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ABSTRACT

The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the
Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids,
but we currently have such data, especially in the near-infrared wavelengths, for only a limited number of asteroids. This is a significant
limitation considering the complex orbital structures of the asteroid populations. Up to 150 000 asteroids will be visible in the images
of the upcoming ESA Euclid space telescope, and the instruments of Euclid will offer multiband visual to near-infrared photometry
and slitless near-infrared spectra of these objects. Most of the asteroids will appear as streaks in the images. Due to the large number of
images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the StreakDet software
was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect
asteroid streaks in Euclid images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with
simulated Euclid images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to
maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected
in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different Euclid exposures
to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the
completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally,
the deep-learning pipeline can detect asteroids 0.25–0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result
in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement,
particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which
involves linking detections across multiple exposures.

Key words. methods: data analysis – techniques: image processing – minor planets, asteroids: general – space vehicles – surveys –
methods: numerical

1. Introduction

The European Space Agency’s (ESA) Euclid space telescope is
built to study the nature of dark energy, dark matter, and grav-
ity by observing weak gravitational lensing, baryon acoustic

⋆ This paper is published on behalf of the Euclid Consortium.
† Deceased.

oscillations, and redshift-space distortion (Amendola et al.
2018). Euclid belongs to the Cosmic Vision program of ESA,
and it was launched on July 1, 2023. The mission operates in the
second Lagrange point of the Sun-Earth system, whence it sur-
veys approximately one-third (15 000 deg2) of the sky (Laureijs
et al. 2011).

The telescope of Euclid has a focal length of 24.5 m and an
aperture of 1.2 m (Venancio et al. 2014). The measuring devices
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of Euclid are the visible instrument VIS and the Near-Infrared
Spectrometer and Photometer (NISP), both of which have a
0.53 deg2 field of view. The pixel scales of VIS and NISP are
0.1 and 0.3 arcsec, respectively. VIS is a 600-megapixel visible
imager with an operational wavelength range from 550 to 900 nm
(Cropper et al. 2018). NISP is a double instrument, consisting
of a near-infrared three-filter photometer (NISP-P) and a slitless
spectrograph (NISP-S; Maciaszek et al. 2022). The VIS instru-
ment can detect 0.43 arcsec extended sources in the IE band to
around a magnitude of mAB = 24.9 (Cropper et al. 2018). For
NISP-P with YE , JE , and HE filters, the detection limit is around
mAB = 24.4 (Euclid Collaboration 2022), whereas the NISP-S
slitless spectra have a continuum sensitivity of approximately
mAB = 21.

Euclid will operate in a step-and-stare mode. First, VIS and
NISP-S observe an area of the sky for 565 s, after which NISP-P
carries out three 112 s exposures with the JE , HE , and YE fil-
ters (Scaramella et al. 2022). This exposure scheme is repeated
four times for each field, and the telescope pointing direction is
changed, that is, dithered slightly in between. In addition to the
four main VIS images, shorter VIS exposures are taken simul-
taneously with the NISP observations. All in all, the observing
time for each field adds up to approximately 70 min.

As a by-product of its cosmological measurements, Euclid
observes and measures multiband photometry of up to 150 000
Solar System objects (SSOs; Carry 2018). Most of the SSOs
are asteroids, but Euclid also observes around 5000 Kuiper belt
objects (KBOs), approximately 40 comets, and potentially a few
InterStellar Objects (ISOs). Due to the nature of Euclid observa-
tions, the SSOs moving faster than around 5 arcsec h−1 (ranging
from near-Earth asteroids to Jupiter Trojans) appear as streaks in
VIS images. Approximately 90 percent of the SSOs observed
by the mission belong to this group (Carry 2018). Because
Euclid focuses on cosmological observations, it mostly avoids
Galactic latitudes lower than 30◦ and ecliptic latitudes lower than
15◦. Therefore, the asteroids detected by Euclid are mostly on
high-inclination orbits.

Many aspects of asteroid science benefit from understanding
asteroid compositions (Gaffey et al. 2002). In turn, compo-
sitional modeling depends on observing the spectral energy
distribution of asteroids (Reddy et al. 2015). The Euclid mis-
sion is beneficial in this regard, as it substantially increases
the number of asteroids with measured multiband photometry,
particularly in near-infrared wavelengths. The near-infrared pho-
tometry is particularly useful for the taxonomical classification
of asteroids, thus helping in the aforementioned aspects of aster-
oid science (DeMeo et al. 2009; Popescu et al. 2018; Mahlke
et al. 2022). Additionally, the Euclid measurements can be used
to analyze asteroid rotation periods, spin-axis orientations, and
asteroid shapes, as well as to detect binary asteroids (Carry
2018). The utility of orbit determination with Euclid observa-
tions alone is limited due to the relatively short observation time
per asteroid, but rudimentary orbits and inclination distributions
are possible to estimate. Cross-correlating the detections with
other surveys, for example, with the Vera C. Rubin Observatory,
makes more accurate orbit calculations possible (cf. Snodgrass
et al. 2018). In addition to offering valuable scientific data on
SSOs, identifying the objects in Euclid images is useful to pre-
vent them from interfering with the cosmological data-analysis
pipelines.

Most of the SSOs in Euclid data will be previously unknown
objects (Carry 2018), so they have to be found in the images
before they can be analyzed further. A notable caveat is the
start of the science operations of the Vera C. Rubin Observatory

Legacy Survey of Space and Time (LSST), currently planned for
early 2025. LSST will discover SSOs visible from the Southern
Hemisphere to a limiting magnitude similar to Euclid.

Pöntinen et al. (2020) tested the streak-detection software
StreakDet, developed by Virtanen et al. (2016), to detect SSOs
in simulated Euclid images. Overall, the results were good, but
there was room for improvement in detecting short (shorter than
approximately 13 pixels, corresponding to 9 arcsec h−1) and/or
faint (fainter than magnitude 23–24, depending on streak length)
streaks. Nucita et al. (in prep.) developed a complementary
pipeline for short streaks. On the other hand, Lieu et al. (2019)
studied the use of convolutional neural networks (CNNs) to find
asteroids in Euclid images. Duev et al. (2019a,b), and Wang
et al. (2022) have developed CNNs to reduce the number of
false-positive asteroid streaks in Zwicky Transient Facility data,
Parfeni et al. (2020) have tested CNNs for asteroid detection
with Hubble images, and Rabeendran & Denneau (2021) have
tested CNNs combined with a multilayer perceptron to clas-
sify streaks in Asteroid Terrestrial-impact Last Alert System
(ATLAS) data. These approaches have focused on classifying
small (up to a few hundred pixels wide) sub-images contain-
ing streak candidates, but not on extracting streak coordinates
directly from large images. An object-detection approach was
taken by Kruk et al. (2022), who tested a Google Cloud AutoML
pipeline to detect asteroids in Hubble images, and Varela et al.
(2019), who tested YOLOv2 (Redmon & Farhadi 2017) to detect
satellite streaks in the data of their Wide-Field-of-View (WFoV)
System. These object-detection studies have used the classical
bounding-box approach, which involves drawing a rectangular
box around an object of interest, but the resulting detection and
streak-coordinate accuracies suggest that this method may not be
optimal for streak detection.

Intending to improve the detection capability beyond the
StreakDet pipeline, especially for faint SSO streaks, we built a
custom object detection pipeline consisting of a CNN, a recur-
rent neural network (RNN), and an XGBoost model to detect
and return streak coordinates from large images and link objects
between observations. Instead of using bounding boxes, our
model returns the endpoint coordinates for each detected streak.
Our pipeline can be used directly on full CCD images without
any separate streak-detection algorithm. The reasoning behind
our approach is that if a CNN is better than other methods at
recognizing and classifying SSO streaks, as it seems from the
results of all the relevant work listed above, then logically, using
some other initial method before the CNN is suboptimal. This
work tested how high completeness (recall), purity (precision),
and coordinate accuracy can be achieved when detecting simu-
lated SSOs using neural networks and determined the apparent
magnitude and sky motion ranges of the successful detections.

