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Abstract

Background - Serum ferritin levels are increasingly being used to assess iron stores.

Considerable variation in ferritin levels within and between individuals has been ob-

served, but our current understanding of factors that explain this variation is far from

complete. We aim to combine multiple potential determinants in an integrative model,

and investigate their relative importance and potential interactions.

Methods - We use ferritin measurements collected by Sanquin Blood Bank on

both prospective (N = 59596) and active blood donors (N = 78318) to fit a structural

equation model with three latent constructs (individual characteristics, donation his-

tory, and environmental factors). Parameters were estimated separately by sex and

donor status.

Results - The model explained 25% of ferritin variance in prospective donors, and

40% in active donors. Individual characteristics and donation history were the most

important determinants of ferritin levels in active donors. The association between

environmental factors and ferritin was smaller but still substantial; higher exposure

to air pollution was associated with higher ferritin levels, and this association was

considerably stronger for active blood donors than for prospective donors.

Conclusions - In active donors, individual characteristics explain 20% (17%) of

ferritin variation, donation history explains 14% (25%) and environmental factors

explain 5% (4%) for women (men). Our model presents known ferritin determinants

in a broader perspective, allowing for comparison with other determinants as well as

between new and active donors, or between men and women.
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Introduction

Iron is essential for human life, but both iron deficiency and iron overload can cause

various adverse health effects. Therefore, iron homeostasis is tightly regulated in

humans. In case of insufficient availability of iron in the circulation, recycling of old

red blood cells is increased and hepcidin is downregulated both to increase dietary iron

absorption and release iron stored in ferritin. [8, 35] Hemoglobin levels have long been

the standard method to assess iron status. However, hemoglobin levels can remain

sufficient for some time, even when iron stores are dwindling; this is known as iron

deficiency non-anemia. [8]

In contrast to hemoglobin, serum ferritin levels reflect the amount of stored iron. [8]

Therefore, they are increasingly used to assess individuals’ iron stores when these are

at risk, for instance after traumatic blood loss, during pregnancy, or in blood donors.

[21] Sanquin, the national blood service in the Netherlands, started measuring ferritin

levels in each new donor, and subsequently after every fifth donation, in October

2017. Donating blood has a substantial impact on ferritin levels. Ferritin levels are

lower among blood donors than in the general population: cross-sectional studies

report lower ferritin levels in donors with a higher number of whole blood donations

and a large randomised trial showed that ferritin levels indeed decline with more

frequent blood donations. [36, 37] Among new donors, large variation in ferritin levels

is observed. [36] It is well established that individual characteristics such as sex and

age are relevant: women in general, but pre-menopausal women in particular, have

considerably lower ferritin levels than men. [36, 2, 38] Higher body mass index (BMI)

is associated with higher ferritin levels. [39] In recent decades, many other factors that

affect iron status have been identified: diet, [40, 41] genetics, [42, 43] ethnicity, [44]

and iron supplementation, which is mostly studied among blood donors. [20, 45]

Ferritin is also a known acute-phase protein that is elevated in inflammatory con-

ditions, complicating its diagnostic value in individuals with conditions such as in-

flammatory bowel disease or chronic heart failure. [9] This could also explain the

association between BMI and ferritin levels, as adipose tissue is known to promote

systemic inflammation. [46] Additionally, exposure to environmental pollutants has

been linked to disordered iron homeostasis, [47, 48] and ambient particle matter (PM)

concentration is correlated with ferritin levels. [48] The biological mechanism behind

this is still unclear, but it is postulated that iron attaches to the PM rather than to

cell nuclei, effectively creating a functional deficiency. [47, 48] In turn, mechanisms

start upregulating iron uptake and recycling in an attempt to meet the iron require-
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ment of the cells, thereby altering iron homeostasis. Another suggested mechanism

is that when pollutants enter the lungs, iron is transported away from the surface of

the lung tissue and stored in ferritin complexes, in order to avoid chemical reactions

between iron and the pollutant. [47] Other potential environmental determinants are

neighbourhood characteristics, including population density and socio-economic sta-

tus, which are consistently shown to be related to body weight and blood parameters.

[49]

Previous studies on ferritin levels have focused on studying the association with

variables in a limited setting, for example, characteristics such as age and BMI,

donation-related variables, or environmental pollutants. In this paper, we propose a

novel framework that integrates multiple settings, using a structural equation model.

