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Chapter 1

Introduction

A safe and steady blood supply is essential for a healthy society, and requires a blood

bank to collect and manage blood products. Blood that is collected from donors can

be used for transfusion or for manufacturing various medicines – in either case, blood

saves lives. Patient safety must be ensured; therefore donated blood is extensively

tested for infectious diseases, and donors are not allowed to donate if the pre-donation

check indicates a potential presence of blood-transmissible disease. In the Netherlands,

adverse events for patients after a blood transfusion are extremely rare. [1] In addition

to patient safety, donor safety is a priority for blood banks. Both from an ethical and

practical perspective, it is important that people only donate blood when it does not

harm them. The pre-donation screening visit therefore consists of a questionnaire and

blood tests that assess both patient and donor safety.

The biggest health risk in terms of prevalence for blood donors is iron deficiency.

[2, 3] With every whole blood donation, donors lose about 250 mg of iron, which is

8 to 13% of their iron stores for men and non-menstruating women, and up to 81%

for menstruating women. [4] In general, iron deficiency symptoms may begin mild

and vague, including fatigue, increased irritability, and difficulties with concentration.

As the deficiency progresses, it can evolve into iron deficiency anemia, meaning that

there is a shortage of healthy red blood cells. Symptoms will intensify as the need

for iron increases. [5] A recent systematic review investigated associations between

iron deficiency in whole blood donors and several health consequences related to iron

deficiency. [4] Although most included studies reported a high prevalence of iron

deficiency among blood donors, no clear overall association for most iron deficiency-

related symptoms was found, and only restless leg syndrome and pica (the act of eating

non-food items) were associated with iron deficiency in blood donors. [4]

To prevent anemia in blood donors, most blood banks implement pre-donation

checking of hemoglobin or ferritin levels, proteins that transport oxygen and carbon

dioxide and store iron, respectively. Donors that do not meet the eligibility criteria for

safe blood donation are deferred, i.e., sent home without donating blood. Although

it protects donor health, deferral is demotivating for donors, and is often a reason

for donors to stop donating altogether. However, a stable donor pool is needed to

maintain a steady blood supply, and because retaining existing donors is less costly

than recruiting new donors, it is in blood banks’ interests to keep donors healthy and

motivated.

The Dutch blood bank Sanquin has data on millions of donations, including data
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relevant to donor health, and measurements of hemoglobin and ferritin levels in par-

ticular. Using statistical and machine learning methods, the information contained in

this data can be used to develop algorithms that may help to improve blood bank poli-

cies. Combining expert biomedical knowledge gained over decades of blood banking

with new insights obtained with data science will allow blood banks to move towards

data-driven donation strategies. Similar to precision medicine, blood donation could

become more data-driven as well, for instance with tailored donation intervals or eli-

gibility thresholds.

1.1 Research questions and contributions

Sanquin’s mission is rooted in its commitment to being a knowledge-driven organ-

isation that supplies life-saving products while upholding careful, responsible, and

efficient processing of the voluntary contributions made by donors. Over time, San-

quin has collected large amounts of data on donors and their donations. These data

can be leveraged by proper analyses, which would allow Sanquin to advance towards

more data-driven donation strategies. Accurately predicting various donor outcomes

holds the potential to optimise the blood bank process, for example, by anticipating

donor deferral and subsequently adapting donor invitation strategies to minimise such

deferrals.

In this thesis, we explore the application of data science in enhancing donor man-

agement. By employing several statistical and data science analysis techniques on

blood donation data, we address research questions that bear significance for donor

health monitoring and protection. The studies focus on investigating a series of re-

search questions that have been categorised into three primary areas. What follows

is a list of research questions that are studied in this thesis and their contributions to

current knowledge.

Research questions on hemoglobin and ferritin levels and recovery after donation:

Q1 Does a ferritin-based donor deferral policy prevent donors from re-

turning with iron deficiency?

In 2017, Sanquin implemented a new policy wherein donors’ ferritin levels are

measured routinely and donors with low ferritin levels are deferred for six or

twelve months. We analysed changes in ferritin levels of deferred donors.
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Q2 What are determinants of variations in ferritin levels?

Many factors that affect iron stores, including ferritin levels, are known and have

been extensively researched. Most studies investigate associations from a single

perspective, e.g., focussing only on donation-related variables, or only on envi-

ronmental variables. In Chapter 4, we present a statistical model that integrates

multiple sets of variables to give a more comprehensive overview of determinants

of ferritin. Differences between donors and non-donors are investigated.

Q3 Can we find groups of donors whose hemoglobin levels change in a

similar manner over the course of their donor career?

Some donors exhibit very stable hemoglobin levels during their donor career,

while others show a declining trend. In Chapter 5, we regard these hemoglobin

trajectories as time series and use clustering methods to find groups of donors

with similar trends. Clustering is complicated when time series are very irregular

and sparse, as in this case, with only a few data points per donor per year and

no information about hemoglobin levels in between data points. Two methods

to tackle the irregularities in these time series are compared.

One research question does not concern hemoglobin or ferritin at all, but rather

focuses on SARS-CoV-2 antibodies. Before (and after) the pandemic, the main reasons

for donor deferral were low hemoglobin or low ferritin levels. During the pandemic,

however, the most common reason donors could not donate was the presence of a

COVID-19 infection. The following research question is studied:

Q4 How are individual characteristics and symptoms associated with IgG

antibody response in COVID-19 recovered donors?

During the COVID-19 pandemic, Sanquin monitored antibodies in regular do-

nations, but also specifically repeatedly measured antibodies in donors who had

undergone a COVID-19 infection. Chapter 6 presents a linear mixed-effects

model relating antibody decay to characteristics such as sex, BMI, and age, as

well as the presence of various COVID-19 symptoms. At the time of publica-

tion, this was the largest study describing these associations, and one of the few

studying antibodies in a non-hospitalised cohort.
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Research questions on hemoglobin deferral prediction:

Q5 Can we accurately and reliably predict hemoglobin deferral based on

historical data?

Chapter 7 presents the main hemoglobin deferral prediction model that was

developed, using support vector machines. We assessed the consequences for the

blood supply if these models were used to guide donor invitations, as well as

prediction performance. Additionally, it focuses on explaining why the model

makes certain predictions, opening the ‘black box’ and analysing if associations

learned by the model are consistent with the physiology behind hemoglobin

metabolism. This research question is also relevant in Chapters 8 and 9.

Q6 How do country-specific blood bank policies and donor demographics

affect hemoglobin deferral prediction models?

Although blood banks from many countries are working on hemoglobin deferral

prediction, exchange and comparison of results is rarely done. Chapter 8 is the

first publication from the international research group SanguinStats, a collabo-

rative effort across five countries: Australia, Belgium, Finland, the Netherlands,

and South Africa. In this chapter, researchers from all countries fit the same five

prediction models to their blood bank data. Both prediction performance and

variable importance are analysed for differences and similarities.

Q7 Do ferritin measurements or genetic information add value to hemo-

globin deferral prediction models?

Many blood banks collect additional information that may improve predictions:

specifically, the Finnish blood bank has collected information on iron-related

genetic markers and in the Netherlands, ferritin measurement data are available.

In Chapter 9, the added value of these predictor variables is investigated and

compared.

5



1

Chapter 1

1.2 Outline of this thesis

Following this introduction, this thesis continues with Chapter 2 – Preliminaries. In

this chapter, all necessary background information needed to understand the work

presented in this thesis is provided: both from a blood donation and a data science

perspective.

Chapters 3 through 9 contain the research papers as published, starting with three

papers on iron marker levels and their recovery after donations. Right in the middle,

Chapter 6 interrupts the studies on hemoglobin and ferritin levels with a research

paper on SARS-CoV-2 antibodies, just as the COVID-19 pandemic interrupted me in

the middle of my PhD research. Chapters 7 through 9 focus on hemoglobin deferral

prediction models.

The thesis is wrapped up with Chapter 10 – Conclusions, general discussion and

anticipated future research, which summarises the results from Chapters 3 through 9,

discusses overarching challenges, and proposes potential directions for future research

and policies.
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Chapter 2

Preliminaries

With one foot in the world of blood transfusion and the other firmly planted in data

science and statistics, the research in this thesis is multidisciplinary and requires an

understanding of both fields. In this chapter, background knowledge on blood donation

and iron metabolism, as well as explanations of some statistical and data science

concepts are presented.

2.1 Blood donation in the Netherlands

Since 1998, when Dutch blood banks were merged into one organisation, Sanquin

is the only organisation in the Netherlands authorised to collect human blood for

transfusion and manage the blood supply. With 50 fixed collection sites and several

mobile collection sites, the country is geographically well-covered.

The two main types of blood donation at Sanquin are whole blood and plasma

donation. During a whole blood donation, 500 mL of blood is collected from a donor.

The blood is collected as-is, hence the term whole blood. During a plasma donation or

plasmapheresis procedure, blood is collected from a donor, but everything except the

plasma is returned to the donor after a separation process. In 2022, Sanquin collected

313 386 plasma donations and 430 515 whole blood donations.

Iron is present in red blood cells as a constituent of hemoglobin, and so iron loss

is much greater during a whole blood donation than a plasma donation. Our research

on iron deficiency in donors is therefore focused on whole blood donors. Donors sign

up to become either a whole blood donor or a plasma donor, and while sometimes

whole blood donors become plasma donors, donors generally do not alternate between

the two types of donations. There is a pool of about 300 000 whole blood donors

that is continuously changing as people stop donating and new donors are recruited.

Women are allowed to donate whole blood three times a year and men five times a

year, provided that all eligibility criteria are met. Whole blood donations are collected

by invitation only: donors receive an invitation by postal mail, e-mail, or SMS, with

which they can visit the blood bank for a donation within two weeks. More recently,

donors can plan their donation by making an online appointment.
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2.1.1 Iron metabolism

Blood consists of four main components: plasma, erythrocytes (red blood cells), leuko-

cytes (white blood cells), and thrombocytes (platelets). Erythrocytes make up nearly

half of the blood’s volume and are responsible for delivering oxygen to the whole body.

About one third of the volume of an erythrocyte is filled with hemoglobin, a protein

that contains iron, which can bind oxygen in the lungs to release it where needed. [6]

Anemia is the condition where hemoglobin or erythrocyte levels are low, which can

lead to symptoms as described earlier. [7] When the cause of the anemia is a low iron

level, this is called iron deficiency anemia, and this will usually be reflected by a low

hemoglobin level. [5]

However, iron is also used in other processes than hemoglobin synthesis, and suffi-

cient hemoglobin levels do not guarantee the absence of iron deficiency. If such a state,

called non-anemic iron deficiency, is left untreated, it may evolve into iron deficiency

anemia, particularly after blood loss. Aside from oxygen transport, iron is required

for many cellular functions, such as the replication and repair of DNA, as well as the

synthesis of several enzymes and hormones. [8] Almost all cells use iron as a co-factor

for biochemical activities, which is why iron deficiency can cause such a wide range of

symptoms.

Approximately 70% of all iron in adults is present in hemoglobin, and 25% is

stored in ferritin, a large iron storage protein found mostly in the liver. [8] When

hemoglobin levels decrease, iron is released from ferritin to be used in erythropoiesis

(the production of red blood cells). A small amount of ferritin is also present in blood.

Under steady-state conditions, the concentration of ferritin in the blood is correlated

with the size of the total iron stores of the body. However, ferritin levels are often

elevated under inflammatory conditions and are therefore not a good indicator of iron

stores in those circumstances. [9] This can already occur with low-grade inflammation

due to obesity or high levels of air pollution. Under normal (non-inflamed) conditions,

ferritin is considered a good indicator of the total body iron store. [10]

2.1.2 Iron monitoring strategies at Sanquin

Sanquin has several eligibility criteria regarding hemoglobin and ferritin levels in

donors. Before every donation, a drop of capillary blood is collected from the donor’s

finger and used to test the concentration of hemoglobin. The European eligibility

threshold for hemoglobin levels is 7.8 mmol/L for women and 8.4 mmol/L for men;

slightly higher than the WHO cut-offs for anemia (120 g/L for women and 130 g/L for
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men, which corresponds to 7.5 and 8.0 mmol/L, respectively). [11] The hemoglobin

testing policy at Sanquin is the following: hemoglobin is measured in one drop of blood

using a HemoCue device. If the hemoglobin level is below the donation threshold, the

same test is repeated once or twice, and the value that gets recorded is the highest

value. The policy states that if the difference between the measurements is larger than

0.3 mmol/L, a physician should be consulted. Donors whose hemoglobin level does

not meet the threshold are deferred and sent home to be invited again three months

later.

Pre-donation hemoglobin testing has always been standard practice at Sanquin, but

as described in the previous section, hemoglobin level monitoring does not enable the

detection of iron deficiency. Figure 2.1 clearly illustrates how hemoglobin and ferritin

levels change after donation in 25 male donors. [12] The concentration of hemoglobin

decreases for three days as the blood volume is replenished. [13] During this time,

ferritin remains stable at the pre-donation level. The iron that is necessary for the

synthesis of hemoglobin for the new erythrocytes is released from ferritin; hence, at

three days post-donation we see hemoglobin levels starting to increase while ferritin

levels start decreasing. After 56 days, the minimum donation interval has passed,

and the donor should in theory be eligible for their next donation. At that point,

hemoglobin levels are almost back to the pre-donation level. However, ferritin levels

are still low, at only 55% of the pre-donation level. [12] If donors were to donate again

at this moment, the same pattern would repeat and there would be an increased risk

of iron deficiency (first without, then with anemia). More time between subsequent

donations is needed for most of these donors to completely recover their iron stores.

To avoid collecting blood from donors with iron deficiency, Sanquin implemented

ferritin-guided donation intervals starting October 2017. [14] A stepped-wedge ap-

proach was used to introduce the policy in all blood banks, and since November 2019

all blood collection sites apply the ferritin testing policy. Ferritin levels are now tested

in all new donors as part of the new donor intake, which assesses general eligibility

for someone to become a blood donor. Hemoglobin is also measured during this visit,

so baseline values of both iron markers are available for all donors. Only test tubes

of blood are collected during this intake, and no donation takes place. If eligible, the

donor is invited for a first donation about three weeks after the intake. Apart from

the new donor intake, ferritin is measured in repeat donors every fifth donation. Ac-

cording to WHO guidelines, ferritin levels below 15 µg/L indicate iron deficiency. [11]

Donors with a ferritin level below 15 µg/L are therefore deferred from donating for

one year. If the ferritin level is between 15 and 30 µg/L, donors are considered ‘at

12
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Figure 2.1: Trajectories of hemoglobin and ferritin levels after blood donation for 25
repeat male donors. Solid grey lines are individual trajectories; the red solid line is the
average trajectory; the horizontal dashed line indicates the average pre-donation value, and
the yellow vertical line shows the minimum donation interval for male donors. Reproduced
with permission from Schotten et al., 2016. [12]

risk’ of iron deficiency. To prevent the donors from returning to donate with a ferritin

level below 15 µg/L, the donor is deferred for six months.

There is an important difference between measuring hemoglobin versus ferritin lev-

els. Hemoglobin testing is done using a point-of-care device and the result is available

immediately, so it can be used on-site to decide on the donor’s eligibility for dona-

tion. However, measuring ferritin levels with such a device is expensive and unreliable,

therefore they are measured in the donated blood after the donation has taken place.

This means that when a ferritin level is measured, the actual ferritin level of the donor

will reduce subsequently as a result of the donation.

After a deferral period due to low ferritin, ferritin is measured again at the next

donation. If ferritin is still low after a deferral, the donation frequency is decreased

(e.g., from three to two donations a year for women) or the donor can switch donation

types (plasma donation might be a better choice) or decide to stop donating altogether.

13
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2.2 Machine learning

Several chapters in this thesis describe models that predict hemoglobin deferral of

blood donors. This is a form of binary classification using supervised machine learn-

ing algorithms. In those chapters, some statistical concepts are mentioned that are

explained in more detail in this section.

2.2.1 Models, explanations and predictions

Machine learning methods can generally be classified as either supervised or unsuper-

vised. In supervised learning, a model learns from examples (training data) where

the true outcome is known to the model. After learning from the training data, the

resulting model can be used to predict the outcome on unseen test data, for which

the model does not know the true outcome. We use supervised learning methods to

predict hemoglobin deferral (Chapters 7 through 9), as well as to describe COVID-19

antibody levels (Chapter 6).

In unsupervised learning, there is no outcome to predict. Instead, these models

are used to find, for example, groups of either observations (clustering tasks) or vari-

ables (dimensionality reduction). We apply unsupervised learning methods to cluster

hemoglobin trajectories (Chapter 5), and to group predictor variables into latent con-

structs for the structural equation model (Chapter 4).

An important distinction in statistics is explanatory versus predictive modelling,

both forms of supervised learning. Both serve important roles in scientific research, but

a good understanding of the difference is necessary for correct usage and interpretation.

Explanatory modelling is concerned with finding and testing causal theories, using data

mostly as a tool. The aim here is to find an interpretable statistical model that confirms

or rejects the underlying theories. Modelling becomes predictive modelling when the

aim is to find the best model for predicting the outcome for unseen observations. The

priority here is to generate accurate predictions, rather than being able to understand

underlying associations.

Generally, predictive modela use data-driven methods, whereas explanatory models

are more hypothesis-driven. There is also a difference in optimisation goal: explana-

tory models focus on minimizing bias (errors resulting from erroneous assumptions

in the model), while minimizing estimation variance (fluctuations resulting from the

specific data used) is less important since the models are used for population-level in-

ference. Prediction models are intended to be used for individual-level predictions, and

therefore the aim is to minimise estimation variance in addition to bias. In practice,
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the biggest difference between explanatory and predictive modelling is the handling

of data. In explanatory models, the full dataset can be used to fit the model and cal-

culate coefficients. Validation of the model is done through goodness-of-fit tests and

residual analysis to assess how well the model captures the data. In prediction models,

however, the models are fit only on the training data, and a separate test dataset is

used to validate the accuracy by comparing the predicted to the actual outcomes. It is

important to keep the distinction between explanatory and prediction models in mind

to avoid conflating the two and drawing incorrect or unsupported conclusions. [14]

In this thesis, both explanatory and prediction models are used. Chapters 3 and

4 focus on explanatory models without any predictive aspect; they relate (changes

in) ferritin levels to explanatory variables that are based on biological theory. We

do not attempt to minimise estimation variance, as we are interested in the average

effect of the variables on ferritin levels in the whole population. The same holds

for the analysis of COVID-19 antibodies in Chapter 6. Predicting any individual

donor’s specific ferritin or antibody level would likely not be very accurate, but we

are nonetheless able to explain a considerable amount of population variance with

our models. Chapter 5 is neither explanatory nor predictive, as it uses unsupervised

learning methods to cluster hemoglobin trajectories and there is no outcome to explain

or predict.

Chapters 7 through 9 focus on predictive modelling, which is also expressed by the

term ‘prediction model’ in the titles. In these papers, models are trained using only

the training data, and model performance is assessed using the prediction accuracy on

a separate set of test data. Since predictions would be used for forecasting, the test

set always contains more recent data than the training set. Although these papers

focus on prediction, they are not void of explanatory aspects. Especially in Chap-

ter 7, the explanatory aspects are just as important as the predictive aspects. The

main difference with ‘true’ explanatory models is that Chapter 7 focuses on explain-

ing predictions, rather than explaining causal relations with the outcome variable.

Where possible, prediction explanations are related to known or hypothesised causal

explanations, but this is not required to keep a predictor variable in the model.
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2.2.2 Classification for donor deferral

In machine learning, classification refers to the use of a prediction model where class

labels are predicted for input data. In binary classification, there are exactly two

outcome classes: one is the positive outcome class and the other the negative outcome

class, where the positive outcome class is typically the outcome that is of most interest

to the researcher. In our context, the two outcome classes for hemoglobin deferral

prediction are ‘deferral’ and ‘non-deferral’, with deferral being the positive outcome

class (even though deferral is not positive in a colloquial sense).

A hemoglobin deferral prediction model could be used by blood banks in the process

of inviting donors. In addition to inviting donors based on their eligibility (i.e., has the

minimum donation interval been met) and current demand for different blood groups,

the prediction of the model could be taken into account. By only inviting donors that

are predicted to belong to class non-deferral by an accurate model, the number of

donors that are deferred on-site could be reduced.

For each observation, predicting the outcome leads to one of four scenarios:

1. Prediction non-deferral, true outcome non-deferral (true negative, TN)

2. Prediction non-deferral, true outcome deferral (false negative, FN)

3. Prediction deferral, true outcome deferral (true positive, TP)

4. Prediction deferral, true outcome non-deferral (false positive, FP)

If donor invitations are guided by a prediction model, the two types of incorrect

predictions (false negatives and false positives) have different effects. For false nega-

tives, the donor is invited to donate and then deferred before donation because the

hemoglobin level is below the threshold. For false positives, the donor is not invited

even though their hemoglobin level would have been sufficient: a missed donation for

the blood bank. A balance must be found between the false positives and the false

negatives: we want to reduce the deferral rate, which is determined by the proportion

of false positives, but if we predict ‘deferral’ too liberally, we will find many more false

negatives, which means more missed donations, and a risk for the blood bank to not

have sufficient blood donations.

Generally, prediction models work best when all outcome classes have the same

probability of occurring. In this case, outcome class non-deferral is much more likely

than outcome class deferral. Deferral rates in the Netherlands are currently at around

3% for women and 1% for men, meaning that 97% and 99% of donation attempts be-

long to the outcome class non-deferral, respectively. This has important consequences
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for the assessment of model performance. Often, performance is measured as accuracy

on a test set (accuracy = TP+TN
TP+TN+FP+FN ). Another popular choice for model perfor-

mance is the ROC curve (receiver operating characteristic curve), which plots the true

positive rate ( TP
TP+FN ) against the false positive rate ( FP

FP+TN ) at different classifica-

tion thresholds. A classification threshold is needed to map the output of the model

(the deferral probability of an observation) to a binary outcome: if the probability

exceeds the threshold, the prediction will be ‘deferral’. As the classification threshold

decreases (i.e., a lower probability of ‘deferral’ is needed to classify an observation as

such), more observations will be predicted as ‘deferral’, which increases both the false

positive rate and the true positive rate. ROC curves can be summarised in one number

by the ROC AUC (Area Under the ROC Curve), which is a number between zero and

one, where an ROC AUC of 1 corresponds to a model with 100% correct predictions.

The baseline value for the ROC AUC is 0.5: the performance of a random classifier.

However, regular accuracy and the ROC AUC may be misleading when used for

datasets with imbalanced outcomes. [15] An extreme illustration of this would be a

model that always predicts ‘non-deferral’; although its accuracy would be 97% for

women and 99% for men, such a model would not have any practical value. Similarly,

the ROC curve may be too optimistic in severely imbalanced classification problems.

Therefore, throughout this thesis, we use precision and recall instead of accuracy, and

AUPR (Area Under the Precision-Recall curve) instead of ROC AUC. Precision is

defined as the proportion of correctly predicted observations out of all observations

predicted to belong to that class ( TP
TP+FP for the positive class, or TN

TN+FN for the

negative class). The precision of class deferral is the proportion of true deferrals out

of all predicted deferrals. Recall is defined as the proportion of correctly predicted

observations in one outcome class ( TP
TP+FN for the positive class, TN

TN+FP for the

negative class). The recall of class deferral is the proportion of deferrals that are

correctly predicted to be deferrals.

There always exists a trade-off between precision and recall: by increasing the

classification threshold, the number of false positives decreases, whilst the number of

false negatives increases. This causes precision to increase, and recall to decrease.

The graph showing precision and recall at different classification thresholds is called

the precision-recall curve, and the area underneath this curve is the AUPR. Similar

to the ROC AUC, AUPR is a number between zero and one, but its baseline and

interpretation are different. For the AUPR, the baseline value is dependent on the

proportion of observations belonging to that outcome class. In our case, the baseline

AUPR for class deferral would be 0.01 for men and 0.03 for women. The AUPR should
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therefore always be interpreted in combination with the baseline value.

An interesting feature is that true negatives are used for the calculation of neither

precision nor recall. This is what makes it suitable for imbalanced data: we ignore the

large number of non-deferrals that are predicted correctly and focus on the correctness

of the prediction of deferrals, and on incorrectly predicted non-deferrals.

The aforementioned metrics provide a fair evaluation of model performance on our

imbalanced dataset. All studies involving prediction models within this thesis report

these metrics, or a subset thereof, depending on their relevance to the specific research

question. Whenever possible, we translate these metrics into statements that clearly

show their practical implications. For instance, we calculate the hypothetical deferral

rate by taking the complement of the recall of class non-deferral, providing insight into

the potential impact of using this model to guide donor invitations. By reporting these

metrics and their interpretations, we aim to accurately describe model performance,

as well as allow for straightforward interpretation of the effect of using the model for

donor management.
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Abstract

Background - Whole blood donors are at risk of becoming iron deficient. To monitor

iron stores, Sanquin implemented a new deferral policy based on ferritin levels, in

addition to the traditional hemoglobin measurements.

Methods - Ferritin levels are determined in every fifth donation, as well as in all

first-time donors. Donors with ferritin levels < 15 µg/L (WHO threshold) are deferred

for 12 months; those ≥ 15 and ≤ 30 µg/L for 6 months. The first results were analysed

and are presented here.

Results - The results show that 25% of women (N = 20151) and 1.6% of men

(N = 10391) have ferritin levels ≤ 30 µg/L at their first blood center visit. For repeat

(non-first-time) donors, these proportions are higher: 53% of women (N = 28329)

and 42% of men (N = 31089). After a 6-month deferral, in 88% of returning women

(N = 3059) and 99% of returning men (N = 3736) ferritin levels were ≥ 15 µg/L.
After a 12-month deferral, in 74% of returning women (N = 486) and 95% of returning

men (N = 479) ferritin levels increased to ≥ 15 µg/L.
Conclusions - Deferral of donors whose pre-donation ferritin levels were ≥ 30

µg/L might prevent donors from returning with ferritin levels < 15 µg/L. This policy
is promising to mitigate effects of repeated donations on iron stores.
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Introduction

Sanquin is the national blood service in The Netherlands. In addition to securing safe

blood products for patients, it has a responsibility to its voluntary non-remunerated

donors to diminish the risk of developing health problems related to whole blood

donation. One of these risks is iron deficiency anemia or iron deficient erythropoiesis.

During whole-blood donation, a donor gives half a liter of blood, containing 210 to

240 mg iron bound to hemoglobin. [16] This iron is first replaced from iron stores (of

which ferritin level is an indicator), which are then slowly replenished by an increased

iron uptake from food. These stores are on average 411 mg in women under 50, 591

mg in women over 50, and 880 mg in men. [16, 17, 18] Thus, the amount of iron lost

during donation is relatively large in comparison to the total iron stores, especially in

premenopausal women.

To monitor donors’ iron statuses, donors’ hemoglobin levels are measured before

each donation using a photometer (HemoCue) after finger prick sampling. Donors are

eligible for donation if their hemoglobin level is at least 7.8 mmol/L (12.6 g/dL) for

women, or 8.4 mmol/L (13.5 g/dL) for men. A hemoglobin level below this threshold

may indicate iron deficiency anemia, which needs to be prevented. Yet, donors with

normal hemoglobin levels can already be iron deficient without anemia. [19] This

happens when the body is not given enough time to replenish its iron stores between

donations, using only hemoglobin measurements as an iron marker.

Several studies have analysed iron recovery after donation with similar results. [20,

12] In a study of 50 male donors, followed after whole blood donation, blood volume

is restored first. About four days post-donation, hemoglobin levels are at the lowest

point and start to increase as stored iron is released to replenish hemoglobin. At the

same time, ferritin levels decline and reach their lowest point about 29 days post-

donation. After 56 days (the minimum interval between two whole blood donations

for men in The Netherlands), average measured ferritin levels are 27 µg/L in repeat

male donors, compared to an average of 49 µg/L directly prior to donation. At that

time point, the average hemoglobin level is 9.1 mmol/L, almost back to the average

starting value of 9.2 mmol/L. [12] Donors in this study did not take iron supplements.

Several strategies to better monitor iron status in donors have been proposed, such

as hemoglobin-guided donation intervals, ferritin-guided donation intervals, and iron

supplementation. [21] Sanquin has chosen to implement a ferritin-based deferral policy

for its donors. The policy started in November 2017; donors are deferred for 6 or 12

months in case their ferritin levels are ≤ 30 or < 15 µg/L respectively, even though
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their hemoglobin was above the threshold and they were eligible to donate otherwise.

These thresholds were based on WHO standards, which state that ferritin levels < 15

µg/L indicate iron deficiency, while higher levels reflect the size of the iron stores. [11]

However, one should be aware that ferritin is also an acute-phase reactant. [8]

The main aim of the policy is to prevent donors’ ferritin levels from dropping below

15 µg/L. Without regular ferritin testing, donors with low ferritin levels (≤ 30 µg/L)
but hemoglobin levels above the threshold will keep donating every few months, with

the risk that their iron reserves decline until hemoglobin levels fall below the threshold.

By measuring ferritin levels every fifth donation, Sanquin tries to prevent donors from

future deferral, thus preventing them from becoming overt iron deficient (with or

without anemia). The choice to measure ferritin every fifth donation rather than at a

different frequency is arbitrary and not based on extensive research.

Data on hemoglobin and ferritin levels collected during the first 18 months since

the implementation of this ferritin deferral protocol were analysed to determine:

1. the distribution of ferritin levels in new donors, providing a reference distribution

of ferritin levels in healthy individuals that have never donated blood before;

2. the difference in ferritin distribution between new and repeat donors;

3. the difference in donor ferritin levels before and after deferral, which provides in-

formation on the effectiveness of donor deferral to prevent donors from returning

to donate with iron deficiency.

In evaluating the deferral policy based on ferritin levels, there are three important

aspects to consider. The first is the effectiveness of the policy in preventing donors

returning with ferritin levels below 15 µg/L. The second and third are the effects of the

policy on the blood supply and on donor health, respectively. This article analyses the

first aspect in depth; an exhaustive analysis of all three aspects is outside the scope

of the current study and will become possible in due time.

Methods

At Sanquin, the national blood establishment in The Netherlands, every person who

signs up to become a blood donor is first invited for a donor intake. This initial visit

is meant to screen for infectious diseases and assessment of blood type and potential

antibodies, without donation. Prospect donors that meet all the criteria of the donor

22



3

Ferritin-based blood donor deferral

health questionnaire and have a negative infectious disease and antibody screen become

a blood donor and are invited for their first donation a few weeks later.

