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ABSTRACT

We present SKiLLS, a suite of multi-band image simulations for the weak lensing analysis of the complete Kilo-Degree Survey
(KiDS), dubbed KiDS-Legacy analysis. The resulting catalogues enable joint shear and redshift calibration, enhancing the realism and
hence accuracy over previous efforts. To create a large volume of simulated galaxies with faithful properties and to a sufficient depth,
we integrated cosmological simulations with high-quality imaging observations. We also improved the realism of simulated images
by allowing the point spread function (PSF) to differ between CCD images, including stellar density variations and varying noise
levels between pointings. Using realistic variable shear fields, we accounted for the impact of blended systems at different redshifts.
Although the overall correction is minor, we found a clear redshift-bias correlation in the blending-only variable shear simulations,
indicating the non-trivial impact of this higher-order blending effect. We also explored the impact of the PSF modelling errors and
found a small yet noticeable effect on the shear bias. Finally, we conducted a series of sensitivity tests, including changing the input
galaxy properties. We conclude that our fiducial shape measurement algorithm, lensfit, is robust within the requirements of lensing
analyses with KiDS. As for future weak lensing surveys with tighter requirements, we suggest further investments in understanding
the impact of blends at different redshifts, improving the PSF modelling algorithm and developing the shape measurement method to
be less sensitive to the galaxy properties.
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1. Introduction

Weak gravitational lensing, the small deflection of light rays
caused by inhomogeneous matter distributions, is a power-
ful tool for observational cosmology as an unbiased tracer of
gravity (see Bartelmann & Schneider 2001, for a review). It
allows us to study the underlying distribution of both baryonic
and dark matter (see Refregier 2003; Hoekstra & Jain 2008;
Kilbinger 2015, for some reviews). Together with redshift esti-
mates for the sources, the cosmological lensing signal can even
quantify the growth of the cosmic structure and infer the prop-
erties of dark energy (e.g. Hu 1999; Huterer 2002). Recent
weak lensing surveys, including the Kilo-Degree Survey +
VISTA Kilo-degree INfrared Galaxy (KiDS+VIKING) survey
(de Jong et al. 2013; Edge et al. 2013)1, the Dark Energy Sur-
vey (DES, Dark Energy Survey Collaboration 2016)2, and the
Hyper Suprime-Cam (HSC) survey (Aihara et al. 2018)3, have

1 https://kids.strw.leidenuniv.nl
2 https://darkenergysurvey.org
3 https://hsc.mtk.nao.ac.jp/ssp/

provided some of the tightest cosmological constraints on the
clumpiness of matter in the local Universe (Heymans et al. 2021;
Abbott et al. 2022; Hamana et al. 2020). The upcoming so-
called Stage IV surveys, such as the ESA Euclid space mission
(Laureijs et al. 2011)4, the Rubin Observatory Legacy Survey
of Space and Time (LSST, Ivezić et al. 2019)5, and the NASA
Nancy Grace Roman space telescope (Spergel et al. 2015)6,
will advance the field significantly by increasing the statistical
power of weak lensing measurements by more than an order of
magnitude.

While promising, measuring the weak lensing signals to the
desired accuracy in practice is demanding (see Mandelbaum
2018, for a recent review). In particular, the observed images of
distant galaxies are smeared by the point spread function (PSF)
and contain pixel noise, biasing the measurements of galaxy
shapes (e.g. Paulin-Henriksson et al. 2008; Massey et al. 2013;
Melchior & Viola 2012; Refregier et al. 2012). These issues

4 https://sci.esa.int/web/euclid/
5 https://www.lsst.org/
6 https://roman.gsfc.nasa.gov/
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drove the early development of many shape measurement meth-
ods and triggered a series of community-wide blind challenges
based on image simulations, including the Shear TEsting Pro-
gramme (STEP, Heymans et al. 2006; Massey et al. 2007) and
the Gravitational LEnsing Accuracy Testing (GREAT, Bridle
et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015).
These early efforts illuminated some crucial issues and paved
the way to calibrate the systematic biases for an actual survey
using image simulations.

Early applications of simulation-based calibration have
already demonstrated that the calibration accuracy depends on
how well the simulation matches the survey under consider-
ation, especially the observational conditions and the galaxy
properties (e.g. Miller et al. 2013; Hoekstra et al. 2015, 2017;
Samuroff et al. 2018). Therefore, recent implementations care-
fully mimic the data processing procedures and use morpho-
logical measurements from deep imaging surveys to repro-
duce the measured galaxy properties for a specific survey (e.g.
Mandelbaum et al. 2018; Kannawadi et al. 2019, hereafter K19;
MacCrann et al. 2022). Alternately, newer methods, such as the
Bayesian Fourier Domain (Bernstein & Armstrong 2014) and
Metacalibration (Huff & Mandelbaum 2017; Sheldon & Huff
2017), seek an unbiased estimate of the shear either using deeper
data as a prior or directly calibrating the measurements using the
observed data.

Recent studies have highlighted the effect of blending. The
blending effect occurs when two or more objects are close
together in the image plane, so their light distributions over-
lap. It introduces biases during both the selection and measure-
ment processes. For example, Hartlap et al. (2011) found that
the rejection of recognised blends alters the selection function of
the final sample (see also Chang et al. 2013). In some circum-
stances, blended systems are so close that they appear as single
objects. These unrecognised blends increase the shape noise by
decreasing the number density and widening the measured ellip-
ticity dispersion (e.g. Dawson et al. 2016; Mandelbaum et al.
2018). Even if the blended objects are below the detection limit,
they still introduce correlated noise that affects the detection
and measurement of the adjacent bright galaxies (e.g. Hoekstra
et al. 2015, 2017; Samuroff et al. 2018), an effect that becomes
even more dramatic when the clustering of galaxies is consid-
ered (Euclid Collaboration 2019). Given all of these concerns,
it is essential for image simulations to contain faint objects and
physical clustering features.

More concerns arise when considering a tomographic anal-
ysis, which is at the core of current and future weak lensing
surveys. From the shear estimate side, the tomographic bin-
ning approach introduces further selections that link the shear
bias to redshift estimates (K19, MacCrann et al. 2022). From
the redshift estimate side, redshift calibration methods need
mock photometric catalogues to verify their performance. These
mock catalogues must resemble the target data in object selec-
tions and photometric measurements, which are challenging to
address at the catalogue level (Hoyle et al. 2018; Wright et al.
2020; van den Busch et al. 2020; DeRose et al. 2022).

All these issues become even more challenging for the
KiDS-Legacy analysis, the weak lensing analysis of the com-
plete KiDS. It covers the entire 1350 deg2 survey area, a ∼35%
increase over the latest KiDS release (KiDS-DR4, Kuijken et al.
2019). More importantly, thanks to the deeper i-band observa-
tions and dedicated observations in spectroscopic survey fields,
the KiDS-Legacy analysis aims to unleash the power of high-
redshift samples (up to a redshift of z ∼ 2). The improved sta-
tistical power, however, makes a higher demand on the shear

and redshift calibrations, including an assessment of the cross-
talk between the systematic errors in the shear and redshift
estimates.

In this paper, we present SKiLLS (SURFS-based KiDS-
Legacy-Like Simulations), the third generation of image sim-
ulations for KiDS following SCHOol (Simulations Code for
Heuristic Optimization of lensfit, Fenech Conti et al. 2017, here-
after FC17) and COllege (COSMOS-like lensing emulation of
ground experiments, K19). By simulating multi-band imaging
that includes realistic galaxy evolution and clustering in terms of
colour, morphology and number density, SKiLLS allows for the
simultaneous measurement of shear and photometric redshifts
from the same simulation. This study, therefore, provides the
first joint calibration of these two key observables for cosmic
shear analyses. With our approach, we provide a natural solu-
tion to address the expected cross-talk between shear and red-
shift bias, accounting for the impact of blends that carry different
shears (Dawson et al. 2016; Mandelbaum et al. 2018; MacCrann
et al. 2022). We also release our simulation pipeline, which con-
tains customisable features for general use by other surveys7.

The remainder of this paper is structured as follows. In
Sect. 2, we build input catalogues for image simulations. Then in
Sect. 3, we detail the creation and processing of the KiDS-like
multi-band images, starting from instrumental setups and end-
ing with photometric catalogues. Section 4 reviews our fiducial
shape measurement algorithm, lensfit (Miller et al. 2007, 2013;
Kitching et al. 2008), with some improvements introduced for
the KiDS-Legacy analysis. The shear calibration results for the
updated lensfit measurements are presented in Sect. 5, and the
sensitivity test is conducted in Sect. 6. Finally, we conclude in
Sect. 7.

Throughout the paper, we define the complex ellipticity of
an object as

ε ≡ ε1 + iε2 =

(
1 − q
1 + q

)
exp(2iφ) , (1)

where q and φ denote the axis ratio and the position angle of the
major axis, respectively. In terms of the quadrupole moments of
the measured surface brightness Qi j, this definition equals

ε =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2 (Q11Q22 − Q2
12)1/2

. (2)

As stated by Bartelmann & Schneider (2001), this ellipticity def-
inition is convenient because it directly links to the weak lensing
shear signal γ via the estimator

γ =

∑
i wi εi∑

i wi
, (3)

where wi is a weight assigned per object to account for individual
measurement uncertainties8. Although the cosmic shear analysis
uses higher-order statistical measures, such as the two-point cor-
relation functions (e.g. Kaiser 1992), the simple estimator pre-
sented in Eq. (3) is commonly used for constraining the shear
bias from image simulations (e.g. Heymans et al. 2006).