In the following sections, we start by describing the prop-
erties of the simulated Euclid VIS images and the training
and test sets generated from them. Next, we outline the deep-
learning methods utilized. Then, we present and discuss our
results obtained with the deep-learning approach. Lastly, we
provide our conclusions.

2. Image data

2.1. Simulated Euclid VIS images and preprocessing

To make it easy to directly compare the performance of the
deep-learning pipeline to that of StreakDet, we used the same
simulated Euclid VIS data as Pöntinen et al. (2020). The VIS
data used by Nucita et al. (in prep.) are also generated with the
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Fig. 1. Example of the simulated VIS data. The left image shows a quadrant of a raw CCD file with a size of 2048× 2066 pixels
(204.8× 206.6 arcsec). Asteroids are marked with red circles. The other streaks are simulated cosmic rays. On the right is the same image after
removing cosmic rays. The dark objects above asteroids C and D are galaxies, the circle below asteroid E is a ghost reflection of a bright star, and
the spot further down with six outward lines is a star with diffraction spikes. Streaks A, B, F, H, and J are quite bright and easily seen (magnitudes
20.3–22.2), while C, D, E, and G are fainter and harder to see (magnitudes 22.6–23.9), and finally, streak I is practically invisible (magnitude 25.0).
The velocities range from 14 arcsec h−1 (asteroid B) to 56 arcsec h−1 (asteroid D).

same software and similar image properties, but it is not identi-
cal. We use only the VIS data for asteroid detection because VIS
images have longer exposure times and thus reach fainter objects
than NISP. The NISP data are valuable for asteroid science, but
by using the VIS SSO detections, it should be possible to cal-
culate where the detected SSOs are located in the NISP images
without separate asteroid detection processes necessary for the
NISP data. We use raw VIS images because they will be quickly
available during the Euclid mission, which is essential for poten-
tial follow-up observations. The following is a summary of the
sections in Pöntinen et al. (2020) and Nucita et al. (in prep.)
describing the generation and preprocessing of the simulated
VIS image data.

The Euclid Consortium has developed a Python software
package named ELViS to generate realistic simulated Euclid
VIS data (Euclid Collaboration: Serrano et al., in prep.). The
simulated images include stars, galaxies, Solar System objects,
cosmic rays, and artifacts such as ghosts, diffraction spikes,
charge transfer inefficiency (CTI), bleeding, Poisson noise, read-
out noise, and bias (Fig. 1).

The simulated asteroid population was generated with uni-
formly distributed random apparent magnitudes between 20 and
26. The apparent velocities range from 1 to 80 arcsec h−1. These
magnitude and velocity ranges cause many of the streaks to be
practically invisible in the images. Therefore, the essence of the
dataset is not that all the streaks could be detected and complete-
ness of 100% could be achieved, but rather the dataset is built for
characterizing the detection envelope, that is, testing where the
magnitude and velocity limits of detection are.

Streak angles range from 0◦ to 360◦ (clockwise from east).
The simulated streaks are symmetrical. Thus, within exposures,
it is not possible to distinguish between their start and end points.

However, the direction becomes apparent when analyzing several
exposures. One CCD image contains approximately 25 asteroids
on average. The simulated asteroid streaks do not follow realistic
rate-of-motion distributions or position-angle distributions but
are nevertheless reasonably well-suited for measuring the per-
formance of the pipeline. The brightness of a simulated SSO
stays constant within and between exposures. In other words, the
potential brightness variation caused by asteroid rotation is not
simulated. In reality, some asteroid streaks would have notice-
able brightness variation between exposures and even within a
single exposure. However, the portion of such asteroids is very
small. For asteroids with known rotation periods and brightness
variation amplitudes, the median rotation period is 7.2 h, with
90% of asteroids spinning slower than once every 2.8 h, and
the median amplitude is 0.35 magnitudes, with 90% having a
smaller amplitude than 0.77 magnitudes (Warner et al. 2021).

The size of each CCD is 4096× 4132 pixels, corresponding
to approximately 16.9 megapixels. One exposure forms a mosaic
of 6× 6 CCDs. The simulated data consist of four dithered expo-
sures, so the total number of CCD images per dataset is 144. The
shorter VIS exposures taken alongside the NISP observations
were not simulated. We worked with 11 datasets, ten of which
focused on faster-moving SSOs (from 10 to 80 arcsec h−1) and
one focused on slower ones (from 1 to 20 arcsec h−1). In total,
our datasets have 1584 CCD images. The data are in the for-
mat of multiextension FITS files, with each quadrant in its own
FITS extension. For easier data management and image analy-
sis, we tiled the quadrants into single-extension FITS files before
utilizing them in our pipeline.

As a preprocessing step, we removed bright pixels caused
by cosmic rays with Astro-SCRAPPY (McCully et al. 2018;
Van Dokkum 2001). We used the default parameters of
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Fig. 2. Examples of cutout images generated from the simulated data
for the CNN training and test sets. The single-channel cutouts shown
are 50 pixels (5 arcsec) in height and width. The top row shows posi-
tive training examples, namely asteroid streaks. The streaks are centered
training examples. As seen from the third positive example (top right),
some generated asteroid streaks are so faint that they are practically
invisible. The bottom row shows negative training examples, specifi-
cally images that do not contain asteroid streaks.

Astro-SCRAPPY, which worked well, and the program removed
practically all cosmic rays. After removal, some residuals caused
by the CTI effect remain in the images. SSO streaks are not
removed in this process due to their different point spread
function (PSF) shapes.

Since both the asteroids and the pointing of the telescope
move between exposures, the asteroids can move outside the field
of view. Therefore, not all asteroids are visible in all four expo-
sures. In our simulated data, the asteroids appear as follows: 37%
in four exposures; 45% in three exposures; 9% in two exposures,
and 9% in only one exposure.

2.2. Training and test sets for deep learning

We developed software to generate different kinds of training
and test datasets for the deep-learning models from the simulated
Euclid images. The basic idea is to extract smaller sub-images or
cutouts from the simulated CCDs (Fig. 2). The training labels for
each training example are the classification label and, for posi-
tive examples, also coordinates for the endpoints of the streak
visible in the cutout. For consistency during the training and
inference stages of the deep-learning pipeline, the leftmost end
of a streak is defined as the starting point and the rightmost end
as the ending point. Negative examples are cutouts selected ran-
domly from areas of the CCDs not containing asteroids. The size
of the cutout images and the ratio between positive and nega-
tive training examples can be chosen by the user. Furthermore,
either single-channel data (one exposure) or four-channel data
(all exposures) can be generated. The training and test sets are
saved as CSV files.

Our software can generate either centered images, where
an asteroid streak is going through the center of each cutout, or
non-centered data, where the streaks are in random positions of
the cutouts. The centered data are generated by taking cutouts
around the central point of the ground-truth streak. The non-
centered data are generated with a sliding-window algorithm
so that a window, that is, a test cutout, is first formed from the

upper-left corner of a CCD and compared to the ground-truth
catalog. If the test cutout overlaps with a full or partial ground-
truth streak, it is saved into positive examples and otherwise into
negative examples. Then the window moves a given amount of
pixels to the right and is again analyzed for ground-truth streaks.
This procedure repeats until the whole image is analyzed and
divided into positive and negative examples. Since there are
many more negative examples than positive ones, especially with
small window sizes, only a subset of the negative examples is
randomly chosen for the final training or test set. It is also possi-
ble to use a filter to determine how far from the edge of the cutout
the streak must be visible, in order to avoid positive examples
where the streak is barely visible just at the edge of the cutout.