The ferritin-based deferral policy prescribes that ferritin is measured at the intake

visit for all first-time donors, and at every fifth donation in repeat donors. Donors

are considered first-time donors only for their first donation and are considered repeat

donors after that. Unlike hemoglobin, which is measured by point-of-care testing and

gives the result directly, ferritin is measured in serum samples which are analysed

within a few days after the donation has taken place. At the intake, this makes no

difference, because no donation takes place during this visit. However, for repeat

donors, the ferritin level is assessed after the donation has taken place, from a sample

pouch that is collected along with the donated blood. This means that donors are

deferred after donation (they are notified of their deferral by letter), and that ferritin

measurements are available from repeat donors that have hemoglobin levels above

the donation threshold only. There is currently no evidence that donating with low

ferritin levels is dangerous or unhealthy, as long as hemoglobin levels are adequate.

Therefore, this donation is considered to be safe even if the ferritin measurement comes

back below the threshold.

Ferritin levels are assessed with the Architect i2000 by Abbott Diagnostics. Ferritin

levels are divided into three categories with different consequences for the donor:

• Ferritin < 15 µg/L: the donor is deferred from donation for 12 months;

• 15 ≤ Ferritin ≤ 30 µg/L: the donor is deferred from donation for 6 months;

• Ferritin > 30 µg/L: no deferral, the donor can return for the next donation after

the regular minimum donation interval (56 days for men, 122 days for women).

Sanquin does not have a policy to advise donors to take iron supplements for

low ferritin or hemoglobin levels, although they are free to take over-the-counter iron

supplements on their own initiative. The deferral periods are meant to give the donors

a break from blood donation, allowing iron stores to recover solely by iron intake from

donors’ regular diets.

Sanquin collects approximately 400,000 whole blood donations annually, from over

270,000 donors. [22] Data for this study were collected between November 2017 and

April 2019 on donors who gave consent for the use of their data for scientific research

(more than 99% of all donors give this consent).

To compare the ferritin distributions in first-time and repeat donors, for each

donor only the first ferritin measurement is considered. For first-time donors, this is
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the ferritin measurement taken at the pre-donation screening. For repeat donors, this

is the ferritin measurement taken at the fifth donation since the implementation of

the protocol. If the same donor has a consecutive ferritin measurement, five donations

later, that measurement is not used in this analysis, so that every donor only occurs

once in the data set.

To assess the effectiveness of the deferral for preventing donors from returning

to donate while iron deficient, we compare pre-deferral ferritin levels to post-deferral

ferritin levels, of all deferred donors of whom post-deferral ferritin measurements were

available. We compared pre-deferral ferritin levels in donors with and without a post-

deferral measurement to check for selection bias. In donors without post-deferral

measurement, we selected only those who were eligible for donation again (i.e., their

deferral period has ended).

For donors who do have a post-deferral ferritin measurement, we calculated the

average daily increase in ferritin levels for each donor. Note that since ferritin recovery

does not progress linearly, the averages do not represent the actual increase on any

given day, but this method can be used to compare recovery rates between women and

men. [12]

All analyses are performed in the R programming language and environment for

statistical computing. Plots are produced with the ggplot2 package. Distributions are

asymmetric and are therefore characterised by the median value and the interquartile

range (IQR). Density plots presented are kernel density estimates; the bandwidth is

selected by Silverman’s rule of thumb.

Results

Ferritin levels were measured at least once in 30 542 first-time donors (20 151 women)

and 59 418 repeat donors (28 329 women). Figure 3.1 shows the distribution of ferritin

levels for various combinations of sex and age categories. In first-time donors, men

had substantially higher ferritin levels than women, and ferritin levels increased with

age: median ferritin levels ranged from 96 to 173 µg/L in men and from 43 to 81 µg/L
in women by age group. In repeat donors, the median values were more similar for

both sexes, ranging from 22 to 35 µg/L in men and from 28 to 36 µg/L in women.

Table 3.1 shows the median ferritin level and IQR for all age groups.

Overall, 25% of female first-time donors (95% CI 24%-25%) and 1.6% of male first-

time donors (95% CI 1.4%-1.8%) had ferritin levels below the threshold of 30 µg/L at

the intake visit. These proportions were considerably higher in repeat donors: 53%
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Figure 3.1: Distributions of ferritin levels in new donors (blue) and repeat donors (orange)
for various combinations of sex and age category. Sample sizes range from 1037 (male new
donors age 50 and up) to 14848 (male repeat donors age 50 and up).

First-time donors Repeat donors

Sex Ages N Median ferritin (IQR) N Median ferritin (IQR)

Women

18-24 9713 43 (27-65) 4537 22 (15-33)
25-34 5071 52 (33-79) 5045 26 (17-39)
35-49 3801 58 (33-98) 7411 28 (18-43)
50+ 1566 81 (50-128) 11,336 35 (23-53)

Men

18-24 3896 96 (66-135) 2048 28 (18-43)
25-34 3424 136 (95-191) 3928 34 (21-53)
35-49 2167 154 (102-224) 7063 35 (22-56)
50+ 904 173 (120-256) 18,050 36 (23-56)

Table 3.1: Median ferritin levels and interquartile range (IQR) in first-time and repeat
donors by sex and age category.
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of women (95% CI 52%-54%) and 42% of men (95% CI 41%-43%) had a ferritin level

≤ 30 µg/L. These outcomes again show that men have significantly higher ferritin

levels than women (as witnessed by the confidence intervals), and that repeat donors

are much more likely to have low ferritin levels than first-time donors, although this

difference is much more pronounced in men (25-fold increase) than in women (two-fold

increase). This leads to substantially smaller differences in ferritin levels between men

and women for repeat donors than in first-time donors.

Most donors with low ferritin levels had a ferritin level between 15 and 30 µg/L,
but 5.3% of female first-time donors and 0.1% of male first-time donors already had

ferritin levels < 15 µg/L. In repeat donors, these low levels were observed in 15% of

female and 9.4% of male donors.

We calculated the moving average (window size of 1000 observations) of the pro-

portion of donors that were deferred due to low ferritin levels as a function of age. We

did this separately for sex, donor type (new/repeat donor), and ferritin deferral cate-

gory (< 15 µg/L and between 15-30 µg/L). In Figure 3.2, the proportion of deferrals

as a function of donor age is shown for each combination of deferral type, donor type,

and sex. Confidence intervals are not shown due to the proximity of the lines, but they

are all extremely narrow. The difference in deferral probability between female and

male donors was substantially larger in new donors than in repeat donors. In male

repeat donors, the association between age and deferral rate was negative and almost

linear. In female repeat donors, there was a clear non-linear dependency on age: after

an initial decrease until the age of 25, there was an increase until the age of 40, after

which it started to decrease again.

We also analysed the difference between pre- and post-deferral ferritin levels for

both 6- and 12-month deferral. To check for selection bias, we compared the pre-

deferral ferritin levels of donors with and without a post-deferral measurement. Table

2 shows the number of deferred donors, the number of donors whose deferral period has

ended, and those who have already returned. It shows that pre-deferral ferritin levels

in donors who returned after deferral do not differ from those in the complete group.

This indicates that the group of donors with a post-deferral ferritin measurement are

likely to be a representative sample of all deferred donors with respect to ferritin.

However, there is a difference in return rate between the sexes: approximately 80% of

men versus only 60% of women have returned out of those whose deferral period has

ended. The return rates include donors who have returned after deferral but did not

have a repeat ferritin measurement due to a low hemoglobin level.

After a ferritin deferral period, the deferral rate due to low hemoglobin levels is
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Figure 3.2: Probability of deferral due to low ferritin as a function of age in new donors
(blue line) and repeat donors (orange line). Both deferral for 6 months (ferritin between 15
and 30 µg/L, dashed line) and deferral for 12 months (ferritin under 15, solid line) are shown.
The difference in age ranges is due to the fact that new donors are only accepted until the
age of 65, whereas repeat donors can keep donating for several more years.
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Six-month deferral Twelve-month deferral
Women Men Women Men

Number of donors deferred 15008 10296 5974 2952
Median ferritin at deferral
(IQR)

22 (19-26) 22 (18-26) 11 (9-13) 12 (10-13)

Number of donors whose de-
ferral period has ended

6181 4576 906 596

Median ferritin at deferral
(IQR)

23 (19-26) 22 (18-26) 10 (8-12) 12 (10-13)

Number of donors returned
after deferral

3258 (53%) 3883 (85%) 540 (60%) 490 (82%)

Median ferritin at deferral
(IQR)

22 (18-26) 22 (18-26) 11 (9-13) 12 (10-13)

Table 3.2: The total number of donors deferred, those that are eligible to return for
donation at the time of analysis for this study (deferred at least 7 months ago for 6-month
deferral, and at least 13 months ago for 12-month deferral), and those that have already
returned for donation. For each group the median ferritin level and interquartile range (IQR)
at deferral are given in µg/L. Percentages behind the number of donors returned after deferral
are with respect to the number of donors whose deferral period has ended and therefore could
have returned after deferral.

considerably lower than it is in general. The overall hemoglobin deferral rate is 8.4%

for women and 4.6% for men. After a 12-month deferral, 6.1% of women and 1.6%

of men are immediately deferred again because their hemoglobin levels are below the

threshold. After a six-month deferral, these percentages are 4.4% for women and 2.8%

for men.

The changes in ferritin levels after 6- and 12-month deferrals are summarised in

Table 3.3. After either deferral period, the majority of donors who returned had an

increased ferritin level, men more so than women. More than 95% of returning male

donors had a ferritin level of 15 µg/L or higher after either deferral type. In female

donors, this proportion was 88% after six-month deferral and 73% after 12-month

deferral. The difference in ferritin recovery rate between men and women makes

sense considering the differences in ferritin levels observed in first-time donors. These

differences can likely be attributed to the same physiological cause(s).

The rate of ferritin recovery differed between female and male donors. The median

of the average daily increase in women was higher for 12-month deferral than for

six-month deferral: 0.030 µg/L/day versus 0.016 µg/L/day. In men, they were more

similar: 0.068 µg/L/day for 12-month deferral and 0.071 µg/L/day for six-month
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Six-month deferral Twelve-month deferral
Women Men Women Men

Number of donors returned 3059 3736 486 479
Donors with increased ferritin 61% 91% 91% 99%
Median total increase (IQR) 4 (-3-11) 15 (7-25) 12 (5-22) 27 (16-39)
Median increase per day 0.016 0.071 0.030 0.068
Ferritin after deferral <15 µg/L 12% (↓) 1.5% (↓) 26% (=) 4.6% (=)
Ferritin after deferral 15 - 30 µg/L 54% (=) 30% (=) 43% (↑) 27% (↑)
Ferritin after deferral >30 µg/L 34% (↑) 68% (↑) 30% (↑↑) 68% (↑↑)

Table 3.3: Ferritin levels of donors who return after 6-month deferral (ferritin level between
15 and 30 µg/L) or 12-month deferral (ferritin level < 15 µg/L). Symbols in the bottom three
rows indicate whether the ferritin level has dropped (↓), has gone up one (↑) or two (↑↑)
categories, or has stayed in the same category (=)

deferral. After either period of deferral, ferritin recovery rates were substantially

higher in men than in women.

Discussion

This study shows that in first-time donors who have never donated blood, women’s

ferritin levels are lower than men’s, and they increase with age. Ferritin levels in

repeat donors are substantially lower and therefore the deferral rate is higher, for both

sexes. The difference in ferritin levels between male and female donors is considerably

smaller in repeat than in first-time donors, regardless of age. Finally, after having a

measured ferritin level below 30 µg/L and being deferred for 6 or 12 months, the vast

majority of returning female and almost all returning male donors have ferritin levels

of 15 µg/L or higher.

The differences we have observed between male and female first-time donors can

partly be explained by the effect of the menstrual cycle on iron stores. After menopause,

this additional iron loss is no longer present and women’s ferritin levels increase. [23]

The fact that sex differences are much smaller among repeat donors suggests that regu-

lar blood donation leads to a lower ferritin level, which impacts men more than women

as their natural ferritin stores are generally higher. Multiple studies have found that

an increase in the number of donations results in decreased iron stores, even though

hemoglobin levels remain above the threshold for donation. [24, 25] Our results suggest

that this relationship is less strong in women. This can be explained by the shorter

minimum donation interval for men (56 days vs. 122 days for women), which allows
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them to donate five times a year, compared to three times a year for women. Also, do-

nation frequency is the best predictor for decreased iron stores. [26] Further research

into the precise relationship between donation frequency, total number of donations

and trends in ferritin levels is ongoing, for instance in the INTERVAL study. [25] An-

other explanation is that women are more easily deferred than men; the hemoglobin

threshold for donation is much closer to the average hemoglobin value in women than

in men. Women with low iron stores are already deferred by the hemoglobin test alone,

so their (likely low) ferritin levels have not been measured in this study.

Sex differences can also be seen in the percentage of donors that return after

donation: men are more likely to return than women. Before we try to explain this

difference, we should keep in mind that donors only come back after they are actively

invited by Sanquin by means of an invitation algorithm (based on daily demand for

blood and blood types). The effect of this procedure may hinder the outcome of the

current analysis. However, studies on donor return rates after deferral are consistent

in finding a higher return rate for men than for women, although the magnitude of

the difference varies. [27, 28, 29]

Regarding the increase in ferritin after deferral, we assume that this is larger than

what would have occurred in case the donors had not been deferred according to the

policy. This assumption is based on studies mentioned in the introduction, which show

that donors need at least 168 days for ferritin levels to recover. [20, 12] This indicates

that a longer deferral period gives donors more time to restore their ferritin stores

by taking a break from their regular donation schedule. Nonetheless, a considerable

number of donors is deferred again based on their ferritin level upon their return,

especially women.

In male donors, the average daily ferritin increase is higher in donors who were

deferred for 6 months than in those deferred for 12 months. This is interesting, because

during the first 29 days after donation, ferritin levels are still decreasing. [12] It

might indicate that after the initial decrease, ferritin recovery starts off at a high

rate which then tapers off. We see different results in women: the average daily

ferritin increase is higher in women deferred for 12 months than those deferred for

6 months. Even though recovery rates of donors deferred for 12 versus 6 months

cannot be compared because of their different ferritin levels before deferral (< 15

vs. between 15-30 µg/L), it is remarkable that the ratio between these rates differs

between men and women. One explanation might be that ferritin recovery takes longer

for women, so the increase starts later in the process. However, no differences between

men and women were found in ferritin recovery speed in control groups of oral iron
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supplementation studies, although sample sizes were relatively low (about 20 people

per group). [20, 30] A larger-scale study that measures donors’ ferritin levels in the

weeks following a donation could provide more insight.

Some blood services supply blood donors with iron supplements in order to prevent

iron deficiency, which can lead to restless-leg syndrome and pica, especially pagopha-

gia, the inclination to chew ice. [31, 4] There is no solid evidence for an association

between low iron stores and fatigue and cognition. [4] Some studies did find that

iron supplements improve cognition in adolescents and women, but most of these have

small sample sizes and are methodologically weak, with evidence of publication bias.

[30] The INTERVAL study did not find any effect of shortening the donation inter-

val on cognitive function in an analysis of health survey questionnaires given to more

than 45,000 donors. [25] An analysis on more than 16,000 donors participating in the

Danish Blood Donor Study did not find an association between low ferritin levels and

self-reported mental and physical health either. [32]

Regardless of its possible health effects, several studies have shown that iron sup-

plementation increases the speed of recovery of iron stores and hemoglobin levels after

blood donation. [20, 33] However, iron supplementation can also have unintended

and unwanted side effects, which may impact compliance of iron supplementation and

can deter donors. For this reason, as well as the lack of scientific consensus on how

iron supplementation in blood donors should be installed, Sanquin chose to introduce

ferritin-guided donation intervals rather than iron supplementation to mitigate effects

of repeated donation on iron stores.

Although the ferritin-guided deferral policy seems to help donors maintain appro-

priate ferritin levels, it also raises some concerns. In the past few years, the proportion

of new female donors under 25 years of age has been increasing rapidly in The Nether-

lands. [34] Ferritin levels below 30 µg/L are very common among young women who

have never donated blood. If this trend continues, the proportion of first-time donors

that immediately gets deferred from donation based on ferritin levels will continue to

increase. Deferral of these potential donors may lead to a lower availability of blood

products and has a larger effect on the blood supply than hemoglobin-based deferral.

One to three donations are lost for every 6-month deferral, and three to five for every

12-month deferral, depending on sex. Additionally, by deferring donors not only for

low hemoglobin, but also for low ferritin levels, the chances of a donor being deferred

are increased. However, for the long-term this increased chance may decrease again,

as deferral due to low ferritin can lower hemoglobin deferral rates. In our data set,

we found that the hemoglobin deferral rate decreases by half after ferritin deferral as
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compared to the overall hemoglobin deferral rate. Deferral can also cause donors to

become unmotivated and not return to the blood center, especially first-time donors.

[27, 28] Compensating for lost donations by recruiting new donors could therefore be

a less desirable consequence. Therefore, it is important to carefully monitor donor

availability when introducing ferritin-guided donation intervals. One should also note

that the frequency of measuring ferritin levels (every fifth donation) is mostly arbi-

trary and loosely based on a trade-off between cost and benefit. Measuring more often

would identify donors at risk of iron deficiency earlier, but also increases cost and loss

of potential donations due to deferral.

From our results, we conclude that repeat donors have considerably lower ferritin

levels and smaller differences between sexes in comparison to first-time donors. Defer-

ral of donors with ferritin levels ≤ 30 µg/L seems to prevent the majority of donors,

male donors in particular, from returning to donate with iron deficiency.

Comparisons to a control group are needed to establish whether ferritin levels are

indeed higher in groups of donors than they would have been without ferritin-guided

donation intervals. Furthermore, longer-term research is needed to assess whether this

policy can maintain donors’ ferritin levels within the appropriate range.
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Abstract

Background - Serum ferritin levels are increasingly being used to assess iron stores.

Considerable variation in ferritin levels within and between individuals has been ob-

served, but our current understanding of factors that explain this variation is far from

complete. We aim to combine multiple potential determinants in an integrative model,

and investigate their relative importance and potential interactions.

Methods - We use ferritin measurements collected by Sanquin Blood Bank on

both prospective (N = 59596) and active blood donors (N = 78318) to fit a structural

equation model with three latent constructs (individual characteristics, donation his-

tory, and environmental factors). Parameters were estimated separately by sex and

donor status.

Results - The model explained 25% of ferritin variance in prospective donors, and

40% in active donors. Individual characteristics and donation history were the most

important determinants of ferritin levels in active donors. The association between

environmental factors and ferritin was smaller but still substantial; higher exposure

to air pollution was associated with higher ferritin levels, and this association was

considerably stronger for active blood donors than for prospective donors.

Conclusions - In active donors, individual characteristics explain 20% (17%) of

ferritin variation, donation history explains 14% (25%) and environmental factors

explain 5% (4%) for women (men). Our model presents known ferritin determinants

in a broader perspective, allowing for comparison with other determinants as well as

between new and active donors, or between men and women.
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Introduction

Iron is essential for human life, but both iron deficiency and iron overload can cause

various adverse health effects. Therefore, iron homeostasis is tightly regulated in

humans. In case of insufficient availability of iron in the circulation, recycling of old

red blood cells is increased and hepcidin is downregulated both to increase dietary iron

absorption and release iron stored in ferritin. [8, 35] Hemoglobin levels have long been

the standard method to assess iron status. However, hemoglobin levels can remain

sufficient for some time, even when iron stores are dwindling; this is known as iron

deficiency non-anemia. [8]

In contrast to hemoglobin, serum ferritin levels reflect the amount of stored iron. [8]

Therefore, they are increasingly used to assess individuals’ iron stores when these are

at risk, for instance after traumatic blood loss, during pregnancy, or in blood donors.

[21] Sanquin, the national blood service in the Netherlands, started measuring ferritin

levels in each new donor, and subsequently after every fifth donation, in October

2017. Donating blood has a substantial impact on ferritin levels. Ferritin levels are

lower among blood donors than in the general population: cross-sectional studies

report lower ferritin levels in donors with a higher number of whole blood donations

and a large randomised trial showed that ferritin levels indeed decline with more

frequent blood donations. [36, 37] Among new donors, large variation in ferritin levels

is observed. [36] It is well established that individual characteristics such as sex and

age are relevant: women in general, but pre-menopausal women in particular, have

considerably lower ferritin levels than men. [36, 2, 38] Higher body mass index (BMI)

is associated with higher ferritin levels. [39] In recent decades, many other factors that

affect iron status have been identified: diet, [40, 41] genetics, [42, 43] ethnicity, [44]

and iron supplementation, which is mostly studied among blood donors. [20, 45]

Ferritin is also a known acute-phase protein that is elevated in inflammatory con-

ditions, complicating its diagnostic value in individuals with conditions such as in-

flammatory bowel disease or chronic heart failure. [9] This could also explain the

association between BMI and ferritin levels, as adipose tissue is known to promote

systemic inflammation. [46] Additionally, exposure to environmental pollutants has

been linked to disordered iron homeostasis, [47, 48] and ambient particle matter (PM)

concentration is correlated with ferritin levels. [48] The biological mechanism behind

this is still unclear, but it is postulated that iron attaches to the PM rather than to

cell nuclei, effectively creating a functional deficiency. [47, 48] In turn, mechanisms

start upregulating iron uptake and recycling in an attempt to meet the iron require-
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ment of the cells, thereby altering iron homeostasis. Another suggested mechanism

is that when pollutants enter the lungs, iron is transported away from the surface of

the lung tissue and stored in ferritin complexes, in order to avoid chemical reactions

between iron and the pollutant. [47] Other potential environmental determinants are

neighbourhood characteristics, including population density and socio-economic sta-

tus, which are consistently shown to be related to body weight and blood parameters.

[49]

Previous studies on ferritin levels have focused on studying the association with

variables in a limited setting, for example, characteristics such as age and BMI,

donation-related variables, or environmental pollutants. In this paper, we propose a

novel framework that integrates multiple settings, using a structural equation model.

By grouping relevant explanatory variables into constructs, we describe relationships

with ferritin on a more general level. This enhances the insight into various mech-

anisms that influence ferritin levels, which is valuable to those who use these as a

diagnostic tool. We explore associations between ferritin levels and individual char-

acteristics, donation behaviour and environmental factors, in a large group of newly

registered and active whole blood donors.

Methods

For this cross-sectional study, data collected by Sanquin and the Geoscience and health

cohort consortium (GECCO) were analysed. Sanquin is by law the only blood service

in the Netherlands, collecting over 400 000 whole-blood donations each year, with col-

lection sites geographically well-distributed throughout the country. Several eligibility

criteria exist to ensure the safety of the donors and recipients and the quality of the

blood product. Donors must be aged between 18 and 79 years old, and a pre-donation

screening visit takes place before the first 500 mL whole blood donation, which in-

cludes blood sampling for blood type and infectious disease testing, as well as initial

hemoglobin and ferritin measurements. We will refer to these prospective donors, who

have not donated yet, as new donors.

Before every donation, a donor screening is performed, including a donor health

questionnaire and measurements of blood pressure, pulse rate and hemoglobin levels

to assess whether the donor is eligible to donate. Hemoglobin levels need to be at

least 7.8 mmol/L for women and 8.4 mmol/L for men. This is measured by point-of-

care testing with a photometer (HemoCue, Angelholm, Sweden). Ferritin levels, are

measured in serum samples, using the Architect i2000 (Abbott Diagnostics, Chicago,
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IL), after the pre-donation screening visit and after every fifth whole blood donation.

As such, ferritin measurements are only available in case of successful whole blood

donations, and for new donors whose venous samples are taken as part of the pre-

donation screening visit.

Data

This study included all new and active whole blood donors who gave consent to the use

of their data for scientific research (this consent is given by > 99% of all donors) and for

whom ferritin measurements were available between 1 October 2017 and 31 December

2019. If multiple ferritin measurements were available for a donor, only the first

measurement was used. Information on donors and donation histories was extracted

from the blood bank information system (ePROGESA, MAK-SYSTEM International

Group, Paris, France). Variables used were sex, age, height, weight, time since previous

successful donation, the number of successful donations in the previous 2 years, donor

status (new or active donor), and ferritin levels. BMI was calculated from self-reported

donor height and weight. Sanquin does not register donor ethnicity, but Duffy negative

phenotype was included to function as a proxy for sub-Saharan African descent.

Environmental exposure variables of various characteristics were obtained from

the Geoscience and health cohort consortium (GECCO). [50] The exposure data were

operationalised based on publicly available data. Data from 30 weather stations

in the Netherlands—obtained from the Royal Netherlands Meteorological Institute

(KNMI)—were used to estimate temperature at a spatial resolution of 1 km. Three

options for the measurement level were considered (minimum, average, and maximum

daily temperature), as well as three time spans (day, week or month before donation),

resulting in nine options in total. The combination that showed the highest correlation

with ferritin was included in the final model.

Daily concentrations for particulate matter (PM) 2.5, PM10, NO2, ozone and

soot levels were obtained via the Dutch National Institute for Public Health and the

Environment (RIVM), for the years 2017–2019. These variables were imputed on a

spatial resolution of 1 by 1 km. Neighbourhood socio-economic status (SES) scores and

population density from 2017–2019 were acquired from Statistics Netherlands (CBS),

both available on 6-digit postal code level. SES scores are based on percentiles of

income, education level and vocational history of households, with a score of 0 being

exactly the national average, and positive scores being above average. All spatio-

temporal variables were matched with donor and donation data based on donation

date and donor postal code. Lastly, the date and time of each donation were included
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as potential factors to account for seasonal and diurnal variation, as they are known

to affect hemoglobin levels and may also affect ferritin levels.

To check for a possible confounding effect of smoking on environmental variables,

we analysed the correlation between the percentage of smokers per municipality (data

from Statistics Netherlands) and all environmental variables described in the above

paragraph.

There were no missing data for environmental datasets from the RIVM and CBS.

Donors with no ferritin measurement were excluded from the analysis. There were no

missing data for the other donor or donation level variables.

Statistical analysis

Structural equation modelling (SEM) was used to investigate which variables relate to

serum ferritin and to what extent. Briefly, observed variables and latent constructs are

distinguished in SEM. Latent constructs cannot be measured or observed directly, but

are inferred from the observed variables. One or more hypothesised sets of relationships

and correlations between variables and constructs are specified a priori and shown in

a path diagram. For each relationship, a parameter is estimated that indicates its

strength. Estimates are obtained by numeric optimisation of a fit criterion, using

maximum likelihood estimation. A more detailed overview of this method is provided

in the Appendix.

We compared four ways to divide the 15 variables included in the analysis into

latent constructs, as shown in Table 4.1. Date and time of the donation were added

to the model separate of the constructs, and as such are not included in Table 4.1.

Model A contains four latent constructs, and in models B, C and D different sets of

constructs are combined. Confirmatory factor analysis (CFA) was used to test the

validity of the specified measurement models, that is, the hypothesised relationships

between the latent constructs and their observed variables. The overall fit of the

models was assessed by the Tucker-Lewis Index (TLI) and the root mean square error

of approximation (RMSEA). A rule of thumb is to exclude variables for which the

absolute value of the standardised factor loading is below 0.4, but at sample sizes

larger than 300, if the overall model fit is good, exclusion is not necessary and should

be judged separately for each variable based on sensible background knowledge. [51]

Pairwise residual correlations between observed variables were calculated to iden-

tify whether any covariances needed to be added to the model. Of the four specified

models, we continued our analysis with the best fit according to CFA, based on the

TLI and RMSEA.
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Variable Model A Model B Model C Model D

Age

Individual
characteristics

Height
Weight
BMI
Duffy phenotype

Donation
history

Time since
prev. donation 
Number of 
prev. donations

Environment

Environment

Environment

Environment

Population
density 
Temperature 
Socio-economic 
status
Ozone

Pollution Pollution
PM2.5
PM10
Soot
NO2

Table 4.1: Grouping of variables into constructs for each model. Note that variables time
since previous donation and number of previous donations are only available for active donors.
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To the model with the best fit, we added the structural component, which contains

the relationships between the latent variables and ferritin, the outcome variable. A

multiple group SEM was carried out with parameters estimated separately for male and

female donors, and for new and active donors. Because the assumption of normality

of the explanatory variables does not hold in our data, a different estimator than the

default maximum likelihood estimator was used: the ‘mean and covariance adjusted

weighted least squares estimator’, which is robust against violations of the normality

assumptions in a multivariate setting. [52]

The same model was fitted in all four groups, although the variables belonging to

the donation history construct (see Table 4.1) are not available for new donors, as they

do not (yet) have a donation history. The overall fit of the SEM model was assessed

using the TLI and RMSEA, as well as the R2 measure.

All analyses were conducted using R programming language and environment for

statistical computing version 4.0.3, with package zoo for pre-processing environmental

data, and lavaan for CFA and SEM analyses. Path diagrams were created with yEd

Live Graph Editor.

Results

Sample composition

Table 4.2 shows descriptive statistics of the study population by sex and donor status.

The size of each of the groups was comparable, except for the group of new male

donors, which was only half the size of the other groups. Between new and active

donors, age differed considerably, new donors being younger than active donors by

17 years on average (p < 0.001). In both new and active donors, men were older

(by 6 years on average, p < 0.001) and heavier (by 13 kg on average, p < 0.001) than

women. P-values were obtained using two-sample t-tests. The time since last donation

is higher in women than in men, and the number of prior donations is higher in men

than in women. These differences are due to differences in the minimum required

donation interval: for women, there must be 122 days between two donations with a

maximum of 3 donations per year, while for men, the minimum is 57 days between

two donations with a maximum of 5 donations per year. Differences in ferritin levels

between the groups are as expected from previous studies: men have higher ferritin

levels than women, and repeat donors have lower ferritin levels than new donors.

For pollution and environmental variables, there was little difference between the
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groups, any differences between new and active donors were most likely due to the

different age and geographical distribution of the groups. None of these differences

were statistically significant.

We found a weak correlation between the percentage of smokers and SES score

(Pearson’s r = −0.4) and a moderate correlation between the percentage of smokers

and population density (Pearson’s r = 0.5). No correlation was found for any of the

other environmental variables.
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Model selection

CFA did not provide support for the environment construct as defined by the three

variables temperature, population density and socio-economic status. These variables

did not share a high proportion of their variance and consequently there was no con-

vergent validity, effectively ruling out models A and C. In models B and D, variables

Duffy phenotype, temperature, SES and height were omitted due to very low factor

loadings (< 0.05). The factor loading for variable age was also low (0.35) but this

variable was not excluded, as it is expected that this factor loading would be small,

considering the other variables in the construct (weight and BMI) are much more

closely related. All other factor loadings were above the suggested threshold of 0.6.