By grouping relevant explanatory variables into constructs, we describe relationships

with ferritin on a more general level. This enhances the insight into various mech-

anisms that influence ferritin levels, which is valuable to those who use these as a

diagnostic tool. We explore associations between ferritin levels and individual char-

acteristics, donation behaviour and environmental factors, in a large group of newly

registered and active whole blood donors.

Methods

For this cross-sectional study, data collected by Sanquin and the Geoscience and health

cohort consortium (GECCO) were analysed. Sanquin is by law the only blood service

in the Netherlands, collecting over 400 000 whole-blood donations each year, with col-

lection sites geographically well-distributed throughout the country. Several eligibility

criteria exist to ensure the safety of the donors and recipients and the quality of the

blood product. Donors must be aged between 18 and 79 years old, and a pre-donation

screening visit takes place before the first 500 mL whole blood donation, which in-

cludes blood sampling for blood type and infectious disease testing, as well as initial

hemoglobin and ferritin measurements. We will refer to these prospective donors, who

have not donated yet, as new donors.

Before every donation, a donor screening is performed, including a donor health

questionnaire and measurements of blood pressure, pulse rate and hemoglobin levels

to assess whether the donor is eligible to donate. Hemoglobin levels need to be at

least 7.8 mmol/L for women and 8.4 mmol/L for men. This is measured by point-of-

care testing with a photometer (HemoCue, Angelholm, Sweden). Ferritin levels, are

measured in serum samples, using the Architect i2000 (Abbott Diagnostics, Chicago,
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IL), after the pre-donation screening visit and after every fifth whole blood donation.

As such, ferritin measurements are only available in case of successful whole blood

donations, and for new donors whose venous samples are taken as part of the pre-

donation screening visit.

Data

This study included all new and active whole blood donors who gave consent to the use

of their data for scientific research (this consent is given by > 99% of all donors) and for

whom ferritin measurements were available between 1 October 2017 and 31 December

2019. If multiple ferritin measurements were available for a donor, only the first

measurement was used. Information on donors and donation histories was extracted

from the blood bank information system (ePROGESA, MAK-SYSTEM International

Group, Paris, France). Variables used were sex, age, height, weight, time since previous

successful donation, the number of successful donations in the previous 2 years, donor

status (new or active donor), and ferritin levels. BMI was calculated from self-reported

donor height and weight. Sanquin does not register donor ethnicity, but Duffy negative

phenotype was included to function as a proxy for sub-Saharan African descent.

Environmental exposure variables of various characteristics were obtained from

the Geoscience and health cohort consortium (GECCO). [50] The exposure data were

operationalised based on publicly available data. Data from 30 weather stations

in the Netherlands—obtained from the Royal Netherlands Meteorological Institute

(KNMI)—were used to estimate temperature at a spatial resolution of 1 km. Three

options for the measurement level were considered (minimum, average, and maximum

daily temperature), as well as three time spans (day, week or month before donation),

resulting in nine options in total. The combination that showed the highest correlation

with ferritin was included in the final model.

Daily concentrations for particulate matter (PM) 2.5, PM10, NO2, ozone and

soot levels were obtained via the Dutch National Institute for Public Health and the

Environment (RIVM), for the years 2017–2019. These variables were imputed on a

spatial resolution of 1 by 1 km. Neighbourhood socio-economic status (SES) scores and

population density from 2017–2019 were acquired from Statistics Netherlands (CBS),

both available on 6-digit postal code level. SES scores are based on percentiles of

income, education level and vocational history of households, with a score of 0 being

exactly the national average, and positive scores being above average. All spatio-

temporal variables were matched with donor and donation data based on donation

date and donor postal code. Lastly, the date and time of each donation were included
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as potential factors to account for seasonal and diurnal variation, as they are known

to affect hemoglobin levels and may also affect ferritin levels.

To check for a possible confounding effect of smoking on environmental variables,

we analysed the correlation between the percentage of smokers per municipality (data

from Statistics Netherlands) and all environmental variables described in the above

paragraph.

There were no missing data for environmental datasets from the RIVM and CBS.

Donors with no ferritin measurement were excluded from the analysis. There were no

missing data for the other donor or donation level variables.