7 https://github.com/KiDS-WL/MultiBand_ImSim.git
8 Strictly speaking, the expectation value of the ellipticity is γ/(1− κ),
where κ is the convergence. But as κ � 1 in the weak lensing regime,
we can safely neglect this term.
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2. Input mock catalogues

To generate mock images, we need input catalogues of galax-
ies and stars with realistic morphology, photometry and cluster-
ing. We detail our procedure for building these catalogues in this
section. Section 2.1 describes how we create the mock galaxy
catalogue by combining deep observations with up-to-date cos-
mological and galactic simulations. Section 2.2 shows how we
generate stellar multi-band magnitude distributions from a pop-
ulation synthesis code.

2.1. Galaxies: SURFS-Shark simulations with COSMOS
morphology

Our input galaxy catalogue is a compilation of simulations and
observations to balance the sample volume and the realism of
galaxy morphology. We review the simulation part, including the
clustering and multi-band photometry in Sect. 2.1.1. As for the
galaxy morphology, which is crucial for the shear calibration, we
learn it from observations with the learning algorithm detailed in
Sect. 2.1.2.

2.1.1. Generating synthetic galaxies from simulations

To jointly calibrate the shear and redshift estimates, we must
base the image simulations on wide and deep (z > 2) cosmo-
logical simulations, where the true redshift is known. In the pre-
vious KiDS redshift calibration, van den Busch et al. (2020) used
the MICE Grand Challenge (MICE-GC) simulation, an N-body
light-cone simulation that covers an octant of the sky (Fosalba
et al. 2015a). However, the MICE simulation has a redshift limit
of z ∼ 1.4, preventing its use for calibrating the high-redshift
samples in the KiDS-Legacy analysis (up to z ∼ 2). Therefore,
we switched to another public N-body simulation from the Syn-
thetic UniveRses For Surveys (SURFS, Elahi et al. 2018).

The SURFS simulation we adopted has a box size of
210h−1 cMpc (cMpc stands for comoving megaparsec), con-
taining 15363 particles with a mass of 2.21 × 108h−1 M�, and
a softening length of 4.5h−1 ckpc (ckpc stands for comoving
kiloparsec). It assumes a ΛCDM cosmology with parameters
from Planck Collaboration XIII (2016). The final halo cata-
logues and merger trees are constructed from 200 snapshots
starting at redshift z = 24, using the phase-space halo-finder
code VELOCIraptor (Cañas et al. 2019; Elahi et al. 2019a)
and the halo tree-builder code treefrog (Elahi et al. 2019b).
We refer to Lagos et al. (2018) for details on the building and
Poulton et al. (2018) for validating the halo catalogues and
merger trees.

The galaxy properties, including the star formation his-
tory and the metallicity history, are from an open-source semi-
analytic model named Shark9 (Lagos et al. 2018). The model
parameters are tuned to reproduce the z = 0, 1 and 2 stellar-mass
functions (Wright et al. 2018), the z = 0 black hole-bulge mass
relation (McConnell & Ma 2013) and the mass-size relations at
z = 0 (Lange et al. 2016). Any other observables are predic-
tions of the model, which also match well with observations (see
Lagos et al. 2018 for more details). As for weak lensing cal-
ibration, the most crucial property is the redshift evolution of
the galaxy number density (e.g. Hoekstra et al. 2017), which we
checked in detail in Appendix A and found it to be sufficient for
KiDS.

9 https://github.com/ICRAR/shark

The light cones from the Shark outputs are created using
the code stingray (Chauhan & Lagos 2019), an improved ver-
sion of the code used by Obreschkow et al. (2009). It first tiles
the simulation boxes together to build a complex 3D field along
the line of sight, then draws galaxy properties from the closest
available time-step, resulting in spherical shells of identical red-
shifts. A possible issue would be the same galaxy appearing once
in every box but with different intrinsic properties due to cosmic
evolution. To avoid this problem, stingray randomises galaxy
positions by applying a series of operations consisting of 90 deg
rotations, inversions, and continuous translations. We refer to
Chauhan & Lagos (2019) for more details about the light-cone
construction.

The final mock-observable sky covers ∼108 deg2 with min-
imum repetition of the large-scale structure. The sample vari-
ance bias caused by the replicating structure is negligible for our
direct shear and photometric redshift calibration. Since we learn
galaxy morphology from deep observations, our input galaxy
sample is still limited mainly by the observational data we have,
which only covers ∼1 deg2 (see Sect. 2.1.2 for details). We test
the robustness of our calibration results against this sample vari-
ance bias using the sensitivity analysis detailed in Sect. 6.

The multi-band photometry is drawn from a stellar popula-
tion synthesis technique implemented in the ProSpect10 and
Viperfish11 packages. ProSpect (Robotham et al. 2020) is a
high-level package combining the commonly used stellar syn-
thesis libraries with physically motivated dust attenuation and re-
emission models; while Viperfish is a light wrapper to aid the
interface with the Shark outputs. We refer to Lagos et al. (2019)
for detailed predictions, validations and a demonstration that the
predicted results agree with observations in a broad range of
bands from the far-ultraviolet to far-infrared, without any fine-
tuning with observations.

For our purpose, we care most about the nine-band pho-
tometry covered by the KiDS+VIKING data, so we compared
the synthetic near-infrared and optical magnitude distributions
to observations from the COSMOS2015 catalogue (Laigle et al.
2016). Figure 1 shows the magnitude distributions of eight fil-
ters available in both Shark and COSMOS2015 catalogues,
together with an analytical fitting result from Eq. (4) of FC17.
The counts in the original simulations are ∼35% lower than
the observations with some variation between filters. As this
affects the blending level and then the shear bias (Hoekstra et al.
2015, 2017), we calibrated the original synthetic photometry
for a better agreement. The technical details are presented in
Appendix A. In short, we found that the differences in the mag-
nitude distributions stem from the difference in stellar mass-to-
light ratio between the simulations and observations. Therefore,
we scaled the original Shark magnitudes using a modification
factor derived from the stellar mass-to-light ratio difference. The
modification is the same for all bands, preserving the intrinsic
colours of individual galaxies. The modified magnitudes now
agree with the observations within ∼3%.

We later noticed that Bravo et al. (2020) proposed a sim-
ilar fine-tuning method when working with the panchromatic
Galaxy And Mass Assembly (GAMA) survey. They used an
abundance matching method by comparing the number counts
between Shark and GAMA after fine binning in redshift and
r-band apparent magnitude. They tuned magnitudes for all
Shark galaxies with r < 21.3 to match the number counts

10 https://github.com/asgr/ProSpect
11 https://github.com/asgr/Viperfish
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Fig. 1. Number of galaxies per square degree per 0.1 mag in the input
apparent magnitudes. The green dashed lines are from the original
SURFS-Shark mock catalogue, whilst the blue solid lines denote the
modified results. The red solid lines correspond to the COSMOS2015
observations with flags applied for the UltraVISTA area inside the
COSMOS field after removing saturated objects and bad areas
(1.38 deg2 effective area, Table 7 of Laigle et al. 2016). The analytical
fitting result in the r-band (black dashed line) is from FC17. The g-band
photometry is not in the COSMOS2015 catalogue and, thus, not shown
in the plot. We note that the COSMOS2015 catalogue is incomplete at
Ks & 24.5 (Laigle et al. 2016).

in GAMA. Their modifications are consistent with our results,
albeit targeting different magnitude ranges.

2.1.2. Learning galaxy morphology from observations

Simulating galaxies with realistic morphology is essential for
accurate shear calibration. Following K19, we represent the
galaxy morphology using the Sérsic profile (Sérsic 1963) with
three parameters: the effective radius determining the galaxy
size (also known as the half-light radius), the Sérsic index
describing the concentration of the brightness distribution, and
the axis ratio determining the galaxy ellipticity. We learned
these structural parameters from deep observations accounting
for their mutual correlations and their correlations to galaxy
photometry and redshift. Figure 2 shows the workflow for the
learning algorithm.

We start with a ‘reference’ sample comprising morphol-
ogy, photometry and redshifts from several deep observations.
The structural parameters are adopted from the catalogue pro-
duced by Griffith et al. (2012), who fitted Sérsic models to
the galaxy images taken by the Advanced Camera for Sur-
veys (ACS) instrument on the Hubble Space Telescope (HST).
We used their results derived from the COSMOS survey and
cleaned the sample by only preserving objects with a good fit
(FLAG_GALFIT_HI = 0) and reasonable size (half-light radius
between 0′′.01 and 10′′) to avoid contamination. We note that this
catalogue was also used by K19 and proved to be sufficient for
KiDS-like simulations.