We conducted a series of tests with different training set
parameters. Ultimately, we settled on our final configuration,
which includes using non-centered cutouts with dimensions of
20 pixels (both height and width), maintaining a ratio of five
negative examples to every positive one, and utilizing single-
channel data. Additionally, we explored two training approaches:
one using data containing streaks of all magnitudes, including
practically invisible ones, and another restricted to streaks visi-
ble to the naked eye. Both approaches resulted in similar results.
With a training set containing invisible positive training exam-
ples, the models learned to give negative classifications to streaks
that were too faint to detect and give positive classifications only
to streaks that were actually visible. Consequently, we chose
to incorporate streaks of all magnitudes into the training set,
showcasing the models’ robustness and adaptability to varying
training data compositions.

The pixel values in the FITS files used range from 0 to
65 535 (216 − 1). However, the vast majority of the image area
has pixel values in the range between 200 and 2000, with only
the brightest stars (and cosmic rays before their removal) exceed-
ing 2000 and approaching the upper limits of the whole range.
The background level is approximately 230, and the analyzed
asteroid streaks reside between 230 (the faintest streaks indis-
cernible from the background) and somewhat over 1000 (streaks
from the slowest and brightest objects). Therefore, to lessen the
dominance of bright stars and make the pixel value range more
useful for asteroid detection, we performed a clipping proce-
dure. Specifically, we set all pixel values below 200 to 200 and
values above 2500 to 2500. We settled upon the chosen values
after testing different ranges. After clipping, we normalized the
pixel value range from 200–2500 to 0–1. This clipping proce-
dure slightly improves the prediction accuracy and speeds up the
training of the model.

The test sets are generated from CCD exposures that are not
in the training set. We numbered the CCDs in the 6× 6 mosaic
starting from one in the lower-left corner and increasing first to
the right and then up, ending at 36. We chose CCDs number 11,
18, 22, 25, and 26 of all the mosaics to form the test set and the
rest of the CCDs to form the training and validation sets. This
test set offers the most uniform distribution of streak lengths and
magnitudes and offers sky background from different parts of
the mosaics. Approximately 78% of the streaks are in the train-
ing set, 8% in the validation set, and 14% in the test set. We
combined all the cutouts extracted from the 11 image sets with
this logic to create the training, validation, and test sets.

3. Deep learning

Deep learning refers to machine learning with deep neural net-
works (LeCun et al. 2015). During the last few years, it has
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resulted in breakthroughs in many distinct fields, for example,
computer vision, natural language processing, machine transla-
tion, and game-playing.

Convolutional neural networks (CNN) are a subtype of arti-
ficial neural networks, and their distinctive feature is the use of
convolutional filters or kernels (LeCun et al. 1998). In traditional
manually designed computer vision algorithms, the kernels are
manually built and tuned, whereas in CNNs the values of the
kernels themselves are parameters to be optimized through a
learning process from the training data. In addition to the convo-
lutional kernels, CNNs typically also contain pooling layers that
combine the outputs of a previous layer by summing or averag-
ing them locally before feeding them as inputs to the next layer.
This approach reduces the number of weight parameters in the
network, making it possible to build deeper models. Often there
are also fully connected layers at the end of the model. As a result
of their success, CNNs have been essential in breakthroughs in
artificial intelligence, especially in computer vision applications.
One subtype of CNNs is the residual neural network (ResNet)
architecture, which was developed to enable the use of much
deeper neural networks than was previously possible, using skip
connections between network layers (He et al. 2016).

Typical computer vision tasks are image classification and
object detection. Image classification can refer to binary clas-
sification, which involves detecting whether an image contains
a member of a particular object class or not, or to multiclass
classification, where the goal is to detect whether an image con-
tains a member of any of several possible object classes. Object
detection takes things a step further from classification, and in
addition to the classification label, an object-detection model
also returns the positions of the detected objects in the image,
typically in the form of bounding boxes.

Recurrent neural networks (RNN) are a category of mod-
els in which the units, in a sense, loop back into themselves,
enabling previous outputs of the model to be used as inputs for
the next iteration. This approach is helpful for data such as time
series or natural language. One of the main benefits of RNNs is
the ability to process inputs of varying lengths. Typical exam-
ples of RNN architectures are the Long Short-Term Memory
(LSTM; Hochreiter & Schmidhuber 1997) and Gated Recurrent
Unit (GRU; Cho et al. 2014) algorithms.
XGBoost (short for eXtreme Gradient Boosting) is an open-

source library implementing gradient boosting (Chen & Guestrin
2016). Gradient boosting is a machine-learning technique that
refers to creating and training an ensemble of simple predic-
tion models, such as decision trees, which would be quite weak
when used individually but reach high accuracy when used
together as a “committee” (Friedman et al. 2000; Friedman
2001). XGBoost does not implement neural networks, so using it
is technically not deep learning but belongs to a broader group of
machine-learning methods. Gradient-boosted trees often outper-
form neural networks in regression and classification tasks when
the input consists of heterogeneous tabular data (Shwartz-Ziv &
Armon 2022; Grinsztajn et al. 2022).

4. Machine-learning pipeline for Euclid

4.1. Streak detection from raw image data with CNN

We trained a CNN model to classify cutout images into asteroids
and non-asteroids. We built the CNN model using Tensorflow
(Abadi et al. 2016) and the Keras API (Chollet et al. 2015). To
develop the model to be more suitable for streak detection in
the manner of object detection, we wrote a custom loss function

based on the YOLO object detection model (Redmon et al. 2016)
to both classify the images and return the coordinates for the
streak endpoints for positively labeled examples. The loss for the
classification label and streak endpoint coordinate accuracy is
defined as

L = λcoord Ĉ
[
(x1 − x̂1)2 + (y1 − ŷ1)2 + (x2 − x̂2)2 + (y2 − ŷ2)2

]
+ λnoobj

∣∣∣C − Ĉ
∣∣∣3 , (1)

where λcoord and λnoobj are weights, Ĉ is the ground-truth classifi-
cation label, which equals 1 when there is a ground-truth object
in the image and 0 otherwise, C is the predicted classification
label, x1 and y1 are the predicted coordinates of the leftmost end
of the streak, x2 and y2 are the predicted coordinates of the right-
most end, and x̂1, ŷ1, x̂2, and ŷ2 are the ground-truth coordinates.
The weights λcoord and λnoobj are set as 5 and 0.5, respectively,
similar to the original YOLO loss function. We tested different
weights, but the original values appeared pretty close to optimal.

When there is no ground-truth streak in the image, the coor-
dinate loss (the first part of the equation) is zero, the coordinate
predictions are ignored, and the classification loss (the second
part of the equation) is minimized when the classification label
approaches the ground-truth label. On the other hand, when there
is a ground-truth streak in the image, the coordinate loss is mini-
mized when the predicted coordinates approach the ground-truth
coordinates, and the classification loss is again minimized when
the classification label approaches the ground-truth label.

Before training and testing the CNN with our custom loss
function, we tested training the model for the binary classifi-
cation task, without coordinate prediction task, with a standard
binary cross-entropy loss function. Ultimately, both loss func-
tions achieved practically identical classification accuracies on
our datasets.

To optimize the hyperparameters of the CNN model, we ran
hyperparameter sweeps using the online service Weights and
Biases (Biewald 2020). We tested ResNet models of different
depths, as well as simpler CNN models. The sweeps were run
on NVIDIA V100 and A100 graphics processing units (GPU) on
the high-performance computing platform of the University of
Helsinki. In addition, some smaller models were run on a local
NVIDIA GeForce RTX 3060 GPU.