All latent constructs (individual characteristics, donation history and environment)

showed convergent and discriminant validity in models B and D. Variables time and

day of year, which were added to the model outside the constructs, were also dropped

due to very low factor loadings (< 0.05).

The presence of a donation history construct was the only difference between

models B and D, and since new donors do not yet have a donation history, the models

only differed for active donors. Model B had a TLI of 0.961 and RMSEA of 0.063,

while model D had a TLI of 0.932 and RMSEA of 0.083. Based on these fit measures,

model B fit the data best, and was therefore used in the remainder of the analyses.

Based on inspection of the pairwise residual correlations between all observed vari-

ables, two covariance terms were added to the model: one for PM2.5 and PM10 (resid-

ual correlation 0.092 to 0.102, depending on sex/donor status), and one for age and

population density (residual correlation −0.151 to −0.149, depending on sex/donor

status). We also added one covariance term for weight and BMI, as BMI was calcu-

lated using weight and was therefore inherently dependent.

Parameter estimates

Figure 4.1 shows the structure of the final model and the parameter estimates for

new donors. Parameter estimates were similar for both sexes, but factor loadings for

variables belonging to the individual characteristics construct were higher for women

than for men, indicating more shared variance. Factor loadings in the environment

construct did not differ between sexes, showing that the covariance structure of those

variables was not dependent on sex. The parameter estimates for the regression coeffi-

cients show the relative importance of each latent construct for the outcome variable.

Table 4.3 shows the percentage of variance in ferritin levels that is explained by each
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New donors Active donors
Construct Women Men Women Men

Individual characteristics 23% 23% 20% 17%
Donation history NA NA 14% 25%
Environment 2% 2% 5% 4%

Total variance explained 25% 25% 39% 46%

Table 4.3: Relative contribution to explanation of variance of ferritin levels per model.

construct for each model, adding up to the total percentage of variance explained.

Figure 4.2 shows the final model for active donors. As in new donors, factor

loadings in the individual characteristics construct were higher for women than for

men, and they were also higher for new donors than for active donors. The relative

importance of individual characteristics and donation history was opposite for both

sexes: for men, donation history was correlated with ferritin levels more strongly than

individual characteristics (0.66 vs. 0.45), while this was reversed for women (0.43 vs.

0.61). The regression coefficient of the environment construct is 0.15 for women and

0.10 for men. The environment construct explains twice as much variation in ferritin

levels in active donors as in new donors.

As for overall model fit, with a TLI of 0.981 and 0.979 and RMSEA of 0.052 and

0.042, for new and active donors respectively, both models fit very well when compared

to commonly used thresholds (TLI > 0.95, RMSEA < 0.06). [53] R2 was calculated

separately by sex: for new donors, R2 was 0.251 for men and 0.252 for women, and

for active donors, 0.458 for men and 0.393 for women.
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Figure 4.1: Final structural equation model for ferritin determinants in new donors, with
parameters estimated separately for men and women. All parameter estimates are standard-
ised so that the variance of each observed variable and latent construct equals 1.
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Figure 4.2: Final structural equation model for ferritin determinants in active donors,
with parameters estimated separately for men and women. All parameter estimates were
standardised so that the variance of each observed variable and latent construct equals 1.
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Discussion

This study investigated the impact of individual and environmental determinants on

ferritin levels in Dutch individuals, using SEM. The model was able to explain 25% of

ferritin level variance in new donors for both sexes, and 46% and 39% in active donors

for male and female donors, respectively.

We found the construct composed of individual characteristics (age, weight, and

BMI) to be the most important determinant of ferritin in female active donors, followed

by donation history (time since previous donation, number of donations in the past 2

years). For male active donors, this was the opposite: donation history was a more

important determinant than individual characteristics. In both sexes, environmental

factors are associated with ferritin levels, albeit to a lesser degree than individual

characteristics and donation history.

The relationship between ferritin levels and anthropometric characteristics is well-

documented, and the positive correlations we found for ferritin with age, weight and

BMI are consistent with those found in other studies. [36, 45, 54] Men have much

higher ferritin levels than women in general and show a larger decrease in ferritin

levels after repeated donations. As a result, ferritin levels in active donors are sim-

ilarly low for women and men. [36] The donation history construct explained more

variance in ferritin levels in men than in women. Although often not explicitly men-

tioned, this discrepancy is also found in previous studies, with stronger relationships

between variables regarding donation history and ferritin for men than for women.

[45] A reasonable explanation for this is that men commonly display more variation in

donation history variables due to the possibility of more frequent donations: in many

blood services, men are allowed to donate more often than women and are usually less

frequently deferred for low hemoglobin levels. [55]

From previous epidemiological studies, we know that environmental factors may

play a role in iron metabolism, and that certain pollutants can disrupt iron home-

ostasis. [56] Our study shows that although environmental factors are less strongly

associated with ferritin levels than individual characteristics and donation history,

their effects are far from negligible. Because of the wide reach of environmental expo-

sures over geographic areas, even a relatively small influence on individuals can result

in a large effect on the population level. As this study includes only data from the

Netherlands, which is a relatively small country, associations between environmental

variables and ferritin levels were not very strong, as was expected. Repeating this

study on a larger, or even global, scale may result in finding a more substantial effect.
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Higher values for all but one environmental factor (ozone) were positively correlated

with higher ferritin levels. These findings support the hypothesis that air pollution

causes higher ferritin levels. The underlying mechanism may be that when certain

pollutants enter the lungs, iron is transported away from the lung tissue surface and

stored in ferritin complexes to avoid chemical reactions between iron and the pollutant.

[47, 57] This would imply that using serum ferritin as a proxy for total body iron is

less reliable when there is significant air pollution.

The environment construct was more strongly associated with ferritin level in active

donors than in new donors. In new donors, environmental factors explain 2% of

variance in ferritin levels, while in active donors this increases to 4% to 5% depending

on sex. This indicates that environmental factors are more important for ferritin

recovery after blood loss than for naive ferritin level. A plausible explanation for

this difference is that since both exposure to air pollution and donating blood causes

significant disruptions to iron homeostasis, these disruptions may interact and together

have a larger effect than simply additive.

SEM is a technique well-suited to test hypotheses on how different factors interact

and correlate with a specific outcome like ferritin levels, especially when there are many

factors to consider. Compared to multiple (linear) regression, more complex models

can be tested, and for each variable measurement error is taken into account. [58]

Moreover, the percentage of variance explained by groups of related variables can be

calculated and compared. The stratified approach in this study also adds to the model

validity: parameter estimates can be compared across groups, allowing discovery of

implausible results. Our analyses show that the convergent validity of the individual

characteristics construct is lower for active donors than for new donors. This may

indicate that new donors are a more homogenous group than active donors, which is

likely due to the more narrow age range of new donors. Other strengths of this study

are its large sample size and collection of data throughout the country.

Two main limitations of this study should be noted: its generalisability and its

restricted scope. One might be tempted to generalise the results of new donors to the

general Dutch population, as these donors have never donated blood before. However,

even new donors form a very specific, generally healthier subgroup of the general pop-

ulation, which means that selection bias has likely been introduced. We can speculate

that less healthy individuals would show a higher rate of inflammation, which may

cause higher serum ferritin levels. On the other hand, iron deficient or anaemic indi-

viduals are likely underrepresented in our sample. As this selection bias most likely

reduced variance in ferritin levels, this may have attenuated our results.
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Regarding the scope, data on some other potentially important determinants of

ferritin levels were not available in this study, the two most important being genetics

and diet. [40, 41] Several genetic polymorphisms that have an effect on iron pathways

have been identified, and these are likely to play a role in the recovery speed of ferritin

levels after blood donation. [43, 59, 60, 61] Dietary behaviour, and in particular heme

iron intake, is also a determinant of iron status in donors. [40, 45] Information on

iron supplementation was also not available for this study. Sanquin does not prescribe

oral supplementation of iron to donors, and only a small minority (8.7%) uses iron

supplements. [40] Information on donors’ smoking status is also expected to add value

to the model. Had these determinants been available for our analysis, the proportion

of variance explained in donor ferritin levels would likely have increased.

This study presents a model to explain variance in ferritin levels in individuals

with or without donation history, based on three types of determinants. The model

explained a relatively large part of the variance, especially in active donors. Individual

characteristics and donation history form the most important determinants of ferritin

levels. Although environmental factors accounted for less variance than the individual

and donation history constructs, their contribution is meaningful and statistically

significant. When clinicians or researchers use serum ferritin as a proxy for total body

iron, they should be aware of this potentially confounding effect.

For blood services that are considering implementing ferritin testing for their

donors, these results are of particular value. The results can be of use while the

blood service is deciding on a sensible threshold for donation: rather than implement-

ing a one-size-fits-all threshold, environmental conditions in the country can be taken

into account. If there is a high level of air pollution, ferritin levels are likely to be

overestimated, and thus a higher threshold for donation may be desired. It could

even be taken further to make ferritin thresholds more tailored to a specific donor, by

taking into account a donor’s individual characteristics.
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Appendix

Structural equation modelling (SEM) comprises a set of statistical methods that en-

ables researchers to assess the support for hypothesised relationships between variables

of interest. Its purpose is to account for variation and covariation of the variables in

the model. Many different techniques are included in SEM, this appendix explains

the approach taken in this particular study. In SEM, observed variables and latent

constructs are distinguished. Observed variables are variables in the traditional sense,

which are observations in the data set that have been collected by the researcher. La-

tent constructs are theoretical concepts that cannot be measured, but must be inferred

from the observed variables; a well-known example is the latent construct intelligence

that cannot be measured directly, but can be inferred from observed variables such

as scores for an IQ test. Intuitively, observed variables that belong to a latent con-

struct represent the same underlying concept, and latent constructs form in a way a

dimensionality reduction of the observed variables. Mathematically, latent constructs

represent shared variance of the observed variables related to the construct they belong

to.

SEM is composed of two main model components: the measurement model, which

shows how observed variables are divided among latent constructs, and the struc-

tural model, which shows the relationships between latent constructs and outcome

variable(s). First, the measurement model is specified, and test its validity using con-

firmatory factor analysis (CFA). Often, several measurement models are tested and

compared to see which division into latent constructs best fits the data. When the

measurement model is considered to have a good fit, the structural part of the model

is added, and the model fit is assessed for the full SEM model.

Measurement model

The validity of the latent constructs must be measured in two ways: each construct

must have convergent and discriminant validity. Convergent validity occurs when the

observed variables belonging to the latent construct share a high proportion of their

variance. This is assessed by the factor loadings of the observed variables onto the

latent construct: the higher the (absolute value of the) factor loading, the stronger the

indication that this variable belongs to this construct. Very generally speaking, factor

loadings greater than 0.4 are acceptable for including a variable within a construct,

but this threshold depends greatly on the hypothesised interpretation of the latent

variable. Variables with low factor loadings are excluded from the construct.
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The discriminant validity of a latent construct is a measure for how well the con-

struct can be distinguished from the other constructs in the model. It is measured

by the covariances between latent constructs. A high covariance between two con-

structs can indicate that these constructs are (partly) overlapping, and thus have no

discriminant validity.

If convergent and discriminant validity are satisfactory, model fit indices can be

calculated for the measurement model. Commonly used indices are the chi-square

test, comparative fit index (CFI), Tucker-Lewis index (TLI) and root mean square

error of approximation (RMSEA). The CFI and TLI are both relative measures of fit,

and compare the fit of the tested model against a null model, which in CFA means

that the means and variances of each variable are freely estimated, but no correlations

are included. CFI and TLI are on a scale from 0 to 1, with higher values indicating a

better fit of the hypothesised model relative to the null model. The TLI is always more

conservative (lower value) than the CFI, because the TLI includes a harsher penalty for

the number of parameters estimated. Because the two fit indices are highly correlated,

only one should be reported. We chose the TLI because of its more elegant penalty

for complexity. Values higher than 0.95 indicate good fit.

The RMSEA is an absolute measure of fit that is not sensitive to large sample sizes,

unlike the chi-square test. It uses the covariance matrix of the entire data set and of

the fitted hypothesised model, and calculates the differences between these two. This

results in a measure between 0 and 1, with lower values indicating smaller differences

and better model fit. Cut-offs of 0.08, 0.05, and 0.01 indicate mediocre, good, and

excellent fits, respectively.

If multiple measurement models are compared, as in this study, the best fitting

model is selected, based on the fit indices described above. If these indicate sufficient

model fit, the analysis can be continued with inspection of residual correlation between

observed variables. If the pairwise residual correlation between two variables is high

(absolute value of 0.1 or higher is a common cut-off), this indicates that these two

variables share more variance than is currently captured in the model. If this occurs,

the researcher needs to decide whether a covariance term for these two variables should

be included in the model. However, this should only be done if there is sufficient

theoretical support for an interpretable correlation between these variables. Otherwise

there is a risk of overfitting the model to the data; after all, in confirmatory factor

analysis we build upon a set of relationships that are hypothesised by the researcher.

It is not a data-driven method of finding the best set of relationships. If such an

approach is desired, exploratory factor analysis (EFA) can be applied instead of CFA.
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Structural model

The structural component is added to the model once the latent constructs are de-

fined, variables with low factor loadings are removed, and necessary covariance terms

are added. The structural component consists of the relationships between latent con-

structs, or between latent constructs and outcome variable(s). With this, we now have

three types of parameters for which an estimate must be calculated:

• Factor loadings (observed variable → latent construct);

• Covariances (observed variable ↔ observed variable);

• Regression coefficients (latent construct→ latent construct or outcome variable).

Each parameter adds one degree of freedom to the model, and the number of

parameters determines the identifiability of the model. Parameter estimates can only

be obtained when the number of free parameters (the number of unknowns) is equal

to or smaller than the number of independent elements in the covariance matrix of the

data (the number of knowns), which is equal to k(k + 1)/2, where k is the number of

observed variables in the model. If there are more unknowns than knowns, the model

is under-identified and no solution can be found. If the numbers are the same, the

model is just identified, and a unique solution can be obtained. If there are fewer

unknowns than knowns, we have an over-identified model, which means that there

is no unique solution but multiple, and we can select the best solution based on fit

measures. An over-identified model is desired.

In most software packages parameter estimates are obtained by a maximum like-

lihood estimator by default, but alternative estimators can be chosen as well. In this

study most observed variables did not follow a normal distribution, which violates

maximum likelihood estimator assumptions. Therefore, the diagonally weighted least

squares (DWLS) method was used instead, which is more robust and provides more

accurate parameter estimates in case the normality assumption is violated.

If the model is over-identified, fit measures can be reported along with the pa-

rameter estimates. Again, TLI and RMSEA are used to assess model fit, with the

same thresholds as seen in the CFA (TLI > 0.9, RMSEA < 0.08). If the model fit

is acceptable the parameter estimates can be interpreted. The interpretation of the

parameter estimates depends on the specification of the model. By default, one factor

loading in each latent construct is set to 1, to fix the scale of the latent construct.

However, in order to compare factor loadings across constructs it is useful to consider

standardised parameter estimates. The variance of the latent construct is then set to 1
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and factor loadings are interpreted in terms of a change in variance. In this study, we

look only at the standardised parameter estimates, as we are interested in the relative

importance of each observed variable and latent construct.

Factor loadings indicate how much variance of an observed variable is shared with

the variance of its latent construct. Higher absolute values indicate more shared

variance, and the sign of the factor loading specifies the direction of the association.

Covariance terms provide the same information for two observed variables, which can

belong to the same construct or to different constructs. If they belong to the same con-

struct, a high covariance term indicates that these two variables share more variance

with each other than can be explained by the latent construct. Regression coefficients

indicate how much variance of the outcome variable is explained by the variance of

the latent construct. To find the relative effect of a single observed variable on the

outcome variable, its factor loading must be multiplied by the regression coefficient

that connects the latent construct to the outcome.
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Abstract

Background - In order to prevent iron deficiency, Sanquin measures a blood donor’s

hemoglobin level before each donation and only allows a donor to donate blood if it is

above a certain threshold. In around 6.5% of blood bank visits by women, the donor’s

hemoglobin level is too low and the donor is deferred from donation. For visits by men,

this occurs in 3.0% of cases. To reduce the deferral rate and keep donors healthy and

motivated, we would like to identify donors that are at risk of having a low hemoglobin

level. To this end we have historical hemoglobin trajectories at our disposal, i.e., time

series consisting of hemoglobin measurements recorded for individual donors.

Methods - As a first step towards our long-term goal, in this paper we investigate

the use of time series clustering. Unfortunately, existing methods have limitations

that make them suboptimal for our data. In particular, hemoglobin trajectories are of

unequal length and have measurements at irregular intervals. We therefore experiment

with two different data representations. That is, we apply a direct clustering method

using dynamic time warping, and a trend clustering method using model-based feature

extraction. In both cases the clustering algorithm used is k-means.

Results - Both approaches result in distinct clusters that are well-balanced in

size. The clusters obtained using direct clustering have a smaller mean within-cluster

distance, but those obtained using the model-based features show more interesting

trends. Neither approach results in ideal clusters though. We therefore conclude with

an elaborate discussion on challenges and limitations that we hope to address in the

near future.
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Introduction

Sanquin is the national blood bank in the Netherlands. Every year, about 300 000

donors visit the blood bank, resulting in over 420 000 donations a year. Women are

allowed to donate up to three times a year, men up to five times. There are many

policies in place to ensure that the blood products that are collected are safe for the

patients they will be given to. Moreover, Sanquin has the responsibility to prevent

volunteer blood donors from developing health problems related to blood donation.

One big risk of regular blood donation is anemia due to low iron stores or iron defi-

ciency. A whole blood donation takes about 500 mL of blood from the donor, which

contains 210 to 240 mg iron bound to hemoglobin. The total concentration of iron in

the human body is approximately 38 mg/kg body weight for women and 50 mg/kg

body weight for men, so a single blood donation constitutes a substantial loss of iron.

[16, 17]

To prevent donors from becoming iron deficient, their hemoglobin levels are checked

before each blood donation. Based on the hemoglobin measurement it is decided

whether they may donate at that time: the lower limit for donation is 7.8 mmol/L for

women, and 8.4 mmol/L for men. When a donor is below the threshold, they are sent

home and can return for donation a few weeks later. This type of deferral occurs quite

frequently: about 6.5% of female and 3.0% of male donors have too low hemoglobin

levels when they visit the blood bank.

The large number of deferrals is problematic, both for donors and the blood bank:

being deferred from donation is demotivating for the donor, who may decide not to

return in the future, and not efficient for the blood bank, leading to a higher cost per

blood product.

Because of this, Sanquin and other blood banks internationally spend consider-

able resources on investigating ways to reduce the deferral rate while keeping donors

healthy. One asset that can be exploited for this are the hemoglobin measurements

that blood banks have recorded in the past. In this paper we report on a prelimi-

nary study investigating whether we can distinguish groups of donors having different

trends in their hemoglobin trajectories; if this is the case, these trends could be used

to devise more personalised invitation and deferral policies.
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Figure 5.1: Hemoglobin trajectories of three male donors. From left to right: a high stable
trajectory, a declining trajectory, and a low stable trajectory. The red line is the hemoglobin
threshold for donation (8.4 mmol/L for male donors).

Approach and contributions

We have data available on all blood bank visits in the Netherlands since 2006. For

every donor, we have only two relevant background variables: year of birth and sex. It

has long been known that age and sex affect hemoglobin levels. Men’s levels are higher

than women’s and decrease with age, while women’s levels increase after menopause.

[62]

Apart from these factors, a large part of the variation in hemoglobin levels can be

attributed to diet and lifestyle: the iron richness of the donor’s diet and their activity

level play a substantial role here. However, we don’t have large-scale data on this.

The clusters of donors we hope to identify could be a proxy for these variables.

The more interesting part of the data are the hemoglobin measurements taken

every time the donor visits the blood bank. Each measurement has a time stamp,

and together the individual measurements of a single donor form a time series; we will

refer to these time series as hemoglobin trajectories.

We aim to find groups of donors whose hemoglobin levels are similar throughout

their donation history. More specifically, we would like to distinguish donors with a

stable (high or low) hemoglobin level from donors with a declining level over time, as

these require different donation policies. The three different trends that we expect to

find in the data are illustrated in Figure 5.1.

Finding groups of similar data points in an unsupervised manner is a typical clus-

tering task and since hemoglobin trajectories are time series, we naturally resort to
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time series clustering. Time series clustering can be applied in many fields and has

been studied for a long time, as a result of which a large number of clustering methods

for time series exist. [63, 64, 65]

A big limitation, however, is that most existing algorithms require the time series to

be sampled at fixed, equidistant time stamps. In our data, the sampling intervals are

highly irregular on two levels. First, the intervals are not uniform across time series;

an easy example is that women are allowed to donate three times a year, men five

times. Second, the intervals are not uniform within the time series either: sometimes

a donor returns for their next donation two months after the previous one, sometimes

six months. Donors can also temporarily stop donating, and then return years later.

A related limitation that is relevant to our data is that the time series have unequal

lengths. Many donors in the data set have been regularly donating for over ten years,

while others have just started.

Faced with these challenges, in this paper we will investigate whether we can

transform our data for use with a standard clustering method without losing critical

information. Specifically, we will employ two approaches:

1. Direct clustering using re-sampling combined with dynamic time warping [66] as

distance measure;

2. Trend clustering using model-based feature extraction combined with the Eu-

clidean distance.

As our main aim is to evaluate and compare the data representations, the choice of

a clustering method is less important; we will use k-means because it is straightforward,

effective, and well-known. [67]

The main contributions of our preliminary study are a proof-of-concept showing

that clustering of hemoglobin trajectories of Dutch blood donors is feasible, and

the identification of challenges and limitations of using time series clustering for

hemoglobin trajectories. We consider these to be important first steps towards an

effective clustering method for irregular time series in which the irregularities itself

may contain useful information.

Data

Our data consists of all blood donations made at any of Sanquin’s locations between

January 2006 and June 2018, extracted from the blood bank’s database system ePro-

gesa. In total, there are 6 945 611 donations by 688 665 unique donors. Because we
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are interested in donors’ hemoglobin trajectories from their first donation onward, we

selected for our analyses all donors that did not visit the blood bank before 2010. It is

possible that there are donors in the data set that donated before 2006 and returned

after a gap of at least four years, but we expect this number to be low, and their

hemoglobin levels similar to actual new donors.

Many types of blood donation take place at Sanquin, the most common being

plasma donation and whole blood donation. During plasma donation, red cells are

returned to the donor and only the plasma is collected. As hemoglobin is contained

in the red blood cells, this type of donation does not have a substantial effect on

hemoglobin levels. Therefore, we only look at donors that donate whole blood, during

which no blood components are returned to the donor.

We take into account donors that have donated whole blood at least eight times in

our time window—once a year on average. There are 23 856 female and 20 299 male

donors that fit these criteria. To decrease computation time, we randomly selected

5000 women and 5000 men for our experiments. Within this data set, the deferral rate

due to low hemoglobin is 7.8% among female donors and 3.3% among male donors.

The two data sets contain 5000 individual univariate time series each, consisting

of the hemoglobin measurements during the visits to the blood bank. Hemoglobin is

measured in mmol/L. The median number of measurements per time series is 12 for

women (interquartile range, IQR 10–14) and 14 for men (IQR 11–19).

The time intervals between measurements differ both within and between time

series. The minimum required interval between two donations is 122 days for women

and 56 days for men, but it can even be a few years. The median interval for women is

133 days (IQR 112–169) and for men 79 days (IQR 64–114). Aside from the hemoglobin

measurements, the only variable used is the sex of the donor. Clustering methods will

be applied separately to the female and male subsets.

Methods

We will experiment with two data representations and compare the results of the k-

means clustering algorithm on both representations. The methods will be compared

on cluster tightness using mean within-cluster distance, and visually on the informa-

tiveness of the cluster using the graphs of the cluster centroids.

The first method employs direct clustering using dynamic time warping based on

the hemoglobin levels at each time point, the second method employs trend clustering

using model-based feature extraction. Preprocessing is the same for both.
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Preprocessing

When time series are of equal length and have the same measurement intervals, clus-

tering is relatively straightforward. At each time point, we can calculate the difference

between measurements in two time series, and group time series with smaller differ-

ences in the same cluster. However, from this perspective our data is rather messy:

time series are all of differing lengths and have different measurement intervals, both

within and between individuals. While there are more sophisticated ways to handle

this (see the Discussion), none of the existing algorithms that we found are perfectly

suited to our data. Therefore, for this first trial we decided to side-step the prob-

lem of unequal intervals by resampling the time series to regular intervals by linear

interpolation.

We take each donor’s first donation since 1 January 2010 as the starting point of

their time series. All time stamps are relative to the first time stamp, recorded as days

since first donation. Hemoglobin values are then resampled to weekly measurements

using linear interpolation. This gives a maximum of 439 observations per donor, one

for each week between 1 January 2010 and 1 June 2018. Donors that started donating

later in the time window will have fewer measurements, and thus have a number of

missing values at the tail of the time series. For the first 140 weeks, the number

of donors with missing values is almost zero, but then the number of donors that

still has measurements starts dropping at a steady rate. We chose to use hemoglobin

measurements up to 286 weeks after the first donation, at which time half of our 5000

donors has no missing values, and the other half misses at most 50% of observations.

Direct clustering using dynamic time warping

For this method, the features that we will feed to the clustering algorithm are the

resampled hemoglobin measurements as described in the previous section. As a dis-

tance measure, we use dynamic time warping (DTW) with the window parameter set

to w = 5. [66] This algorithm is better-suited to our data than for instance the Eu-

clidean distance, because it takes into account varying speeds and time shifts. Because

the time series vary in length, we compare time series only up to the last data point

in the shortest series.
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The algorithm can be summarised as follows:

1. Calculate the Euclidean distance between the first point in the first series, and

every point within the window of w = 5 in the second series;

2. Store the minimum distance calculated;

3. Repeat steps 1–2 for all points in the first series;

4. Add all the minimum distances to get the DTW distance.

Trend clustering using model-based feature extraction

The second method takes as input for the clustering algorithm not the (resampled)

time series itself, but rather a set of features that should summarise the time series in

such a way that similar time series will have similar feature values. We are interested

in distinguishing three types of hemoglobin trajectories: high stable, low stable, and

declining. We therefore choose to cluster the trajectories based on the intercept and

slope of the linear trend.

The intercept and slope are calculated using linear least-squares regression on the

resampled time series described in the previous section, to allow for a direct comparison

between the two methods. Because the slope and intercept values are on different

scales, we normalise them using a min-max scaler before clustering. The values are

then all between 0 and 1, 0 being the minimum value among the time series and 1 the

maximum.

Clustering algorithm

For the actual clustering, we use k-means clustering, a heuristic algorithm that is

usually quite fast at finding a local optimum. [67] It requires the user to specify

the number of desired clusters k. We chose this well-known algorithm for its wide

applicability and straightforward implementation.

For the direct clustering, the input to the algorithm contains the resampled time

series. Because of the differing lengths of the time series, we chose to initialise the

clusters randomly from a uniform distribution, instead of choosing k time series as

initial cluster centroids. The distance measure used is DTW.

For the trend clustering, the input consists of two features per trajectory: the

intercept and the slope of the linear trend. As distance measure the Euclidean distance

is used.
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In general, k-means clustering returns the best results if the algorithm stops when

the difference between the cluster centroids in two subsequent iterations is smaller

than some ϵ. Because the program is computationally expensive due to the DTW

calculations, we opted to let it run for at most five iterations for the first clustering

method.

The algorithm is as follows:

1. Initialise k cluster centroids;

2. Assign each time series to the cluster to which it is most similar, based on the

specified distance;

3. Recalculate the cluster centroids by taking the average value for each feature;

4. Repeat steps 2–3 for 5 iterations or until convergence.

Evaluation

We compare the clusters based on the two data representations in two ways: cluster

tightness and cluster informativeness. The first is a numerical comparison, the second

graphical. Cluster tightness is assessed by the mean within-cluster distance. For each

cluster, we calculate the distance from the cluster centroid to the individual time series

by taking the DTW distance between the two. The mean of these distances is the mean

within-cluster distance. We also calculate the sum of the within-cluster distance for

each value of k, which is the sum of the DTW distances between the individual time

series and the cluster centroids, summed over all clusters. As the number of clusters

increases, we expect the sum of the within-cluster distances to decrease.

Cluster informativeness is assessed visually by looking at the graphs of the cluster

centroids. We hope to see centroids that are different in slope, and not just horizontal

lines with different average hemoglobin values.

Results

We will first present the results from both methods separately, then compare the two

on cluster tightness and informativeness.

Direct clustering

Figure 5.2 shows the centroids of the clusters after direct clustering with DTW. At

k = 2 and k = 3, we see that the clusters are based mostly on the mean hemoglobin
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Figure 5.2: Cluster centroids after clustering resampled hemoglobin trajectories of 5000
female and 5000 male donors with the k-means clustering algorithm (k ∈ [2, 3, 4, 5]) and DTW
distance as distance measure.

level in the donors, and cluster centroids are almost parallel. At higher numbers of

clusters, we start to see some differences in trends as well, with centroids intersecting

each other. At k > 5, we saw that centroids start overlapping for longer periods of time

and are no longer distinct enough to be informative. These graphs are not included

in the paper. In almost all centroids, there is a decrease in hemoglobin value at the

beginning of the hemoglobin trajectory.

To assess the tightness of the clusters, Table 5.1 shows the mean within-cluster

distances, with DTW used as distance measure. The total sum of the within-cluster

distances decreases as the number of clusters increases, which is expected because the

same distance measure was used to create the clusters. The names of the clusters

correspond to those in Figure 5.2. Table 5.1 also shows the number of time series

assigned to each cluster. We see that in size, the clusters are quite well-balanced: the

smallest cluster has size 413 where size 1000 would be expected if all clusters were the

same size (female donors, k = 5, cluster B).

Trend clustering

Figure 5.3 shows the cluster centroids after clustering on trend features. As after the

direct clustering, the centroids are distinct from each other and do not intersect at

k = 2 and k = 3. From k = 4 and up, cluster B shows an interesting new trend in
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Cluster A Cluster B Cluster C Cluster D Cluster E Sum
Sex k d̄ (N) d̄ (N) d̄ (N) d̄ (N) d̄ (N) d̄

Women

2 7.1 (1613) 6.3 (3387) 32670
3 5.7 (2128) 7.0 (986) 5.9 (1886) 30135
4 5.4 (1197) 5.2 (1205) 5.9 (1671) 6.9 (927) 29049
5 6.3 (475) 6.5 (413) 5.5 (1379) 5.9 (1766) 5.4 (967) 28840

Men

2 7.2 (2020) 6.3 (2980) 33260
3 6.1 (1997) 5.6 (1851) 6.9 (1152) 30508
4 7.1 (1600) 5.8 (1589) 5.5 (835) 5.1 (976) 30222
5 4.9 (896) 5.9 (1424) 5.2 (906) 5.5 (871) 6.8 (903) 28567

Table 5.1: The mean distance from the centroid to the time series (d̄) and the number
of time series in each cluster (N) after direct clustering. Dynamic time warping is used as
distance measure. The rightmost column shows the sum of the within-cluster distances.

male donors: the slope of the line is much steeper than those of the other clusters.