Statistical analysis

Structural equation modelling (SEM) was used to investigate which variables relate to

serum ferritin and to what extent. Briefly, observed variables and latent constructs are

distinguished in SEM. Latent constructs cannot be measured or observed directly, but

are inferred from the observed variables. One or more hypothesised sets of relationships

and correlations between variables and constructs are specified a priori and shown in

a path diagram. For each relationship, a parameter is estimated that indicates its

strength. Estimates are obtained by numeric optimisation of a fit criterion, using

maximum likelihood estimation. A more detailed overview of this method is provided

in the Appendix.

We compared four ways to divide the 15 variables included in the analysis into

latent constructs, as shown in Table 4.1. Date and time of the donation were added

to the model separate of the constructs, and as such are not included in Table 4.1.

Model A contains four latent constructs, and in models B, C and D different sets of

constructs are combined. Confirmatory factor analysis (CFA) was used to test the

validity of the specified measurement models, that is, the hypothesised relationships

between the latent constructs and their observed variables. The overall fit of the

models was assessed by the Tucker-Lewis Index (TLI) and the root mean square error

of approximation (RMSEA). A rule of thumb is to exclude variables for which the

absolute value of the standardised factor loading is below 0.4, but at sample sizes

larger than 300, if the overall model fit is good, exclusion is not necessary and should

be judged separately for each variable based on sensible background knowledge. [51]

Pairwise residual correlations between observed variables were calculated to iden-

tify whether any covariances needed to be added to the model. Of the four specified

models, we continued our analysis with the best fit according to CFA, based on the

TLI and RMSEA.
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Variable Model A Model B Model C Model D

Age

Individual
characteristics

Height
Weight
BMI
Duffy phenotype

Donation
history

Time since
prev. donation 
Number of 
prev. donations

Environment

Environment

Environment

Environment

Population
density 
Temperature 
Socio-economic 
status
Ozone

Pollution Pollution
PM2.5
PM10
Soot
NO2

Table 4.1: Grouping of variables into constructs for each model. Note that variables time
since previous donation and number of previous donations are only available for active donors.

39
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To the model with the best fit, we added the structural component, which contains

the relationships between the latent variables and ferritin, the outcome variable. A

multiple group SEM was carried out with parameters estimated separately for male and

female donors, and for new and active donors. Because the assumption of normality

of the explanatory variables does not hold in our data, a different estimator than the

default maximum likelihood estimator was used: the ‘mean and covariance adjusted

weighted least squares estimator’, which is robust against violations of the normality

assumptions in a multivariate setting. [52]

The same model was fitted in all four groups, although the variables belonging to

the donation history construct (see Table 4.1) are not available for new donors, as they

do not (yet) have a donation history. The overall fit of the SEM model was assessed

using the TLI and RMSEA, as well as the R2 measure.

All analyses were conducted using R programming language and environment for

statistical computing version 4.0.3, with package zoo for pre-processing environmental

data, and lavaan for CFA and SEM analyses. Path diagrams were created with yEd

Live Graph Editor.

Results

Sample composition

Table 4.2 shows descriptive statistics of the study population by sex and donor status.

The size of each of the groups was comparable, except for the group of new male

donors, which was only half the size of the other groups. Between new and active

donors, age differed considerably, new donors being younger than active donors by

17 years on average (p < 0.001). In both new and active donors, men were older

(by 6 years on average, p < 0.001) and heavier (by 13 kg on average, p < 0.001) than

women. P-values were obtained using two-sample t-tests. The time since last donation

is higher in women than in men, and the number of prior donations is higher in men

than in women. These differences are due to differences in the minimum required

donation interval: for women, there must be 122 days between two donations with a

maximum of 3 donations per year, while for men, the minimum is 57 days between

two donations with a maximum of 5 donations per year. Differences in ferritin levels

between the groups are as expected from previous studies: men have higher ferritin

levels than women, and repeat donors have lower ferritin levels than new donors.

For pollution and environmental variables, there was little difference between the
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groups, any differences between new and active donors were most likely due to the

different age and geographical distribution of the groups. None of these differences

were statistically significant.