After testing, the CNN models worked best for smaller
images rather than larger ones. The classification accuracy was
fairly uniform for images of varying sizes, but the streak coordi-
nate accuracy was better for small images. Furthermore, using
images with four channels (four exposures) did not offer an
advantage over images with just one channel (one exposure), but
were slower to train. Therefore, we chose to use cutout images
with a single channel and widths and heights of 20 pixels. The
tested ResNet models did not offer improvements over the sim-
pler models, probably due to the small size of the analyzed
images. We settled for a simpler seven-layer CNN model due
to its faster runtime compared to the deeper ResNet models. To
increase the purity (precision) of the CNN, we chose to use a
training set containing five negative training examples for each
positive one. Increasing the ratio further did not offer additional
advantages but slowed the training.

Our CNN model uses 2D convolutional layers, batch nor-
malization layers (Ioffe & Szegedy 2015), max-pooling layers,
and a dense layer (Fig. 3). The activations in the hidden layers
are rectified linear units (ReLU; Agarap 2018), and the output
units have sigmoid activation functions. To reduce overfitting
during the training stage, we used several dropout layers. There
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Fig. 3. Structure of the CNN model. The model contains 2 043 975 trainable parameters. The kernel size of all filters is 3× 3, and the pooling layers
have a 2× 2 pool size. The dropout probability for the max-pooling and convolutional layers during training is 0.25, and 0.5 for the dense layer.

is one output unit for predicting the classification label and four
for predicting the streak endpoint coordinates (one unit for x-
start, y-start, x-end, and y-end each). The classification label is
a probability, that is, a value between zero and one. Each of the
coordinates is a value between zero and one as well, so that the
x-axis of each analyzed image runs from zero on the left side
to one on the right side, while the y-axis runs from zero to one
from bottom to top. We used the Adam optimizer (Kingma &
Ba 2014) and a batch size of 256 for training the model. During
training, we used an early stopping callback, monitoring the vali-
dation loss with a patience of 30 epochs. Once the validation loss
did not improve over 30 training epochs, the model weights cor-
responding to the epoch with the best validation loss were saved
as the final model.

The CNN we trained takes only small cutout images as
input, but we need to analyze the whole 4 k× 4 k-pixel images
of Euclid. Therefore, we implemented an algorithm in the style
of a sliding window, which involves starting from the upper left
corner of the full CCD, analyzing that, then moving a set amount
of pixels right, analyzing the small image again, shifting down
by the same amount at the end of the row, and so forth, until the
whole image is analyzed. In practice, to optimize the runtime of
the process, the CCD is divided into small cutouts according to
the sliding window positions, and the cutouts are then given as
an input to the CNN simultaneously, instead of one at a time, as
would be the case with a for-loop implementation. Because the
predictions for the full CCDs are made with a sliding-window
algorithm, CNNs trained with sliding-window-style training data
with non-centered streaks worked better in the analysis of the full
CCDs than CNNs trained with centered data.

The outputs, which include the predicted labels and streak
coordinates of the sliding-window CNN, are saved into cata-
logs. The threshold for saving the streak into the catalog is a
label prediction higher than 0.5, the default threshold used in
classification tasks. We also tested different thresholds, but low-
ering the threshold decreased purity too much while elevating
the threshold decreased completeness.

4.2. Intra-exposure streaklet merging with RNN

Our CNN model analyzes 20-pixel wide cutout images, yet many
asteroid streaks are longer than that and appear in multiple
cutouts as streaklets, which are shorter snippets of full streaks.
We use an RNN model, a bidirectional LSTM, to merge these
streaklets into full streaks (Fig. 4). The model has an input layer,
a masking layer for managing variable-sized inputs, a bidirec-
tional LSTM layer with 20 units, and an output layer with four
units with linear activation functions (Fig. 5). We use mean abso-
lute error as the loss function and NAdam (Dozat 2016) as the
optimizer. We use a batch size of 512 and an early stopping call-
back with patience of 500 epochs on the validation loss. Similar
to the CNN model, we built the RNN model with Tensorflow
and Keras. According to our tests, the two-stage process of using
the CNN on small windows followed by the RNN merging pro-
cess results in better coordinate accuracy than using the CNN
directly on larger windows and omitting the RNN stage.

For generating a training set, we developed an algorithm that
groups nearby and similarly angled streaklets in the CNN out-
put catalogs that match the coordinates of ground-truth streaks.
These groups, generated from the training and validation set
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Fig. 4. Example of merging streaklet clusters into coherent streaks with
RNN. The left image shows the detected streaklets before merging, and
the right image shows the streaks after RNN merging. The images con-
tain two ground-truth streaks whose starting points are marked with
green squares and ending points with red squares. The black numbers
show the magnitude of the asteroids, and the cyan numbers show the
streak lengths in pixels. The magenta X’s mark the starting points of
CNN detections, and the blue X’s mark the ending points. The ground-
truth streaks shown here are long, so there are many CNN detection
streaklets along them. After merging with RNN, there are single coher-
ent streaks whose coordinates match the ground-truth coordinates quite
well.

Input Layer
(Streaklet clusters)

Masking

Bidirectional LSTM
(20 units)

Coordinate output layer
(4 units)

Linear

Fig. 5. Structure of the RNN model. The model contains 4324 trainable
parameters.

CCDs, form the training and validation set for the RNN. In
other words, the predicted coordinates and CNN output labels
of groups of streaklets approximately at the position of ground-
truth streaks, that is, true-positive CNN predictions, are the
training data (X) for the RNN, while the coordinates of the cor-
responding ground-truth streaks’ endpoints are the labels to be
learned (Y). The RNN is then trained with these data. The trained
RNN can merge streaklet clusters into full streaks when applied
to the sliding-window CNN catalogs.

Before generating the training, validation, and test sets, we
remove so-called static streaklets. Streaks that stay in the same
location in multiple exposures are static, meaning they are not
SSOs but objects that stay stationary on the sky, such as galaxies.
Therefore, we can remove them from the catalogs. Approxi-
mately 17% of all streaklets in our pipeline were static and
therefore removed at this stage.

The streaklet clusters are located all over the image mosaic,
so to make training the RNN model easier, each cluster is moved
closer to the origin of the pixel coordinate system for the duration
of the RNN training and prediction. Specifically, the clusters are
moved to the 0–250 pixel coordinate range along both x and y-
axes, and then normalized to between −1 and 1. After the model
has merged the streaks, the coordinates of the resulting streak
are denormalized and moved back to the original coordinates of
the streaklet cluster. The same coordinate shift is also done in
the testing phase. Including the CNN output classification labels
(i.e., probabilities) in the RNN input data improves the RNN
coordinate prediction accuracy by approximately 10%, compared
to inputting only the CNN output coordinates. This is probably
due to CNN labels helping RNN to recognize outliers, such as
false-positive streaklets whose prediction label differs from those
in the rest of the streaklet cluster.

During the testing stage, streaklet clusters are created from
the CNN output catalogs of the test set CCDs. Nearby streak-
lets located approximately along the same line are grouped, and
the groups are analyzed with graph theory so that each streaklet
belongs to only one group, similar to the training stage, except
omitting the ground-truth coordinates. The streaklet groups are
then fed to the RNN, which merges the clusters into coherent
streaks.

4.3. Inter-exposure streak linking with XGBoost

Euclid observes the same position of the sky multiple times in
a row. Stars and galaxies appear in the same sky coordinates in
each exposure, but SSOs do not because they move. The motion
is typically used for distinguishing SSOs from other objects in
the sky. For Euclid, we can use the movement of SSOs by linking
streaks that appear approximately along the same line in mul-
tiple exposures into so-called multi-streaks. In other words, a
multi-streak consists of several streaks (from two to four) caused
by the same asteroid, appearing along the same line in separate
exposures.

We tested a non-machine-learning streak-linking algorithm
adapted from Pöntinen et al. (2020), an RNN model, and an
XGBoost model to do the linking. Both machine-learning mod-
els outperformed the non-machine-learning algorithm, and the
XGBoost model further outperformed the RNN model, so we
settled on using the XGBoost model in the final pipeline.