In Table 5.2, we see that the mean distance from the centroid to the individual

time series is larger than in the clusters obtained using the first method. The sum of

the within-cluster distances does not decrease as k increases, and for female donors

it even increases substantially. This can happen because in this method, the clusters

are decided based on the Euclidean distances between the trend features of the time

series, rather than the DTW distance between time series as in the first method.

The number of time series per cluster is mostly well-balanced, although there are

some cases of small clusters: at k = 5, in male donors, cluster A only contains 386

time series where 1000 would be expected if all clusters were of equal size.

Comparison

From the within-cluster distances, it is clear that the direct clustering method leads to

tighter clusters. Figure 5.4 illustrates this well. It shows the result of both direct and

trend feature clustering on male donors with k = 4 clusters. Each subplot shows the

cluster centroid in red, and 100 randomly selected individual time series within the

cluster in grey. Although after both direct and trend clustering the cluster centroid

lies in the middle of the individual time series, the spread is much smaller in direct

than in trend clustering.

In both methods, cluster centroids vary mostly in the average hemoglobin value

over time, and not as much in trend, which is what we are mostly interested in. The

exception is cluster B in the trend clustering method, which shows a relatively steep
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Figure 5.3: Cluster centroids after clustering resampled hemoglobin trajectories of 5000
female and 5000 male donors based on the intercept and slope of the linear trend, using the
k-means clustering algorithm (k ∈ [2, 3, 4, 5]).

Cluster A Cluster B Cluster C Cluster D Cluster E Sum
Sex k d̄ (N) d̄ (N) d̄ (N) d̄ (N) d̄ (N) d̄

Women

2 8.1 (2028) 6.8 (2972) 36689
3 10.1 (1075) 6.5 (1727) 9.6 (2198) 43195
4 8.2 (602) 10.8 (1181) 6.7 (1362) 10.5 (1855) 46318
5 6.2 (839) 14.1 (1016) 8.5 (881) 11.9 (1761) 8.8 (503) 52431

Men

2 11.0 (2843) 11.1 (2157) 55156
3 9.5 (831) 6.5 (1924) 8.7 (2245) 40113
4 10.8 (389) 15.3 (961) 7.0 (2104) 6.4 (1546) 43392
5 6.0 (386) 6.3 (1071) 7.1 (1378) 7.9 (445) 8.6 (1720) 37234

Table 5.2: The mean distance from the centroid to the time series (d̄) and the number
of time series in each cluster (N) after trend clustering. Dynamic time warping is used as
distance measure for evaluation. The rightmost column shows the sum of the within-cluster
distances.
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Figure 5.4: Cluster centroids after clustering resampled hemoglobin trajectories of 5000
male donors, using direct (left) or trend clustering (right) and k-means clustering with k = 4.
Red lines are the cluster centroids. 100 randomly sampled individual hemoglobin trajectories
from each cluster are also plotted to show the fit.
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downward trend.

To verify the stability of the cluster centroids obtained by the k-means algorithm,

we ran it several times with different random initialisation values. Visual inspection

of the results showed that the algorithm consistently converged to the same centroids.

Discussion

The clusters obtained by the two methods are clearly very different. The centroids of

the clusters are much more linear when the direct clustering is applied, compared to

the trend feature clustering. The mean within-cluster distances are much smaller in

the first method, which indicates denser clusters. However, this comparison is biased,

because the first method used the same distance measure during clustering, so it is

expected to minimise this distance. The second method minimised the Euclidean dis-

tance between the linear trend features of the time series, and not the DTW distances.

The results from the direct clustering are in line with our expectations. The clus-

ters suit the time series relatively well, and the total sum of within-cluster distances

decreases as the number of clusters increases. However, the time series are clustered

together mostly on average hemoglobin level, which is not what we are looking for in

this context. We would prefer to identify clusters based on the overall trends in each

donor, so that we can distinguish donors with a high stable hemoglobin level, a low

stable hemoglobin level, and decreasing hemoglobin levels from each other.

This is what we expected to see after clustering time series based on trend. It is

partly what we see in the cluster centroids: in male donors, for k = 4 and k = 5,

cluster B is very distinct from the others and has a steep downward slope. We know

that declining hemoglobin trajectories are highly prevalent in female donors as well,

but none of those centroids have a slope close to the one in male donors.

An interesting observation is that in almost all clusters, the hemoglobin level is

decreasing in the first ±500 days and then plateaus. This indicates that there is an

initial effect of blood donation on average hemoglobin levels, but after the initial effect

it reaches a new steady state. However, this is only based on the average hemoglobin

levels of 5000 donors, and individual trajectories still show a lot of variation over time,

making it hard to predict.
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Limitations

There are some features in the data that were ignored in this first exploration in

hemoglobin trajectory clustering. There is a seasonal component to hemoglobin lev-

els: in warm seasons, levels are lower than in cold seasons. Because we used the

number of days since first donation as time points and not the actual dates, we lost

this information. An improvement would be to correct for seasonal variations before

transforming the time variable. The same applies for the time of day hemoglobin was

measured: it is highest in the morning and then drops steadily throughout the day.

A very clear feature of the data that was not used is the unequal sampling interval.

Both methods required the intervals to be equal, so we resampled the time series

using linear interpolation to satisfy this requirement. This means that we lose the

information contained within the sampling intervals, and the resampled data points

are of lower accuracy than the original measurements.

The third feature of the data that we would like to include in further analyses is

whether or not a donation followed the hemoglobin measurement. If the hemoglobin

level is below the threshold of 7.8 mmol/L for women or 8.4 mmol/L for men, no

donation is made, and it is likely that the next measurement is higher. There is

also an interaction with the interval length: if a donor has donated blood, the next

measurement has to be at least 56 days later, but if the hemoglobin level was too low,

it can be shorter.

Other Irregular Time Series Frameworks

There are many more fields in which irregular time series are observed (astronomy,

medicine, economics, etc.), and in which the irregularities contain information we

don’t want to lose by transforming the data to equally spaced data. Some algorithms

focus on calculating rolling time series operators such as simple moving averages or

exponential moving averages. [68] This is a more elegant form of interpolation than

what we have applied here, but the information contained in the intervals themselves

is still lost.

A more fitting approach for our data might be a framework that takes two time

series as input for each donor: one containing the hemoglobin measurements and

one containing the interval lengths. We might consider a move to more complex

algorithms, such as recurrent neural networks (RNNs) in combination with long short-

term memory (LSTM) cells. [69] While the majority of RNN implementations still

uses fixed time steps, the Phased LSTM model, which introduces an additional time
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gate, handles irregular intervals without losing the information contained within the

time steps. [70] A similar approach is Time-LSTM, which has been used to model

website users’ sequential actions by taking into account the sampling intervals. [71]

Another deep learning model that looks at informative missingness is GRU-D [72],

which is based on gated recurrent units (GRU). It has been applied to real-world

clinical data sets, where the missingness rate is highly correlated with variables of

interest. This model has achieved good results in supervised classification tasks, and

may also have useful applications for our unsupervised clustering task.

Future Work

By clustering donors’ hemoglobin trajectories we hope to find clusters of donors that

respond similarly to frequent blood donation. We assume that the clusters are a

proxy for unobserved donor characteristics, such as iron intake, diet, physical activity

levels and iron needs. If clustering is successful, we want to search for correlations

between the cluster and donor information collected in questionnaires in previous

studies carried out at Sanquin (Donor InSight). Eventually, the goal is to predict as

early as possible in a donor’s donation career which cluster they belong to, and to

assign an optimal donation frequency based on this information. That way, deferral

due to low hemoglobin may be minimised, and donors will stay healthy and motivated.
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Abstract

Background - Many studies already reported on the association between patient

characteristics on the severity of COVID-19 disease outcome, but the relation with

SARS-CoV-2 antibody levels is less clear.

Methods - To investigate this in more detail, we performed a retrospective obser-

vational study in which we used the IgG antibody response from 11 118 longitudinal

antibody measurements of 2082 unique COVID convalescent plasma donors. COVID-

19 symptoms and donor characteristics were obtained by a questionnaire. Antibody

responses were modelled using a linear mixed-effects model.

Results - Our study confirms that the SARS-CoV-2 antibody response is associ-

ated with patient characteristics like body mass index and age. Antibody decay was

faster in male than in female donors (average half-life of 62 versus 72 days). Most

interestingly, we also found that three symptoms (headache, anosmia, nasal cold)

were associated with lower peak IgG, while six other symptoms (dry cough, fatigue,

diarrhoea, fever, dyspnoea, muscle weakness) were associated with higher IgG concen-

trations.
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Introduction

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) emerged late 2019

in China, and by March 2020 was declared a pandemic by the World Health Organi-

zation (WHO). As of September 2021, over 200 million individuals have been infected

with COVID-19, which has inflicted an immense impact on the healthcare system

worldwide. The virus mainly targets the respiratory tract, which can lead from mild

symptoms to severe respiratory distress syndrome. Studies have shown that antibody

responses against the SARS-CoV-2 spike protein can be first detected 1-3 weeks post

symptom onset in most COVID-19 patients, [73, 74] and remain in circulation for up

to 1 year. [75, 76, 77, 78] There is however a substantial variation in antibody levels

between individuals. [77]

Many studies have reported on the association between disease severity and donor

characteristics, such as sex, body mass index (BMI), age, and blood group. Males tend

to be more susceptible to develop a severe course of the SARS-CoV-2 virus infection.

[79, 80] In addition, age above 50 and obesity are also associated with increased risk

of severe outcome. [80, 81, 82, 83] ABO blood type may also play a role in COVID-19

infection, but the exact influence remains unclear. [84, 85]

Antibody responses also seem to be associated with symptoms and clinical infor-

mation. In general, SARS-CoV-2 antibody levels are higher in patients with a severe

disease outcome. [86] A recent study in which COVID-19 convalescent plasma (CCP)

donors were followed for three months after symptom resolution showed that greater

disease severity, older age, male sex, and high BMI correlate with high SARS-CoV-2

antibody levels. [79, 87] The same study also reported that particularly the symptoms

fever, body aches, and low appetite correlate with high SARS-CoV-2 antibody levels.

Limitations of this study include a small number of subjects and the low number of

longitudinal data points available for each subject, which restricts the possibilities to

analyse trends in antibody levels over time and the association with donor character-

istics and symptoms.

Here, we aimed to gain a more detailed insight into individual symptoms and donor

characteristics and their association with the IgG antibody response. Therefore, we

analysed a longitudinal data set of 11 118 anti-RBD antibody measurements of 2082

unique CCP donors. Interestingly, we found that three symptoms (headache, anosmia,

nasal cold) were associated with lower peak IgG, while six other symptoms (dry cough,

fatigue, diarrhoea, fever, dyspnoea, muscle weakness) were associated with higher IgG

concentrations.
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Methods

Study population samples

Between April 2020 and March 2021, Sanquin Blood Bank (Amsterdam, the Nether-

lands) collected samples from over 24 000 COVID-19 recovered adults who enrolled in

the CCP programme. Within this programme, plasma is derived from patients that

recovered from COVID-19, with the aim to help patients recover from COVID-19.

Donation was voluntary and non-remunerated, and donors provided written informed

consent before their first donation. Donors were included based on either a positive

PCR or presence of anti-RBD IgG antibodies above 80 Arbitrary Units per ml (AU/ml)

and after being free of symptoms for at least two weeks. Donors donated plasma on

average every two weeks, until antibody levels were below 4 AU/ml in two consecutive

donations. Only donors with at least three consecutive antibody measurements and a

complete questionnaire were included in the analyses, resulting in a study population

of 2082 donors. Supplementary Figure S6.1 shows the number of donors that were

excluded at each step.

Questionnaire

Starting August 2020, donors that enrolled in the convalescent plasma programme

were invited by e-mail to fill out an online questionnaire, programmed in Qualtrics

(SAP, Walldorf, Germany). The questionnaire included questions about the possible

origin of the infection, the reason why donors were tested and a list of 18 symp-

toms considered to be COVID-19-related according guidelines specified by the Dutch

National Institute for Public Health and the Environment. [88] Participants could

indicate if they experienced symptoms and, if the symptoms were present, how severe

these symptoms were on a 4-point scale, from 1 (very mild) to 4 (severe). Additionally,

participants were asked about the duration of their symptoms, whether they consulted

a physician or were admitted to hospital and/or intensive care units. The full ques-

tionnaire is included as an online supplement. Donors were excluded from analysis if

sex, age and/or date of illness was absent.

Antibody measurements

IgG to RBD was measured essentially as described before. [77, 78] In brief, plates were

coated with recombinant RBD, incubated with samples, and bound IgG antibodies

74



6

Antibody response in COVID-19 convalescent plasma donors

were detected using an anti-human IgG antibody (MH16, Sanquin); quantification was

done relative to a plasma pool consisting of CCP donors and expressed as AU/mL.

Statistical model

Longitudinal trends in antibody levels were analysed with a linear mixed-effects model,

using log-transformed anti-RBD IgG levels as outcome variable. Timepoint 0 corre-

sponds to 20 days post onset of symptoms. [73] As such, the estimated intercept of the

model corresponds to a donor’s estimated peak IgG level. [89] The estimated slope of

the model is used to calculate a donor’s IgG half-life, in days: t1/2 = log( 12 )/slope.

Only measurements within six months post onset of symptoms were included, as

in later stages of recovery antibody decline is expected to slow down and no longer

expected to follow a loglinear decline. [77]

A three-step approach was used to analyse the effects of the covariates. In the first

step, a null-model was fit to the data, using time as the only predictor variable and

allowing a random intercept and slope to be estimated for each donor. In the second

step, we tried to explain the variance in random intercepts and slopes by including

fixed effects for donor characteristics, i.e., sex, age, height, weight, BMI, and blood

group (ABO and RhD), in addition to the random intercept and slope per donor. In

the third step, fixed effects that were statistically insignificant in the second step were

removed and additional donor information variables obtained from the questionnaires

were added as fixed effects. This information concerned data on hospitalisation, ICU

admission, co-morbidities, and the presence of 18 symptoms as shown in Table 6.1.

This approach allowed separate estimation of the proportion of variance explained by

donor characteristics and clinical information.

Significance levels of individual variables were estimated using Satterthwaite’s ap-

proximation, as degrees of freedom cannot be calculated exactly in models that in-

clude both random and fixed effects. [90] Because this approximation is slightly anti-

conservative, an alpha-level of 0.01 was chosen to determine statistical significance.

Non-significant predictors were excluded after each step. Relative quality, taking into

account both goodness of fit and model complexity, of the models was assessed by

comparing the Akaike information criteria (AIC) after each step.

Data were processed and analysed with the R programming language and environ-

ment for statistical computing (version 4.0.3), using packages lme4 and lmerTest for

analyses and ggplot2 for generating graphs.
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Results

Study population characteristics

We used 11 118 antibody measurements of 2082 unique donors to study the associations

between symptoms, donor characteristics, and IgG antibody response. The number

of available antibody measurements per donor ranged from 3 to 18 measurements. In

addition, each donor completed a questionnaire, which gave insight into symptoms

and donor characteristics. Table 6.1 shows the distributions of donor and COVID-19

related disease characteristics in the study population.

Compared to all active whole-blood and plasma donors in 2020, donors in our

study population are slightly older (46 vs 42 years for women, 52 vs 48 years for

men). Median weight and height, as well as proportion of female donors and rhesus

D blood group are similar to those of the active donor population. Blood group A

is overrepresented in our study population (47% vs 39% for women, 45% vs 39% for

men), while blood group O is underrepresented (39% vs 47% for women, 42% vs 47%

for men).

Table 6.1: Study population characteristics. Continuous variables are represented by their
median and interquartile range (IQR), categorical variables by absolute count and percentage.

Women Men

Median IQR or Median IQR or

or count percentage or count percentage

Number of donors

(proportion of total)
1236 59.4% 846 40.6%

Number of donations

per donor
6 4 – 8 6 4 – 10

Days POS at first do-

nation
48 33 – 77 47 32 – 77

Days POS at last do-

nation*
122 97 – 151 126 103 – 157

Age (years) 45.9 28.0 – 55.3 51.8 39.6 – 59.3

Height (cm) 171 167 – 176 184 180 – 189

Weight (kg) 73 65 – 83 88 80 – 97

BMI (kg/m2) 24.8 22.6 – 28.4 26.4 24.0 – 28.2
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Blood group ABO

A 581 47% 381 45%

B 120 9.7% 84 9.9%

O 484 39% 352 42%

AB 51 4.1% 29 3.4%

Blood group RhD

Positive 1024 83% 691 82%

Negative 212 17% 155 18%

Hospital admission 19 1.5% 50 5.9%

Intensive care 4 0.3% 8 0.9%

Symptoms

Asymptomatic 8 0.6% 7 0.8%

Fatigue 979 79% 597 71%

Anosmia/ageusia 853 69% 471 56%

Headache 820 66% 467 55%

Myalgia 705 57% 445 53%

Nasal cold 692 56% 424 50%

Fever 621 50% 507 60%

Dry cough 560 45% 396 47%

Sore throat 519 42% 307 36%

Chills 499 40% 356 42%

Sneezing 461 37% 381 45%

Dyspnoea 461 37% 297 35%

Muscle weakness 426 34% 260 31%

Diarrhoea 221 18% 102 12%

Nausea 184 15% 72 8.5%

Sputum production 178 14% 152 18%

Altered mental status 127 10% 80 9.5%

Skin rash 69 5.6% 27 3.2%

Vomiting 49 4.0% 28 3.3%
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Null-model fit (step 1)

In the first step we estimated an intercept and slope for each individual donor using the

null model, describing the linear relationship between log-transformed IgG levels and

time post onset of symptoms. [73] The residuals, i.e., the difference between measured

IgG and predicted IgG as estimated by the null model, follow a normal distribution

with mean 0 and standard deviation of 0.21 log (AU/ml). This distribution is indepen-

dent of time post onset symptoms, supporting the assumption that the relationship is

linear after log-transformation. Given this assumption, the estimated peak IgG level

set at 20 days POS is most likely an accurate extrapolation and allows for comparisons

between donors. Supplementary Figure S6.2A shows the fitted line and actual mea-

surements for four randomly selected donors (donors A to D). Supplementary Figure

S6.2B shows the distribution of the residuals over all observations for all donors.

After analysing all samples, we found a median peak IgG concentration of 38.8

AU/ml (IQR 20.9-78.6) and a median half-life of 66 days (IQR 50-94) (Figure 6.1).

For the majority of donors, the estimated slope corresponds to a plausible antibody

half-life. However, for 80 donors (3.8%), the fitted slope was positive, which results

in a negative estimated half-life estimate. For an additional 59 donors (2.8%), the

estimated half-life is extremely long (defined here as more than 365 days, but estimates

ranged up to 16 000 days). This occurs when the estimated slope is very close to

zero (but still negative), which may happen when IgG levels barely decrease between

measurements and no decay in antibody levels are measured. Examples of donors with

a negative half-life and very long half-life are given in Supplementary Figure S6.3.

These donors were not excluded from the study in order not to overstate accuracy,

and because there was no reason to assume the IgG measurements were incorrect.

Associations with predictor variables

The results of step 2, where individual donor characteristics were added to the model

as predictor variables, are shown in Figures 6.2A–C and Table 6.2. Sex was associated

with the slope (Figure 6.2A), as the rate of antibody decay is faster in men: the

median slope for men corresponds to a half-life of 62 days, while this is 72 days for

women. Men displayed higher peak IgG levels than women, but this difference was

not statistically significant (p = 0.68). Age (Figure 6.2B) and BMI (Figure 6.2C)

were both positively correlated with peak IgG concentration. A one-year increase

in age corresponds to a 0.013 increase in the log-transformed IgG level, an increase

of one BMI point corresponds to a 0.024 increase in log-transformed IgG level. No
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Figure 6.1: Anti-RBD IgG peak and half-life. (A) Distribution of estimated peak IgG
concentration (at 20 days POS) and (B) estimated half-life of 2082 COVID convalescent
plasma donors, as estimated by the null model. Please note that since both distributions
have an extremely long right tail, the horizontal axes are truncated at (A) 300 AU/ml and
(B) 365 days, excluding 70 and 139 donors from left and right histograms, respectively.

significant associations with antibody titres were found for variables blood group,

height, and weight. Random effects for peak IgG level and antibody half-life are

positively correlated with a correlation coefficient of 0.29, indicating that higher peak

IgG is moderately associated with higher (less negative) slope, and therefore with a

longer half-life.

Associations with clinical information

After adding clinical information significant associations with peak IgG concentration

were found for hospital admission and various clinical symptoms (Figures 6.2D, 6.3,

6.4 and Table 6.2). Hospital admission was significantly associated with both higher

peak IgG level and shorter half-life (Figure 6.2D). Nasal cold, headache, and anosmia

were associated with lower peak IgG levels, while dry cough, fatigue, fever, dyspnoea,

diarrhoea, and muscle weakness were associated with higher peak IgG levels. Figure

6.3 shows the estimated peak IgG level when these symptoms are present. Note that

values on the y-axis are the predicted peak IgG levels when all continuous variables

are equal to their average value, and all binary variables (hospital admission and all

other symptoms) equal zero.
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Figure 6.2: Associations between donor/clinical characteristics and antibody levels. The
effects of variables (A) sex, (B) age, (C) BMI, and (D) hospital admission on predicted
antibody decline. Note that age and BMI are included in the model as continuous predictors;
for clarity, the associations are only plotted for three values. Light-coloured bands represent
95% confidence intervals.
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Term Estimate 95% CI

Random effects
Intercept [log(peak IgG)] 2.382 2.274 – 2.490
Slope [delta log(IgG) per day] -0.010 -0.011 – -0.101
Fixed effects on the intercept

*Sex: female -0.017 -0.063 – 0.096
Age (per 10 years) 0.128 0.100 – 0.157
BMI (per 5 points) 0.119 0.097 – 0.164
Hospital admission: yes 1.156 0.934 – 1.379
Headache: yes -0.113 -0.193 – -0.032
Anosmia: yes -0.111 -0.189 – -0.033
Nasal cold: yes -0.101 -0.177 – -0.025
Dry cough: yes 0.095 0.019 – 0.171
Fatigue: yes 0.140 0.044 – 0.236
Diarrhoea: yes 0.148 0.043 – 0.252
Muscle weakness: yes 0.172 0.083 – 0.261
Shortness of breath: yes 0.196 0.111 – 0.280
Fever: yes 0.228 0.149 – 0.308
Fixed effects on the slope

Sex: female 0.003 0.002 – 0.004
Hospital admission: yes -0.004 -0.007 – -0.001

Table 6.2: Point estimates and 95% confidence intervals of fixed effects on log-transformed
IgG levels.
* The effect of sex on the intercept (peak IgG) was not statistically significant, but the
variable is not excluded due to its effect on the slope.
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Figure 6.3: Predicted impact of various symptoms on anti-RBD IgG peak concentration.
Estimated peak IgG concentrations when different symptoms are displayed. For each of the
symptoms here, the difference in peak IgG as compared to the group without this symptom
is statistically significant with p < 0.001.

The largest difference was found for the variable hospital admission. Donors ad-

mitted to the hospital had considerably higher antibody levels, with an estimated

difference of 77.8 AU/ml on the peak IgG concentration. These donors also have a

faster rate of antibody decay, corresponding to an estimated half-life of 48 days (95%

CI: 40-58 days) for men, and 60 days (95% CI: 49-80 days) for women.

Variance explained by model

In the null-model that was fitted in step 1 (without any fixed effects), all variation in

peak IgG and half-life was attributed to the individual variation per donor. As fixed

effects were added in step 2, part of this variation was now explained by these fixed

effects, and the variation explained by the random effects decreased. Table 6.3 shows

the variance of the random effects per donor in the null-model, as well the variance

of the random effects as after adding donor characteristics as covariates (step 2), and

after adding the clinical information (step 3). The variance reduction relative to the

null-model (step 1) by the addition of extra explanatory variables in each step is also

provided. Model fit was compared using the Akaike Information Criterion (AIC) and

tested for statistical significance using a nested ANOVA, results of which are shown

in Table 6.3.
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>>

Age (per 10 years) BMI 
(per 5 points) Sex: 

female
Hospital admission: yes 
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Figure 6.4: Effect size and 95% confidence intervals of fixed effects on anti-RBD IgG peak
concentration (log-transformed) and the slope.

Variance of
random effect

on peak log(IgG)

Variance of
random effect

on slope
∆log(IgG)/day

AIC

Step 1: null-model 0.8814 0.0497 11886
Step 2: donor characteristics 0.7758 (-12%) 0.0485 (-2.4%) 11615 (p < 0.001)
Step 3: donor characteristics
+ clinical information

0.6610 (-25%) 0.0481 (-3.2%) 11290 (p < 0.001)

Table 6.3: Variance of random effects in models of all three steps. Percentual variance
decrease relative to the null-model is given in brackets. P-values are relative to the previous
step, obtained with ANOVA.
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Discussion

In this retrospective observational study, we investigated potential associations between

SARS-CoV-2 specific antibody kinetics and various donor characteristics and COVID-

19 symptoms. To our knowledge, this is currently the largest study that describes such

associations. Individual antibody responses were modelled using a linear mixed-effects

model, from which peak IgG concentration and antibody half-life were determined.

Symptoms and donor characteristics were obtained from a questionnaire. Our study

shows that the SARS-CoV-2 antibody response is associated with patient characteris-

tics like sex, age, and BMI. Of note, we also found that specific COVID-19 symptoms

are associated with antibody levels.

As reported earlier, we found a large variation in anti-RBD antibody peak levels.

A strength of our study are the longitudinal measurements, which enabled us to re-

liably estimate the peak level of each individual donor independent on the timing of

the first antibody measurement. Only a quarter of the variation in peak IgG concen-

tration between patients can be explained by associations with donor characteristics

and disease symptoms. To a lesser degree, donor characteristics were also associated

with differences in antibody half-life, which was also variable between donors, albeit

less than the peak level. The antibody half-life was not correlated to peak levels.

Whether these differences in antibody half-life reflect differences in protection for re-

infection will be investigated, and this thoroughly characterised donor cohort can serve

as bench mark for those studies.

Six symptoms (dry cough, fatigue, diarrhoea, fever, dyspnoea, muscle weakness)

were associated with higher IgG concentrations and three symptoms (headache, anos-

mia, nasal cold) were associated with lower peak IgG concentrations against RBD.

This association between symptoms and antibody levels may possibly reflect the fact

that the SARS-CoV-2 virus frequently initiates infection in the upper airways (mild

symptoms and low IgG levels) before spreading through the body (severe symptoms

and high IgG levels). Headache, anosmia and nasal cold were common symptoms,

each present in at least 50% of patients in our population. Fatigue was present in

more than 70% of patients and was associated with higher peak IgG concentration,

suggesting more severe illness. A previous study in a hospital cohort found that fatigue

and dyspnoea are prognostic for severe infection, and a stuffed nose (comparable to

nasal cold) for mild infection, which is in line with our findings. [91]

Furthermore, we found higher age and BMI to be associated with higher peak

IgG concentrations. Sex was not associated with peak IgG concentration, but men
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had significantly shorter antibody half-lives than women (62 vs 72 days respectively).

The small group of patients that had been admitted to hospital displayed both higher

peak IgG concentrations and shorter half-lives. Probably this effect is the result of

the presence of short-lived plasmablasts that produce high levels of antibodies. Pre-

vious studies found sex differences in COVID-19 immune responses, with higher IgG

concentrations associated with male sex, older age, and hospitalisation. [92, 93, 94]

Although our results are consistent with these findings for age and hospitalisation,

we found that the association between male sex and higher peak IgG concentration

was not significant after correction for age and BMI. This suggests that the previ-

ously found association with male gender was possibly due to the increased risk of

severe disease in men. Most studies on differences in antibody response are performed

in hospital cohorts, our study population consisted mainly of recovered patients that

were not admitted to hospital (96.7%), and therefore disease severity is expected to

be lower. Consistently, BMI in the non-hospitalised group was 25.9 compared to 28.8

in hospitalised patients.

A strength of our study is the large number of recovered patients included in our

study population. The status of Sanquin as the only blood bank in the Netherlands,

combined with well-established connections with municipal health services, allowed us

to invite people with a positive PCR test to become CCP donors after recovery. This

allowed us to both include non-hospitalised and hospitalised patients in the cohort.

However, we could only include donors who were healthy enough to regularly donate

plasma, which means that our results are mainly applicable towards patients with a

mild outcome. As a result our study is more representative of the total COVID-19 pa-

tient population than studies on hospitalised patient cohorts. It should also be noted

that some bias may be present in our data, as symptoms are self-reported by patients

after recovery. Relatively mild symptoms, such as nasal cold, may therefore be under-

reported by patients who at the same time experienced more severe symptoms, such

as fever or dyspnoea. However, this explanation is unlikely to negate the association

we found, as all symptoms associated with lower peak IgG were present in more than

50% of patients.

In conclusion, our study indicates that several COVID-19 symptoms are associated

with SARS-CoV-2 antibody levels in addition to the previously described association

with sex, age, and BMI. Discovery of these associations aids us in understanding why

antibody responses differ between patients. The predictive value of IgG concentrations

could also be used by blood banks to pre-select individuals with high and/or stable

antibody levels as potential CCP donors.
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Appendix

Questionnaire anti-SARS-CoV-2 donors

Note: the original questionnaire was in Dutch, this is a translated version.

Q1 What is your donor ID? You can find this in the accompanying email.

Q36 What is your date of birth?

Day - Month - Year

Q2 What is your sex?

❍ Male

❍ Female

Q3 How would you describe your COVID-19 status?

❍ I suspect I have had COVID-19 because I have had a positive PCR test.

❍ I suspect I have had COVID-19 because antibodies have been detected in

my blood.

❍ Other:

Q4 Where did you contract the infection?

❍ In the Netherlands

❍ Abroad

Q5 (if Q4 answered with ‘abroad’) In which country did you contract the infection?