We found a weak correlation between the percentage of smokers and SES score

(Pearson’s r = −0.4) and a moderate correlation between the percentage of smokers

and population density (Pearson’s r = 0.5). No correlation was found for any of the

other environmental variables.
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Model selection

CFA did not provide support for the environment construct as defined by the three

variables temperature, population density and socio-economic status. These variables

did not share a high proportion of their variance and consequently there was no con-

vergent validity, effectively ruling out models A and C. In models B and D, variables

Duffy phenotype, temperature, SES and height were omitted due to very low factor

loadings (< 0.05). The factor loading for variable age was also low (0.35) but this

variable was not excluded, as it is expected that this factor loading would be small,

considering the other variables in the construct (weight and BMI) are much more

closely related. All other factor loadings were above the suggested threshold of 0.6.

All latent constructs (individual characteristics, donation history and environment)

showed convergent and discriminant validity in models B and D. Variables time and

day of year, which were added to the model outside the constructs, were also dropped

due to very low factor loadings (< 0.05).

The presence of a donation history construct was the only difference between

models B and D, and since new donors do not yet have a donation history, the models

only differed for active donors. Model B had a TLI of 0.961 and RMSEA of 0.063,

while model D had a TLI of 0.932 and RMSEA of 0.083. Based on these fit measures,

model B fit the data best, and was therefore used in the remainder of the analyses.

Based on inspection of the pairwise residual correlations between all observed vari-

ables, two covariance terms were added to the model: one for PM2.5 and PM10 (resid-

ual correlation 0.092 to 0.102, depending on sex/donor status), and one for age and

population density (residual correlation −0.151 to −0.149, depending on sex/donor

status). We also added one covariance term for weight and BMI, as BMI was calcu-

lated using weight and was therefore inherently dependent.

Parameter estimates

Figure 4.1 shows the structure of the final model and the parameter estimates for

new donors. Parameter estimates were similar for both sexes, but factor loadings for

variables belonging to the individual characteristics construct were higher for women

than for men, indicating more shared variance. Factor loadings in the environment

construct did not differ between sexes, showing that the covariance structure of those

variables was not dependent on sex. The parameter estimates for the regression coeffi-

cients show the relative importance of each latent construct for the outcome variable.

Table 4.3 shows the percentage of variance in ferritin levels that is explained by each
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New donors Active donors
Construct Women Men Women Men

Individual characteristics 23% 23% 20% 17%
Donation history NA NA 14% 25%
Environment 2% 2% 5% 4%

Total variance explained 25% 25% 39% 46%

Table 4.3: Relative contribution to explanation of variance of ferritin levels per model.

construct for each model, adding up to the total percentage of variance explained.

Figure 4.2 shows the final model for active donors. As in new donors, factor

loadings in the individual characteristics construct were higher for women than for

men, and they were also higher for new donors than for active donors. The relative

importance of individual characteristics and donation history was opposite for both

sexes: for men, donation history was correlated with ferritin levels more strongly than

individual characteristics (0.66 vs. 0.45), while this was reversed for women (0.43 vs.

0.61). The regression coefficient of the environment construct is 0.15 for women and

0.10 for men. The environment construct explains twice as much variation in ferritin

levels in active donors as in new donors.

As for overall model fit, with a TLI of 0.981 and 0.979 and RMSEA of 0.052 and

0.042, for new and active donors respectively, both models fit very well when compared

to commonly used thresholds (TLI > 0.95, RMSEA < 0.06). [53] R2 was calculated

separately by sex: for new donors, R2 was 0.251 for men and 0.252 for women, and

for active donors, 0.458 for men and 0.393 for women.
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Figure 4.1: Final structural equation model for ferritin determinants in new donors, with
parameters estimated separately for men and women. All parameter estimates are standard-
ised so that the variance of each observed variable and latent construct equals 1.
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Figure 4.2: Final structural equation model for ferritin determinants in active donors,
with parameters estimated separately for men and women. All parameter estimates were
standardised so that the variance of each observed variable and latent construct equals 1.
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Discussion

This study investigated the impact of individual and environmental determinants on

ferritin levels in Dutch individuals, using SEM. The model was able to explain 25% of

ferritin level variance in new donors for both sexes, and 46% and 39% in active donors

for male and female donors, respectively.