Before running the streak-linking algorithms, we apply
another iteration of the static-streak removal, now to the streaks
merged with RNN. Almost all static streaklets are removed
already after the sliding-window CNN stage, but a small number
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of full streaks (0.11% out of all streaks) can only be removed
after the merging with RNN.

To link streaks by the same SSO in multiple exposures, we
first tested the so-called multi-streak analysis, which was used in
Pöntinen et al. (2020) to decrease the number of false-positive
streaks. We adapted the algorithm to use the CNN+RNN catalog
data and focused on the following parameters: minimum num-
ber of streaks in a multi-streak combination; maximum length
difference between streaks; maximum and minimum distance
between streaks compared to their lengths; maximum angle dif-
ference between streaks; maximum angle difference between the
single streaks and the common multi-streak line; and maximum
difference in median pixel flux values of the streaks.

As alternative machine-learning versions of the streak-
linking process, we tested RNN and XGBoost models. We
generated permutations of possible multi-streak candidates and
trained the models to classify them into asteroids and non-
asteroids. For training, the permutations are generated from the
detected streaks in the CNN+RNN output catalogs of the training
set CCD exposures. The multi-streak candidates consist of two,
three, or four streaks within 6◦ of their common line, all of which
are from different exposures. The members of the multi-streaks
are compared to ground-truth streaks, and multi-streak candi-
dates whose members all match ground-truth streaks receive a
positive ground-truth label. Multi-streak candidates with at least
one false-positive member receive a negative ground-truth label.

Before training and predicting, we move the multi-streaks
closer to the origin of the pixel coordinate system, similar to the
streaklet merging with RNN. Then, to give as much information
as possible to the classifier models, we add line solution param-
eters m and c (as in y = mx + c) to each streak in the data, as
well as a few differently calculated pixel fluxes. We also include
the angles and distances between each streak in a multi-streak.
After all the steps, each streak in a multi-streak has 25 numeri-
cal features, including exposure, CNN classification labels (min,
max, median, mean), coordinates, angle, length, pixel flux (min,
max, median, mean, total, total divided by length), line solution
parameters m and c, and angles and distances to other streaks
belonging to the same multi-streak. The only difference between
the data for the streak-linking RNN and XGBoost models is that
XGBoost accepts only a fixed-size array as input. For RNN, each
input data example consists of between two and four arrays, each
with 25 features. For XGBoost, we flattened the four arrays into
single arrays with 100 features. We filled the missing features
with NaN values for cases with fewer than four streaks.

The tested RNN model for streak linking has almost the same
model architecture as the RNN model for streaklet merging. It
has an input layer, a masking layer for managing variable-sized
inputs, and a bidirectional LSTM layer with 20 units. The main
difference is that it has only one output unit using a sigmoid acti-
vation function for binary classification. Also, the loss function
is binary cross-entropy.

To optimize the XGBoost hyperparameters, we ran the Ran-
domizedSearchCV function of scikit-learn (Pedregosa et al.
2011) over eight hyperparameters with five-fold cross-validation.
After optimization, the best model consisted of 644 gradient-
boosted trees, each with a maximum depth of 11.

Because all permutations of multi-streak candidates are gen-
erated, many duplicates remain after the classification. For
example, if the ground-truth multi-streak contains members in
all four exposures, there are different permutations of it contain-
ing members in only two or three exposures. Therefore, after the

XGBoost classification, the program checks if all members of
some positively classified multi-streak are included in another
positive multi-streak having members in more exposures. If so,
the multi-streak with fewer members is removed.

4.4. Training and inference pipelines

Combining all the previously mentioned parts, the training of the
pipeline consists of the following stages.

1. Generating a training set for the CNN from full simulated
Euclid CCD exposures.

2. Training the CNN with the training data.
3. Running the CNN through the training images with the

sliding-window algorithm and generating catalogs of the
detected streaklets.

4. Removing static streaklets from the catalogs.
5. Generating a training set for the RNN to merge the streaklets

within exposures.
6. Training the RNN with the training data.
7. Using the RNN to merge the streaklet clusters of the CNN

output catalogs into unified streaks.
8. Removing static streaks.
9. Generating a training set for the XGBoostmodel from multi-

streak candidates.
10. Training the XGBoost model with the training data.

The training of the CNN takes a few hours on average,
depending on the exact hyperparameters used. The training of
the RNN typically takes a few tens of minutes, as it contains
fewer parameters than the CNN. The training of the XGBoost
model is fast and happens in the order of minutes.

On the other hand, the inference pipeline with trained models
(Fig. 6) is as follows.

1. Running the CNN through the images with the sliding-
window algorithm and generating catalogs of the detected
streaklets.

2. Removing static streaklets.
3. Using the RNN to merge the streaklet clusters of the CNN

output catalogs into unified streaks.
4. Removing static streaks.
5. Using the XGBoostmodel to classify multi-streak candidates

into asteroids and non-asteroids.
The inference with trained models is relatively fast. The exact

times depend on the hardware used and the number of streaks
in the images. With an NVIDIA GeForce RTX 3060 GPU, the
CNN analyzes a typical CCD with the sliding-window algorithm
in 5 s and a complete observation (a field) of 144 CCDs (four
exposures of 36 CCDs) in approximately 12 min. The streak-
let merging with RNN takes approximately 6 min for a field,
including the time for clustering nearby streaklets, which takes
almost all of the time used in this step. The inter-exposure streak
linking takes approximately 4 min for a complete observation,
most of which is used again by a non-machine-learning step,
namely generating the multi-streak candidates. The classifica-
tion of multi-streak candidates with XGBoost takes just a few
seconds for a field.

Removing static streaklets takes approximately 20 min per
complete observation. The code for static-streak removal is writ-
ten in standard Python, making it slow, and leaving room
for optimization. Removing static merged streaks is somewhat
faster because there are fewer streaks to be analyzed, and it
takes approximately 4 min. All in all, the inference with the
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Fig. 6. Whole inference pipeline visualized.

whole pipeline takes approximately 46 min for a typical field
of 144 CCDs. The total time it takes Euclid to observe a field
is approximately 70 min, so theoretically, the deep-learning
pipeline could keep up with just one GPU and one central
processing unit (CPU). Furthermore, there is much room for
optimization in the non-machine-learning parts of the pipeline,
which currently take most of the running time.

Our deep-learning pipeline outperforms StreakDet in terms
of speed, especially when parallelization is not considered. Run-
ning a single instance of StreakDet on a field of 144 CCDs
takes over 2 h, not including post-processing steps. The non-
machine-learning processes in the deep-learning pipeline have
much room for optimization to achieve even faster execution.
Conversely, optimizing the runtime of StreakDet is more chal-
lenging as it is already written in well-optimized C++ code.
It is possible to parallelize StreakDet by running multiple
instances of the software simultaneously on different CPUs, with
each instance analyzing different CCD exposures, which reduces
the total running time. Comparably, the deep-learning pipeline
can be parallelized easily with Tensorflow to utilize multiple
GPUs.

5. Results

We evaluated the performance of our pipeline by using accuracy,
completeness, and purity as metrics. In machine-learning litera-
ture, recall is a more commonly used term for completeness, and
precision is used instead of purity. In other contexts, complete-
ness may be referred to as sensitivity, hit rate, or true-positive
rate, while purity may be referred to as positive predictive value.

For classification tasks, accuracy is defined as

Accuracy =
TP + TN

TP + FN + TN + FP
=

TP + TN
P + N

, (2)

where TP stands for the number of true-positive predictions, TN
represents the number of true-negative predictions, FN refers to
the number of false-negative predictions, and FP indicates the
number of false-positive predictions. The quantity P is the num-
ber of actual positive cases in the data, which can be calculated
as TP + FN, and N is the number of actual negative cases, which
is TN + FP. In essence, accuracy measures what fraction of all
predictions are correct.