Q6 Why were you tested for presence of the coronavirus?

❍ Because I was ill/had symptoms

❍ Because I was in contact with a (possibly) infected person

❍ Because of my occupation (health care, contact profession)

❍ Other:
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Q7 Did you experience the following symptoms?

❑ Nasal cold/coryza

❑ Sore throat

❑ Dry cough

❑ Fatigue

❑ Sputum production

❑ Muscle or joint ache

❑ Headache

❑ Fever

❑ Shortness of breath

❑ Diarrhoea

❑ Nausea

❑ Vomiting

❑ Chills

❑ Sneezing

❑ Skin rash

❑ Feeling confused

❑ Muscle weakness

❑ Loss of/less smell or taste

Q8-25 (for each symptom answered with ‘yes’ in Q7) How much were you affected by

this symptom?

❍ Very mildly affected

❍ Mildly affected

❍ Moderately affected

❍ Severely affected

Q37 Did you have pneumonia?

❍ Yes

❍ No
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Q26 When did your symptoms start? If you don’t remember exactly, please make an

estimate.

Day - Month - Year

Q27 When did your symptoms end? If you don’t remember exactly, please make an

estimate.

Day - Month - Year

Q28 Were you admitted to hospital for these symptoms?

❍ Yes

❍ No

Q29 (if Q28 is ‘yes’) On which date were you admitted to hospital?

Day - Month - Year

Q30 (if Q28 is ‘yes’) Were you admitted to intensive care?

❍ Yes

❍ No

Q31 (if Q30 is ‘yes’) How many days were you in intensive care in total?

Q32 (if Q28 is ‘yes’) Were you given extra oxygen?

❍ Yes

❍ No

Q33 (if Q28 is ‘yes’) Did you receive artificial ventilation?

❍ Yes

❍ No

Q34 (if Q28 is ‘yes’) On which date were you discharged from the hospital?

Day - Month - Year
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Q35 Are you in one or more of the following risk groups?

❑ People aged 70 or older

❑ People with chronic airway or lung disease and under treatment by pulmo-

nologist

❑ Chronic heart disease patients under treatment by cardiologist

❑ People with diabetes that is not well regulated and/or with complications

❑ People with kidney disease who need dialysis or are waiting for a kidney

transplantation

❑ People with lowered immunity to infection due to medication use for auto-

immune disease

❑ People who have had an organ or stem cell transplantation

❑ People without a spleen or without a functioning spleen

❑ People with a blood disease

❑ People with lowered immunity due to immunity-lowering medication

❑ Cancer patients who have had chemotherapy and/or radiation in the past

3 months

❑ People with severe immune disorder that requires medical treatment

❑ People with HIV infection who are not (yet) under treatment, or with HIV

infection with CD4 under 200/mm2

❑ People with severe liver disease

❑ People with a BMI over 40

Q38 If there is anything you would like to add, or explain an answer further, please

do so here.
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Supplemental figures and tables

Figure S6.1: Flowchart showing the criteria for inclusion and exclusion of donors.
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Donor A Donor B Donor C Donor D
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Figure S6.2: Null model fit (step 1). (A) Measured anti-RBD IgG levels (points) and fitted
line as estimated by the linear model for four randomly selected donors, and (B) distribution
of residuals over all observations, for all donors.
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Figure S6.3: No decay in antibody levels. Example of a donor with increasing IgG levels
(left panel) and one with near-constant IgG levels (right panel). Estimated slopes for these
donors are 0.0024 and -0.0151, corresponding to estimated half-lives of -292 and 1843 days,
respectively.

Fixed effect on intercept Sum of squares P-value

Weight 0.0070 0.762
Blood group ABO 0.4456 0.121
Height 0.3630 0.030
Blood group RhD 0.4638 0.014
BMI 3.888 <0.001 *
Age 8.752 <0.001 *

Fixed effect on slope Sum of squares P-value

BMI 0.002 0.890
Age 0.004 0.831
Height 0.009 0.735
Weight 0.035 0.500
Blood group ABO 0.188 0.483
Blood group RhD 0.085 0.294
Sex 3.403 <0.001 *

Table S6.1: Sum of squares and p-values of fixed effects after step 2, calculated by backward
stepwise reduction
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Fixed effect on intercept Sum of squares P-value

Sneezing 0.000 0.971
Vomiting 0.004 0.812
Confusion 0.011 0.700
Coughing up mucus 0.084 0.296
Throat ache 0.120 0.210
Joint/muscle ache 0.251 0.070
Nausea 0.247 0.072
Intensive care admission 0.274 0.059
Shivers 0.345 0.034
Skin rash 0.451 0.015
Anosmia 0.645 0.004 *
Fatigue 0.567 0.003 *
Nasal cold 0.449 0.002 *
Dry cough 0.394 0.002 *
Diarrhoea 0.462 0.001 *
BMI 2.000 <0.001 *
Hospital admission 8.555 <0.001 *
Fever 1.836 <0.001 *
Shortness of breath 1.510 <0.001 *

Fixed effect on slope Sum of squares P-value

Sex 3.470 <0.001 *

Table S6.2: Sum of squares and p-values of fixed effects after step 3, calculated by backward
stepwise reduction.

93



6

Chapter 6

94



7

CHAPTER

7

Explainable hemoglobin deferral

predictions using machine learning

models: interpretation and

consequences for the blood supply

Published in: Vox Sanguinis 117(11): 1262-1270. doi:10.1111/vox.13350

Authors: M Vinkenoog, M van Leeuwen, MP Janssen



7

Chapter 7

Abstract

Background - Accurate predictions of hemoglobin deferral for whole-blood donors

could aid blood banks in reducing deferral rates and increasing efficiency and donor

motivation. Complex models are needed to make accurate predictions, but predictions

must also be explainable. Before the implementation of a prediction model, its impact

on the blood supply should be estimated to avoid shortages.

Methods - Donation visits between October 2017 and December 2021 were se-

lected from Sanquin’s database system. The following variables were available for each

visit: donor sex, age, donation start time, month, number of donations in the last 24

months, most recent ferritin level, days since last ferritin measurement, hemoglobin at

nth previous visit (n between 1 and 5), days since the nth previous visit. Outcome

hemoglobin deferral has two classes: deferred and not deferred. Support vector ma-

chines were used as prediction models, and SHapley Additive exPlanations values were

used to quantify the contribution of each variable to the model predictions. Perfor-

mance was assessed using precision and recall. The potential impact on blood supply

was estimated by predicting deferral at earlier or later donation dates.

Results - We present a model that predicts hemoglobin deferral in an explainable

way. If used in practice, 64% of non-deferred donors would be invited on or before

their original donation date, while 80% of deferred donors would be invited later.

Conclusions - By using this model to invite donors, the number of blood bank

visits would increase by 15%, while deferral rates would decrease by 60% (currently

3% for women and 1% for men).
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Introduction

Sanquin, the Dutch national blood service, collects over 400 000 whole-blood donations

from non-remunerated, voluntary blood donors every year. Women may donate a

maximum of three times per year, and men five times. Hemoglobin levels are tested

before every donation to prevent blood collection from donors with insufficient iron.

The minimum hemoglobin level for blood donation is 7.8 mmol/L for women and 8.4

mmol/L for men; if the capillary hemoglobin test (HemoCue) shows a lower value,

the donor is deferred for 3 months, that is, sent home without donating blood. If the

hemoglobin value is more than 0.5 mmol/L below the donation threshold, the donor

is referred to a donor physician. Additionally, since October 2017, ferritin levels have

been measured in each new donor, as well as after every fifth donation in repeat donors.

Donors are deferred for 6 months if their ferritin level is between 15 and 30 µg/L, or
for 12 months if their ferritin level is below 15 µg/L. This ferritin deferral policy was

implemented because hemoglobin is a poor indicator of iron stores, as iron deficient

donors can still present with sufficient hemoglobin levels until the iron deficiency is

very severe.

While it is important to defer donors that do not meet donation requirements,

sending donors home without giving them the opportunity to donate is discourag-

ing and costly. Previous studies have shown that donors are less likely to return to

the blood bank after a deferral for low hemoglobin than after a successful donation,

especially if it concerns their first blood bank visit. [28] This is less likely after de-

ferral for low ferritin levels, which occurs by letter after the donation, indicating that

post-donation deferral is less demotivating for donors than on-site deferral. [95] The

implementation of ferritin testing has had a considerable impact on the blood supply,

as a large part of the existing donor population (53% of women and 42% of men) were

found to have ferritin levels below 30 µg/L and had to be deferred. [96] However, this

has had the intended positive impact on donor deferral rates due to low hemoglobin,

which decreased from 8% for women and 3% for men in 2016 to 3% for women and

1% for men in 2021. [97]

Although percentage-wise, hemoglobin deferral rates are quite low in the Nether-

lands, they still amount to about 8000 deferrals each year, and there is a risk of

permanently losing these donors. To reduce deferral rates and improve donor moti-

vation, we should re-think hemoglobin deferral policies. One tool that can be used

for this purpose is a hemoglobin deferral prediction model. Many of these prediction

models have already been developed, including models that predict personalised do-
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nation intervals. [98, 99, 100] Prediction models can be used in the donor invitation

process by predicting hemoglobin deferral for eligible donors and only inviting those

donors that are predicted to not be deferred. Because deferred donors are only a small

proportion of the total donor population, it has proven difficult to accurately identify

them, and hence prediction models are not used in practice yet.

We present a novel machine learning hemoglobin deferral prediction model based

on donor characteristics and donation history. New in our approach is that we use

SHapley Additive exPlanations [101] to explain how the model uses the variables in

its predictions and relate these explanations to known physiological processes. This

gives valuable insight into the associations that are learned by the model; if prediction

models are to be used to make decisions in practice, the user must understand how the

model makes these decisions. Moreover, we show the potential impact that prediction

models can have on the total blood supply, if these are to be used to guide donor

invitations, by calculating deferral probabilities at multiple time points for each donor.

By both explaining the predictions and assessing the impact of the model on the blood

supply, we remove two important limitations that currently prevent blood services from

implementing prediction models.

Methods

Data

Data on blood bank visits by whole-blood donors were extracted from Sanquin’s

database system eProgesa, for donations. Only data from donors who explicitly pro-

vided informed consent for the use of their data for scientific research were used. This

consent is given by more than 99% of all donors. For each visit, the following informa-

tion was collected: donor sex, donor age, donation date, donation (registration) time,

hemoglobin level and ferritin level. Ferritin is measured at every new donor intake and

upon every fifth donation in repeat donors. Therefore, ferritin levels are unavailable

for most donations. By using these data, predictor variables were calculated for each

visit, as described in Table 7.1.

In total, 938 710 blood bank visits (excluding new donor intakes and donation types

other than whole blood) by 241 131 unique donors were registered between October

2017 and December 2021. After excluding visits for which no previous ferritin mea-

surement was available, 458 615 blood bank visits by 157 423 unique donors remained

for the analysis.
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Variable Unit or values Description

Sex male, female Biological sex of the donor; separate models are
trained for men and women

Age years Donor age at time of donation
Time hours Registration time when the donor arrived at the

blood bank
Month 1–12 Month of the year that the visit took place
NumDon count Number of successful (collected volume >250 ml)

whole-blood donations in the last 24 months
FerritinPrev µg/L Most recent ferritin level measured in this donor
DaysSinceFer days Time since this donor’s last ferritin measurement
HbPrevn mmol/L Hemoglobin level at nth previous visit, for n

between 1 and 5
DaysSinceHbn days Time since related hemoglobin measurement at nth

previous visit, for n between 1 and 5

Table 7.1: All predictor variables used in the prediction models.

The outcome variable HbOK is dichotomous; deferral (hemoglobin level below the

eligibility threshold for donation) or non-deferral (hemoglobin equal to or above the

threshold).

Analyses

Support vector machines (SVMs) [102] are used to predict hemoglobin deferral. SVMs

are supervised machine learning models that find the optimal hyperplane separating

the outcome classes based on the predictor variables of a so-called training set. After

fitting the model on the training set, the model can predict the outcome class of

unseen observations called the test set. It also gives the probability of an observation

belonging to each outcome class. We chose SVMs as a classification algorithm because

all predictor variables are numeric, and it is computationally less expensive than, for

instance, K-nearest neighbours or (dynamic) linear mixed models.

For each sex, five SVMs were trained, named SVM-n for n between one and five,

indicating the number of previous blood bank visits (HbPrevn and DaysSinceHbn)

used as predictor variables. Donors are only included in SVM-n if they have at least

n previous visits; therefore, sample sizes decrease from SVM-1 to SVM-5. Blood bank

visits before 2021 were used as the training set, while visits in 2021 were used as the test

set to validate performance on unseen data. This division was chosen over a random

training/test division because if these models were used in practice, they would be
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Metric Outcome class Definition

Precision Deferral The proportion of donations correctly classified as de-
ferrals by the model, out of all donations classified as
deferrals.

Recall Deferral The proportion of donations correctly classified as defer-
rals by the model, out of all donations classified as true
deferrals.

Precision Non-deferral The proportion of true non-deferrals, out of all predicted
non-deferrals.

Recall Non-deferral The proportion of predicted non-deferrals, out of all true
non-deferrals.

Table 7.2: Interpretation of performance metrics.

trained on all historical data and applied to future data. We used a paired t-test to

assess the difference in deferral rates between training and test sets of donors of the

same sex with the same number of previous donations. To assess the generalisability

of the model to new donors, we did a separate experiment in which the test set is

comprised of the last blood bank visit of 20% of all unique donors, and the training

set includes all donations from the remaining 80% of donors.

For each of the 10 models, that is, SVM-1 through SVM-5 for both sexes, hyperpa-

rameters were optimised separately, using stratified (on the outcome variable) five-fold

cross-validation within the training set data (and thus not using the test data). Hy-

perparameters were optimised using grid search, using balanced accuracy as a scoring

method, defined as the weighted average of recall in both classes (see Table 7.2 for

the definition of recall). This method is especially suitable for imbalanced datasets

because it uses class-balanced sample weights to determine the average recall.

Precision and recall were determined and compared for training and test datasets

for each model. Both metrics are calculated for both outcome classes. A practical

interpretation of these metrics is given in Table 7.2.

To explain the model predictions, we used SHapley Additive exPlanations (SHAP)

values, a model agnostic explainer. SHAP values show the contribution of each variable

to the prediction for each individual observation, which is even more informative than

coefficients returned by, for example, linear models. By summarizing observation-

based contributions, we obtain variable importance measures for a model that does

not have interpretable coefficients.
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Potential impact on the blood supply

We assessed the potential impact of using SVMs to guide donor invitations by predict-

ing deferral for all blood bank visits that took place in 2021 (the test set). For each

observation, we used information of all previous blood bank visits (up to five) available

as predictor variables. This means that SVM-1 is used when only one previous visit

is available, SVM-2 if there are two previous visits, etc.

If prediction models are to be used in practice, they should estimate the deferral

probability for different days in the future and invite a donor for the first occurrence

where the non-deferral probability would exceed a preset value. To simulate this,

we predicted hemoglobin deferral each week from 1 year before the original donation

date to 1 year after, by adjusting all time-related variables. If the predicted donation

interval were to be less than the minimum donation interval (57 days for men, 122

days for women), the latter would be applied.

We compare all original donation intervals with the donation intervals as proposed

by the model. Dividing the sum of the original donation intervals by the sum of the

model-guided donation intervals gives the relative change in blood bank visits per time

unit and hence the relative yield of blood donations.

Software

All analyses were performed in Python 3.9, using modules numpy [103] and pandas

[104] for data processing, sklearn [105] for model training and predictions, shap [101]

for calculating SHAP values, and matplotlib [106] for creating graphs. The analy-

sis code is available as a GitHub repository and indexed on Zenodo at https://doi-

org.ezproxy.leidenuniv.nl/10.5281/zenodo.6938112.

Results

Table 7.3 shows the sample sizes of training and test datasets for each model. Deferral

rates in the training datasets are 3.19% (SD 0.28) for women and 1.22% (SD 0.09)

for men; in the test sets, they are 3.42% (SD 0.24) for women and 1.21% (SD 0.08)

for men. Using a paired t-test, the difference in deferral rate between the training

and test datasets is significant for women (p = 0.002) but not for men (p = 0.070).

No correction was made for the differing deferral rates, as the models are intended

for future predictions, and in practice, the deferral rate of future blood bank visits is

unknown. Also, a change in deferral rate should be correctly predicted by the model if
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Training Test
Model Women Men Women Men

SVM-1
128 173

(4084; 3.19%)
121 746

(1339; 1.10%)
110 372

(3696; 3.35%)
98 324

(1074; 1.09%)

SVM-2
83 532

(2884; 3.45%)
96 441

(1133; 1.17%))
85 131

(3065; 3.60%)
84 000

(984; 1.17%)

SVM-3
59 720

(2032; 3.40%)
79 690

(997; 1.25%)
67 167

(2451; 3.65%)
72 576

(902; 1.24%)

SVM-4
47 317

(1494; 3.16%)
67 934

(887; 1.31%)
54 090

(1874; 3.46%)
63 447

(806; 1.27%)

SVM-5
40 604

(1113; 2.74%)
59 611

(768; 1.29%)
45 208

(1378; 3.05%)
55 582

(699; 1.26%)

Table 7.3: Sizes of training and test datasets per model. The number and percentage of
deferrals is given in brackets.

the mechanism causing this change can be learned from the data. Deferral rates differ

between models due to small differences in the data between subsets of the data (see

Table 7.4). This is not a problem as long as the same associations between predictor

variables and outcome are found in all subsets of the data, which is described in the

feature importance part of the results.

Although the training datasets consist of 3 years of data, and the test datasets

of only 1 year, their sizes are similar and sometimes the test dataset is even larger.

This is because donations are only included from donors for whom at least one ferritin

measurement was available. As ferritin screening was implemented using a stepped

wedge approach (the first blood bank locations started in October 2017, but only

in November 2019 all locations were included), the number of donors that could be

included in the training dataset was limited. [97]

Marginal distributions of predictor variables are described in Table 7.4. As the

number of previous donations increases, the median age increases from 30 to 36 years

for women and from 34 to 38 for men. The median values of the last ferritin measure-

ment decreased from 47 µg/L in SVM-1 to 39 µg/L in SVM-5 for women and from 77

to 47 µg/L for men. The median time between consecutive donations increases from

SVM-1 to SVM-5, while previous hemoglobin levels are consistent across models, as

well as different numbers of previous visits.
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Women
Previous visits ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

Age 30 (23–47) 32 (24–48) 34 (25–50) 35 (26–51) 36 (37–52)
NumDon 1 (0–3) 2 (1–3) 3 (2–4) 3 (2–4) 3 (3–4)
FerritinPrev 47 (33–74) 46 (33–70) 44 (32–65) 41 (31–59) 39 (29–55)
DaysSinceFer 237 (125–420) 329 (197–497) 383 (260–547) 400 (230–572) 372 (204–567)
HbPrev1 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9)
DaysSincePrev1 135 (105–196) 154 (132–211) 158 (132–217) 167 (133–224) 173 (133–236)
HbPrev2 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.8) 8.5 (8.1–8.8)
DaysSincePrev2 302 (255–412) 328 (271–445) 336 (273–468) 349 (280–493)
HbPrev3 8.5 (8.1–8.8) 8.4 (8.1–8.8) 8.4 (8.1–8.8)
DaysSincePrev3 482 (398–644) 511 (420–674) 528 (430–696)
HbPrev4 8.4 (8.1–8.8) 8.4 (8.1–8.8)
DaysSincePrev4 674 (553–871) 709 (581–904)
HbPrev5 8.4 (8.1–8.8)
DaysSincePrev5 877 (721–1107)

Men
Previous visits ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

Age 34 (26–48) 35 (27–49) 36 (27–50) 37 (28–51) 38 (28–51)
NumDon 3 (1–5) 4 (2–5) 4 (3–6) 5 (3–6) 5 (4–6)
FerritinPrev 77 (44–141) 66 (40–126) 57 (38–108) 52 (36–89) 47 (35–73)
DaysSinceFer 200 (100–335) 232 (151–365) 257 (177–378) 271 (186–385) 267 (173–387)
HbPrev1 9.4 (9.0–9.9) 9.4 (9.0–9.9) 9.4 (9.0–9.8) 9.4 (8.9–9.8) 9.4 (8.9–9.8)
DaysSincePrev1 81 (63–133) 90 (67–147) 92 (69–160) 98 (70–168) 105 (70–176)
HbPrev2 9.4 (9.0–9.8) 9.4 (9.0–9.8) 9.4 (8.9–9.8) 9.4 (8.9–9.8)
DaysSincePrev2 185 (128–287) 196 (147–302) 210 (153–315) 219 (158–330)
HbPrev3 9.4 (9.0–9.8) 9.4 (9.0–9.8) 9.4 (8.9–9.8)
DaysSincePrev3 302 (225–441) 322 (238–463) 335 (245–485)
HbPrev4 9.4 (8.9–9.8) 9.4 (8.9–9.8)
DaysSincePrev4 424 (315–600) 444 (330–620)
HbPrev5 9.4 (8.9–9.8)
DaysSincePrev5 552 (416–752)

Table 7.4: Marginal distributions of predictor variables, represented by median and in-
terquartile ranges.
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Figure 7.1: Performance metrics for all models. (A): Precision of class non-deferral; the
proportion of successful donations among all predicted non-deferrals. The complement of the
precision is the deferral rate, should the model be used to guide invitations. (B): Recall of
class non-deferral; the proportion of successful donations that are predicted correctly. The
complement of the recall is the proportion of missed donations, should the model be used to
guide invitations. Note that the y-axes in are zoomed in to highlight the differences between
various models.

Accuracy and model fit

Figure 7.1 compares precision and recall for class non-deferral across all models. Per-

formance on the training and test sets are similar, indicating that the models are

well-fitted. Both precision and recall increase as more previous blood bank visits are

used to make predictions. Re-running all models only on donors with at least five

previous blood bank visits did not change this observed increase in performance. The

models handle the difference between the proportions of deferral in the training and

test set very well: comparing the observed difference in deferral proportion in the train-

ing and test set to the predicted difference, the mean difference of these differences is

only 0.05 percentage points (maximum: 0.12 percentage points). This indicates that

the models are robust against (modest) changes in deferral rates.
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Sex Metric Time split Random split Difference

Women
Precision 0.991 0.994 -0.003
Recall 0.698 0.701 -0.003

Men
Precision 0.997 0.996 +0.001
Recall 0.804 0.791 +0.013

Table 7.5: Precision and recall for outcome class non-deferral, compared between two
different training/test splits.

Performance on a test set of unseen donors

Precision and recall for both outcome classes are similar for the different types of splits

in training and test set. Table 7.5 shows the comparison in performance between the

time split and the random split, as described in the methods section. Metrics are

shown for SVM-5; the differences are smaller for all other models. For women, the

random split has a higher precision and recall than the time split. For men, this is the

other way around. For both sexes, the differences are minimal.

Feature importance and explanation of predictions

SHAP values were computed based on a random subset of 100 donations in the test

set. Figure 7.2 shows the SHAP summary plot for the SVM-5 models, the summary

plots for the other eight models are included in the online supplement of the published

paper.

For all models, the most important predictor variable is the previous hemoglobin

measurement (HbPrev1 ), and in general, more recent measurements are more impor-

tant than earlier ones. The time since the previous hemoglobin measurements also

ranks high on feature importance, but their chronological order is less well-preserved

than the HbPrev variables.

The association between the feature value and impact on the prediction is as

expected for most variables. For hemoglobin measurements, higher values are as-

sociated with predicted non-deferral. For DaysSinceHb, longer times since the pre-

vious hemoglobin measurement are indicative of predicted non-deferral. However,

DaysSinceHb4 shows the opposite association, meaning that when the fourth previous

measurement was long ago, the chance of predicted non-deferral becomes lower, while

higher would be expected.

Variable NumDon has the expected impact on prediction in all models but SVM-

5 for female donors; in all other models, a higher number of recent donations shifts
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Figure 7.2: SHAP summary plots for predictions made by SVM-5, on 100 random dona-
tions from the test set. Each point represents one single observed donation. The location
on the x-axis indicates the contribution of the predictor variable on the prediction (positive
value: indicative class non-deferral, negative: indicative of class deferral) while the colour of
the point indicates the relative value of the feature in that observation. The features on the
y-axis are ordered by their relative importance, measured as the mean absolute SHAP value.
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the prediction towards deferral. In most models, the number of donations is a more

important predictor for men than for women, and it is always less important than all

HbPrev variables.

The variable FerritinPrev shows the same association with the prediction as HbPrev

variables: higher ferritin levels are associated with predicted non-deferral. Ferritin is a

more important predictor for men than for women. For both sexes, the time since the

previous ferritin measurement is more important than the actual ferritin level, and a

higher value for DaysSinceFer makes predicted deferral more likely.

We know that for women, higher age makes deferral less likely (due to menopause),

and the SHAP values confirm this relation. For men, age is one of the least important

predictors, and there is no clear direction of the relation. The month of donation

is of medium importance for both sexes, with predicted deferral being more likely

earlier in the year. This captures the seasonal effect of temperature on hemoglobin

as measured by the HemoCue. Donating earlier in the day (i.e., a lower value for

variable Time) increases the likelihood of predicted non-deferral, which is supported

by previous research showing that hemoglobin levels are highest in the morning and

decrease throughout the day. [107]

Impact on blood supply

Figure 7.3 shows the cumulative count of donors as invited by the models relative to

their original donation date. Once the model predicts non-deferral, it never predicts

deferral at a later date. Of non-deferred donors, 50% would be invited more than 2

weeks earlier by the model, and 26% within 2 weeks from around the original donation

date. Only 5% would not be invited within a year, causing a successful donation to

be missed. Of deferred donors, only 13% would be invited earlier, while 40% would

be invited over 3 months later. 28% would not be invited within 1 year. The majority

of donors would be invited around their original donation date. For many donors, the

original donation date was shortly after the minimum donation interval had passed,

and as such, there was no room to invite them earlier.

Because the true hemoglobin level of donors on days other than their original

donation date is unknown, we must make assumptions about the accuracy of the

predictions in order to calculate a hypothetical number of donations and deferrals.

In the most optimistic scenario, all donors who were not deferred on their original

donation date would also not be deferred if they were invited earlier; and all donors

who were deferred on their original donation date but are invited later by the model

would not be deferred by then. In that scenario, only 5% of successful donations
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Figure 7.3: Cumulative distribution of the timing of donor invitations on basis of first
predicted hemoglobin level above the donation threshold relative to the original donation
date.
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would be lost because the model would (incorrectly) not invite those donors, while the

deferral rate would decrease by 60% (from 3% to 1% for women and from 1% to 0.4%

for men).

We estimate the impact on the blood supply by comparing the length of the original

donation interval to the donation interval as suggested by the model. For women,

the median time between two donations decreases from 157 to 127 days using the

prediction model. For men, the median time decreases from 92 to 63 days. Therefore,

the total number of blood bank visits per time unit would increase by a maximum

of 15%. This assumes that all donors who responded to the original invitation would

also respond to the invitation if it would be sent at an earlier or later date. We also

assume that all donors visit the blood bank within 1 week of the invitation. With the

original invitations, 15% of donors that responded to the invitation visited the blood

bank within 8 days, so the 15% increase in visits is likely to be a small overestimation.

These assumptions may not hold for mobile donation sites but are reasonable for all

regular donation sites, where 95.3% of all visits in our data occurred.

Discussion

This study presents an explainable machine learning approach to predict hemoglobin

deferral in whole-blood donors using the information on previous donations and var-

ious donor characteristics. We show that we can prevent up to 60% of on-site low

hemoglobin deferrals using the model to guide donor invitations.

To our knowledge, this is the first model using machine learning for explainable

hemoglobin deferral prediction. An explainable model outcome is crucial for prediction

models that are to be used in the context of a decision-support system concerning

humans. SHAP values show that our models are able to learn biologically sensible

associations. They support findings from other prediction models that found the

previous hemoglobin value to be the best predictor for future deferral. We add to this

by showing that including more previous donations will improve these predictions.

Although most associations found by SHAP values can be explained biologically,

some seem to be caused by organisational policies. Higher values for DaysSinceFer are

associated with predicted deferral; the opposite association is found for DaysSinceHb

variables. For donors with fewer than five donations since the start of ferritin testing,

the only ferritin measurement is the one taken at their new donor intake, and therefore

the time since that previous ferritin measurement is equal to the time since their new

donor intake. It is known that deferral becomes more likely once a donor has been
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donating for a longer period of time.

The precision of class deferral is low, meaning that the predicted deferral is wrong

for a substantial proportion of donors. However, by predicting deferral for different

timepoints, we see a clear difference between deferred and non-deferred donors: non-

deferred donors are in many cases invited earlier than their original donation date by

the model, while deferred donors are mostly invited later or not at all, thereby reduc-

ing the deferral rate. In non-deferred donors, the median donation interval becomes

shorter if invitations were guided by the model, and thus the number of blood bank

visits per time unit would increase.

We can only calculate the accuracy of deferral predictions on the original donation

date, as hemoglobin levels on other days are unknown. As hemoglobin levels slowly

increase after a donation, non-deferred donors would also not be deferred if they were

invited later. If they are invited earlier, we cannot know if their hemoglobin level is

already above the deferral threshold. The same applies to deferred donors that are

invited later by the model - it is plausible that their hemoglobin levels are above the

threshold then, but not certain. Based on accuracy measures of predictions on the

original donation dates, we can be fairly confident that the predictions are reliable.

Incorporating prediction models in hemoglobin deferral policies could bring many

benefits to blood banks, but it is important to think about how they should be used.

If the model is used in practice, the change in policy will lead to changes in the data.

Models would therefore need updating by re-training on a regular basis. Additionally,

it would be wise not to outsource invitations to the model completely, as that would

hinder the model’s ability to learn from its mistakes. Although deferrals incorrectly

predicted to be non-deferrals would be discovered, we would never know how many

donors were incorrectly not invited. This can be prevented by sending part of the

invitations without using the model’s predictions. In addition to using the model to

predict deferral outcomes, the model can also be used to return a deferral probability,

allowing blood banks to incorporate this probability in their risk assessment when

inviting donors.

Our model is limited to predictor variables that are presently collected by Sanquin.

Additional variables could be considered to improve prediction accuracy. Donor height

and weight (optionally BMI or total blood volume), as well as smoking status, are

examples known to be related to iron levels and are relatively easy to be included.

Information on iron-related genetic markers or donor diet may also improve accuracy

but are expensive to collect.