We found the construct composed of individual characteristics (age, weight, and

BMI) to be the most important determinant of ferritin in female active donors, followed

by donation history (time since previous donation, number of donations in the past 2

years). For male active donors, this was the opposite: donation history was a more

important determinant than individual characteristics. In both sexes, environmental

factors are associated with ferritin levels, albeit to a lesser degree than individual

characteristics and donation history.

The relationship between ferritin levels and anthropometric characteristics is well-

documented, and the positive correlations we found for ferritin with age, weight and

BMI are consistent with those found in other studies. [36, 45, 54] Men have much

higher ferritin levels than women in general and show a larger decrease in ferritin

levels after repeated donations. As a result, ferritin levels in active donors are sim-

ilarly low for women and men. [36] The donation history construct explained more

variance in ferritin levels in men than in women. Although often not explicitly men-

tioned, this discrepancy is also found in previous studies, with stronger relationships

between variables regarding donation history and ferritin for men than for women.

[45] A reasonable explanation for this is that men commonly display more variation in

donation history variables due to the possibility of more frequent donations: in many

blood services, men are allowed to donate more often than women and are usually less

frequently deferred for low hemoglobin levels. [55]

From previous epidemiological studies, we know that environmental factors may

play a role in iron metabolism, and that certain pollutants can disrupt iron home-

ostasis. [56] Our study shows that although environmental factors are less strongly

associated with ferritin levels than individual characteristics and donation history,

their effects are far from negligible. Because of the wide reach of environmental expo-

sures over geographic areas, even a relatively small influence on individuals can result

in a large effect on the population level. As this study includes only data from the

Netherlands, which is a relatively small country, associations between environmental

variables and ferritin levels were not very strong, as was expected. Repeating this

study on a larger, or even global, scale may result in finding a more substantial effect.

47



4

Chapter 4

Higher values for all but one environmental factor (ozone) were positively correlated

with higher ferritin levels. These findings support the hypothesis that air pollution

causes higher ferritin levels. The underlying mechanism may be that when certain

pollutants enter the lungs, iron is transported away from the lung tissue surface and

stored in ferritin complexes to avoid chemical reactions between iron and the pollutant.

[47, 57] This would imply that using serum ferritin as a proxy for total body iron is

less reliable when there is significant air pollution.

The environment construct was more strongly associated with ferritin level in active

donors than in new donors. In new donors, environmental factors explain 2% of

variance in ferritin levels, while in active donors this increases to 4% to 5% depending

on sex. This indicates that environmental factors are more important for ferritin

recovery after blood loss than for naive ferritin level. A plausible explanation for

this difference is that since both exposure to air pollution and donating blood causes

significant disruptions to iron homeostasis, these disruptions may interact and together

have a larger effect than simply additive.

SEM is a technique well-suited to test hypotheses on how different factors interact

and correlate with a specific outcome like ferritin levels, especially when there are many

factors to consider. Compared to multiple (linear) regression, more complex models

can be tested, and for each variable measurement error is taken into account. [58]

Moreover, the percentage of variance explained by groups of related variables can be

calculated and compared. The stratified approach in this study also adds to the model

validity: parameter estimates can be compared across groups, allowing discovery of

implausible results. Our analyses show that the convergent validity of the individual

characteristics construct is lower for active donors than for new donors. This may

indicate that new donors are a more homogenous group than active donors, which is

likely due to the more narrow age range of new donors. Other strengths of this study

are its large sample size and collection of data throughout the country.

Two main limitations of this study should be noted: its generalisability and its

restricted scope. One might be tempted to generalise the results of new donors to the

general Dutch population, as these donors have never donated blood before. However,

even new donors form a very specific, generally healthier subgroup of the general pop-

ulation, which means that selection bias has likely been introduced. We can speculate

that less healthy individuals would show a higher rate of inflammation, which may

cause higher serum ferritin levels. On the other hand, iron deficient or anaemic indi-

viduals are likely underrepresented in our sample. As this selection bias most likely

reduced variance in ferritin levels, this may have attenuated our results.
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Regarding the scope, data on some other potentially important determinants of

ferritin levels were not available in this study, the two most important being genetics

and diet. [40, 41] Several genetic polymorphisms that have an effect on iron pathways

have been identified, and these are likely to play a role in the recovery speed of ferritin

levels after blood donation. [43, 59, 60, 61] Dietary behaviour, and in particular heme

iron intake, is also a determinant of iron status in donors. [40, 45] Information on

iron supplementation was also not available for this study. Sanquin does not prescribe

oral supplementation of iron to donors, and only a small minority (8.7%) uses iron

supplements. [40] Information on donors’ smoking status is also expected to add value

to the model. Had these determinants been available for our analysis, the proportion

of variance explained in donor ferritin levels would likely have increased.