The r-band photometry is derived from a deep VST-
COSMOS catalogue using 24 separate VST observations of the
COSMOS field taken from KiDS and the SUpernova Diversity
And Rate Evolution (SUDARE) survey (Cappellaro et al. 2015;
De Cicco et al. 2019). These observations have a maximum see-
ing of 0′′.82, close to the KiDS r-band image qualities. To ensure
consistent measurements, we conducted the stacking and detec-

tion processes using the same pipeline as the standard KiDS
data processing. The stacked image has an average seeing of
0′′.75 and a total exposure time of 42 120 s, which is a factor of
∼23 over a standard KiDS observation. The limiting magnitude
of the final deep catalogue is more than one magnitude deeper
than usual KiDS catalogues. To include colour information, we
also used the Ks-band photometry from the COSMOS2015 cat-
alogue (Laigle et al. 2016), as it originates from the UltraVISTA
project (McCracken et al. 2012) that shares the same instruments
with the VIKING near-infrared observations.

The redshifts are taken from the catalogue compiled by
van den Busch et al. (2022). It contains observations from
several spectroscopic and high-quality photometric surveys in
the COSMOS field. The spectroscopic redshifts were collected
from G10-COSMOS (Davies et al. 2015), DEIMOS (Hasinger
et al. 2018), hCOSMOS (Damjanov et al. 2018), VVDS
(Le Fèvre et al. 2013), LEGA-C (van der Wel et al.
2016), FMOS-COSMOS (Silverman et al. 2015), VUDS
(Le Fèvre et al. 2015), C3R2 (Masters et al. 2017, 2019; Euclid
Collaboration 2020; Stanford et al. 2021), DEVILS (Davies et al.
2018) and zCOSMOS (priv. comm. from M. Salvato), while
the photometric redshifts were from the PAU survey (Alarcon
et al. 2021) and COSMOS2015 (Laigle et al. 2016). For sources
with multiple measurements, a specific ‘hierarchy’ was defined
with orders based on the quality of measured redshifts to choose
the most reliable redshift estimates (see Appendix A in van den
Busch et al. 2022, for details). Given the high quality of the red-
shift estimates, we treated them as true redshifts.

All catalogues mentioned above overlap in the COSMOS
field, so we can combine them by cross-matching objects based
on their sky positions. The final reference catalogue has 75 403
galaxies with all the necessary information. It has a limiting
magnitude of 27 in the r-band but suffers incompleteness after
mr & 24.5. We verified that the incompleteness at the faint end
does not bias the overall morphological distribution by compar-
ing it to measurements from the Hubble Ultra Deep Field obser-
vations (Coe et al. 2006).

We aim to inherit not only the individual distributions of
structural parameters but also their mutual dependence and pos-
sible correlations with redshifts and magnitudes. To achieve this
goal, we developed a learning algorithm based on a novel sta-
tistical inference technique, dubbed vine copulas (e.g. Joe 2014;
Czado 2019). A brief introduction to the technique is presented
in Appendix B. In short, a copula-based method models joint
multi-dimensional distributions by separating the dependence
between variables from the marginal distributions. It is popular
in studies concerning dependence modelling, given its flexibility
and reliability. In practice, we first divided galaxies into 30 × 40
bins based on their redshifts and r-band magnitudes. Each bin
contains a similar number of reference galaxies. Then in each
bin, we built a data-driven vine-copula model from the measured
r − Ks colour and morphological parameters using the public
pyvinecopulib package12. The learned vine-copula model can
be sampled to produce an arbitrary number of vectors of param-
eters from the constrained multi-dimensional distributions. We
decided to generate the same number of vectors as the available
Shark galaxies and assign them to the Shark galaxies in the
order of r − Ks colour. This approach allows us to mimic obser-
vations from the underlying distributions rather than repeatedly
sampling from the measured values.

Figure 3 shows the correlations between the magnitude
and the two critical structural parameters: half-light radius and

12 https://github.com/vinecopulib/pyvinecopulib
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0.5

1.0

1.5
0.1 < z < 0.3 0.5 < z < 0.7

21 22 23 24

0.5

1.0

1.5
0.9 < z < 1.2

21 22 23 24

1.4 < z < 2.0

Input magnitude (r-band)

M
ea

n
ha

lf
-l

ig
ht

ra
di

us
[a

rc
se

c]

COSMOS SKiLLS

0.2

0.3

0.4
0.1 < z < 0.3 0.5 < z < 0.7

21 22 23 24

0.2

0.3

0.4
0.9 < z < 1.2

21 22 23 24

1.4 < z < 2.0

Input magnitude (r-band)

M
ea

n
el

lip
ti

ci
ty

COSMOS SKiLLS

Fig. 3. Comparison of the overall magnitude-morphology relations in several redshift bins. The red solid and blue dashed lines denote the training
and target samples, respectively. Left panel: the mean half-light radius as a function of r-band magnitude, whilst the right panel presents the mean
ellipticity as a function of r-band magnitude. The statistical uncertainties shown are calculated from 500 bootstraps. Left panel: the histograms of
the normalised magnitude distributions, demonstrating that the extra high-redshift bright galaxies in the simulation contribute little to the overall
population.

ellipticity, in several redshift bins. We see that the learned
sample follows the average trends of the reference sample.
Figure 4 presents two-dimensional contour plots in several mag-
nitude bins to better inspect the underlying distributions of
morphological parameters. We again see agreements in corre-
lations between the size and ellipticity and between the size
and concentration, proving that our copula-based algorithm

captures the multi-dimensional dependence from the reference
sample.

2.2. Stars: Point objects with synthetic photometry

We treated stars as perfect point objects. Their multi-band
photometry was obtained from the population synthesis code,
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Trilegal (Girardi et al. 2005, with version 1.6 and the default
model from its website13). We generated six stellar catalogues
at galactic coordinates evenly spaced across the KiDS footprint
to capture the variation of stellar densities between KiDS tiles.
Each catalogue spans 10 deg2. When simulating a specific tile
image covering 1 deg2, we selected the stellar catalogue whose
central pointing is closest to the target tile, then randomly drew
ten per cent of stars from that catalogue as the input. Figure 5
shows the r-band magnitude distributions of the six stellar cat-
alogues compared to the catalogue used by the COllege simu-
lations. The broader coverage of stellar densities is noticeable,
marking one of the improvements in SKiLLS. Also, stars in
SKiLLS have nine-band magnitudes consistently predicted from
a library of stellar spectra (see Girardi et al. 2005, for details),
while in COllege, stars only have r-band magnitudes.

13 http://stev.oapd.inaf.it/cgi-bin/trilegal

3. KiDS+VIKING 9-band image simulations

This section details the creation and processing of the multi-band
mock images. We start with the creation of KiDS-like optical
images (Sect. 3.1) and VIKING-like infrared images (Sect. 3.2),
then summarise the SKiLLS fiducial setups in Sect. 3.3. We end
the section with the measurement of colours and photometric
redshifts (Sect. 3.4).

3.1. KiDS-like optical images

Each KiDS pointing consists of four-band optical images taken
with the OmegaCAM camera at the VLT Survey Telescope
(Kuijken 2011): u, g, r and i. The r-band images are the primary
products used for the shear measurement, while the remaining
bands are only for photometric measurements. The science array
of the OmegaCAM camera has a ∼1◦ × 1◦ field of view covered
by 8 × 4 CCD images, each of size 2048 × 4100 pixels with an
average resolution of 0′′.214. Although the CCDs are mounted
as closely as possible, a narrow gap between the neighbouring
CCDs is technically inevitable. The average gap sizes between
the pixels of neighbouring CCDs are:

– between the long sides of the CCDs: 1.5 mm (100 pixels)
– central gap along the short sides: 0.82 mm (55 pixels)
– wide gap along short sides: 5.64 mm (376 pixels).

To avoid ‘dead zones’ caused by these gaps, each tile image
incorporates multiple dithered exposures (five in the g, r and i
bands, four in the u band). The dithers form a staircase pattern
with steps of 25′′ in RA and 85′′ in declination to match the gaps
between CCDs (de Jong et al. 2013).

KiDS raw observations are processed with two independent
pipelines: the Astro-WISE pipeline designed for the photo-
metric measurements (McFarland et al. 2013; de Jong et al.
2015)14, and the theli pipeline optimised for the shape mea-
surements (Erben et al. 2005; Schirmer 2013; Kuijken et al.
2015)15. While the former is applied to all four-band obser-
vations, the latter is only used for the r-band observations, as
KiDS only measures galaxy shapes for lensing in the r-band
images. The main difference between the Astro-WISE and
14 http://www.astro-wise.org/
15 https://www.astro.uni-bonn.de/theli/
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Fig. 6. Comparison of the theli weight image produced by SKiLLS
(left panel) to a randomly selected example from KiDS (right panel).
The 8×4 CCDs cover a ∼1 square-degree sky area. The shallow regions
are caused by the gaps in individual exposures. The same level of agree-
ment is also achieved for the Astro-WISE co-added images.

theli pipelines is in the co-addition process, where the former
resamples all exposures to the same pixel grid with a uniform
0′′.20 pixel size, while the latter preserves the original pixels to
maintain image fidelity as much as possible.