Based on the results of this study, we conclude that using prediction models to
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guide donor invitations would bring multiple advantages to blood banks: lower deferral

rates combined with shorter donation intervals would result in motivated and healthy

donors, as well as a steady blood supply.
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Abstract

Background - Blood banks use a hemoglobin threshold before blood donation to

minimise donors’ risk of anemia. Hemoglobin prediction models may guide decisions

on which donors to invite, and should ideally also be generally applicable, thus in

different countries and settings. In this paper, we compare the outcome of various

prediction models in different settings and highlight differences and similarities.

Methods - Donation data of repeat donors from the past 5 years of Australia,

Belgium, Finland, the Netherlands and South Africa were used to fit five identical

prediction models: logistic regression, random forest, support vector machine, linear

mixed model and dynamic linear mixed model. Only donors with five or more donation

attempts were included to ensure having informative data from all donors. Analyses

were performed for men and women separately and outcomes compared.

Results - Within countries and overall, different models perform similarly well.

However, there are substantial differences in model performance between countries,

and there is a positive association between the deferral rate in a country and the

ability to predict donor deferral. Nonetheless, the importance of predictor variables

across countries is similar and is highest for the previous hemoglobin level.

Conclusions - The limited impact of model architecture and country indicates

that all models show similar relationships between the predictor variables and donor

deferral. Donor deferral is found to be better predictable in countries with high deferral

rates. Therefore, such countries may benefit more from deferral prediction models than

those with low deferral rates.
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Introduction

To avoid blood donations by donors at risk of becoming anaemic, blood banks test

the donors’ hemoglobin (Hb) levels. In case of pre-donation testing, a low hemoglobin

level leads to on-site deferral, which is demotivating for donors and makes them less

likely to return to the blood bank than non-deferred donors. [29, 28] Additionally, it

is in the interest of blood banks to keep deferral rates low to save time and costs. The

ability to accurately predict low hemoglobin deferral and adjust donation intervals

based on these predictions likely decreases deferral rates. In the last 15 years, various

hemoglobin deferral prediction models, such as multiple logistic regression models, [99]

Bayesian linear mixed models (LMM) [100, 108] and ensemble models, [98] have been

evaluated by blood banks. Most prediction models use donors’ previous hemoglobin

measurements in combination with donor characteristics such as age and sex, but the

prediction accuracy has been modest. Nonetheless, even models with modest accuracy

could be beneficial in practice. [108] Accurate prediction of hemoglobin levels and/or

deferral remains a difficult task, as many factors affect hemoglobin, and both intra-

and inter-individual variation is large. Therefore, it stands to reason that machine

learning models might improve the prediction accuracy over the traditional regression

models, as they are capable of learning more complex associations between predictors

and outcome variables. Support vector machines (SVMs) have been shown to predict

hemoglobin deferral in Dutch donors reasonably well, [109] as do random forests (RFs)

in Finnish donors. [108]

Most prediction models are developed and validated on donation data of a single

country. [99, 98] Between countries, sets of available predictor variables differ widely.

Ferritin levels, genotyping data, smoking status and iron supplementation are exam-

ples of variables that are associated with hemoglobin levels but are not systematically

measured or recorded by most blood banks. [110] Therefore, prediction models using

such variables cannot be applied to data from other blood banks. Additionally, differ-

ences in blood bank policies regarding donor deferral require models to be calibrated

for each country separately.

The SanguinStats group is a collaboration of statisticians and epidemiologists from

several countries carrying out research in the area of donor health. It currently consists

of researchers from blood banks in Australia, Belgium, Denmark, Finland, the Nether-

lands, South Africa and the United Kingdom, as well as researchers with statistical

expertise who are associated with research institutes other than blood banks. The aim

of the SanguinStats group is to combine the available expertise and data sources to
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develop and evaluate the outcome of state-of-the-art models in various settings.

In this first joint paper, we present a comparison of various hemoglobin deferral

prediction models on data from five blood banks. The goal of this research is not

to create the best performing predictor, but rather to use exactly the same models

for all datasets and to compare the performance and importance of variables between

countries. Therefore, only basic predictor variables that are available in all individual

countries are included in the models. Comparing the importance of variables between

countries will show whether models show the same relationships between the variables

and hemoglobin deferral.

This is the first study to compare multiple hemoglobin deferral prediction models

on datasets from multiple countries. The results can be used by other blood banks to

anticipate benefits from collecting additional measurement data and the use of various

predictors for the prediction of donor deferral.

Methods

Data sources and variables

Within each country, data were extracted from the blood banks’ database, selecting

data from whole blood donors from the past 5 years. The exact years differ per country

because of the availability of up-to-date datasets. For each country, the timeframe

of data collection was carefully selected to minimise iron-related blood bank policy

changes in the dataset. In Australia, Finland and the Netherlands, there is one national

blood bank (Australian Red Cross Lifeblood, Finnish Red Cross Blood Service and

Sanquin Blood Bank, respectively), and data from these blood banks were used. In

Belgium, data from Red Cross Flanders were used, which covers the whole of Flanders.

In South Africa, data from South Africa National Blood Service were used, which is

the major blood bank in the country.

For this study, only donors with five or more donation attempts were included to

balance the trade-off between prediction accuracy (which has been shown to decrease

with shorter time series at least in LMM) and data availability, as data becomes scarcer

with higher thresholds of minimum donation numbers. [108]
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The following donation-level variables are used in the prediction models:

• Donor age (Age)

• Days to previous donation (Days to previous whole blood donation)

• Time of day at the start of the donation (Time)

• Hemoglobin level at first donation (First Hb) (not used by dynamic linear mixed

model [DLMM])

• Hemoglobin level at previous donation (Previous Hb) (not used by linear mixed

model [LMM])

• Low hemoglobin at previous donation (Previous visit low Hb)

• Warm season (April–September for Northern hemisphere and October–March

for Southern hemisphere) (Warm season)

• Number of consecutive deferrals since previous successful donation (Consecutive

deferrals)

• Number of successful donations in last 5 years (Recent donations)

• Number of low hemoglobin measurements in the last 2 years (Recent low Hb)

Models were fitted separately for male and female donors. Unless otherwise spec-

ified, the analyses presented in this study were performed on a random subset of

10 000 donors per sex, to prevent differences in model performance between countries

due to different dataset sizes. The outcome is a dichotomous variable: deferral or

non-deferral.

Statistical methods

Five prediction models were compared in this study: a baseline model, random forest

(RF), support vector machine (SVM), linear mixed model (LMM) and dynamic linear

mixed model (DLMM). Note that these models are fundamentally very different. Each

of the models is briefly described below.

The baseline model is a simple logistic regression model that estimates the likeli-

hood of deferral as a function of only the hemoglobin level at the previous donation.

Random forest is a classification algorithm that consists of several decision trees,

fitted on sub-samples of the data. It uses averaging to improve predictive accuracy
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and prevent overfitting. The prediction output of an RF is the class selected by the

majority of the decision trees. The RF takes as input all predictor variables listed in

the previous section.

Support vector machine is a classification algorithm that aims to find the best

hyperplane to separate both outcome classes in a multi-dimensional space. The SVM

again takes all predictor variables listed in the previous section as input. Note that

none of the three models mentioned above explicitly models the subsequent donations,

but rather uses aggregated information on donation history (see list above). This is

where these differ from LMM and DLMM, which include a donor-specific intercept as

the only random effect.

The linear mixed model does not include previous hemoglobin as a predictor, but

instead uses the first hemoglobin level. The dynamic linear mixed model, however,

does include the previous hemoglobin as a predictor. Both LMM and DLMM are re-

gression models that predict not hemoglobin deferral but the actual hemoglobin level.

If this predicted hemoglobin level is lower than the country-specific donation thresh-

old, deferral is predicted. These LMMs were trained in a Bayesian setting with weakly

informative conjugate priors. They are described in more detail in a previous article

[108], and they are essentially simplified versions of the models proposed by Nasser-

inejad et al. [100], excluding the modelling of the temporary reduction in hemoglobin

after blood donation.

Model performance is assessed using the area under the precision–recall (AUPR)

curve. As no perfect model exists, each model provides an estimate of the probability

of deferring a donor. Depending on the probability that is applied as a classification

threshold (so anyone with a higher probability of deferral is labelled deferral and the

others non-deferral), a different number of correct and incorrect predictions will be

found. The precision–recall curve is a graph in which the recall versus the precision

of a prediction model at varying classification thresholds is shown, where precision is

the proportion of correctly predicted deferrals of all predicted deferrals and recall is

the proportion of all deferred donors that were correctly labelled as such. The higher

the AUPR curve, the better the prediction model’s performance. To fairly compare

AUPR across countries, we adjusted the AUPR values by subtracting the countries’

deferral rate. The adjusted value now indicates the improvement by the model over

always predicting non-deferral.

SHapley Additive exPlanations (SHAP) values were used to quantify the contribu-

tion of each predictor variable to the prediction for each individual observation. [111]

Because SHAP values are model-agnostic, they can be calculated and compared for
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each model. This results in variable importance measures even for models that do not

have interpretable coefficients, such as RF and SVM.

Docker container

To ensure that all collaborators perform exactly the same analyses, but without having

to export data outside of their organisation or between jurisdictions, we implemented

all models for hemoglobin deferral prediction in a Docker container whose development

was started earlier. [108] The Docker platform is easy to install on all major operating

systems. After installation, the Docker container image can be downloaded and the

user can run all models presented in this paper in a secure environment (without

requiring an internet connection). For this study, we added an implementation of

the SVM to the container, in addition to some specific improvements to facilitate the

comparison of outputs. Both the ready-to-use container image and its source code are

freely available through Dockerhub and Github, respectively. All analyses presented

in this paper were obtained using version 0.32 of the container. Analyses of the results

were performed using the R language and environment for statistical computing [112],

using packages dplyr [113] and tidyr [114] to handle data, and ggplot2 [115] to create

graphs.
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Men
Variable Australia Belgium Finland Netherlands South Africa

Number of donors 10 000 8552 10 000 10 000 10 000
Age in years 41 (29–54) 39 (25–52) 53 (41–60) 52 (39–60) 44 (33–54)
Mean consecutive de-
ferrals

0.003 0.025 0.018 0.029 0.213

Days to previous do-
nation

98 (84–167) 99 (90–182) 106 (77–168) 92 (70–147) 73 (59–118)

Hb in g/L 149 (142–157) 153 (147–159) 154 (147–162) 148 (142–156) 153 (142–163)
Proportion of Hb de-
ferrals

0.004 0.022 0.018 0.029 0.129

First Hb level in g/L 150 (143–158) 154 (148–160) 155 (147–162) 150 (143–158) 153 (140–163)
Time of day as hour
between 0 and 24

13.1 (10.8–15.6) 18.9 (17.8–19.7) 14.8 (13.1–16.4) 16.3 (13.1–18.7) 12.8 (11.2–14.6)

Hb level at previous
visit in g/L

148 (139–156) 151 (143–158) 153 (144–161) 148 (140–155) 151 (137–162)

Proportion of low Hb
at previous visit

0.003 0.020 0.018 0.030 0.124

Mean recent low Hb 0.008 0.066 0.074 0.127 0.553
Recent donations 4 (2–6) 4 (2–6) 5 (2–9) 5 (2–9) 4 (2–7)
Warm season propor-
tion

0.500 0.477 0.491 0.494 0.524

Women
Variable Australia Belgium Finland Netherlands South Africa

Number of donors 10 000 8552 10 000 10 000 10 000
Age in years 41 (29–54) 39 (25–52) 53 (41–60) 52 (39–60) 44 (33–54)
Mean consecutive de-
ferrals

0.003 0.025 0.018 0.029 0.213

Days to previous do-
nation

98 (84–167) 99 (90–182) 106 (77–168) 92 (70–147) 73 (59–118)

Hb in g/L 149 (142–157) 153 (147–159) 154 (147–162) 148 (142–156) 153 (142–163)
Proportion of Hb de-
ferrals

0.004 0.022 0.018 0.029 0.129

First Hb level in g/L 150 (143–158) 154 (148–160) 155 (147–162) 150 (143–158) 153 (140–163)
Time of day as hour
between 0 and 24

13.1 (10.8–15.6) 18.9 (17.8–19.7) 14.8 (13.1–16.4) 16.3 (13.1–18.7) 12.8 (11.2–14.6)

Hb level at previous
visit in g/L

148 (139–156) 151 (143–158) 153 (144–161) 148 (140–155) 151 (137–162)

Proportion of low Hb
at previous visit

0.003 0.020 0.018 0.030 0.124

Mean recent low Hb 0.008 0.066 0.074 0.127 0.553
Recent donations 4 (2–6) 4 (2–6) 5 (2–9) 5 (2–9) 4 (2–7)
Warm season propor-
tion

0.500 0.477 0.491 0.494 0.524

Table 8.1: Distributions of predictor variables in all five datasets. Numerical variables are
described by their median and (interquartile range) unless otherwise stated. Dichotomous
variables are described by the proportion of visits where the value was true.
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Results

Table 8.1 shows the distribution of the predictor variables in all countries.

Hemoglobin measurements and deferral policies

All participating countries use hemoglobin measurements to defer donors, but there

are differences in how hemoglobin is measured and when donors are deferred. Table

8.2 shows a summary of hemoglobin deferral related policies per country.

Country When and how is Hb measured? When is the donor de-
ferred?

Australia Capillary skin-prick Hb measurement by
hemoglobinometer before each donation. If
the Hb is below the threshold, a venous
sample is taken from the non-donation arm
and Hb is measured using the hemoglobi-
nometer at the donation site to confirm.

Hb levels below 120 g/L
(women) or below 130
g/L (men) as well as
donors with a 20 g/L drop
in Hb level relative to
their previous donation.

Belgium Hematology analyser Hb measurement
from venous sample after every successful
donation. Capillary skin-prick Hb mea-
surement before donation for new donors
and for donors with a venous Hb below the
eligibility threshold at the previous dona-
tion.

Hb level below 125 g/L
(women) or below 135
g/L (men) at previous
and current donation.

Finland Capillary skin-prick Hb measurement point
of care (POC) before each donation. If the
Hb is below threshold, venous sample is
taken and Hb measured by POC device at
donation site. [116]

Hb level below 125 g/L
(women) or below 135
g/L (men) as well as
donors with a 20 g/L drop
in Hb level relative to
their previous donation.

The Netherlands Capillary skin-prick Hb measurement be-
fore each donation. If a Hb level is below
the threshold, the measurement is repeated
(up to three times in total). The highest
value is used for the deferral decision. Since
late 2017, donors are also deferred for low
ferritin levels.

Hb level below 125 g/L
(women) or below 135
g/L (men).

South Africa Capillary skin-prick Hb measurement be-
fore each donation.

Hb level below 120 g/L
(women) or below 130
g/L (men). Before 2020,
cut-off levels of 125 and
135 g/L were used.

Table 8.2: Hemoglobin measurement and donor deferral policies per country.
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Area Under Precision−Recall Curve, 
adjusted for deferral rate

Figure 8.1: Area under the precision–recall (AUPR) curve for all countries and all models.
Note that each AUPR curve is adjusted by subtraction of the country’s deferral rate.

Comparison of model performance

Figure 8.1 shows the AUPR values (adjusted for deferral rate) and their confidence in-

tervals for all models for all countries. All models outperform the baseline model in all

countries. Performance of different models does not differ greatly within one country,

except for Australian female donors, for which RF and SVM clearly outperform the

LMM and DLMM. The same pattern is visible in South African male donors, although

less obvious, and slightly in Belgium. In general, variation in within-country model

performance is much smaller than variation between countries. Belgium and South

Africa obtain significantly higher AUPR values than the other three countries in all

models, except for the high-performing RF and SVM on Australian female donors.

Tables 8.3 and 8.4 show the predicted versus observed outcomes of the model with

the lowest AUPR (baseline model, female donors, Finland; unadjusted AUPR = 0.07)

and the model with the highest AUPR (RF, male donors, South Africa; unadjusted
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Observed outcome

Predicted outcome Accepted Deferred
Accepted 1146 10
Deferred 807 37

Table 8.3: Observed versus predicted outcomes of the baseline model applied to female
Finnish donors. This is the model with the lowest area under the precision–recall curve (0.07).
The precision of class deferral is 0.04 and the recall is 0.79.

Observed outcome

Predicted outcome Accepted Deferred
Accepted 1433 108
Deferred 195 264

Table 8.4: Observed versus predicted outcomes of the baseline model applied to male
South African donors. This is the model with the highest area under the precision–recall
curve (0.69). The precision of class deferral is 0.58 and the recall is 0.71.

AUPR = 0.69) to illustrate the AUPRs with actual case counts to make the results

more tangible.

Figure 8.2 shows the deferral rate and AUPR for all countries and models. Even

though the AUPR values are adjusted for the deferral rate, there is still a positive

correlation between deferral rate and (adjusted) AUPR. All models show the same

pattern for this association. Again, we see that for Australian female donors the RF

and SVM obtain a much higher AUPR than expected based on the deferral rate.

To further investigate whether the low deferral rates indeed affect the ability of the

models to predict deferral, we intentionally modified the deferral rate of the Belgian

datasets by removing a varying proportion of the deferred donors from the dataset and

refitting the models on these adapted datasets. The results are shown in Figure 8.3.

This figure clearly shows the positive association between deferral rate and AUPR.

There is no monotonically increasing association even though the datasets with lower

deferral rates are subsets of the datasets with larger deferral rates. The fact that

classification tasks are more difficult when there is a large imbalance between outcome

classes is a well-known phenomenon in statistics. [117]
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Figure 8.2: Adjusted area under the precision–recall value versus deferral rate in various
settings for various models.
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Figure 8.3: Adjusted area under the precision–recall as a function of the deferral rate for
various deferral levels in the Belgian dataset. The reduction in deferral rate was obtained by
sequentially removing an increasing number of deferred donations from the data.

Importance of individual variables

Figures 8.4 and 8.5 shows the variable importances derived from SHAP values calcu-

lated on a random subset of 1000 donors from the validation data. Variable impor-

tances are presented as mean absolute attribution (MAA) values. Variables are sorted

by MAA over all countries and models (represented by the horizontal bars). For each

individual country, the MAA values are provided and connected by a line.

RF and SVM

Comparing variable importances between countries within the same model allows iden-

tification of differences in predictive power of individual model parameters. In the RF

and SVM models, previous hemoglobin is the most important predictor for all coun-

tries and sexes and has almost twice the MAA of the second-most important predictor.

The MAA for most variables is similar across countries. There are some exceptions,

however: for South Africa, the number of recent low hemoglobin measurements is

much more important than in other countries, as well as the deferral status of the

previous blood bank visit. For Belgium, whether the donation visit took place during
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Figure 8.4: Variable importance (mean value and per individual country) determined by
the mean absolute attribution according to SHapley Additive exPlanations values for the
random forest and support vector machine models. The bars indicate the mean over all
countries. Variables are ordered by the mean mean absolute attribution over both sexes.
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Figure 8.5: Variable importance (mean value and per individual country) determined by
the mean absolute attribution according to SHapley Additive exPlanations values for the
linear mixed model and dynamic linear mixed model. The bars indicate the mean over all
countries. Variables are ordered by the mean mean absolute attribution over both sexes.
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the warm season is more important than in the other countries.

Linear and dynamic linear mixed models

For the LMMs, the MAA of variables show the highest similarity between countries. A

donor’s first hemoglobin measurement is the most important predictor, and all other

predictor variables have a relatively low MAA in comparison. Conversely, for DLMMs,

there is much more variation in MAA values between countries and between sexes. For

female donors, the most important predictor is age, and previous hemoglobin is only

the third-most important predictor, which deviates considerably from what was found

for all other models. In both LMM and DLLM, the difference in MAA for age between

sexes is much larger than in RF and SVM models.

Unlike the RF and SVM models, the LMM and DLMM estimate regression co-

efficients that may be compared across countries. For consistency with other model

results, we compared the MAA output rather than regression coefficients. A compari-

son of regression coefficients can be found in Supplementary Material. For all variables

except for Low Hb at previous visit (which is the second to last most important predic-

tor), coefficients are very similar between countries and 95% highest posterior density

intervals mostly overlap.

Absolute value of MAA per model

It should be noted that the MAA values for different models are on different scales. In

the baseline and SVM, SHAP values are on the log-odds scale, while for the RF and

(dynamic) LMM, these are expressed on the probability scale. Since only the relative

size of MAA values within models are compared, the difference in scales has no effect

on the interpretation of the results.

The effect of sample size

We fitted the same models as above on the full datasets from Finland, the Netherlands

and Australia to see whether this improves performance. This experiment showed that

using the full dataset increases performance only by a very small amount and within

the size of the confidence interval for the subsample of 10 000 donors.
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Discussion

In this paper, various prediction models for hemoglobin deferral were applied to blood

bank visit data from five countries to investigate the performance of prediction models

in different settings. In all countries, the baseline was outperformed by all other

models, although the overall performance was quite low for all models in all countries.

Model performance, however, varies considerably between countries, and a high defer-

ral rate is associated with better model performance. The relative importance of indi-

vidual predictors is very similar in different countries. In particular, the hemoglobin

level at previous donation is an important predictor for donor deferral in almost all

models. This indicates that models learn the same associations in different settings,

which supports the idea that these associations are the result of similar biological

processes underlying donor deferral.

The similarity of the relative importance of predictors also indicates that the dif-

ferences in performance are not caused by different associations between predictors

and hemoglobin deferral. Rather, deferrals are more difficult to predict in countries

with low deferral rates as there are fewer deferrals. The experiment with the Belgian

data, which shows that the predictability collapses with a decrease in deferral rate,

supports this finding. However, there appears to be an exception with the Australian

data on female donors, where a relatively high AUPR is obtained for two models de-

spite the very low deferral rate. Another possible explanation for the difference in

performance could be that data collected in some countries is more informative than

in others, for instance due to differences in the accuracy of hemoglobin measurements

and/or differences in deferral policies. However, we were unable to confirm this as a

plausible hypothesis: hemoglobin deferral is based on the same capillary measurement

in South Africa and the Netherlands, and yet model performance on South African

data is much higher than on Dutch data.

This study is the first to compare prediction models for hemoglobin deferral across

different settings. By focusing on the comparison of models between countries rather

than optimizing model performance based on variables available within a single coun-

try, the effect of the setting on model performance becomes visible. We show that

low deferral rates substantially limit model performance, although they do not hinder

the model in learning the same associations as with higher deferral rates. Comparing

results for male donors from Australia and South Africa illustrates this perfectly: the

deferral rate in South Africa is more than 10-fold than in Australia (18.6% vs. 1.4%),

resulting in a much higher AUPR (0.50 vs. 0.08 for RF), yet the variable importance
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is very similar.

Our findings are also in line with previously published work on hemoglobin deferral

prediction, which consistently shows that previous hemoglobin measurements are by

far the most important predictor. [99, 108, 110] Another interesting finding is that

LMM, which is the only model to use a donor’s first hemoglobin instead of the previous

hemoglobin, performs just as well as the other models. This may indicate that most

donors’ hemoglobin levels are quite stable over time, and that predictions of person-

alised donation intervals can already be made after a first hemoglobin measurement

at donor intake. To account for sudden drops in hemoglobin level, inclusion of the

previous hemoglobin seems to be more relevant. The importance of first hemoglobin

levels is also shown by others [118], which indicates that iron dynamics (hemoglobin

and ferritin levels) in blood donors can be predicted over a longer period from the

hemoglobin and ferritin levels at donor intake.

Although this study offers new insights into the predictability of donor deferral in

different settings, the actual predictive value of the models is low, which may be ex-

plained by the substantial variability in hemoglobin measurement outcomes. [119] Note

also that all analyses were done on donors with at least five donation attempts, which

limits the generalisability of the models to the full donor population. Many blood

banks collect more variables than were used in the predictions in this study and in-

cluding those may improve model performance. Improved performance is paramount,

as a model will create added value for the blood bank only when the benefits of the

correctly predicted deferrals will outweigh the loss due to incorrectly predicted defer-

rals. The prediction of a potential reduction of donation intervals by some donors by

the model may again add to the value of applying such prediction models.

Currently, the development of prediction models requires extensive expertise and

data to enable prediction of donor deferral. Ideally, the work and insights developed

by this collaboration would result in strategies that could also be of use to countries

with limited resources.

In conclusion, this study shows that model architecture in most cases has a limited

impact on the performance of prediction models for donor deferral, but in some cases,

exemplified by Australia, certain model architectures can capture the data better

than others. It would be recommended for any new country starting with hemoglobin

deferral prediction to try several architectures if possible. Adding better predictor

variables to the different model could considerably improve predictive performance.

Performance is strongly affected by the donor deferral rate. For most countries with

low deferral rates, prediction models are unlikely to contribute to an effective reduc-
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tion of donor deferral rates. Conversely, deferral prediction models may be applied in

countries with high deferral rates to reduce on-site deferral of donors. Hemoglobin de-

ferral remains a relevant topic, as it negatively affects both donors and blood services.

By joining efforts, we can enhance our understanding of which generic factors affect

donor deferral and to what extent. Also, only by studying the performance in different

settings, organization-specific and operational characteristics may be identified that

enhance or deteriorate prediction models’ performance, which may indicate directions

for further research and meaningful policy changes.
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Appendix
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Figure S8.1: Regression coefficients per predictor for both linear models. The 95% highest
posterior density intervals are indicated by horizontal lines (but not always visible due to being
extremely narrow for many predictor variables).
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Linear Mixed Model - male donors
Australia Belgium Finland Netherlands South

Africa

First Hb (g/L) 0.443 0.615 0.514 0.442 0.538
Days to previous
whole blood donation

0.035 0.057 0.078 0.096 0.096

Warm season -0.040 -0.065 -0.057 -0.072 -0.046
Recent low Hb 0.008 -0.006 0.017 0.010 0.037
Recent donations -0.019 -0.039 0.079 0.020 -0.009
Age (years) -0.030 0.012 -0.027 -0.045 0.001
Time (as hour
between 0-24)

-0.106 -0.056 -0.107 -0.135 -0.060

Previous visit low Hb 0.204 -0.265 0.108 0.050 -0.166
Consecutive deferrals -0.022 0.041 -0.029 -0.005 -0.012

Linear Mixed Model - female donors
Australia Belgium Finland Netherlands South

Africa

First Hb (g/L) 0.348 0.460 0.433 0.412 0.418
Days to previous
whole blood donation

0.104 0.156 0.109 0.091 0.132

Warm season -0.030 -0.053 -0.047 -0.050 -0.046
Recent low Hb 0.033 0.016 0.019 0.013 0.037
Recent donations -0.035 -0.036 0.092 0.042 -0.004
Age (years) 0.089 0.113 0.117 0.093 0.124
Time (as hour
between 0-24)

-0.092 -0.040 -0.085 -0.109 -0.050

Previous visit low Hb 0.055 -0.174 0.002 0.031 0.009
Consecutive deferrals -0.012 0.037 -0.005 0.005 -0.037

Table S8.1: Regression coefficients per predictor for the Linear Mixed Models.
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Dynamic Linear Mixed Model - male donors
Australia Belgium Finland Netherlands South

Africa

Previous Hb (g/L) 0.289 0.391 0.489 0.508 0.564
Days to previous
whole blood donation

0.036 0.060 0.077 0.095 0.103

Warm season -0.040 -0.067 -0.056 -0.073 -0.044
Recent low Hb 0.006 -0.006 0.014 0.006 0.031
Recent donations -0.013 -0.027 0.081 0.027 -0.005
Age (years) -0.064 -0.045 -0.052 -0.056 -0.024
Time (as hour
between 0-24)

-0.109 -0.064 -0.110 -0.138 -0.059

Previous visit low Hb -0.383 -0.268 0.116 0.003 -0.110
Consecutive deferrals 0.048 0.051 -0.009 0.036 0.012

Dynamic Linear Mixed Model - female donors
Australia Belgium Finland Netherlands South

Africa

Previous Hb (g/L) 0.242 0.369 0.318 0.234 0.504
Days to previous
whole blood donation

0.105 0.157 0.108 0.089 0.137

Warm season -0.030 -0.054 -0.046 -0.051 -0.045
Recent low Hb 0.030 0.016 0.016 0.010 0.034
Recent donations -0.034 -0.031 0.086 0.039 -0.008
Age (years) 0.102 0.131 0.193 0.137 0.149
Time (as hour
between 0-24)

-0.096 -0.045 -0.089 -0.114 -0.050

Previous visit low Hb -0.359 -0.204 -0.032 0.001 0.015
Consecutive deferrals 0.099 0.072 0.025 0.031 0.010

Table S8.2: Regression coefficients per predictor for the Dynamic Linear Mixed Models.
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Abstract

Background - On-site hemoglobin deferral for blood donors is sometimes necessary

for donor health, but demotivating for donors and inefficient for the blood bank. De-

ferral rates could be reduced by accurately predicting donors’ hemoglobin status before

they visit the blood bank. Although such predictive models have been published, there

is ample room for improvement in predictive performance. We aim to assess the added

value of ferritin levels or genetic markers as predictor variables in hemoglobin deferral

prediction models.

Methods - Support vector machines with and without this information (the full

and reduced model, respectively) are compared in Finland and the Netherlands. Ge-

netic markers are available in the Finnish data; ferritin levels in the Dutch data.

Results - While there is a clear association with hemoglobin deferral for both fer-

ritin levels and several genetic markers, predictive performance increases only marginally

with their inclusion as predictors. The recall of deferrals increases from 68.6% to 69.9%

with genetic markers and from 79.7% to 80.0% with ferritin levels included. Subgroup

analyses show that the added value of these predictors is higher in specific subgroups:

e.g., for donors with minor alleles on SNP 17:58358769, recall of deferral increases

from 73.3% to 93.3%.

Conclusions - Including ferritin levels or genetic markers in hemoglobin deferral

prediction models improves predictive performance. The increase in overall perfor-

mance is small, but may be substantial for specific subgroups. We recommend includ-

ing this information as predictor variables when available, but not to collect it for this

purpose only.
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Introduction

Deferral of blood donors with low hemoglobin levels is necessary to prevent iron de-

pletion. Currently, in Finland and the Netherlands, hemoglobin is measured before

donation, and leads to on-site deferral if hemoglobin is below the donation thresh-

old of 7.8 mmol/L (125 g/L) for women or 8.4 mmol/L (135 g/L) for men. On-site

deferral is demotivating for donors and can be a reason to drop out of the donor

pool permanently. [29] Hemoglobin deferral prediction models can help reduce the on-

site deferral rate: for invitation-based donations, predictions can be included in the

decision-making process of which donors to invite; for walk-in donations, the prediction

could be communicated to the donor (e.g., shown on a donor dashboard or app that

many blood banks offer), who can use this information to decide when to visit the

blood bank.