This study presents a model to explain variance in ferritin levels in individuals

with or without donation history, based on three types of determinants. The model

explained a relatively large part of the variance, especially in active donors. Individual

characteristics and donation history form the most important determinants of ferritin

levels. Although environmental factors accounted for less variance than the individual

and donation history constructs, their contribution is meaningful and statistically

significant. When clinicians or researchers use serum ferritin as a proxy for total body

iron, they should be aware of this potentially confounding effect.

For blood services that are considering implementing ferritin testing for their

donors, these results are of particular value. The results can be of use while the

blood service is deciding on a sensible threshold for donation: rather than implement-

ing a one-size-fits-all threshold, environmental conditions in the country can be taken

into account. If there is a high level of air pollution, ferritin levels are likely to be

overestimated, and thus a higher threshold for donation may be desired. It could

even be taken further to make ferritin thresholds more tailored to a specific donor, by

taking into account a donor’s individual characteristics.
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Appendix

Structural equation modelling (SEM) comprises a set of statistical methods that en-

ables researchers to assess the support for hypothesised relationships between variables

of interest. Its purpose is to account for variation and covariation of the variables in

the model. Many different techniques are included in SEM, this appendix explains

the approach taken in this particular study. In SEM, observed variables and latent

constructs are distinguished. Observed variables are variables in the traditional sense,

which are observations in the data set that have been collected by the researcher. La-

tent constructs are theoretical concepts that cannot be measured, but must be inferred

from the observed variables; a well-known example is the latent construct intelligence

that cannot be measured directly, but can be inferred from observed variables such

as scores for an IQ test. Intuitively, observed variables that belong to a latent con-

struct represent the same underlying concept, and latent constructs form in a way a

dimensionality reduction of the observed variables. Mathematically, latent constructs

represent shared variance of the observed variables related to the construct they belong

to.

SEM is composed of two main model components: the measurement model, which

shows how observed variables are divided among latent constructs, and the struc-

tural model, which shows the relationships between latent constructs and outcome

variable(s). First, the measurement model is specified, and test its validity using con-

firmatory factor analysis (CFA). Often, several measurement models are tested and

compared to see which division into latent constructs best fits the data. When the

measurement model is considered to have a good fit, the structural part of the model

is added, and the model fit is assessed for the full SEM model.

Measurement model

The validity of the latent constructs must be measured in two ways: each construct

must have convergent and discriminant validity. Convergent validity occurs when the

observed variables belonging to the latent construct share a high proportion of their

variance. This is assessed by the factor loadings of the observed variables onto the

latent construct: the higher the (absolute value of the) factor loading, the stronger the

indication that this variable belongs to this construct. Very generally speaking, factor

loadings greater than 0.4 are acceptable for including a variable within a construct,

but this threshold depends greatly on the hypothesised interpretation of the latent

variable. Variables with low factor loadings are excluded from the construct.
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The discriminant validity of a latent construct is a measure for how well the con-

struct can be distinguished from the other constructs in the model. It is measured

by the covariances between latent constructs. A high covariance between two con-

structs can indicate that these constructs are (partly) overlapping, and thus have no

discriminant validity.

If convergent and discriminant validity are satisfactory, model fit indices can be

calculated for the measurement model. Commonly used indices are the chi-square

test, comparative fit index (CFI), Tucker-Lewis index (TLI) and root mean square

error of approximation (RMSEA). The CFI and TLI are both relative measures of fit,

and compare the fit of the tested model against a null model, which in CFA means

that the means and variances of each variable are freely estimated, but no correlations

are included. CFI and TLI are on a scale from 0 to 1, with higher values indicating a

better fit of the hypothesised model relative to the null model. The TLI is always more

conservative (lower value) than the CFI, because the TLI includes a harsher penalty for

the number of parameters estimated. Because the two fit indices are highly correlated,

only one should be reported. We chose the TLI because of its more elegant penalty

for complexity. Values higher than 0.95 indicate good fit.