We kept all these features in mind when generating SKiLLS
optical images. We created raw exposures using the GalSim
pipeline16 (Rowe et al. 2015), with galaxies and stars from
the mock catalogues described in Sect. 2. The underlying can-
vas mimicked the science array of the OmegaCAM camera,
including pixels and gaps. Galaxies and stars were mapped to
the canvas using the gnomonic (TAN) projection of their origi-
nal sky coordinates. Following the KiDS image processing, we
stacked exposures using the SWarp software (Bertin 2010),
with the identical setups as in the KiDS pipelines, including
Astro-WISE-like images re-gridded to a uniform 0′′.20 pixel
size and theli-like images preserving the original 0′′.214 pixel
size. Figure 6 compares a co-added theli weight image from
SKiLLS to a randomly selected tile from KiDS. It shows that
the SKiLLS images contain the main features of KiDS images,
including the gaps and dither patterns, albeit lacking subtle fea-
tures, such as the inhomogeneous backgrounds between CCDs
and masks of satellites.

Besides the image layout, we need information on the
pixel noise and point spread function (PSF) to mimic observa-
tional conditions. We extracted this information from the fourth
public data release of KiDS (KiDS-DR4, or DR4 for short,
Kuijken et al. 2019). It has a total of 1006 square-degree sur-
vey tiles with stacked ugri images along with their weight maps,
masks and source catalogues. We selected a representative sam-
ple of 108 tiles and replicated their properties in our image sim-
ulations (see Sect. 3.3 for details). For the raw pixel noise, we
adopted Gaussian distributions with variances estimated from
the Astro-WISE weight maps corrected with a boost factor of
∼1.145 (=(0.214/0.2)2) to account for the re-gridding effect. For
the PSF, we used two approaches, depending on the different
usages of the images.

For the r-band images from which galaxy shapes are mea-
sured, we used the position-dependent PSF models for individual
exposures. These PSF models, constructed from well-identified
stars, are in the form of two-dimensional polynomial func-
tions and can recover a PSF image in the pixel grid for any
given image position (see Miller et al. 2013; Kuijken et al. 2015;

16 https://github.com/GalSim-developers/GalSim

Giblin et al. 2021 for details). In practice, we recovered 32 PSF
images for each exposure using the centre positions of the CCD
images. The recovered PSF images contain modelling uncer-
tainties, which can introduce artificial spikes when being used
to simulate bright stars. Therefore, we applied a cosine-tapered
window to the original PSF image to suppress the modelling
noise at its outskirts. The two edges of the window function are
defined at 5 and 10 times the full-width half-maximum (FWHM)
of the target PSF to preserve features in the central region as
much as possible. With these recovered PSF images, we can treat
the 32 CCD images separately using their own PSFs, a signifi-
cant improvement from the constant PSF used in previous work.
The recovered PSF image is also superior to a Moffat profile as it
captures more delicate features of complex PSFs, such as ellip-
ticity gradients.

For other optical bands where only photometry is measured,
we still adopted the Moffat profile, given that the photomet-
ric measurement is insensitive to the detailed profile of PSF.
We estimated the Moffat parameters by modelling bright stars
identified in the Astro-WISE images. Since the photometry
is measured from the stacked images and is less sensitive to
the gentle PSF variation within a given tile, we kept the PSF
model invariant for all exposures for simplicity. To alleviate the
Moffat fitting bias introduced by the pixelisation of CCD images,
we applied the first-order correction to the measured Moffat
parameters using image simulations. Specifically, we simulated
the pixelated PSF image using measured Moffat parameters and
then remeasured them with the same fitting code. The differ-
ence between the remeasured and input values is the correction
factor and is subtracted from the initially measured value. Our
test shows that this correction can suppress the original percent-
level bias down to a sub-percent level, which is sufficient for our
photometry-related purpose.

3.2. VIKING infrared images

To improve the accuracy of photometric redshifts, KiDS includes
near-infrared (NIR) measurements from the VISTA Kilo-degree
Infrared Galaxy (VIKING) survey (Edge et al. 2013). The two
surveys share an almost identical footprint. We refer to Wright
et al. (2019) for details of the VIKING imaging and its usage in
KiDS. Briefly, the VIKING data have three levels of products:
exposures, paw-prints, and tiles. Given the complex NIR back-
grounds, the VIKING survey first takes multiple exposures in
quick succession with small jitter steps for reliable estimation of
the noisy background. These exposures are then stacked together
to create the second level of product: the ‘paw-print’. A paw-
print still contains gaps between individual detectors, so six paw-
prints with a dither pattern are used to produce a contiguous tile
image. However, these co-added tiles have non-contiguous PSF
patterns caused by the large dithers between successive paw-
prints. Therefore, in the KiDS+VIKING analyses, photometry
is done on individual paw-prints instead of the co-added tiles.
The dither pattern of paw-prints causes multiple flux measure-
ments per source (typically four in the case of the J-band and
two in the other bands). The final flux estimate for each source
is a weighted average of the individual measurements with the
weights derived from individual flux errors.

Given the complexity of the VIKING observing strategy, we
simplified the NIR-band observations in SKiLLS with single
images per square degree of KiDS tile. To compensate for the
simplified images, we considered the overlap between individ-
ual paw-prints when estimating the observational conditions. As
we show in Sect. 3.4, this simplified approach can still achieve
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Fig. 7. Sky distribution of the KiDS-DR4 tiles. Tiles shown in blue are
included in the SKILLS fiducial run (108 tiles); The grey blocks show
all KiDS-DR4 tiles that have nine-band noise and PSF information (979
tiles). The black stars indicate the centres of the stellar catalogues gen-
erated from Trilegal (Girardi et al. 2005).

realistic photometry, which is the only important quality we seek
from the NIR-band images.

Specifically, we created a ‘flat-field image’ for each paw-
print with the same size and pixel scale. Its pixel value equals
the absolute standard deviation of the background pixel values
on the corresponding paw-print. For each KiDS pointing, we
selected all VIKING paw-prints that overlap in the given one
square-degree sky area and stacked their flat-field images with
shifts accounting for the different sky pointings of the paw-
prints. We took the median pixel value of the co-added flat-
field image as the final pixel noise of the corresponding KiDS
pointing. In doing so, we captured various overlapping VIKING
paw-prints in individual KiDS pointings. Following the typical
situations of the KiDS+VIKING data (Wright et al. 2019), we
only preserved KiDS pointings with at least two paw-prints in
the ZYHKs-bands and at least four paw-prints in the J-band.
This requirement reduced the number of pointings from 1006
to 979, which is still plentiful for our purpose. As for the PSF,
we employed a constant Moffat profile for each KiDS point-
ing. The PSF FWHM is a weighted average from overlapping
VIKING paw-prints with the weights determined by their noise
levels. In order to determine the Moffat concentration index for
a given FWHM value, we fitted Moffat profiles to bright stars
in some representative paw-prints. The Moffat fitting bias intro-
duced by the pixelisation is corrected using the same method
introduced in Sect. 3.1. We found the relationship between the
Moffat index n and FWHM (arcsec) in VIKING images to be:
ln(n) = 66.56 exp (−6.36 FWHM) + 0.90. This empirical for-
mula is used to pair each FWHM with a unique Moffat index.

3.3. SKiLLS fiducial setup

Since we have 108 deg2 of Shark galaxies as described in
Sect. 2.1, we selected 108 KiDS pointings for the SKiLLS fidu-
cial run. Figure 7 shows the sky locations of the selected 108
tiles along with the 979 KiDS-DR4 tiles that have the nine-band
noise and PSF information. Clusters of the selected blocks pair
with the six stellar catalogues generated from Trilegal so that
SKiLLS captures the stellar density variation across the whole
KiDS survey (see Sect. 2.2).
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Fig. 8. Comparing normalised histograms of the pixel noise (top left),
PSF size (top right) and PSF ellipticity (bottom left) between KiDS-
DR4 (red) and SKiLLS (blue) for the r-band images. The PSF size and
ellipticity are measured from the recovered PSF image using a circular
Gaussian window of sigma 2.5 pixels.

Figure 8 compares the r-band noise and PSF properties
between the SKiLLS selected tiles and all usable KiDS-DR4
tiles. We measured the PSF size and ellipticity using the
weighted quadrupole moments with a circular Gaussian win-
dow of dispersion 2.5 pixels, the typical galaxy size in the KiDS
sample. The PSF size is defined as

rPSF ≡ (Q11Q22 − Q2
12)1/4 , (4)

where Qi j are the weighted quadrupole moments, and the PSF
ellipticity is defined by Eq. (2). Figure 8 shows that the selected
tiles represent the KiDS-DR4 data well. Because we vary PSF
for individual CCD images and exposures, the 108 SKiLLS
images cover 17 280 different PSF models, a significant exten-
sion of the 65 PSF models used by FC17 and K19. That
also explains the smooth distributions of the PSF parameters.
Figure 9 shows similar comparisons for other bands. Again we
see fair agreements across all bands. As KiDS-DR4 already cov-
ers ∼75% of the whole survey, we expect a similar agreement to
the KiDS-Legacy data. The wide coverage of the noise and PSF
properties also makes the SKiLLS results more robust than pre-
vious simulations and simplifies sensitivity tests (see Sect. 6 for
details).