Currently, hemoglobin deferral prediction models are not very accurate at predict-

ing deferral on the specific day a donor may visit the blood bank. Although it is

possible to correctly predict most deferrals as such (and therefore prevent them), this

comes at the cost of incorrectly predicting some non-deferrals to be deferrals, which

results in a large net loss of donations if these donors are then not invited to the blood

bank based on this incorrect prediction. However, in a previous study we showed that

predicting hemoglobin deferral at different time points, and inviting a donor once the

predicted outcome is ‘non-deferral’, results in non-deferred donors to be invited ear-

lier and deferred donors to be invited later, thereby eliminating the loss of successful

donations. [109] This tells us that hemoglobin deferral prediction models are useful,

and it is worth the effort of trying to improve the predictions.

Multiple studies [120, 110, 121] have shown previous hemoglobin levels to be the

most important predictor of future hemoglobin deferral. Researchers from blood

services in different countries have investigated many different potential predictors

of hemoglobin deferral, to assess whether the inclusion of these predictors improves

prediction performance. Most of these predictors were found to not substantially im-

prove the models: information on menstruation, diet, ethnicity, and smoking all only

slightly improve model performance, even though they are known to be associated

with iron stores. [110] One small-scale study on 261 donors did show that ferritin,

soluble transferrin receptor, and hepcidin were associated with subsequent anemia.

[121]

In this study we investigate the added value of including ferritin levels and genetic

information in hemoglobin deferral prediction models. Ferritin is routinely measured
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at Sanquin, the Dutch national blood service, and therefore available for all donors.

Genetic information for several iron-related SNPs is collected for many donors by

the Finnish Red Cross blood service. Because the information in both countries is

collected without targeting specific donors, our results provide a realistic indication

of how much predictions would be improved if the prediction model was to be used

in practice. Our results will therefore be useful for blood services that would like to

collect additional donor information to improve hemoglobin deferral predictions.

Methods

Data

Data on blood donation attempts by whole-blood donors from (almost) five recent

years were extracted from the eProgesa database (MAK-SYSTEM, Paris, France) in

Finland and the Netherlands. Only data from donors who explicitly provided informed

consent for the use of their data for scientific research were used. This consent is given

by more than 99% of all Dutch donors. All Finnish blood donors studied provided an

informed consent for biobank research in accordance with the Finnish Biobank Act

and the study was approved by the Blood Service Biobank (project 004-2019). In

Finland, approximately 23% of active blood donors have given this consent since the

founding of the Blood Service Biobank in 2017.

Finnish data reflects data entries from January 2016 through April 2020, Dutch

data from January 2017 through December 2021. For each visit the following infor-

mation was collected in both countries: donor sex, donor age, donation date, and

hemoglobin level. Additionally, ferritin level is measured at every new donor intake

and upon every fifth donation in repeat donors in the Netherlands.

In Finland, only donors participating in the Blood Service Biobank are included, as

only for these donors, genetic information related to iron metabolism is available. [122]

The four SNPs were identified as significantly associated with higher prevalence of iron

deficiency anemia in an iron deficiency anemia meta-analysis on Finnish and UK data.

Polygenic risk scores were derived for three related endpoints: iron deficiency anemia,

ferritin, and hemoglobin. [123]

In total, complete information on the predictor variables (see Table 9.1) was avail-

able for 172 508 donation attempts by 42 255 donors in Finland, and 456 384 donation

attempts by 157 423 donors in the Netherlands.

The variable of interest is ‘HbOK’, a dichotomous variable that indicates whether
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Variable Unit or
values

Description Country/-ies

Sex male,
female

Biological sex of the donor;
separate models are trained for
men and women

Both

Age years Donor age at time of visit Both
Month 1-12 Month of the year of the visit Both
NumDon donations Number of successful (collected

volume > 250 ml) whole-blood
donations in the last 24 months

Both

DaysSinceFirstDon days Number of days since the donor’s
first visit to the blood bank

Both

HbPrevi mmol/L Hemoglobin level at ith previous
visit, for i between 1 and 5

Both

DaysSinceHbi days Time since related hemoglobin
measurement at ith previous
visit, for i between 1 and 5

Both

FerritinPrev µg/L Most recent ferritin level
measured in this donor

Netherlands

SNP 1:169549811 0, 1, 2 Number of minor alleles in SNP
rs6025

Finland

SNP 6:32617727 0, 1, 2 Number of minor alleles in SNP
rs3129761

Finland

SNP 15:45095352 0, 1, 2 Number of minor alleles in SNP
rs199138

Finland

SNP 17:58358769 0, 1, 2 Number of minor alleles in SNP
rs199598395

Finland

PRS anemia standard
deviations

Standardised polygenic risk score
for anemia

Finland

PRS ferritin standard
deviations

Standardised polygenic risk score
for ferritin

Finland

PRS hemoglobin standard
deviations

Standardised polygenic risk score
for hemoglobin

Finland

Table 9.1: Predictor variables available in each country.
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the result of the donation attempt was deferral (i.e., hemoglobin level below the eligi-

bility threshold for donation) or non-deferral (i.e., hemoglobin level equal to or above

the threshold).

Donor deferral due to low hemoglobin is similar in Finland and the Netherlands.

Hemoglobin is measured using a capillary skin-prick device before each donation, and

eligibility thresholds for donation are 7.8 mmol/L for women and 8.4 mmol/L for

men. However, in case the measurement is below the eligibility threshold in Finland,

hemoglobin is measured again (using the same device) in a venous sample, and this

measurement is used for the deferral decision. In the Netherlands two additional

capillary hemoglobin measurements are taken when the first measurement outcome is

below the eligibility threshold, and the donor is allowed to donate if any of the three

measurement outcomes is above the eligibility threshold.

Analyses

For both countries, two models were fitted for each sex: one with all predictor variables

available (the full model), and one with only those predictor variables that are available

in both countries (the reduced model). By comparing the full model with the reduced

model in both countries, the added value of extra predictor variables (i.e., genetic

information in Finland and ferritin information in the Netherlands) can be assessed.

The prediction models used were based on models developed for an earlier study

considering Dutch data only. [109] All models are based on support vector machines

(SVMs), supervised machine learning models that learn a separation between outcome

classes from a training set, after which the model can be used to predict donor deferral

for observations in an unseen test set. Here the training set consists of blood bank

visits in the first four years of data, whereas the test set consists of data collected in

the final year.

Given a dataset and a set of predictor variables, a model consists of ten SVM sub-

models. The sub-models are named SVM-sex-n, where sex indicates donor sex (m for

male, f for female donors) and n indicates the number of previous blood bank visits that

are used for prediction. That is, each sub-model includes HbPrevi and DaysSinceHbi

for i ranging from 1 to n as predictor variables. If sex is omitted in the sub-model

name, it refers to the combination of two sex-specific sub-models. The number of

blood bank visits (n) considered in this study varies from one through five, and so five

sub-models per sex are created. Donors can only be included in the SVM-sex-n sub-

model if they have at least n previous visits, therefore the sizes of the datasets used

for both training and testing decrease from SVM-1 to SVM-5. Hyperparameters were
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optimised separately for each sub-model, using stratified (on the outcome variable)

five-fold cross-validation within the training set data only. Hyperparameters were

optimised using grid search, using the balanced accuracy (defined as the weighted

average of recall in both classes) as scoring method, which is suitable for datasets with

imbalanced outcome sizes, as mistakes in the minority class are penalised more than

those in the majority class.

During model training, the classification threshold is chosen again by optimizing

the balanced accuracy. The predictive performance of the models is assessed using

precision (also known as positive predictive value) and recall (also known as sensitivity)

at this classification threshold. For non-deferral prediction, precision is defined as the

proportion of true non-deferrals out of all predicted non-deferrals; recall is defined as

the proportion of predicted non-deferrals out of all true non-deferrals. In this context,

the complement of the precision is the hypothetical new deferral rate if the model

would be used to choose which donors to invite, and the complement of the recall is

the proportion of successful donations that would be missed by the model because the

donors are incorrectly predicted to have a low hemoglobin level. Precision and recall

can be calculated for both outcome classes (‘deferral’ and ‘non-deferral’).

The precision-recall curve is a graph in which the recall and the precision of a

prediction model at varying classification thresholds is shown. The AUPR is the area

under this curve, a number between 0 and 1, where 1 would indicate a perfect classifier.

By subtracting the deferral rate from the AUPR, we get an adjusted AUPR, which

reflects the improvement by the model over a strategy that would always predict non-

deferral. Without this correction the improvement made by the model would be biased

by the difference in deferral rate. The AUPR represents the ability of the model to

distinguish between two classes at differing classification thresholds. It is possible for

model A to have a higher AUPR than model B, even if precision and recall at the

optimal classification threshold are the same in both models.

Model explanations

Because SVMs do not provide model coefficients that can be directly interpreted, we

use Shapley Additive exPlanations (SHAP) values to investigate the importance of

different predictor variables. [101] SHAP is a model agnostic explainer that shows the

contribution of each predictor variable to the predicted outcome. This contribution is

calculated for each individual observation separately (in a subsample of the test set)

and is therefore very informative.
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Subgroup analysis

To further investigate the value of including ferritin and genetic information in the

models, we perform additional analyses in which donors are placed in groups defined

by ferritin level or genotype. Deferral rate, model performance, and the difference

between reduced and full model performance are calculated and compared to assess

whether there are subgroups of donors for whom including the extra variables results

in better predictions.

Software

All analyses were performed in Python 3.10 using packages numpy and pandas for

data processing, scikit-learn for model training and predictions, shap for calculating

SHAP values, and matplotlib for creating graphs. All code is available on GitHub and

is indexed on Zenodo at https://doi.org/10.5281/zenodo.7780718.

Results

Table 9.2 shows the number of donation attempts used for each model in both coun-

tries. Deferral counts and rates are given in brackets. Sample sizes are much larger in

the Netherlands than in Finland. This is because the total number of blood donations

is much higher in the Netherlands than in Finland due to a larger population (17.4

million versus 5.5 million in 2020); but also, because genetic information is available

in Finland in only a subgroup of donors, whereas ferritin measurements are available

for all Dutch donors.

Deferral rates are very similar in both countries, around 3% for women and 1%

for men. The biggest difference in deferral rates is found in men with at least one

previous hemoglobin measurement, where the deferral rate is 0.6 percentage points

higher in Finland. In most cases deferral rates go down whenever more previous visits

are included; this is most likely the result of self-selection, where donors with lower

hemoglobin levels are less likely to return for subsequent donations than donors with

higher hemoglobin levels. Surprisingly, for Dutch men this pattern seems to some

extent to be reversed as their deferral rate goes up with an increasing number of

donations.

Tables S9.1 and S9.2 in the Appendix show the marginal distribution of the predic-

tor variables, combined for all sub-models. Donors in Finland are older than donors

in the Netherlands (median age 46 vs 30 years in women, 52 vs 34 years in men)
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Women Men
Model Finland Netherlands Finland Netherlands

SVM-1
83 628 236 994 88 880 219 390
(3216; 3.9%) (7724; 3.3%) (1480; 1.7%) (2411; 1.1%)

SVM-2
68 718 166 640 78 268 179 465
(2494; 3.6%) (5875; 3.5%) (1264; 1.6%) (2114; 1.2%)

SVM-3
55 011 123 171 68 225 150 396
(1859; 3.4%) (4370; 3.6%) (1054; 1.5%) (1889; 1.3%)

SVM-4
43 164 93 868 58 951 127 807
(1307; 3.0%) (3149; 3.4%) (896; 1.5%) (1667; 1.4%)

SVM-5
33 179 72 165 50 540 108 832
(868; 2.6%) (2112; 2.9%) (749; 1.5%) (1424; 1.3%)

Table 9.2: Number of blood bank visits available per model for both countries; number of
deferrals and deferral rates are given in brackets.

and the number of donations in the past two years (‘NumDon’) is also higher, with a

difference in median donations of 2 for both sexes. This difference can be explained by

the sample composition: the Finnish dataset consists of participants of the Blood Ser-

vice Biobank, who have given consent for medical research and are typically regular,

committed blood donors. Genetic information is only available for these donors.

Hemoglobin levels are slightly higher in Finland for both sexes for all variables

HbPrevi, by 0.1-0.3 mmol/L. The time between subsequent donation attempts (vari-

ables DaysSinceHbi) is slightly shorter for Finnish women than for Dutch women,

but almost identical for men. This difference can be partly explained by a difference

in minimum donation interval between blood donations: for women, 91 days in Fin-

land vs 122 days in the Netherlands; for men, 61 days in Finland vs 57 days in the

Netherlands.

Predictive performance

Predictive performance can be assessed for individual sub-models, or for all sub-models

combined, by using the most complex sub-model possible to predict each outcome.

When more previous blood bank visits are taken into consideration, more predictor

variables are used, and we expect the performance of the sub-model to increase. Figure

9.1 shows that this is the case for both the full and reduced model in both countries.

The adjusted AUPR increases from SVM-1 through SVM-5 almost everywhere. An

exception is the AUPR for class deferral in SVM-m-5, where the reduced model for

Finnish donors shows an unexpected drop in the adjusted AUPR. For male donors,
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Figure 9.1: Adjusted AUPR by sub-model for both countries and both sets of predictor
variables.

class non-deferral, the adjusted AUPR does not seem to change from SVM-m-1 through

SVM-m-5.

Overall model performance and the difference in model performance between the

full and reduced models are assessed by precision-recall curves and adjusted AUPR

values as described in the Methods section. Figure 9.2 shows the precision-recall curves

for various models (SVM-1 through SVM-5, using the model with the most predictor

variables possible for each donation attempt) by sex and true outcome class. Table 9.3

shows the corresponding adjusted AUPR values for each model. In general, models are

better at identifying non-deferrals (the most common outcome) than deferrals, even

with scoring methods that weigh mistakes in both outcome classes proportionally.

However, all curves are well above the baseline, indicating a structural improvement

as compared to random guessing.

When comparing the reduced models to each other, one can observe that the

performance is very similar in both countries. For women the AUPR is higher in

Finland than in the Netherlands for the class deferral, but lower for the class non-
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Figure 9.2: Precision-recall curves for the prediction models. For both countries, the curve
is shown for the reduced and full prediction models. The baseline (proportion of observations
belonging to this outcome class, i.e., for class deferral, the deferral rate) is shown as a dotted
horizontal line.

Baseline Reduced model Full model
FI NL FI NL FI NL

Male donors, class non-deferral 0.990 0.989 0.008 0.009 0.009 0.009
Female donors, class non-deferral 0.975 0.967 0.019 0.024 0.020 0.024
Male donors, class deferral 0.010 0.011 0.066 0.072 0.104 0.078
Female donors, class deferral 0.025 0.033 0.106 0.086 0.115 0.086

Table 9.3: AUPR values for all models. AUPR values for the reduced and full models have
been adjusted by subtracting the baseline AUPR.
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deferral. This indicates that deferrals are more likely to be predicted correctly, but at

the cost of more inaccuracies when predicting non-deferrals.

Moving from the reduced to the full model has virtually no effect on the AUPR for

the class non-deferral: the AUPR of the full model is almost identical to the AUPR of

the reduced model for both countries and sexes. For the class deferral, however, there

is a difference: in Finland, AUPR increases by 58% (from 0.066 to 0.104) for men and

by 8.5% (from 0.106 to 0.115) for women. In the Netherlands, AUPR remains the

same for women (0.086 for both) but increases by 8.3% (from 0.072 to 0.078) for men.

Table 9.4 provides the confusion matrices of model predictions by the reduced and

full models for both countries. In the Finnish data, going from the reduced to the

full model causes 7 (1.9%) more deferrals to be predicted correctly, while 59 (0.3%)

more non-deferrals are predicted correctly. These improvements were all for female

donors; at the chosen threshold values, no net changes in the confusion matrix were

seen for male donors. In the Dutch data, 13 (0.3%) more deferrals, as well as 1473

(1.0%) more non-deferrals are predicted correctly by the full model as compared to

the reduced model.

Note that the large increase in AUPR for Finnish male donors, class deferral, is not

reflected in the confusion matrices. The PR-curve in Figure 9.2 shows that the AUPR

increase is due to higher precision in the full model between a recall of 0 and 0.2.

However, the optimal classification threshold that is used by the models corresponds

to a recall of 0.7, at which point precision in the full model is exactly equal to precision

in the reduced model.

Variable importance

For all sub-models, SHAP values show the importance of the different predictor vari-

ables on the predicted outcome. Figures 9.3 and 9.4 shows SHAP plots of sub-model

SVM-5 of the full model, separately for both sexes and countries. These plots show

that in both countries and for both sexes, the most important predictor variable is

HbPrev1, the most recent hemoglobin measurement. The direction of the association

between the impact on the model output and the feature value for all HbPrevi vari-

ables is sensible: a lower hemoglobin measurement is predictive of deferral. Age is a

more important predictor variable for women than for men in both countries, which

is known from previous studies: young women have the highest probability of being

deferred due to low hemoglobin, due to monthly iron loss with menstruation.

The additional genetic and ferritin variables for either country end up rather low

in the variable importance ranking. The importance of all polygenic risk score and
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Finnish donors - reduced model

Predicted deferral Predicted non-deferral
True deferral 363 166
True non-deferral 4573 18 713

Finnish donors - full model

Predicted deferral Predicted non-deferral
True deferral 370 (+7) 159 (-7)
True non-deferral 4662 (-59) 18 624 (+59)

Dutch donors - reduced model

Predicted deferral Predicted non-deferral
True deferral 3762 957
True non-deferral 56 676 145 549

Dutch donors - full model

Predicted deferral Predicted non-deferral
True deferral 3775 (+13) 944 (-13)
True non-deferral 55 203 (-1473) 147 022 (+1473)

Table 9.4: Confusion matrices of predictions by the reduced and full models. Numbers
are summed over both sexes and over all sub-models SVM¬-1 through SVM-5. Observations
that can be predicted with multiple sub-models are included the most complex sub-model.
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SNP variables in the Finnish models is very low. However, having the minor allele

present in either SNP 6:32617727, SNP 15:45095354 or SNP 17:58358769 impacts the

model output negatively. This effect is more pronounced in male than female donors.

Subgroup analysis in Finnish data

To further investigate the effect of the SNPs on deferral prediction, model performance

was calculated for groups of donors with the same value for one SNP at a time. Donors

with value 1 and 2 are grouped together, as the proportion of donors with value 2 is

extremely low, except for the SNP on chromosome 6.

Table 4 shows that for the SNPs on chromosomes 1, 6 and 17, deferral rates are

higher amongst donors with one or two minor alleles than in donors with only major

alleles. As these SNPs are selected because of their association with iron deficiency

or anemia, this is to be expected. Additionally, precision and recall of class deferral

are generally higher for donors with minor alleles than for those without, for both

the reduced and full models. The SNP 17:58358769 shows this same trend, but the

difference between donors with and without minor alleles is much larger. Precision in

this subgroup is about twice as high as the overall precision in both the reduced and

full model. The increase in recall between the full and reduced model (which changes

from 0.733 to 0.933) is the highest of all subgroups.

An additional analysis on the distribution of hemoglobin measurement per donor

showed that the higher deferral rate among donors with minor alleles on SNP 17:58358769

can be explained through a combination of a slightly lower average hemoglobin level

and a slightly higher variance. This causes these donors to have a slightly higher de-

ferral probability (median 32.6% for donors without minor alleles, median 36.6% for

those with minor alleles). This difference was not observed for the other SNPs.
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Figure 9.3: SHAP summary plots for the full Finnish model, for women (top) and men
(bottom).
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Figure 9.4: SHAP summary plots for the full Dutch model, for women (top) and men
(bottom).
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Subgroup analysis in Dutch data

Similar to the subgroup analysis in Finnish data, model performance was calculated

for groups of donors with similar ferritin levels: < 15 µg/L, 15-30 µg/L, 30-50 µg/L,
50-100 µg/L, and > 100 µg/L. The first two groups are those that would be deferred

for 12 or 6 months, respectively, in accordance with Sanquin’s ferritin deferral policy.

Table 5 shows that precision and recall are highest for donors with ferritin levels

between 30 and 50 µg/L. This is also the group of donors with the highest deferral

rate: 3.2%, versus an overall deferral rate of 2.3%. The fact that this group has the

highest deferral rate, and not donors with lower ferritin levels, can be explained by

the fact that donors with ferritin levels below 30 µg/L were deferred for six months

(twelve months for ferritin levels below 15 µg/L). This delay for the next donation

provides the donors with sufficient time to replenish their iron stores and therefore

reduces the deferral probability. Hence, donors with ferritin levels just above the

ferritin-deferral threshold will have the highest hemoglobin-deferral rate, as they have

neither the advantage of the donation break, nor that of a very high ferritin level,

which also protects against low hemoglobin levels.
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Discussion

Predicting deferral for low hemoglobin levels is a topic of interest to many blood banks,

as accurate predictions could aid in decreasing deferral rates. This study investigates

the added value of including information on the donor’s ferritin level or iron-related

genetic information to improve hemoglobin deferral prediction. This is done by com-

paring prediction models with and without information on genetic markers and ferritin

levels for the Finnish and Dutch blood bank respectively. The reduced models (i.e.,

without the additional information) use the exact same predictor variables in both

countries. The increase in AUPR is larger for adding genetic markers than it is for

adding ferritin levels. Especially for the Finnish male donors, including genetic mark-

ers in the prediction model improves the ability of the model to distinguish between

the two outcome classes, although at the optimal classification threshold precision and

recall do not increase from the reduced model. The SHAP values of the predictions

by the full models in both countries show that both genetic markers and ferritin lev-

els have a much smaller impact on the prediction than the variables included in the

reduced models, as confirmed by the modest increase in AUPR between the reduced

and full models.

Overall, including either genetic or ferritin information has little effect on the pre-

dictions made by the models. Both increase the proportion of deferrals that are pre-

dicted correctly: 1.9% and 0.3% more deferrals are correctly identified in the Finnish

and Dutch setting respectively when the full model is used rather than the reduced

model. However, we found that in both countries, there is a subgroup of donors for

which the full model performs substantially better than the reduced model. These are

Finnish donors with minor alleles on SNP 17:58358769, and Dutch donors with ferritin

levels between 30-50 µg/L. In both cases, these are subgroups of donors with a higher-

than-average deferral rate. Performance for these subgroups is already higher than

average in the reduced model, but when using the full model this difference increases

even further.

Other studies have shown that previous hemoglobin measurements are the most

influential predictors for hemoglobin deferral. Including lifestyle behavior, smoking,

ethnicity, or menstruation in prediction models also improves performance, but only

marginally. [110] A Finnish study showed that genetic information does not improve

the predictive performance of hemoglobin levels (as opposed to hemoglobin deferral).

[108] This study confirms that the performance of prediction models increases slightly

when either ferritin or genetic information is added. Still, considering the large number
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of donation visits blood banks receive yearly, even a small increase could potentially

prevent hundreds of deferrals. It should be noted that the Finnish population is more

genetically homogenous than other countries, and that they are also genetically distinct

from other countries due to several historic population bottlenecks and geographical

isolation. [124] According to the Genome Aggregation Database (gnomAD) [125],

the SNP 17:58358769 minor allele frequency in the Finnish population is 0.0147, and

only 0.0007 in the European (non-Finnish) population. It is not found in any other

populations and was discovered by an iron deficiency GWAS in the FinnGen project.

[123] This means that findings on Finnish genetic data may not be representative for

other countries, but analyses in other populations may discover similar population-

specific variations that may make the use of genetic data more beneficial.

The main limitation of this study is that the effect of including ferritin and genetic

information is studied in two different countries, rather than in a single population.

By comparing against the reduced model and reporting the relative increase in perfor-

mance, we attempt to mitigate this limitation. The very similar adjusted AUPRs of

the reduced models and the similarity in SHAP values of the models indicate that the

countries are rather comparable. A second limitation is that all Dutch donors could

be included in this study, but only Finnish donors from the Blood Service Biobank,

as genetic information is not available for other donors.

In general, we again confirm that accurately distinguishing deferrals from non-

deferrals by predictive modelling is a complex task that comes at the cost of losing

a substantial number of successful donations by incorrectly predicting them to be

deferrals. A major reason for the low performance of our prediction models is the

measurement variability, partly caused by the (pre-) analytical variability of the cap-

illary hemoglobin measurements. [119] As long as we try to predict an outcome that

is highly variable, the performance of any prediction model will remain unsatisfactory,

regardless the number of predictor variables included.

However, in the absence of a better measurement or decision strategy, it is worth-

while investigating which information would lead to better hemoglobin deferral pre-

dictions as it still leads to a better understanding of the underlying process(es). Based

on our results, we would recommend including ferritin and genetic information in

prediction models in case these are readily available. Compared to the reduced model,

including genetic information would have resulted in seven fewer deferrals and 59 more

donations in one year, at a cost of genotyping approximately 24 000 donors. Including

ferritin levels results in 13 fewer deferrals and 1473 more donations in one year, and

although measuring ferritin levels is less expensive than genotyping, this measurement
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must be repeated regularly whereas genotyping only has to be performed once for each

donor. We would therefore not recommend collecting this information explicitly for

the use in hemoglobin deferral prediction, as the marginal increase in performance is

not likely to be worthwhile the investment of both time and money.
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Appendix

Women
Finland Netherlands

Number of donations 83 628 236 994
Age 46 (29 - 57) 30 (23 - 47)
Month 6 (3 - 10) 7 (4 - 10)
NumDon 3 (2 - 5) 1 (0 - 3)

SNP 1 169549811
0: 79 991

NA1: 3567
2: 70

SNP 6 32617727
0: 26 241

NA1: 41 282
2: 16 105

SNP 15 45095352
0: 73 159

NA1: 10 101
2: 368

SNP 17 58358769
0: 82 336

NA1: 1287
2: 5

PRS anemia (∗106) -0.002 (-0.847 - 0.828) NA
PRS ferritin (∗106) 0.032 (-1.191 - 1.280) NA
PRS hemoglobin (∗106) 0.039 (-3.010 - 3.105) NA
FerritinPrev NA 47 (33 - 47)
HbPrev1 8.7 (8.3 - 9.1) 8.5 (8.1 - 8.9)
DaysSinceHb1 131 (104 - 203) 135 (104 - 194)
HbPrev2 8.7 (8.3 - 9.1) 8.5 (8.1 - 8.9)
DaysSinceHb2 280 (221 - 391) 301 (254 - 405)
HbPrev3 8.7 (8.3 - 9.1) 8.5 (8.1 - 8.8)
DaysSinceHb3 419 (338 - 558) 475 (396 - 627)
HbPrev4 8.7 (8.3 - 9.1) 8.4 (8.1 - 8.8)
DaysSinceHb4 546 (453 - 701) 653 (546 - 822)
HbPrev5 8.7 (8.3 - 9.1) 8.4 (8.1 - 8.8)
DaysSinceHb5 666 (561 - 825) 831 (703 - 1004)
Deferral rate 0.0385 0.0326

Table S9.1: Marginal distribution of predictor variables in both countries for female donors.
Variables are described by their median and 1st and 3rd quartiles, except for SNP variables,
for which the allele count distributions are shown. Each donation attempt is included only
once in this description and is given for the prediction using the highest number of previous
visits only (e.g., a visit by a female donor with three previous visits could be included in
SVM-f-1 through SVM-f-3 but is only included in SVM-f-3).
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Men
Finland Netherlands

Number of donations 88 880 219 390
Age 52 (38 - 60) 34 (26 - 48)
Month 6 (3 - 10) 7 (4 - 10)
NumDon 5 (3 - 7) 3 (1 - 5)

SNP 1 169549811
0: 85 358

NA1: 3487
2: 35

SNP 6 32617727
0: 26 779

NA1: 43 714
2: 18 387

SNP 15 45095352
0: 78 223

NA1: 10 168
2: 489

SNP 17 58358769
0: 87 358

NA1: 1522
2: 0

PRS anemia (∗106) -0.040 (-0.877 - 0.792) NA
PRS ferritin (∗106) -0.023 (-1.272 - 1.243) NA
PRS hemoglobin (∗106) -0.019 (-3.095 - 3.256) NA
FerritinPrev NA 77 (44 - 141)
HbPrev1 9.6 (9.1 - 10.0) 9.4 (9.0 - 9.9)
DaysSinceHb1 98 (71 - 147) 81 (63 - 133)
HbPrev2 9.6 (9.1 - 10.0) 9.4 (9.0 - 9.8)
DaysSinceHb2 204 (154 - 293) 184 (138 - 287)
HbPrev3 9.6 (9.0 - 10.0) 9.4 (9.0 - 9.8)
DaysSinceHb3 306 (235 - 419) 300 (224 - 434)
HbPrev4 9.5 (9.0 - 10.0) 9.4 (8.9 - 9.8)
DaysSinceHb4 399 (314 - 535) 418 (314 - 581)
HbPrev5 9.5 (9.0 - 10.0) 9.4 (8.9 - 9.8)
DaysSinceHb5 489 (389 - 639) 535 (409 - 714)
Deferral rate 0.0167 0.0110

Table S9.2: Marginal distribution of predictor variables in both countries for male donors.
Variables are described by their median and 1st and 3rd quartiles, except for SNP variables,
for which the allele count distributions are shown. Each donation attempt is included only
once in this description and is given for the prediction using the highest number of previous
visits only (e.g., a visit by a male donor with three previous visits could be included in
SVM-m-1 through SVM-m-3 but is only included in SVM-m-3).
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Chapter 10

Conclusions, general discussion and anticipated future

research

Throughout this thesis, several statistical and data science analysis techniques have

been applied to blood donation data in order to explore how their application can

improve different aspects of donor management strategies. In this chapter, we sum-

marise the findings from these analyses and discuss challenges that occurred in multiple

chapters and therefore deserve more in-depth explanation and attention.

10.1 Conclusions

In the Introduction, seven research questions were formulated. Here, each research

question is answered based on the results as described in Chapters 3-9, and main

conclusions for each question are given.

10.1.1 Hemoglobin and ferritin levels

Q1 Does a ferritin-based donor deferral policy prevent donors from re-

turning with iron deficiency?