Similarly, completeness is defined as

Completeness =
TP

TP + FN
=

TP
P
. (3)

In other words, completeness shows what fraction of actual
positive cases are predicted to be positive.

Furthermore, purity is defined as

Purity =
TP

TP + FP
=

TP
PP
, (4)

where PP is the total number of positive predictions. In other
words, purity measures what fraction of all positive predictions
are true positives.

5.1. Results of streak detection with CNN

Table 1 displays the classification and coordinate prediction
results for the CNN when applied to the cutout training, vali-
dation, and test sets, that is, before running the sliding-window
analysis. The achieved accuracy, purity, and completeness stay
fairly consistent for all sets, showing that there is no notable over-
fitting to the training set. The completeness of approximately
60% appears low, but as the dataset is built for characteriz-
ing the detection limits, it contains many extremely faint, and
thus practically invisible, simulated asteroid streaks. Further-
more, non-centered training and test sets generated with the
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Fig. 7. Output catalog of the sliding-window CNN visualized. The input image given to the CNN was the same as in Fig. 1. The detected streaklets
in the CNN output catalog are drawn in their predicted coordinates, and the pixel brightness corresponds to the prediction label certainty of the
CNN, i.e., the darkest pixels have the highest predicted labels. Streaks with predicted labels of smaller than 0.5 are left out. Pixels with overlapping
streaks have been set to the highest predicted label value between those streaks. In this example, the CNN method has detected all asteroids except
for the practically invisible asteroid I. There are multiple false-positive detections, although their prediction labels typically have lower values than
the asteroid streaks. The six streaks caused by a bright star below asteroid E are notable exceptions.

sliding-window algorithm are more challenging than centered
sets. Using training and test sets consisting of centered streaks
achieves better metrics on the centered sets but falls short on
non-centered sets and the sliding-window analysis.

The CNN reaches a purity of 97% for the cutout train-
ing and test sets. However, when applying the CNN to full
images with the sliding-window algorithm, the number of false-
positive detections rises because a vast majority of the windows

are negative. The false positives are typically caused by rem-
nants of removed cosmic rays, which can resemble faint asteroid
streaks. Also, the CNN sometimes confuses diffraction spikes
from bright stars with bright asteroid streaks (Fig. 7).

The limiting magnitude of detection depends on the object’s
sky motion (Fig. 8). The reason is that a fast-moving object’s
flux is divided among a larger number of pixels than the flux of a
slow-moving object, making fast objects appear fainter and thus
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Fig. 8. CNN cutout test set classification completeness as functions of apparent magnitude and apparent motion. The values on both axes mark the
bin edges. For example, the bin between sky motions of 9 and 13 arcsec h−1 and magnitudes of 20.25 and 20.5 shows that the detection completeness
is 97% for streaks created by all simulated SSOs between those values. There are 91 ground-truth streaks per bin on average.

Table 1. CNN results for non-centered cutout training, validation, and
test sets.

Parameter Training Validation Test

Accuracy 93.3% 93.2% 92.9%
Purity (precision) 97.6% 97.7% 97.0%
Completeness (recall) 61.4% 60.9% 59.3%
True positives 145 933 16 094 26 034
True negatives 1 185 564 131 738 218 531
False positives 3536 372 794
False negatives 91 873 10 342 17 831
Median coordinate error 0.135 0.134 0.138
Mean coordinate error 0.376 0.384 0.401

Notes. The training, validation, and test sets contain five times more
negative training examples than positive ones. The units for coordinate
errors are pixels.

harder to detect. On the other hand, the slowest-moving objects
in our dataset resemble point sources, making it difficult to dif-
ferentiate them from stars and resulting in lower completeness
compared to faster-moving objects.

5.2. Results of intra-exposure streaklet merging with RNN

After the sliding-window CNN and RNN merging steps, the
achieved total completeness is 68.5% (3956 true positives over
5774 ground-truth streaks). The value is higher than the CNN
classification completeness during the cutout training and test
phase. This can be explained by the fact that during the cutout

analysis, long streaks are divided over multiple cutouts, and
in some cutouts, they are more difficult to detect than others,
lowering the total cutout classification completeness. However,
during the sliding-window CNN and RNN stages, not every sin-
gle streaklet is needed for the streak to be detected as a whole.
This effect is visible in Fig. 9, where the limiting magnitude
for fast-moving objects is notably fainter than during the cutout
classification phase shown in Fig. 8. The achieved complete-
ness appears to be relatively close to the practical limit with the
dataset used, judging by how faint different streaks appear in the
images.

The purity at this point is only 6.4% (3956 true positives and
345 duplicates out of 66 798 total detections). In other words,
there are over 15 times more false positives than true positives.
The sharp decrease in purity from the CNN cutout training and
test phases is explained by the fact that, during the sliding-
window analysis, there is a much larger number of negative
windows compared to positive ones, and therefore to achieve
high purity during the sliding-window analysis, the achieved
purity during the cutout CNN training stage should be prac-
tically 100%. However, focusing on achieving extremely high
purity during training inevitably diminishes completeness, typ-
ically quite drastically. Since the inter-exposure streak-linking
stage can very efficiently improve purity, focusing on purity at
the cost of completeness during the intra-exposure stage would
be counterproductive.

The accuracy of the streak angle is higher for bright streaks
than for faint ones (Fig. 10). For example, in the magnitude range
of 20–21, containing the brightest analyzed streaks, the aver-
age angle error is 1◦.1, and the median angle error is 0◦.5. The
angle errors remain more or less constant until magnitude 23,
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Fig. 9. CNN+RNN pipeline detection percentage as functions of apparent magnitude and apparent motion. The values on both axes mark the bin
edges. There are 12 ground-truth streaks per bin on average.

after which they increase rapidly. For all magnitudes, the average
angle error is 1◦.6, and the median angle error is 0◦.7. Generally,
the angle accuracy improves with streak length because the angle
is calculated from the streak endpoint coordinates, and the end-
point coordinate accuracy has a smaller effect on the streak angle
accuracy as the length of the streak increases.

For streaks brighter than 21 magnitudes, the average length
error is −2.4%, whereas the median length error is −0.5%. A
negative sign means that the streaks detected are shorter than the
ground truth, whereas a positive sign means that they are longer.
As before, the length errors are quite consistent up to magni-
tude 24, after which they increase and change from negative to
positive, indicating that the streaks are estimated to be longer
than their actual length. When looking at length errors as a func-
tion of apparent motion, streaks corresponding to slower motions
are estimated to be too long, whereas streaks corresponding to
faster motions are estimated to be too short. The faintest detected
streaks are also the shortest, which explains the change from
negative to positive errors for the faintest magnitudes.

The coordinate error is defined as the difference between the
ground-truth middle-point coordinates of a streak and the esti-
mated middle-point coordinates. For streaks with magnitudes
between 20 and 21, the average coordinate error is 2.4 pixels,
corresponding to 240 milliarcseconds, and the median coordi-
nate error is 0.6 pixels or 60 milliarcseconds. This error increases
for both faint and long streaks. For streaks of all magnitudes, the
average coordinate error is 3.8 pixels, or 380 mas, and the median
coordinate error is 0.8 pixels, or 80 mas.

A substantial part of the coordinate error is the length error,
because when a streak’s length is estimated inaccurately, the
middle point of the streak is typically also inaccurate. Ana-
lyzing only streaks with length errors of less than 0.1 pixels,

corresponding to 4.3% of all detected streaks, the average coor-
dinate error for all magnitudes decreases to 0.7 pixels (70 mas)
and the median error to 0.6 pixels (60 mas).