3.4. Photometry and photometric redshifts

With the simulated multi-band images, we can measure colours
and estimate photometric redshifts (photo-zs) for simulated
galaxies using the same tools developed in KiDS with minor
adjustments.

For galaxy colours, we used the GAaP (Gaussian Aper-
ture and PSF) pipeline (Kuijken et al. 2015, 2019). It pro-
vides accurate multi-band colours by accounting for PSF differ-
ences between filters and optimises signal-to-noise ratio (S/N)
by down-weighting the noise-dominated outskirts. The latter is
possible because the photo-z estimation only needs the ratio of
the fluxes from the same part of a galaxy in the given bands
rather than the total light. A prerequisite for the GAaP pipeline is
a detection catalogue with source positions and aperture param-
eters, which we measured from the theli-like r-band images
using the SExtractor code (Bertin & Arnouts 1996). Once
the detection catalogue is ready, we can obtain the list-driven

A100, page 8 of 27



S.-S. Li et al.: KiDS-Legacy calibration: multi-band image simulations

0

2

4
u g i

0

2

4
Z Y J

0.5 1.0 1.5
0

2

4
H

0.5 1.0 1.5

Ks

Pixel noise / median value

P
ro

ba
bi

lit
y

de
ns

it
y

KiDS DR4

SKiLLS fiducial

0

2

4
u g i

0

2

4
Z Y J

0.8 1.2
0

2

4
H

0.8 1.2

Ks

PSF FWHM [arcsec]

P
ro

ba
bi

lit
y

de
ns

it
y

KiDS DR4

SKiLLS fiducial

Fig. 9. Comparing normalised histograms of the pixel noise (left) and PSF FWHM (right) between KiDS-DR4 (red) and SKiLLS (blue) for the
bands only used for photometry. Equivalent comparisons for the lensing r-band images are presented in Fig. 8. The pixel noise values are divided
by the median values in the whole sample for individual bands, so they can be shown in the same range.

u g r i Z Y J H Ks

Band

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

∆
1σ

G
A

a
P

lim
it

in
g

m
ag

ni
tu

de

50

16

84

Fig. 10. Differences of the image’s median 1σ GAaP limiting magni-
tudes for the nine bands (simulation – data). The three lines indicate the
16, 50 and 84 percentiles from the 108 tiles included in the SKiLLS
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the simplified simulating strategy.

photometry by running the GAaP algorithm on the u, g, r and
i Astro-WISE-like images and the Z, Y , J, H and Ks simple
images. In short, the GAaP method includes three major steps:
1. Homogenising PSFs by convolving the whole image with a

spatially variable kernel map modelled from high S/N stars.
The resulting image has a simple Gaussian PSF, for which
estimating the PSF-independent Gaussian aperture flux is
possible. The main side effect is that the convolution pro-
cess introduces correlated noise between neighbouring pix-
els, complicating the estimation of measurement uncertain-
ties. GAaP handles this by tracking the noise covariance
matrix through the whole process.

2. Defining an elliptical Gaussian aperture function for each
source using the size and shape parameters measured by
SExtractor on the r-band detection images. In practice,
users must customise the minimum and maximum GAaP
aperture sizes to balance the S/N and the effect of blending.
Following the KiDS fiducial setup, we set the maximum aper-
ture to 2′′ to avoid contamination from neighbouring sources.
We conducted two separate runs by setting the minimum aper-
ture to 0′′.7 and 1′′.0. When used as the input for the photo-z

estimation, a source-by-source decision was made to optimise
the flux errors across the nine bands (see Kuijken et al. 2019
for details).

3. Performing the aperture photometry on the PSF-Gaussianised
images for each band using the defined aperture functions. It
is worth stressing that GAaP aims to provide robust colours
for the high S/N parts of galaxies; it underestimates the total
fluxes for extended sources by design.
Figure 10 compares the nine-band 1σGAaP limiting magni-

tudes between the KiDS-DR4 data and SKiLLS fiducial results.
We calculated the median limiting magnitudes for tiles in both
KiDS and SKiLLS and then compared their differences. We
see a general agreement for all the bands, verifying our noise
and PSF modelling. Noticeably, even for the NIR bands where
we simplified the VIKING observations with single images,
the differences are still tolerable, albeit with larger uncertain-
ties. Figure 11 compares the GAaP photometric distributions
between the simulation and data. Once again, we see a decent
agreement in both magnitude and colour distributions.

For the photo-z estimation, we implemented the public
Bayesian Photometric Redshift (bpz; Benítez 2000) code with
the re-calibrated template set from Capak (2004) and the
Bayesian redshift prior from Raichoor et al. (2014). We closely
followed the settings in the KiDS-DR4 analysis (Kuijken et al.
2019) unless it conflicts with the simulation input. For exam-
ple, we set ZMAX to 2.5, the limiting redshift of SKiLLS
galaxies, instead of 7.0 as in the data. We tested the choice
of ZMAX in the simulations and found that only 0.1% of the
test sample resulted in estimates differing more than 0.1, which
means most of the objects have similar photo-z estimates and
end up in the same tomographic bins for these two choices.
Moreover, the Shark photometry in the u, g, r, i and Z bands is
based on the Sloan Digital Sky Survey (SDSS) photometric sys-
tem, which is slightly different from the KiDS/VIKING system
(Kuijken et al. 2019). We corrected these slight differences in the
measured GAaP magnitudes in order to use the KiDS/VIKING
filters to run the bpz code. The detailed procedures and compar-
isons are described in Appendix C. Overall, the modification is
minor and has a negligible impact on the magnitude, colour dis-
tributions, and final shear biases. Still, it improves the agreement
between the simulation and the data in the photo-z distributions.
Unless specified otherwise, we base our fiducial results on the
transformed photometry.
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Figure 12 compares the estimated photo-z to the true red-
shift from the input SURFS-Shark simulations in several mea-
sured magnitude bins. It shows the photo-z vs. true redshift
distributions, along with annotated statistics based on the dis-
tributions of (zB − ztrue)/(1 + ztrue) ≡ ∆z/(1 + z) values. We see
the bpz code works well in SKiLLS and is at the same level as
in KiDS (Wright et al. 2019). More detailed verification of the
SKiLLS photo-z performance is presented in the companion red-
shift calibration paper (van den Busch et al., in prep.).

As for the redshift calibration, our end-to-end approach,
which starts with image simulation followed by object detec-
tion, PSF homogenisation, forced multi-band photometry, and
photo-z estimation, is a significant improvement compared
to previous catalogue-level simulations (e.g. Hoyle et al.
2018; van den Busch et al. 2020; DeRose et al. 2022). The
image-simulation-based approach not only yields more realis-
tic observational uncertainties but also naturally accounts for the
blending effect, which is hard to address at the catalogue level.
As for the shear calibration, these photo-z estimates are essential
for performing tomographic selections (K19). Our approach that
directly measures the photo-zs from simulated images accounts
for various measurement uncertainties of photo-zs, hence a
tomographic selection consistent with how it is done in the data.
Moreover, using the same mock catalogue in both shear and red-
shift calibration unites these two long-separated processes in the
KiDS-Legacy analysis.

4. Shape measurements with the updated lensfit

The primary task of any weak lensing survey is to measure the
shapes of galaxy images. Previous KiDS analyses tackled this
task using a likelihood-based code, dubbed lensfit (Miller et al.
2007, 2013; Kitching et al. 2008). It is the default shape mea-
surement algorithm for the KiDS-Legacy analysis, with some
updates described in this section. We test SKiLLS using this
updated lensfit code17.

17 Nevertheless, we note that SKiLLS can also calibrate other algo-
rithms, such as the KiDS Metacalibration catalogue (Yoon et al.,
in prep.).

4.1. The self-calibration version of lensfit

The lensfit code, first developed for CFHTLenS (Heymans
et al. 2012), follows a Bayesian model-fitting approach. We
refer to Miller et al. (2013) for its detailed formalism. In
brief, it first performs a joint fit to individual exposures
using a PSF-convolved galaxy model, which yields a like-
lihood distribution of seven parameters: 2D position, flux,
scalelength, bulge-to-total flux ratio and complex ellipticity.
Then it deduces the ellipticity parameters from the likelihood-
weighted mean values by marginalising other parameters with
priors as described by Miller et al. (2013). For each elliptic-
ity estimate, an inverse-variance weight is also determined from
(Miller et al. 2013)

wi ≡

 σ2
ε, i ε

2
max

ε2
max − 2σ2

ε, i

+ σ2
ε, pop

−1

, (5)

whereσε, i is the uncertainty of the measured ellipticity,σε, pop is
the ellipticity dispersion of the galaxy population (intrinsic shape
noise), and εmax is the maximum allowed ellipticity in the lensfit
model-fitting. As for KiDS data, we adopted σε, pop = 0.253 and
εmax = 0.804.