The vast majority of donors that are deferred for low ferritin levels returns with

considerably increased ferritin levels. After a 6-month deferral, ferritin levels

were ≥ 15 µg/L for 88% of returning female donors and for 99% of returning

male donors, which is a positive result. After a 12-month deferral, this was the

case for 74% and 95% of returning female and male donors, respectively. [1]

Although comparisons to a control group would be needed to draw conclusions

about causality, it is reasonable to assume that if these donors had returned

to the blood bank sooner (i.e., had they not been deferred), their ferritin lev-

els would have been lower. From observational data, we also showed that the

implementation of the ferritin deferral policy was associated with a substantial

decrease in deferral rates due to low hemoglobin. Before the implementation of

the policy, the hemoglobin deferral rate was around 8% for women and 5% for

men, and currently it is down to 3% and 1%, respectively. [96]

In the same study, the distribution of ferritin levels was compared between sexes

and between first-time and repeat donors. We found that in first-time donors,

25% of women and 2% of men have ferritin levels below the deferral threshold of

30 µg/L. These percentages are considerably higher in repeat donors, where 53%
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of women and 42% of men have ferritin levels below 30 µg/L. The distribution of

ferritin levels among first-time donors is very different for men and women, with

women having much lower ferritin levels, but this difference almost disappears

when comparing repeat donors. This suggests that regular blood donation results

in a decrease in iron stores, which impacts men more than women because their

natural iron stores are generally higher, and because of their higher donation

frequency. These numbers underline the necessity of the ferritin-based deferral

policy, especially since the proportion of new female donors under the age of 25

has been increasing rapidly in the Netherlands [34], and this is the group most

at risk of having a low ferritin level.

The above findings are all described in Chapter 3. The main conclusion to this

research question is that the ferritin-based donor deferral policy is successful in

preventing donors from returning to donate with ferritin levels below 15 µg/L.

Q2 What are determinants of variations in ferritin levels?

Distributions of ferritin levels were compared between sexes and between first-

time and repeat donors in the study on the effect of the ferritin-based deferral

policy. [96] Within these groups, considerable variation in ferritin levels between

individuals was observed. By applying structural equation modelling, we found

that 25% of ferritin variance in new donors and 40% in repeat donors could

be explained by individual characteristics, donation history (for repeat donors

only), and environmental factors. [36] We confirmed previous findings, both

our own and from other donor populations, that ferritin levels are substantially

higher in men than in women among first-time donors, and that repeated blood

donation impacts men’s ferritin levels more than women’s, resulting in similar

ferritin levels for both sexes among repeat donors.

The main determinants of variation in ferritin levels are individual characteristics

and donation history, as expected. The association between ferritin levels and

environmental factors was smaller but still substantial. A likely explanation

for this association is that air pollution can cause low-grade inflammation, and

ferritin levels are known to be correlated with inflammatory activity. [47, 9, 126]

Interestingly, the association was twice as high for repeat donors as for first-

time donors. This indicates that environmental factors are more associated with

ferritin recovery after blood loss than with ferritin levels in a steady state.

The above findings are described in Chapter 4. The main conclusion is that

combining multiple determinants in a single integrative model allows us to ex-
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plain a considerable part of ferritin variation based on individual characteristics,

donation history and environmental factors.

Q3 Can we find groups of donors whose hemoglobin levels change in a

similar manner over the course of their donor career?

By clustering donors’ hemoglobin trajectories, we aimed to identify groups of

donors with similar long-term responses to blood donation. This clustering could

then be used to find associations with characteristics of the donors, and to find

optimal donation intervals for the different groups. Both clustering methods

resulted in distinct clusters of donors with clear differences in hemoglobin levels

over time. However, the clusters differ mostly in the average hemoglobin value

over time, as donors with similar hemoglobin levels at their first measurement

are clustered together, and hemoglobin levels reduce slowly over time. With the

clustering methods used, it was not possible to distinguish groups of donors with

rapidly declining hemoglobin levels from those with relatively stable hemoglobin

levels. [127] In later studies, the concept of clustering donors was replaced by

making personalised predictions as described in research questions five through

seven.

The results, along with an in-depth discussion on challenges in clustering these

hemoglobin trajectories, are described in Chapter 5. The main conclusion is

that the resulting clusters are based mostly on average hemoglobin value, there-

fore it seems more useful for the blood bank to focus on individual hemoglobin

trajectories, rather than on characteristics that distinguish between clusters.

10.1.2 SARS-CoV-2 antibodies

Q4 How are individual characteristics and symptoms associated with IgG

antibody response in COVID-19 recovered donors?

In this observational study into donors’ IgG antibody response after a COVID-19

infection, we found higher age and BMI to be associated with higher antibody

counts, indicating more severe illness. Antibody decay was found to be faster

in male than in female donors, as well as for donors who had been hospitalised

during their infection. We also identified associations between antibody counts

and several self-reported symptoms that donors had experienced. The presence

of nasal cold, headache and anosmia were associated with lower IgG levels, while

dry cough, fatigue, fever, dyspnoea, diarrhoea, and muscle weakness were associ-

ated with higher IgG levels. [128] This was in line with findings from studies on
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hospital cohorts, which found fatigue and dyspnoea to be prognostic for severe

infection, while a stuffed nose (comparable to nasal cold in our data) was prog-

nostic of mild infection. [91] At the time, our study was one of the largest studies

concerning not only hospitalised patient cohorts, making it more representative

of the total COVID-19 patient population.

These findings are described in Chapter 6. The main conclusion is that in addi-

tion to previously described associations with sex, age and BMI, SARS-CoV-2

antibody levels are also associated with several COVID-19 symptoms.

10.1.3 Prediction of hemoglobin deferral

Q5 Can we accurately and reliably predict hemoglobin deferral based on

historical data?

We have presented a support vector machine (SVM) prediction model that pre-

dicts hemoglobin deferral based on several donor characteristics and up to five

previous hemoglobin measurements. We found that although the model could

correctly classify 80% of all deferrals, this comes at a cost of incorrectly clas-

sifying about 30% of donors with adequate hemoglobin levels as having to be

deferred for low hemoglobin. This would imply a substantial net loss of donations

for the blood bank. However, by using the model to predict deferral at different

time points, we found that 64% of non-deferred donors would be invited earlier

or on the same date, and 80% of deferred donors would be invited later. We

assume that for some of these deferred donors, the extra recovery time would be

enough to increase their hemoglobin level above the donation threshold. Using

the prediction model to decide when to invite which donor, the deferral rate

was estimated to decrease by 60% without decreasing the number of successful

donations. [109]

SHAP values were used to see how predictor variables were related to the model

prediction. These showed that previous hemoglobin levels are the most impor-

tant predictors of future hemoglobin deferral, with low previous values being

indicative of deferral. The use of SHAP values makes this model explainable,

and we found that most predictor variables are related to the model predictions

in ways that can be explained either by biological processes, or organisational

policies.

These results are described in Chapter 6. The main conclusion is that using
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prediction models to guide donor invitations may help to reduce donation inter-

vals as well as deferral rates.

Q6 How do country-specific blood bank policies and donor demographics

affect hemoglobin deferral prediction models?

By applying the same set of models to blood donation data of five different

countries, we found that performance of the different models within countries is

very similar. The most interesting result was that the relative importance of the

predictor variables (again calculated using SHAP values) was very similar across

countries. Previous hemoglobin remains undefeated as the best predictor variable

for future hemoglobin deferral. Additionally, we found that model performance is

highly dependent on the deferral rate, with higher deferral rates being associated

with better model performance.

These findings are described in Chapter 8. The main conclusion is that model

performance is more dependent on the deferral rate than on the model archi-

tecture, and that the relative importance of predictor variables is very similar

across countries.

Q7 Do ferritin measurements or genetic information add value to hemoglobin

deferral prediction models?

By comparing several simple models that only contain widely available predictor

variables, we found that including ferritin as a predictor for hemoglobin deferral

in Dutch donors increases model performance slightly, as does including genetic

information as a predictor for Finnish donors. For certain subgroups of donors,

including this extra information leads to a large increase in recall of deferrals.

This is the case for donors with a rare minor allele on an iron-related single-

nucleotide polymorphism (SNP) in Finland, and donors with ferritin levels just

above the deferral threshold in the Netherlands.

The results are described in Chapter 9. The main conclusion is that although

the overall value of ferritin and genetic information for hemoglobin deferral

prediction is low, for specific subgroups it appears very useful in increasing the

accuracy of deferral predictions.
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10.2 General discussion

Throughout the research presented in this thesis, many challenges were encountered

that were not study-specific and deserve a more in-depth discussion. Many studies

were performed on the same dataset (albeit on updated versions), extracted from

Sanquin’s blood bank database system eProgesa. This dataset contains information on

all donations that take place at Sanquin, and the purpose of recording this information

is to ensure the safety and traceability of all blood products. During the pre-donation

screening, donors are asked for their consent to the use of their data for scientific

research, which over 99% of donors grant. Although many researchers at Sanquin use

these data, it is not collected for research and therefore not optimised for that purpose.

Notable limitations of this dataset are the variability of recorded hemoglobin levels

and the presence of selection bias. Two limitations for hemoglobin and ferritin research

in blood donors in general are the uncertainty about how these proteins are related to

health, and the fact that reproducing the research is difficult due to the very specific

study population. These four topics are discussed in the following sections.

10.2.1 Hemoglobin measurement variability

Measurement variability is the phenomenon that whenever the same measurement

is repeated the result will never be exactly the same. For measurements such as

hemoglobin levels, measurement variability occurs through three causes. First, there

is biological variation, as hemoglobin levels vary naturally throughout the day and

year, and due to changes in diet, lifestyle, or even illness. Second, variation can

occur as a result of differences in pre-analysis conditions, for instance by differences

in temperature or transport, or how the donor physician handles the finger that the

blood is collected from. Third and last, there is variation in the test itself, depending

on the reliability of the measurement method, the assay and the machine used.

Because Sanquin tests hemoglobin at the new donor intake, and again approxi-

mately three weeks later before the first donation, we have data that allows estimation

of the variability of the hemoglobin measurement. Differences due to biological varia-

tion in hemoglobin levels measured three weeks apart should be very minimal: diet and

lifestyle are unlikely to change drastically in such a short time, and blood donation,

pregnancy or major blood loss (apart from menstrual blood loss in premenopausal

women) are also unlikely to have occurred. [11] From these two measurements, it can

be derived that the standard deviation of an individual hemoglobin measurement is

0.43 mmol/L for men and 0.38 mmol/L for women. [119] This means that donors
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Figure 10.1: The distribution of recorded hemoglobin levels in all 114 459 female (left)
and 58 511 male (right) prospective donors at donor intake between 2018 and 2020.

with hemoglobin levels around the deferral threshold will have a substantial chance

of having a measured hemoglobin level below the threshold and therefore being de-

ferred. The repeated measurement policy mitigates this effect, but at the same time

introduces an upward bias in the data, as only the highest of three measurements is

recorded. This bias is especially noticeable for donors around the donation threshold,

and is illustrated by a simple histogram of all reported hemoglobin levels, as shown in

Figure 10.1.

Clearly, the increase in observations between 7.7 and 7.8 mmol/L for women (and

8.3 and 8.4 mmol/L for men) is not due to those values naturally occurring more

often, but rather it is an artefact of selective repeated measuring, and recording only

the highest hemoglobin value. A more extensive review of this problem and several

possible solutions was recently published and is well worth a read. [119]

The consequence of recording hemoglobin levels in this way is that a bias is in-

troduced in the data, especially for hemoglobin levels around the deferral threshold.

This makes the class imbalance (see Section 2.2.2) more extreme, making accurate

classification harder. Additionally, observations right around the donation threshold

potentially contain the most crucial information for deferral prediction, and precisely

these observations are most impacted by the bias. It is therefore reasonable to expect

that our models would perform better on data without such a bias.
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10.2.2 Selection bias

Research on blood donors is generally influenced by the healthy donor effect, a selection

bias caused by health criteria imposed on prospective blood donors. [129] The main

consequence of the healthy donor effect is that it is difficult to draw conclusions on

health effects of blood donation. Because donors are selected based on health criteria,

in general they are ill less frequently than non-donors. This may lead to the incorrect

conclusion that donating blood is beneficial for your health, while in reality, this

association is found as a result of selection bias. [130] The effect persists during the

entire donor career, as healthier donors are more likely to keep returning for subsequent

donations.

Depending on the associations researched, it may therefore not be possible to

generalise findings in donor cohorts to the general population. Most topics studies

in this thesis would only be generalised to other donor populations, and therefore

the healthy donor effect is not such a big complication. However, in some cases we

may be tempted to extrapolate our findings to the general population, such as in the

study on ferritin determinants, or the SARS-CoV-2 antibody paper. In the study

on ferritin determinants, the association we found between environmental factors and

ferritin level may have been underestimated, as this association is likely mediated by

inflammation, and people with inflammation are probably underrepresented in the

donor population. In the study on SARS-CoV-2 antibodies, only donors who were

healthy enough to regularly donate plasma could be included, which means the results

are mainly applicable towards people with a mild disease outcome. The results may

not hold for people suffering from long COVID or other chronic health issues.

Due to this selection bias, it is also possible to draw incorrect conclusions or to

miss correct ones when generalizing outside of donor cohorts. In some cases, the

distribution of a predictor variable may be much narrower among donors than in the

general population. This may prevent a true association from being found by a model,

while in other cases, associations may be found that exist only in blood donors, as

they are mediated by organisational policies of blood banks.

There is more selection bias in the donation dataset than the healthy donor effect.

Ideally, we would like each donor to have the same probability of being invited to the

blood bank and having their hemoglobin levels measured. Instead, donor invitations

are based on many different criteria, the two most important being the current need

for their blood group, and their response history. Donors that fail to respond to

invitations (either by visiting the blood bank, or by rejecting the invitation) will be

less prioritised and eventually may not at all be invited anymore. This is one example
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of how the available data is based on existing donor management strategies, and we

may not be able to learn an optimal strategy from such data.

In practice, this means that the performance of our hemoglobin deferral prediction

models is inherently limited. Precision of deferral prediction is quite low, meaning

that many donors with adequate hemoglobin levels are incorrectly predicted to have

hemoglobin levels below the deferral threshold, which will lead to fewer donations and

a potentially insufficient blood supply if these donors are not invited to the blood

bank as a result of this incorrect prediction. However, predictions are only made for

donors that were invited and visited the blood bank, and these donors are a (non-

random) subset of all registered donors. If all donors were invited to the blood bank

at the same rate, there would be a wider pool of donors for the model to choose from

to mitigate the missed successful donations in absolute numbers. The fact that the

process by which the donation dataset is formed is far from random also means that

it is harder to predict what would happen if something were to be changed in the

invitation process, such as the inclusion of a hemoglobin deferral prediction model.

It is therefore difficult to predict what impact the application of such a model would

have on the deferral rate exactly. In the current situation, a selection of loyal donors is

prioritised for donor invitations, which leads to lower iron stores and higher probability

of deferral due to low hemoglobin for these donors. Since our models are developed

on data mostly from prioritised donors, it is possible that predictive performance on

non-prioritised donors is lower.

10.2.3 Hemoglobin, ferritin and health

We monitor hemoglobin and ferritin levels in blood donors as an indication of their iron

status, but research on the relation between these proteins and health is not entirely

conclusive. Threshold values exist to diagnose anemia based on hemoglobin levels,

but there are no clear threshold levels for hemoglobin and ferritin to diagnose iron

deficiency without anemia. [9, 131] At Sanquin, donors are deferred for six months if

their ferritin level is between 15 and 30 µg/L. This deferral is meant to prevent donors

from returning with ferritin levels below 15 µg/L. However, among prospective female

donors (women who have never donated blood before) 5% already have ferritin levels

below 15 µg/L. [96] People generally only apply to become a blood donor when they

feel healthy enough to do so, so these women are unlikely to experience symptoms of

iron deficiency. On the other hand, the fact that they feel healthy enough to apply

to become a blood donor does not exclude the possibility that they are already iron

deficient or even anemic, as many women in the general population have a level of
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iron deficiency, for example due to regular heavy menstrual blood loss, pregnancy,

or breastfeeding. [132] This makes decisions on reference ranges of ferritin levels

particularly challenging, and although those decisions are not in the scope of this thesis,

it does complicate the interpretation of our study results to a wider health-related

context. This is another reason that the results of our research are rarely generalisable

outside of donation-related contexts, although it would be difficult to conceive of a

relevant context where blood is regularly drawn without medical indication outside of

blood banks.

Iron supplementation is often mentioned when discussing research concerning iron

levels in blood donors. Would the best way to decrease deferral rates not be to provide

donors with iron supplements? Some blood banks encourage all donors to take iron

supplements, others encourage, or provide supplements to those most at risk for low

iron (mainly young women, or donors donating at high frequencies). [133, 33] Sanquin

does not recommend donors to take iron supplements, although of course donors are

completely free to do so.

Even though iron supplementation is not current practice at Sanquin, its potential

as a policy to enhance recovery after donating with low ferritin levels is currently

being investigated. A randomised controlled trial is being conducted where donors

with ferritin levels below 30 µg/L are given varying dosages of iron supplements or

placebo pills. [134] Donor perceptions and changes therein are also important and

being studied: as more donors are choosing to follow a vegetarian or vegan diet, their

views on the necessity of iron supplements may also change. Furthermore, the success

of iron supplementation policies is largely dependent on donors’ willingness to take

supplements, and their compliance.

10.2.4 Reproducibility of study results

Ideally, published research is reproducible by other research groups to be validated or

challenged. Sanquin is the only blood bank in the Netherlands, making reproduction

of our research by others difficult. Also, the data are considered privacy sensitive and

therefore not easily shareable. It therefore makes sense to look across borders and

compare our research results to those of other blood banks. The topics covered in

this thesis are also studied in blood banks of other countries, and this allowed us to

perform the comparison study presented in Chapter 8.

Collaboration with researchers from blood banks in Australia, Belgium, Finland,

and South Africa showed that even though it appears that we do the same thing

(hemoglobin testing and deferring donors below a certain cut-off value), small dif-
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ferences in policies exist that make it hard to compare outcomes found in different

countries. [20] Some sources of variation along with several (non-exhaustive) imple-

mentation alternatives are shown in Table 10.1, and an even wider range of alternative

policies is described in a study by the BEST Collaborative Study Group. [55] All these

factors are important to consider when comparing study results obtained in different

settings, and it becomes even more complicated when we consider policy changes over

the years. For instance, even only looking at Sanquin, ferritin testing was imple-

mented in 2017, and hemoglobin deferral rates are now drastically lower than before

2017. What are the implications of this change in policy when comparing study out-

comes from the Netherlands with those of other countries? Similarities found between

countries may suggest similar associations, but any conclusions should be accompa-

nied with words of caution for potential biases as a result of differences as specified in

Table 10.1.

10.3 Anticipated developments and future research

Views on hemoglobin deferral and donor iron management are gradually changing. Re-

searchers, policy-makers and health organisations are increasingly convinced that the

most frequently used method of hemoglobin testing is suboptimal. One small change

could be simply to record all hemoglobin measurements; even without changing the

deferral policy, recording these extra measurements would allow obtaining unbiased

hemoglobin estimates and better data for research (and decision-making in general).

In general, it would be beneficial to move towards more individualised donation inter-

vals rather than inviting donors back after a set amount of time and checking their

hemoglobin and ferritin levels. Ferritin-guided donation intervals have been shown to

increase ferritin and hemoglobin levels and thus decrease deferral rates. [135] These

results are obtained with the same ferritin thresholds for each donor, but in the future

donation intervals could even be guided individually for each donor, based on their

own donation history.

The prediction models presented in this thesis are all strongly data-driven without

any prior specification of how variables should theoretically be related to the outcome

variable of interest. Currently, colleagues at Sanquin are obtaining great results with

a prediction model based on ordinary differential equations with different states. [118]

These states and equations are based on biological pathways for iron metabolism

and erythropoiesis in the human body, and it turns out that this model captures

changes in ferritin and hemoglobin very well. The current model requires only one
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Source of variation Implementation alternatives

Policy change
No policy change
During (gradual) implementation of new policy
After a change in policy

Timing of sampling for
hemoglobin measurement

Before donation
After donation

Method of sampling
Capillary, by finger-prick
Venous sample, by venipuncture or via sampling bag

Repeated measurements
No repeated measurements
Repeat same method if measurement is below
threshold level
Measure with different method if measurement is
below threshold level

Hemoglobin deferral threshold
7.8 mmol/L for women, 8.4 mmol/L for men
7.4 mmol/L for women, 8.1 mmol/L for men

Additional iron and/or
hemoglobin-related
requirements

None
Ferritin measurement
Threshold for frop in hemoglobin relative to previ-
ous measurement

Maximum number of
donations per year

Three for women, five for men
One for women under 25, three for women over 25,
five for men

Iron supplementation
Yes, provided or prescribed
Yes, recommended
No

Trigger to donate
Invitation-based
Walk-in
Mix of invitation-based and walk-in

Table 10.1: Sources of variation in donation policies and a non-exhaustive list of imple-
mentation differences between countries.

171



10

Chapter 10

initial hemoglobin and ferritin measurement to predict subsequent levels and could

potentially be improved by updating the model when new measurements are taken.

In our support vector machine models, we incorporated time by including up to

five previous hemoglobin measurements as predictor variables, together with the time

passed since these measurements. This way of including time-related variables is not

optimal because the model does not allow linking the measurement results explicitly

to the actual times when these measurements were obtained. It is therefore reason-

able to expect that models that do incorporate such dependencies would perform

better. Therefore, a potential other type of model worthwhile further exploration is

the transformer network, which is a type of neural network architecture that has re-

cently been used widely due to its high performance. [136] Although the most popular

applications of transformer networks are in natural language processing (e.g., Chat-

GPT), they are very suitable for time series forecasting applications as well. [137]

Transformer networks can model the relationship between measurements that are fur-

ther apart, unlike recurrent neural networks. [136] However, a potential handicap may

be the fact that the number of donation events from an individual donor are small

relative to the length of the number of events for usual applications of transformer

networks, which may limit the improvement in performance they may bring.

Hemoglobin deferral rates are currently very low in the Netherlands: about 3%

and 1% of blood bank visits, by women and men respectively (reduced from 8% and

5% before implementation of the ferritin-based donor deferral policy). Any decrease

in deferral rate is of course a good thing, and even a decrease of 0.5 percentage points

would mean that 2000 on-site deferrals are prevented on a yearly basis. This potentially

saves the blood bank the recruitment of several hundred new donors, as on-site deferral

is known to be associated with donors dropping out of the donor pool. [29] However,

although hemoglobin deferral rates currently are low, many donors are now deferred

for low ferritin levels (approximately 10% of blood bank visits [135]), and therefore

understanding how hemoglobin and ferritin are affected by blood donation remains

extremely important.

The world of blood bank research has many opportunities for data science. More

and more people see that data science can bring advances and improvements, but the

actual implementation in day-to-day blood banking is far from easy. The primary task

of blood banks will always be to ensure a safe and steady blood supply, and even a large

increase in efficiency is not worth a small decrease in safety. Meanwhile, efforts are

being made to make more room for data science research: Sanquin is preparing to set

up the donor biobank Sanquin Future Health, which will process and store remainders
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of blood donations to be used for research purposes. With repeated sampling and

questionnaires from donors throughout the Netherlands, this biobank will be a treasure

trove of data in a few years. As more data is collected, more complex models can be

used to find new insights to enhance hemoglobin and ferritin predictions as well as

inspire completely new research.

All blood banks struggle with the same balancing act: collecting enough donations

to ensure a sufficient blood supply, while preventing iron deficiency and anemia in

donors. As more insight is obtained in iron metabolism and how it is affected by blood

donation, it will become clearer where there are opportunities to optimise donation

strategies. Often, these are small steps that over the course of the coming years are

likely to add up to substantial changes. In the future, this increased knowledge can

lead to data-driven donation strategies, making optimal use of the information present

in our data, resulting in a sufficient blood supply, maintained by healthy, motivated

donors.
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van Lenthe, Arfan Ikram, Vincent Jaddoe, Tineke Oldehinkel, Trynke de Jong,

Saakje Mulder, Aafje Dotinga, and GECCO Consortium. “Deep phenotyping

meets big data: the Geoscience and hEalth Cohort COnsortium (GECCO) data

to enable exposome studies in The Netherlands”. In: International Journal of

Health Geographics 19.1 (Nov. 2020), p. 49.

[51] James P Stevens. Applied multivariate statistics for the social sciences. Rout-

ledge, 2012.

[52] Cheng-Hsien Li. “Confirmatory factor analysis with ordinal data: Comparing

robust maximum likelihood and diagonally weighted least squares”. In: Behav-

ior Research Methods 48.3 (Sept. 2016), pp. 936–949.

[53] Li-tze Hu and Peter M. Bentler. “Cutoff criteria for fit indexes in covariance

structure analysis: Conventional criteria versus new alternatives”. In: Structural

Equation Modeling: A Multidisciplinary Journal 6.1 (Jan. 1999), pp. 1–55.

[54] Andreas Stribolt Rigas, Cecilie Juul Sørensen, Ole Birger Pedersen, Mikkel

Steen Petersen, Lise Wegner Thørner, Sebastian Kotzé, Erik Sørensen, Karin
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Krause, Jukka U. Palo, and Päivi Onkamo. “Human mitochondrial DNA lin-

eages in Iron-Age Fennoscandia suggest incipient admixture and eastern intro-

duction of farming-related maternal ancestry”. In: Scientific Reports 9 (Nov.

2019), p. 16883.

[125] Konrad J. Karczewski, Laurent C. Francioli, Grace Tiao, Beryl B. Cummings,
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Nederlandse samenvatting

Het onderzoek in dit proefschrift heeft als doel bloeddonatieprocessen bij Sanquin

te verbeteren. Het belangrijkste gezondheidsrisico voor bloeddonors is ijzertekort,

dat wordt geanalyseerd op basis van hemoglobine- en ferritineniveaus van donors.

Als een van deze niveaus ontoereikend is, wordt de donor uitgesteld van donatie.

Uitstel vanwege een laag hemoglobineniveau vindt ter plekke plaats, wat betekent

dat de donor al naar de bloedbank is gereisd en dan zonder te doneren naar huis

moet terugkeren, wat demotiverend is voor de donor en inefficiënt voor de bloedbank.

Een groot deel van dit proefschrift heeft dan ook als doel een voorspellend model te

ontwikkelen voor hemoglobineniveaus van donors, gebaseerd op historische metingen

en donorkenmerken.

Het ontwikkelde model vermindert het uitstelpercentage met ongeveer 60% (van

3% naar 1% voor vrouwen en van 1% naar 0,4% voor mannen), wat laat zien dat

het gebruik van data de efficiëntie van het beleid van bloedbanken kan verbeteren.

Bovendien zijn de voorspellingen van het model verklaarbaar gemaakt, waardoor de

bloedbank inzicht krijgt in waarom specifieke voorspellingen worden gedaan. Deze

inzichten vergroten ons begrip van de relaties tussen donorkenmerken en hemoglobi-

neniveaus. Als dit voorspellingsmodel in de praktijk zou worden toegepast, zouden

de verklaringen ook met de donor kunnen worden gedeeld om hen te helpen begrijpen

waarom ze wel of niet worden uitgenodigd om te doneren, wat ook kan bijdragen aan

de tevredenheid en het behoud van donors.

In een gezamenlijke studie met bloedbanken in Australië, België, Finland en Zuid-

Afrika werd hetzelfde voorspellende model toegepast op data van elke bloedbank.
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Ondanks verschillen in beleid en donordemografieën leerden de modellen vergelijkbare

verbanden met de voorspellende variabelen in alle landen. Verschillen in prestaties kon-

den voornamelijk worden toegeschreven aan verschillen in uitstelpercentages, waarbij

bloedbanken met hogere uitstelratio’s een hogere modelnauwkeurigheid behaalden.

Naast modellen voor hemoglobinevoorspelling werden ook andere vragen onder-

zocht. Een studie heeft als doel determinanten van ferritineniveaus bij donors te iden-

tificeren met behulp van herhaalde metingen en koppelingen aan omgevingsvariabe-

len. Een andere studie betreft het modelleren van de farmacokinetiek van antilichamen

tegen COVID-19 bij donors en het vinden van relaties tussen patiëntkenmerken, symp-

tomen en antilichaamniveaus over de loop van de tijd.

Samengevat laat het onderzoek in dit proefschrift het potentieel zien binnen de

rijkdom aan data die verzameld wordt door bloedbanken. De voorgestelde op data

gebaseerde donatiestrategieën verminderen niet alleen het aantal uitstelgevallen, maar

verhogen ook het behoud en begrip van donors. Deze aanpak stelt Sanquin in staat om

meer gepersonaliseerde feedback te geven aan donors over hun ijzerstatus, waardoor

het bloeddonatieproces wordt geoptimaliseerd en de algehele effectiviteit van bloed-

banksystemen verbetert.
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English summary

The research in this dissertation aims to optimise blood donation processes in the

framework of the Dutch national blood bank Sanquin. The primary health risk for

blood donors is iron deficiency, which is evaluated based on donors’ hemoglobin and

ferritin levels. If either of these levels are inadequate, donors are deferred from dona-

tion. Deferral due to low hemoglobin levels occurs on-site, meaning that donors have

already traveled to the blood bank and then have to return home without donating,

which is demotivating for the donor and inefficient for the blood bank. A large part of

this dissertation therefore has the objective to develop a prediction model for donors’

hemoglobin levels, based on historical measurements and donor characteristics.

The prediction model that was developed reduces the deferral rate by approxi-

mately 60% (from 3% to 1% for women, and from 1% to 0.4% for men), showing

the potential of using data to enhance blood bank policy efficiency. Additionally, the

model predictions were made explainable, providing the blood bank with insights into

why specific predictions are made. These insights increase our understanding of the

relationships between donor characteristics and hemoglobin levels. If this prediction

model would be implemented in practice, the explanations could also be shared with

the donor to help them understand why they are (not) invited to donate, which could

also contribute to donor satisfaction and retention.

In a collaborative effort with blood banks in Australia, Belgium, Finland and South

Africa, the same prediction model was applied on data from each blood bank. Despite

differences in blood bank policies and donor demographics, the models found similar

associations with the predictor variables in all countries. Differences in performance
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could mostly be attributed to differences in deferral rates, with blood banks with

higher deferral rates obtaining higher model accuracy.

Beyond hemoglobin prediction models, additional research questions are explored.

One study aims to identify determinants of ferritin levels in donors through repeated

measurements, and linking these to environmental variables. Another study involves

modeling the pharmacokinetics of antibodies in COVID-19 recovered donors, and find-

ing relationships between patient characteristics, symptoms, and antibody levels over

time.

In summary, the research in this dissertation shows the potential within the wealth

of data collected by blood banks. The proposed data-driven donation strategies not

only decrease deferral rates but also increase donor retention and understanding. This

comprehensive approach allows Sanquin to provide more personalised feedback to

donors regarding their iron status, ultimately optimising the blood donation process

and contributing to the overall efficacy of blood banking systems.
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