5.3. Results of inter-exposure streak linking with XGBoost

Due to less accurate streak coordinates and angles, the adapted
non-machine-learning algorithm did not work as well for linking
streaks between exposures as it did for StreakDet’s results in
Pöntinen et al. (2020). Because of lower coordinate accuracy,
strict filtering parameters aiming at high purity resulted in low
completeness, while using a broader parameter space resulted in
higher completeness but lower purity. Either way, the levels were
below the results of the StreakDet pipeline.

The RNN worked much better than the non-machine-
learning algorithm and achieved higher completeness and purity.
XGBoost further improved completeness, slightly above RNN’s
level, and it also offered a relatively substantial boost in
purity compared to both the non-machine-learning algorithm
and RNN. The achieved completeness of XGBoost was 59.1%
(Tables 2 and 3), compared to 58.9% achieved by the inter-
exposure RNN, when counting only so-called clean hits, which
refer to multi-streaks, whose all constituent streaks are true
positives.

There is also a small number of so-called semi-hits, which
can be divided into strong and weak ones. Strong semi-hits are
multi-streaks containing at least two true-positive streaks but
also one or two false-positive streaks. Weak semi-hits contain
only one true-positive streak and from one to three false-positive
parts. The XGBoost model achieved higher completeness values
than the RNN also when accepting strong and/or weak semi-hits.
Most of the duplicate detections are caused by the fact that all
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Fig. 10. CNN+RNN detection errors for angles, lengths, and coordinates as a function of magnitude and length. The y-axes of the top and bottom
rows are logarithmic, while the y-axes of the middle row are in symmetric logarithmic scale with values between −10−1 and 10−1 in linear scale.
In the middle row, negative y-values indicate that the detected lengths are shorter than the ground-truth lengths, while positive values indicate that
the detected lengths are longer than the ground truth. The 70th percentile length errors in the middle plots are technically 30th percentile since the
length errors are typically negative.

possible multi-streak permutations are generated before the clas-
sification task, and some different permutations still exist after
the simple duplicate removal. A more sophisticated algorithm for
joining the permutations should be able to decrease the number
of duplicates.

The purity reached by XGBoost was 95.4%, compared to
85.9% for the RNN. The miss rate or false negative rate (the com-
plementary percentage of completeness) of the XGBoost model
was 37.9%. The misses consist mainly of very faint or invisi-
ble streaks, most of which were missed already by the previous
stages of the pipeline. In cases where objects face detection chal-
lenges during the previous intra-exposure merging stage, that is,
some streaks from these objects remain undetected, the subse-
quent linking step becomes more challenging or impossible. This
leads to a reduction in completeness within these specific bins.

Figure 11 shows the completeness heatmap of the entire
pipeline, encompassing the CNN, RNN, and XGBoost, with a
similar logic to Fig. 9. The plot contains only the clean hits,
and the integrated completeness over all bins is 59.1%. Here the
completeness is calculated for asteroids that appear in at least
two exposures. Objects appearing in only one exposure cannot
be linked and are therefore lost during this stage. In our dataset,
approximately 9% of objects appear in just one exposure.

6. Discussion

The performance of the StreakDet pipeline (Pöntinen et al.
2020) forms the baseline to which we compare the results
obtained with the deep-learning pipeline. When analyzing sin-
gle streaks in individual exposures, that is, before linking streaks
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Fig. 11. CNN+RNN+XGBoost detection completeness of multi-streaks as functions of apparent magnitude and apparent motion. There are 3.6
ground-truth multi-streaks per bin on average.

Table 2. Inter-exposure streak-linking results for the test set with
XGBoost.

Type XGBoost n XGBoost %

Clean hits 1025 59.1%
Semi-hits (strong) 26 1.5%
Semi-hits (weak) 26 1.5%
Clean hits + strong semi-hits 1051 60.6%
Total hits 1077 62.1%
Duplicates 281 16.2%
Misses 658 37.9%
False positives 65 4.6%

Notes. The percentages for clean hits, semi-hits, and total hits show
completeness; for duplicates and false positives, they show the fraction
of all detected multi-streaks that belong to that group, and for misses,
they show the miss rate or false negative rate. There were 1735 ground-
truth multi-streaks in the test set.

between exposures, both completeness and purity of the deep-
learning pipeline are higher than those of the StreakDet
pipeline. The total completeness for single-exposure streaks is
not explicitly stated in the StreakDet pipeline article, but com-
paring the corresponding heatmaps (Fig. 9 in this paper and
Fig. 3 in Pöntinen et al. 2020), we see that CNN and RNN
can detect approximately 0.5 magnitudes fainter streaks than
StreakDet, and also shorter streaks. The purity for the deep-
learning pipeline at the single-exposure stage is only 6.4%, but
it actually surpasses StreakDet’s purity of approximately 3%.

The deep-learning pipeline results have approximately one
order of magnitude higher error for the streak angles than

Table 3. Detailed detection completeness of the inter-exposure streak
linking.

GT multi-streaks with 4 parts 411 23.7% of GTs
of which DL found 248 60.3%

with 4 hits 207 50.4%
with 3 hits 27 6.6%
with 2 hits 14 3.4%

GT multi-streaks with 3 parts 680 39.2% of GTs
of which DL found 416 61.2%

with 3 hits 356 52.4%
with 2 hits 60 8.8%

GT multi-streaks with 2 parts 644 37.1% of GTs
of which DL found 357 55.4%

with 2 hits 357 55.4%

Notes. The numbers are calculated for clean hits. “GT” refers to ground
truth and “DL” refers to deep learning, i.e., CNN+RNN+XGBoost.

StreakDet (Fig. 4 in Pöntinen et al. 2020). For example, in
the magnitude range of 20–21, containing the brightest streaks
analyzed, the average angle error is 1◦.1, and the median angle
error is 0◦.5, compared to 0◦.06 and 0◦.03, respectively, achieved by
StreakDet. For the entire magnitude range, the average angle
error is 1◦.6, and the median angle error is 0◦.7, whereas the
numbers for StreakDet are 0◦.2 and 0◦.08, respectively.

Similarly to errors on streak angles, also errors on streak
lengths and streak coordinates are higher for the deep-learning
pipeline than for StreakDet. For streaks brighter than 21 mag-
nitudes, the deep-learning pipeline’s average length error is
−2.4%, and the median error is −0.5%, compared to −0.6%
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and 0.04%, respectively, for StreakDet. For the same set of
streaks, the average coordinate error is 2.4 pixels, and the
median coordinate error is 0.6 pixels, corresponding to 240 and
60 milliarcseconds, respectively. The corresponding values for
StreakDet are 0.6 and 0.1 pixels, and 60 and 10 milliarcsec-
onds, respectively. Across the complete magnitude range tested,
the average coordinate error with deep learning is 3.8 pixels,
and the median coordinate error is 0.8 pixels, while StreakDet
achieved an average error of 1.9 pixels, and a median error of
0.2 pixels. Analyzing only streaks with length errors of less than
0.1 pixels, the average coordinate error across the magnitude
range considered decreases to 0.7 pixels and the median error to
0.6 pixels, while the respective values for StreakDet pipeline
are 0.2 pixels and 0.1 pixels.

The overall completeness of the deep-learning pipeline is
higher than that of the StreakDet pipeline. After the CNN,
RNN, and XGBoost, the overall clean completeness reaches
59.1%, whereas the corresponding level reached by StreakDet
was 55.7%. By accepting semi-hits, which refer to detected
multi-streaks containing both true and false-positive parts, the
deep-learning pipeline’s completeness increases to 62.1% while
StreakDet reached 55.9%. Comparing the relevant complete-
ness heatmaps (Fig. 11 in this paper and Fig. 5 in Pöntinen et al.
2020), we see that the complete deep-learning pipeline can detect
asteroids that are fainter by 0.25–0.5 magnitudes compared to
StreakDet. We also note that the deep-learning pipeline can
detect shorter streaks than StreakDet.