The code has evolved as KiDS progressed. The most signif-
icant is a self-calibration scheme for noise bias, as detailed in
FC17. The pixel noise in a given image skews the likelihood,
which biases the estimate of individual galaxy ellipticities. It is a
complex function of the signal-to-noise ratio, galaxy properties
and PSF morphology, making it difficult to predict accurately.
Thus, lensfit conducts an approximate correction using the mea-
surements themselves, that is a self-calibration. The basic idea
is to simulate a test galaxy with parameters measured from the
first run, then remeasure the test galaxy using the same pipeline.
The difference between the remeasured and input values serves
as a correction factor for the corresponding parameter. Since its
introduction, self-calibration has been a standard part of lensfit,
given its promising overall performance (Mandelbaum et al.
2015; FC17; K19). We keep this feature for the KiDS-Legacy
analysis.
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0.15 (ζ0.15). The dashed lines correspond to the one-to-one relation, and the dotted lines show |∆z/(1 + z)| = σm.

4.2. Updates for KiDS-Legacy analysis

A long-standing mystery of all previous lensfit analyses has been
the presence of a small but significant residual bias in ε2 that
is uncorrelated with the PSF and the underlying shear (Miller
et al. 2013; Hildebrandt et al. 2016; Giblin et al. 2021). We
now understand that this feature arises from an anisotropic error
in the original likelihood sampler, which has been corrected
in our algorithm. However, we found that this correction inad-
vertently increases the fraction of residual PSF contamination
in the weighted average signal (see the discussion in Giblin
et al. 2021). Besides, object selection and galaxy weights are
also known to introduce bias (e.g. Kaiser 2000; Bernstein &
Jarvis 2002; Hirata & Seljak 2003; Jarvis et al. 2016 and FC17).
These selection biases can be more severe than the raw mea-
surement bias and hence cannot be ignored even for a perfect
self-calibration measurement algorithm.

FC17 presented a method to isotropise weights using an
empirical correction scheme, which has been adopted in pre-
vious KiDS studies to mitigate these biases. Unfortunately, we
found this approach to be insufficient for the improved lensfit
algorithm. Furthermore, we found the approach to be sensitive
to the sample volume, and therefore hard to apply consistently
to the data and simulations. So, we introduce a new empirical
correction scheme that mitigates the PSF contamination to the
weighted shear signal.

4.2.1. Weight correction

We start with the PSF leakages in the reported weight. For galax-
ies with comparable surface brightness, those aligned with the
PSF tend to have a higher integrated signal-to-noise ratio than
those cross-aligned with the PSF. This orientation preference
causes the asymmetry of the measurement variance (the σ2

ε, i
term in Eq. (5)), which can be measured using a linear function
to the first order

S i = αS εPSF, i, proj +N [〈S 〉, σS ] , (6)

where S i ≡ σ2
ε, i refers to the measurement variance, and

εPSF, i, proj ≡ Real
(
εPSF, i ε

∗
obs, i

)
is the scalar projection of the

PSF ellipticity in the direction of the galaxy ellipticity. The αS
term quantifies the PSF contamination in the measurement vari-
ance, while N [〈S 〉, σS ] denotes the noise, which we assume
follows a Gaussian distribution with a mean of 〈S 〉 and standard
deviation of σS .
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Fig. 13. PSF leakage in the measurement variance as a function of S/N
and R. We note that the larger R corresponds to a poorer resolution by
definition (Eq. (7)).

Following FC17, we estimate the PSF contamination as a
function of the integrated signal-to-noise ratio (νSN) reported by
lensfit and the resolution, which is defined as

R ≡
r2

PSF

r2
PSF + r2

ab

, (7)

where rab ≡ re
√

q is the circularised galaxy size with re and q
denoting the scalelength along the major axis and the axis ratio,
respectively. The PSF size rPSF is defined by Eq. (4). By con-
struction, the resolution R has a value between 0 and 1, with a
larger value corresponding to a more poorly resolved object.

When estimating αS , we first divide galaxies into an irregular
20 × 20 grid of νSN and R, each containing the same number of
objects. Then in each bin, we perform a linear regression using
Eq. (6) to measure αS . Figure 13 shows the measurements for
the KiDS-DR4 re-run with the updated lensfit. It demonstrates
a clear correlation between the estimated αS and the νSN and
R. We derive the corrected measurement variance for individual
galaxies through σ2

ε, i, corr = σ2
ε, i − αS εPSF, i, proj, where the value

of αS is determined based on which νSN-R bin the target galaxy
is assigned to. The corrected lensfit weight is then calculated
with

wcorr, i ≡

 σ2
ε, i, corr ε

2
max

ε2
max − 2σ2

ε, i, corr

+ σ2
ε, pop

−1

, (8)
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Fig. 14. PSF leakage in the measured ellipticity after the weight calibra-
tion as a function of S/N and R. We note that the larger R corresponds
to a poorer resolution by definition (Eq. (7)).

following Eq. (5). We verified that this approach is sufficient to
remove the overall weight bias and is robust against the binning
scheme.

4.2.2. Ellipticity correction

In addition to the weight bias, there is still some residual PSF
leakage in the measured ellipticity because of the residual noise
bias and selection effects. To first order, this residual PSF bias
can be formulated as

εobs, i = ε true, i + α εPSF, i + c +N [0, σε] , (9)

where εobs, i is the measured ellipticity, ε true, i is the underly-
ing true ellipticity, α is the fraction of the PSF ellipticity εPSF, i
that leaks into the measured ellipticity, and c is an additive
term uncorrelated with the PSF. N [0, σε] denotes the noise
in individual shape measurements, which are assumed to fol-
low a Gaussian distribution of mean 0 and standard variation
σε . We note that all parameters in Eq. (9) are complex numbers
(α = α1 + iα2). We focus on the α term, as the c term with the
improved likelihood sampler is now small in practice, and the
N [0, σε] vanishes for an ensemble of galaxies.

Like the weight bias correction, we first estimate α in the
20 × 20 grid of νSN and R using a linear regression of Eq. (9).
Figure 14 shows the amplitude of α in the 2D νSN and R plane.
We see modest values in most situations, except for the low
νSN cases, where it drops abruptly to negative values. We con-
firmed that the negative tail is mainly from the selection effects
by measuring the PSF leakage using the input ellipticity in sim-
ulations. This non-trivial negative tail prevents us from using the
direct correction approach introduced in the weight bias correc-
tion section. Therefore, we propose a hybrid approach, with a
fitting procedure for the overall trend and a direct correction for
residuals. Specifically, we first fit the measured α as a function
of νSN and R, using a function of the form

αp(νSN, R) = a0 + a1ν
−2
SN + a2ν

−3
SN + b1R + c1R ν

−2
SN , (10)

whose coefficients are constrained using the weighted mean
results from the 20 × 20 grid. Then, we correct the raw mea-
surements of individual galaxies using εobs, i, tmp = εobs, i −

αp(νSN, i, Ri) εPSF, i, where the polynomial αp(νSN, i, Ri) is deter-
mined from the target galaxy’s νSN, i and Ri. After removing

the overall trend, we use the corrected εobs, i, tmp to measure the
residual αr, which changes mildly across the 2D νSN and R
plane. Therefore, we can conduct the direct correction through
εobs, i, corr = εobs, i, tmp−αr εPSF, i, where the values of αr for indi-
vidual galaxies are determined based on which νSN–R bin they
are assigned. This two-step approach balances performance and
robustness. We verified that the corrected measurements have
negligible PSF leakages and the results are robust against the
binning scheme.

4.3. Comparison between KiDS and SKiLLS

We applied the updated lensfit code to KiDS-DR4 and SKiLLS
r-band images. The object selections after the measurements
are detailed in Appendix D. In short, we largely followed the
selection criteria proposed in Hildebrandt et al. (2017), with an
additional resolution cut introduced to mitigate the PSF con-
tamination. We applied the same selections to the KiDS data
and SKiLLS simulated catalogue to ensure a consistent selec-
tion effect, even though SKiLLS does not contain artefacts like
asteroids and binary stars.

Figure 15 compares the weighted distributions of some crit-
ical observables reported by the updated lensfit. The SKiLLS
results match the KiDS-DR4 data reasonably well. We also
checked the properties of the close pairs. Specifically, we show
the magnitude difference and the projected distance between
close pairs in the measured catalogues. Both properties agree
well between the data and simulations, implying SKiLLS has
realistic clustering features. These realistic neighbouring prop-
erties are essential for an accurate shear calibration, especially
when considering the shear interference between blended objects
(see Sect. 5 for details).

5. Shear biases for the updated lensfit

The central task of image simulations is to quantify the average
shear bias for a selected source sample. This is done by compar-
ing the inferred shear γobs, to the input shear γinput, which have
a linear correlation to the first order (Heymans et al. 2006)

γobs = (1 + m) γinput + c, (11)

where m is known as the multiplicative bias, and c is the additive
bias. The simulation-based calibration focuses on the multiplica-
tive bias, as the additive bias is usually corrected empirically (for
example, the correction scheme proposed in Sect. 4.2). So we
use the term ‘shear bias’ and ‘multiplicative bias’ interchange-
ably throughout the paper. We note that all parameters in Eq. (11)
are in complex forms, such as m = m1 + im2. However, we found
m1 and m2 to be consistent in our analysis, so unless specified,
we only report the amplitude m.