The RMSEA is an absolute measure of fit that is not sensitive to large sample sizes,

unlike the chi-square test. It uses the covariance matrix of the entire data set and of

the fitted hypothesised model, and calculates the differences between these two. This

results in a measure between 0 and 1, with lower values indicating smaller differences

and better model fit. Cut-offs of 0.08, 0.05, and 0.01 indicate mediocre, good, and

excellent fits, respectively.

If multiple measurement models are compared, as in this study, the best fitting

model is selected, based on the fit indices described above. If these indicate sufficient

model fit, the analysis can be continued with inspection of residual correlation between

observed variables. If the pairwise residual correlation between two variables is high

(absolute value of 0.1 or higher is a common cut-off), this indicates that these two

variables share more variance than is currently captured in the model. If this occurs,

the researcher needs to decide whether a covariance term for these two variables should

be included in the model. However, this should only be done if there is sufficient

theoretical support for an interpretable correlation between these variables. Otherwise

there is a risk of overfitting the model to the data; after all, in confirmatory factor

analysis we build upon a set of relationships that are hypothesised by the researcher.

It is not a data-driven method of finding the best set of relationships. If such an

approach is desired, exploratory factor analysis (EFA) can be applied instead of CFA.
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Structural model

The structural component is added to the model once the latent constructs are de-

fined, variables with low factor loadings are removed, and necessary covariance terms

are added. The structural component consists of the relationships between latent con-

structs, or between latent constructs and outcome variable(s). With this, we now have

three types of parameters for which an estimate must be calculated:

• Factor loadings (observed variable → latent construct);

• Covariances (observed variable ↔ observed variable);

• Regression coefficients (latent construct→ latent construct or outcome variable).

Each parameter adds one degree of freedom to the model, and the number of

parameters determines the identifiability of the model. Parameter estimates can only

be obtained when the number of free parameters (the number of unknowns) is equal

to or smaller than the number of independent elements in the covariance matrix of the

data (the number of knowns), which is equal to k(k + 1)/2, where k is the number of

observed variables in the model. If there are more unknowns than knowns, the model

is under-identified and no solution can be found. If the numbers are the same, the

model is just identified, and a unique solution can be obtained. If there are fewer

unknowns than knowns, we have an over-identified model, which means that there

is no unique solution but multiple, and we can select the best solution based on fit

measures. An over-identified model is desired.

In most software packages parameter estimates are obtained by a maximum like-

lihood estimator by default, but alternative estimators can be chosen as well. In this

study most observed variables did not follow a normal distribution, which violates

maximum likelihood estimator assumptions. Therefore, the diagonally weighted least

squares (DWLS) method was used instead, which is more robust and provides more

accurate parameter estimates in case the normality assumption is violated.

If the model is over-identified, fit measures can be reported along with the pa-

rameter estimates. Again, TLI and RMSEA are used to assess model fit, with the

same thresholds as seen in the CFA (TLI > 0.9, RMSEA < 0.08). If the model fit

is acceptable the parameter estimates can be interpreted. The interpretation of the

parameter estimates depends on the specification of the model. By default, one factor

loading in each latent construct is set to 1, to fix the scale of the latent construct.

However, in order to compare factor loadings across constructs it is useful to consider

standardised parameter estimates. The variance of the latent construct is then set to 1
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and factor loadings are interpreted in terms of a change in variance. In this study, we

look only at the standardised parameter estimates, as we are interested in the relative

importance of each observed variable and latent construct.

Factor loadings indicate how much variance of an observed variable is shared with

the variance of its latent construct. Higher absolute values indicate more shared

variance, and the sign of the factor loading specifies the direction of the association.

Covariance terms provide the same information for two observed variables, which can

belong to the same construct or to different constructs. If they belong to the same con-

struct, a high covariance term indicates that these two variables share more variance

with each other than can be explained by the latent construct. Regression coefficients

indicate how much variance of the outcome variable is explained by the variance of

the latent construct. To find the relative effect of a single observed variable on the

outcome variable, its factor loading must be multiplied by the regression coefficient

that connects the latent construct to the outcome.
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