken at their new donor intake, and therefore

the time since that previous ferritin measurement is equal to the time since their new

donor intake. It is known that deferral becomes more likely once a donor has been
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donating for a longer period of time.

The precision of class deferral is low, meaning that the predicted deferral is wrong

for a substantial proportion of donors. However, by predicting deferral for different

timepoints, we see a clear difference between deferred and non-deferred donors: non-

deferred donors are in many cases invited earlier than their original donation date by

the model, while deferred donors are mostly invited later or not at all, thereby reduc-

ing the deferral rate. In non-deferred donors, the median donation interval becomes

shorter if invitations were guided by the model, and thus the number of blood bank

visits per time unit would increase.

We can only calculate the accuracy of deferral predictions on the original donation

date, as hemoglobin levels on other days are unknown. As hemoglobin levels slowly

increase after a donation, non-deferred donors would also not be deferred if they were

invited later. If they are invited earlier, we cannot know if their hemoglobin level is

already above the deferral threshold. The same applies to deferred donors that are

invited later by the model - it is plausible that their hemoglobin levels are above the

threshold then, but not certain. Based on accuracy measures of predictions on the

original donation dates, we can be fairly confident that the predictions are reliable.

Incorporating prediction models in hemoglobin deferral policies could bring many

benefits to blood banks, but it is important to think about how they should be used.

If the model is used in practice, the change in policy will lead to changes in the data.

Models would therefore need updating by re-training on a regular basis. Additionally,

it would be wise not to outsource invitations to the model completely, as that would

hinder the model’s ability to learn from its mistakes. Although deferrals incorrectly

predicted to be non-deferrals would be discovered, we would never know how many

donors were incorrectly not invited. This can be prevented by sending part of the

invitations without using the model’s predictions. In addition to using the model to

predict deferral outcomes, the model can also be used to return a deferral probability,

allowing blood banks to incorporate this probability in their risk assessment when

inviting donors.

Our model is limited to predictor variables that are presently collected by Sanquin.

Additional variables could be considered to improve prediction accuracy. Donor height

and weight (optionally BMI or total blood volume), as well as smoking status, are

examples known to be related to iron levels and are relatively easy to be included.

Information on iron-related genetic markers or donor diet may also improve accuracy

but are expensive to collect.

Based on the results of this study, we conclude that using prediction models to
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guide donor invitations would bring multiple advantages to blood banks: lower deferral

rates combined with shorter donation intervals would result in motivated and healthy

donors, as well as a steady blood supply.
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