The shear calibration methodology keeps evolving as our
understanding of systematics deepens. Early studies demon-
strated that the shear bias correlated with galaxy properties and
PSFs, especially the signal-to-noise ratio and resolution (e.g.
Miller et al. 2013; Hoekstra et al. 2015; Mandelbaum et al. 2018;
Samuroff et al. 2018). So the first lesson is to avoid using one
averaged result from the whole simulation as a scalar calibra-
tion to the entire data unless the simulations perfectly repre-
sent the data. A natural procedure then attempts to estimate the
shear bias as a function of the galaxy and PSF properties (e.g.
Miller et al. 2013; Jarvis et al. 2016). Nevertheless, we can only
derive the relation of the bias to the noisy, measured properties,
as the true properties are unknown in actual data. FC17 found
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Fig. 15. Comparison of the updated lensfit measurements between KiDS (red) and SKiLLS (blue). All distributions are normalised with lensfit
weights, except for the distribution of lensfit weight itself. The neighbour properties are based on the nearest neighbour found in the measured
catalogue. The magnitude difference is defined as the neighbour magnitude minus the magnitude of the primary target. The lack of close pairs
with distance below ∼1 arcsec is due to the conservative blending cut used by KiDS (see Appendix D). This cut helps to mitigate the worst of the
blending bias.

that the relation derived from the measured properties introduces
biases because of the correlations between observed quantities,
an effect referred to as the ‘calibration selection bias’. So the
second lesson is that we should be cautious about object-based
shear calibrations that rely on the relation to the noisy properties.
That is why the recent simulations try to resemble the data and
only provide a mean correction for an ensemble of galaxies (e.g.
K19). The latest lesson, stressed by MacCrann et al. (2022), is
the interplay between shear estimates of blended objects at dif-
ferent redshifts, a higher-order effect that the traditional constant
shear simulations cannot capture. It becomes more important as
the precision of surveys improves.

Our shear calibration method builds on all these lessons. We
created constant shear simulations following the previous KiDS
tomographic calibration method but with improvements to the
photo-z estimates by taking advantage of the simulated multi-
band images (Sect. 5.1). Using additional blending-only vari-
able shear simulations, we applied a correction to account for the
interplay between blends containing different shears (Sect. 5.2).
When testing the PSF modelling algorithm in image simulations,
we detected a small but noticeable change of shear bias, which
was also corrected in our fiducial results (Sect. 5.3).

5.1. Results from the constant shear simulations

Our constant shear simulations largely followed FC17 and K19
with some simplifications for better usage of computational
resources. Table 1 lists the main changes we made compared to
our predecessor. Given the 108 deg2 of unique synthetic galax-
ies we built in Sect. 2, we mimicked 108 KiDS pointings, where
we vary the PSF, noise level and stellar density as detailed in
Sect. 3. To reduce the shape noise, we copied each tile image
with galaxies rotated by 90 degrees. We created four sets of
constant shear simulations with input shear: (0.0283, 0.0283),

(0.0283,−0.0283), (−0.0283,−0.0283), (−0.0283, 0.0283). The
total simulated area is 864 (=108 × 4 × 2) deg2, which is equiv-
alent to ∼5170 deg2 after accounting for the shape noise cancel-
lation (=864 × (σε,raw/σε,SNC)2, where σε,raw and σε,SNC denote
the weighted dispersion of the mean input ellipticities before and
after the shape noise cancellation), which is roughly four times
the final KiDS-Legacy area.

For a tomographic analysis, we need to estimate the bias for
each redshift bin separately, given that the galaxy properties vary
between bins. This requires photo-z estimates for the simulated
galaxies. For SKiLLS, we can follow the KiDS processing steps
to directly measure photo-zs, thanks to the simulated nine-band
images. We conducted the detection from the theli-like r-band
images, the PSF Gaussianisation and forced multi-band photom-
etry using the GAaP pipeline, and the photo-z estimates with the
bpz code (see Sect. 3.4 for details). This consistent data process-
ing ensures that SKiLLS embraces realistic photometric proper-
ties, marking one of the most significant improvements over the
previous image simulations.

As shown in Fig. 15, SKiLLS matches KiDS generally well
but not perfectly. K19 argued that an accurate estimate of the
shear bias must account for any mismatches between the sim-
ulations and the target data. Therefore, we followed FC17 and
K19 to reweight the simulation estimates using the lensfit reported
νSN and resolution factorR (Eq. (7)). Specifically, for each tomo-
graphic bin, we first divided simulated galaxies into 20 × 20 bins
of νSN and R, each containing equal lensfit weight. Then we esti-
mated the multiplicative bias for each νSN–R bin using Eq. (11).
Galaxies in the target data were assigned the bias based on the
νSN–R bin they fall in, and the final bias for each tomographic bin
was the lensfit-weighted average of these individual assignments.
This procedure ensures the estimated bias accounts for any νSN
andR differences between the simulations and the data while also
minimising the impact of the calibration selection bias.
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Table 1. Differences between the COllege (K19) and SKiLLS simulations.

COllege (K19) SKiLLS (this work)

Galaxies Morphology Sérsic models with param-
eters taken directly from
the HST-ACS measure-
ments (Griffith et al. 2012)

Sérsic models with param-
eters learned from the
HST-ACS measure-
ments (Sect. 2.1.2)

Photometry Single-band magnitudes from
the Subaru r+-band observa-
tions

Nine-band synthetic magni-
tudes based on a semi-analytic
model (Sect. 2.1.1)

Depth Limited by the HST-ACS
measurements

Extending to 27th magnitude
in the r band

Position Based on the observed loca-
tions in the COSMOS field

Based on the SURFS N-body
simulations (Elahi et al. 2018)

Stars Photometry Single-band synthetic mag-
nitudes from the Besançon
model (Robin et al. 2003;
Czekaj et al. 2014)

Nine-band synthetic magni-
tudes from the Trilegal
model (Girardi et al. 2005)

Images Band the r-band images only the full nine-band images
Layout 32 CCDs with even gaps in

between
32 CCDs with variable gaps
as in the actual camera (Fig. 6)

PSF 13 sets of spatially constant
Moffat profiles, with each
containing five different mod-
els corresponding to the five
exposures

108 sets of spatially varying
polynomial models, with each
containing 5 × 32 different
models

Noise One fixed noise level for all
tiles

108 different noise levels

Stack Only theli-like stacks for
shape measurements

Both theli-like and Astro-
WISE-like stacks for shape
and photometric measure-
ments, respectively

Measurements Shape From the self-calibration ver-
sion of lensfit with the weight
bias correction of FC17

From the updated lensfit
with the AlphaRecal method
detailed in Sect. 4.2

photo-z Assigned with the KiDS
observations of the COSMOS
field

Measured from the simulated
nine-band images following
the KiDS photometric pro-
cessing steps (Sect. 3.4)

Sample variance Identical input catalogues of
galaxies and stars for all the
13 realisations

Different galaxy catalogues
for the 108 realisations and
six stellar catalogues for the
selected sky blocks (Fig. 7)

Input shears (a) Eight sets of constant shears Four sets of constant shears in
the baseline simulations and
a variable shear field for the
blended objects (Appendix E)

Shape noise cancellation (b) Each tile has three counter-
parts with galaxies rotated by
45, 90 and 135 degrees

Each tile has one counterpart
with galaxies rotated by 90
degrees

Total simulated area 416 deg2 864 deg2 in the constant shear
simulations plus 7776 deg2 of
blending-only simulations for
the correction of the ‘shear
interplay’ effect (Sect. 5.2)

Notes. (a)We verified that the four sets of input shears are sufficient to recover the previous results. (b)Although more rotations suppress shape noise
more efficiently (FC17), the selection effects diminish the actual performance of the shape noise cancellation (K19).

Table 2 and Fig. 16 show the multiplicative bias estimates
for the KiDS-DR4 re-run with the updated lensfit from our con-
stant shear simulations. The quoted errors only contain the sta-

tistical uncertainties from the linear fitting. Compared to Table 2
of K19, we reduced the statistical uncertainties by about half
because of the larger sky area simulated. Direct comparisons
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Table 2. Shear bias for the six tomographic bins.

zB range Ratio of Neff ∆m̄blending ∆mPSF mraw mfinal
(blending / whole)

0.1 < zB ≤ 0.3 0.345 −0.012 ± 0.034 +0.002 ± 0.001 −0.012 ± 0.006 −0.013 ± 0.017
0.3 < zB ≤ 0.5 0.332 −0.003 ± 0.014 +0.004 ± 0.001 −0.021 ± 0.004 −0.018 ± 0.007
0.5 < zB ≤ 0.7 0.365 −0.021 ± 0.012 +0.004 ± 0.001 −0.006 ± 0.004 −0.008 ± 0.007
0.7 < zB ≤ 0.9 0.366 −0.018 ± 0.008 +0.003 ± 0.001 +0.022 ± 0.004 +0.019 ± 0.006
0.9 < zB ≤ 1.2 0.370 −0.013 ± 0.007 +0.005 ± 0.001 +0.033 ± 0.005 +0.034 ± 0.006
1.2 < zB ≤ 2.0 0.358 +0.000 ± 0.008 +0.007 ± 0.002 +0.064 ± 0.007 +0.072 ± 0.008