Furthermore, the asteroid size distribution follows a power
law, meaning that there are increasingly more faint asteroids
than bright ones. Therefore, detecting streaks 0.25–0.5 magni-
tudes fainter would result in a greater boost in completeness than
our results with a uniform simulated streak sample suggest. For
example, assuming a typical power law index of 0.35 for the
absolute-magnitude distribution (Jedicke et al. 2015), reaching
0.5 magnitudes fainter would increase the number of detected
asteroids by approximately 50%.
StreakDet’s advantage in the angle and coordinate accu-

racies over the deep-learning pipeline is explained mainly by
StreakDet’s dedicated PSF fitting procedures, which the soft-
ware uses to estimate the streak parameters precisely. In contrast,
the deep-learning pipeline does not explicitly incorporate such
PSF fitting techniques. In addition to more accurate coordinate
prediction, StreakDet has a few other advantages over deep-
learning methods. Firstly, StreakDet can more readily be used
for other surveys without retraining. In other words, it exhibits
relatively high robustness, although some parameter tuning is
still typically required to reach optimal performance on specific
data. In contrast, the performance of deep-learning models often
suffers in the case of a domain shift, which occurs when the
model is tested on data following a different distribution than the
training set. In other words, deep-learning models often have low
robustness. We expect that the robustness of our deep-learning
model is not very good and that the model will require at least
some real training data in addition to the simulated data to per-
form well for real Euclid images. Secondly, StreakDet has a
more interpretable decision-making process than deep learning.
Deep learning models typically work as black boxes whose inner
workings are hard to interpret.

One thing to note is that the test set used in this work is
more challenging in terms of linking streaks between exposures
than the data used by Pöntinen et al. (2020). For the StreakDet
pipeline, all the simulated data could be used for testing. Here,
we had to divide it into training, validation, and test sets. To have
test-set images from all 11 simulated datasets, we chose to use

certain CCDs from all the datasets for the test set. This results
in fewer simulated SSOs visible in all four exposures because
a large portion of the SSOs moves outside the test set CCDs
between exposures. In other words, in the StreakDet test set,
there was a much larger number of SSOs that were visible in
all four exposures (41.2%), and a relatively small number were
visible in only two exposures (9.2%). The situation has flipped
for our test set, as seen in Table 3, so that in our test set, only
23.7% of SSOs are visible in all four exposures, and 37.1%
are visible in only two. This change makes the linking harder
because, for objects appearing four times, it is possible to detect
them even if only two or three of the individual streaks were
detected. However, for objects appearing in only two exposures,
both streaks must be detected for them to be linked. This effect
is visible in Table 3, where the completeness is 61.2% for multi-
streaks with three ground-truth parts and 60.3% for four parts,
whereas for multi-streaks with two parts, it is only 55.4%. In
other words, the deep-learning pipeline surpasses the complete-
ness of the StreakDet pipeline even with a more demanding
test set. Therefore, these estimates offer a kind of lower bound,
and the deep-learning pipeline is expected to perform better on
complete CCD mosaics.

Qualitative comparison to other object-detection pipelines
tested on other relevant datasets shows that the performance of
our pipeline appears quite strong. Also, choosing a customized
streak-focused object-detection approach instead of a bounding-
box-based one seems better for streak detection. Varela et al.
(2019) tested the YOLOv2 object-detection model (Redmon
& Farhadi 2017) to find satellite streaks in the data of their
Wide-Field-of-View (WFoV) system. YOLOv2 reached a com-
pleteness of only 40.4% on their human-labeled dataset. As
humans labeled the dataset, the upper limit for completeness
was realistically 100% because all the streaks were visible to
the human eye. Furthermore, the authors also commented on
the limitations caused by the rectangular bounding boxes on
the accuracy of streak coordinates. Similarly, Kruk et al. (2022)
tested a bounding-box-based approach using Google Cloud
AutoML to detect asteroids in Hubble images. Their AutoML
model achieved 58.2% completeness and 73.6% purity when
detecting asteroid streaks, again on a dataset where humans had
reached 100% completeness. Also, due to the bounding-box-
based model, they had to develop an additional processing step to
find the streak coordinates from the bounding box area. Granted,
both projects were working with data for which linking streaks
between exposures was not viable, meaning they had to reach
much higher purity for single images than our deep-learning
pipeline does, which limits the achievable completeness.

7. Conclusions and future work

Our deep-learning pipeline achieves similar purity and better
completeness compared to the StreakDet pipeline tested by
Pöntinen et al. (2020). The deep-learning pipeline can detect
shorter and fainter streaks than StreakDet, resulting in up to a
50% increase in the number of detected SSOs. Therefore, it can
offer more valuable scientific data on asteroids, giving insights
into the nature of asteroid populations. Especially measurements
of small near-Earth asteroids could prove helpful, as we currently
have very little data about them. The achieved accuracy of the
deep-learning pipeline for streak coordinates falls behind that
of the StreakDet pipeline, but appears good enough to fulfill
the requirements of the streak-detection task. Photometry and
astrometry of the asteroids detected will be extracted after the
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detection step described here, with separate tools tailored for
those tasks. One alternative is using the tools available in the
StreakDet pipeline.

There is still some room for improvement in detection com-
pleteness, mainly in the last stage of the pipeline, that is, in
the streak linking. A limitation of using the XGBoost model is
that during the classification of the multi-streak candidates, the
model has no information about the surrounding other streaks in
the images, which in some cases could provide helpful informa-
tion regarding the classification. Therefore, a more sophisticated
streak-linking algorithm between the four exposures that consid-
ers all the streaks and their context in the images simultaneously,
such as a graph neural network (GNN), could probably further
improve both completeness and purity. Additionally, combining
the NISP-P data with the VIS data could reduce false positives
by adding more streaks or points along each SSO’s observed arc,
although due to the shorter observation time and different pixel
scale, most SSOs appear as point sources in NISP-P images.

Even though our deep-learning pipeline surpasses
StreakDet’s completeness, it may be advantageous to use
both methods for Euclid. First, they may detect partially dif-
ferent streaks, increasing total completeness. Second, there is
typically a gap between simulated and real images, known as a
domain shift; thus, a deep-learning pipeline trained only with
simulated data may underperform with real data. Combining real
and simulated astronomical images in the training set of a deep-
learning model has shown to be a good approach, especially
in terms of increasing the robustness of the model (Holzschuh
et al. 2022). Therefore, a sensible approach would be first to
use StreakDet to find initial asteroid streaks from real Euclid
images, add them to our simulated training set, train the models,
and then use them to find more asteroids from the images.

Furthermore, it might be advantageous to train the deep-
learning pipeline with a dataset following more realistic streak
angle and length distributions, which depend on the SSO orbits
and the observational geometry. The deep-learning pipeline
operates in pixel coordinates, so getting the training distribution
right requires considering further factors, such as the telescope
orientation at different pointings and the fact that long streaks
appear in more CNN cutout images than short streaks. The streak
lengths in our simulated dataset cover most of the expected range
of SSO streak lengths, but fast near-Earth asteroids can form
longer streaks than are included in our training set, so some train-
ing examples of them should probably be added to the training
set before deploying the models for the real data. More realis-
tic angle and length distributions could be achieved by adding
real asteroid streaks detected by StreakDet to the training set,
using data augmentation to increase the proportion of more typ-
ical streak angles and lengths, generating new simulated data, or
some combination thereof.

Our pipeline could be adapted relatively easily for other sur-
veys where asteroid streaks can be linked between consecutive
observations, such as the Kilo-Degree Survey (KiDS; Saifollahi
et al. 2023). For single-exposure streak-detection purposes, our
approach would have to be modified to offer a high enough purity
without the inter-exposure linking stage.
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