Notes. The ratio of Neff between the blending-only simulation and the whole simulation is calculated from the measured catalogue with the lensfit
weight taken into account. The ∆m̄blending is the mean residual bias introduced by the shear-interplay effect, estimated from the blending-only
simulations (see Sect. 5.2 for details). The correction to the whole sample should also account for the Neff ratio and the correlation with the signal-
to-ratio and resolution (see Sect. 5.2 for details). The ∆mPSF is the residual bias introduced by the PSF modelling errors (see Sect. 5.3 for details).
The mraw results are derived from the idealised constant shear simulations (Sect. 5.1), and the mfinal are our final estimates with the corrections for
the shear-interplay effect and PSF modelling bias (Sect. 5.4). The uncertainties quoted along with individual m values are reported by the linear
regression fitting, thus only reflecting the statistical power of SKiLLS simulations. All results are based on the KiDS-DR4 re-run with the updated
lensfit before any redshift calibration. They only indicate the general performance of the updated lensfit.
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Fig. 16. Multiplicative bias as a function of tomographic bins for KiDS-
DR4 with the updated lensfit. The red diamonds indicate our final results
with the corrections for the shear-interplay effect (Sect. 5.2) and PSF
modelling bias (Sect. 5.3), whilst the grey points are the raw results
from the idealised constant shear simulations (Sect. 5.1). The hatched
regions indicate the nominal error budgets proposed for comparison (see
Sect. 6 for details).

between the calibration values quoted in Table 2, cannot be
made to those in K19 and Giblin et al. (2021). We updated
the shape measurement algorithm lensfit and calibrated the raw
measurement against PSF contamination in our analysis (see
Sect. 4.2). These changes modify the effective size and signal-
to-noise ratio distribution of the samples and hence the overall
calibration in each tomographic bin. Furthermore, Giblin et al.
(2021) accounts for the Wright et al. (2020) ‘gold’ selection
for photometric redshifts, which reduces the effective number
density by ∼20%, compared to the sample simulated in this
analysis.

5.2. Impact of blends at different redshifts

MacCrann et al. (2022) recently highlighted a complication
that arises from blended objects at different redshifts, which
are, therefore, sheared by different amounts. It stems from the

fact that when objects are blended, a shear measurement of
one object responds to the shear of the neighbouring object.
This higher-order effect, which we refer to as ‘shear interplay’
through this paper, cannot be captured by the aforementioned
constant shear simulations. So, we built an extra suite of vari-
able shear simulations to account for this effect.

Since the shear interplay only happens when objects are
blended, we built a blending-only input catalogue for these
additional simulations to save some computing time. This
blending-only catalogue only contains bright galaxies with
bright neighbours, assuming that the blending effects caused by
the faint objects are sufficiently accounted for by our main con-
stant shear simulations, which include galaxies down to magni-
tude 27. It means we only ignore the higher-order shear-interplay
effect from the faint objects, which is valid as long as the
excluded faint galaxies are below the measurement limit of the
survey. In practice, we selected all galaxies with an input r-band
magnitude <25. The choice of this magnitude cut meets the over-
all sensitivity of the KiDS survey. We further discarded those
isolated galaxies whose nearest neighbour is 4′′ away based on
their input positions. The final selected sample covers ∼10% of
the entire input catalogue. But after the lensfit measurements,
this blending-only simulation covers ∼35% of the objects mea-
sured in the whole simulation (see Table 2 for the exact values).
The higher fraction in the measured catalogue is because most
objects fainter than 25 in the r-band magnitude are not measur-
able for KiDS.

To properly account for the shear-interplay effect, we need
realistic shear fields with proper correlations between the shear
and the environment of galaxies. We refer to Appendix E for
technical details of our approach to creating such variable shear
fields. In short, we considered two primary contributions to
the weak lensing signal: the cosmic shear due to the large-
scale structure and the tangential shear induced by the fore-
ground objects (also known as the galaxy-galaxy lensing effect).
The cosmic shear was learned from the MICE Grand Chal-
lenge (MICE-GC) simulation (Fosalba et al. 2015b), whilst
the tangential shear was calculated analytically by assuming
Navarro-Frenk-White (Navarro et al. 1995) density profiles for
the underlying dark matter halos. Figure 17 shows the average
shear signals as a function of redshift. We see a roughly lin-
ear relationship between the mean signals and redshift. On aver-
age, the cosmic shear contributes more than the tangential shear.
However, we note that the importance of the tangential shear
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Fig. 17. Variable shear field as a function of redshift. The solid black
line shows the mean amplitude of the final used shears, which contain
two components: the cosmic shear (dashed magenta line) and the tan-
gential shear (dotted orange line). We refer to Appendix E for details.

varies between systems depending on the host halo mass of the
foreground galaxies.

To increase the constraining power, we used 32 variable
shear fields generated from the same learning algorithm but with
different choices for the direction of the shear. Specifically, we
created four variable shear fields with directions of the cosmic
shear that differ by 90◦. Then, we made eight copies for each
shear field by rotating the final shear by 45◦ each time. We also
created an extra suite of blending-only constant shear simula-
tions to serve as a reference. The final sky area of these addi-
tional simulations is 7776 deg2(= 108 × 36 × 2). Except for
the input shear, these blending-only simulations use the same
pipeline, observational conditions and random seeds as the full
simulations detailed in Sect. 5.1 so that we can directly correct
the constant shear results using the extra bias estimated from
these additional simulations.

While estimating the shear bias for constant shear simula-
tions is straightforward by directly conducting the linear least
squares fitting to all measurements using Eq. (11), given that the
input shear values do not depend on the underlying sample. The
situation is more complicated for variable shear simulations. The
crucial caveat is that the shear bias is now correlated with red-
shift [mvarShear

blending(ztrue)] due to the shear-interplay effect. Owing to
the realistic shear field we built, we can measure mvarShear

blending(ztrue)
directly from simulations by performing the least squares fitting
to sub-samples of galaxies split based on their true redshift. The
same approach can also be applied to the blending-only con-
stant shear simulations to get mconstShear

blending (ztrue); only, in that case,
we would expect a negligible correlation with the true redshift,
except for some fluctuations stemming from the different signal-
to-noise ratios between true redshift bins. Figure 18 shows the
difference ∆mblending(ztrue) ≡ mvarShear

blending(ztrue) − mconstShear
blending , which

is a direct measure of the impact of the shear-interplay effect,
as the only difference between the simulations is the input shear
value. It demonstrates evident residuals that correlate with red-
shift, indicating the non-trivial impact of the shear-interplay
effect. Interestingly, the high-redshift outliers, which have an
estimated photo-z much lower than their true redshifts, show the
most noticeable residuals across all tomographic bins, implying
that the blends with objects from different redshifts are likely

responsible for those outliers. This coupling between the photo-
z and shear biases in blended systems warrants a dedicated future
study.

To correct the raw shear bias derived in Sect. 5.1, we need
an average correction ∆m̄blending, which integrates over ztrue as
∆m̄blending =

∫ ∞
0 dztrue n(ztrue) ∆mblending(ztrue), where n(ztrue) is

the weighted number density with respect to redshift (the dashed
lines shown in Fig. 18). The average results for individual tomo-
graphic bins are shown in Table 2 and Fig. 19. In practice, we
should also account for the blending fraction, which is cor-
related with the signal-to-noise ratio and resolution, as is the
bias itself. Therefore, we perform the correction in each νSN–
R bin, following the binning strategy proposed for reweighting
the simulation (see Sect. 5.1). Specifically, for each νSN–R bin,
we estimate the average correction ∆m̄blending and the blending
fraction. The blending fraction is estimated as the ratio of the
effective number counts between the blending-only simulation
and the whole simulation. Then, we shift the raw bias in each
νSN–R bin with the product of ∆m̄blending and blending fraction.
The final corrected bias is the lensfit-weighted average of these
shifted biases. This correction process can be easily combined
with the reweighting procedure, as they use the same binning
strategy.

Another more direct way to inspect the blending effect is to
check the relation between the shear bias and the nearest neigh-
bour distance in the input catalogue. Figure 20 demonstrates
such estimations for both constant shear and variable shear sim-
ulations. We see a clear correlation between the bias and the
neighbour distance in both simulations, indicating the signifi-
cant impact of the blending effect. It also confirms our choice
of 4′′ to define blended systems, as we barely see any corre-
lation after this threshold. The other important finding is that
the traditional constant shear simulations can already capture
the dominant contributions from the blending effect. The higher-
order impact we study in this section, shown as the bias differ-
ence between the variable shear and constant shear simulations,
contributes relatively minor except for the very close blends.
The aggressive treatment of the blending in lensfit can partially
explain this finding, as it throws away most of the recognised
blends (Hildebrandt et al. 2017).

We note that our variable shear simulations and the correc-
tion methodology differ from those of MacCrann et al. (2022). In
their study, the simulated shear changes as a function of redshift,
but, per redshift slice, it remains constant across the field of view.
The chosen redshift intervals and adjusted shear have no physical
meaning in their setups. But they built four sets of simulations
by choosing different redshift intervals, so they were able to fit
a smooth model to the simulated results, obtaining a continuous
redshift-bias relation. In our approach, we computed the variable
shear fields using a more physical model that accounts for the
shear correlations to both the redshift and clustering of galaxies
(see Appendix E). Thanks to these realistic shear fields, we can
measure the redshift-bias relation directly from the simulations
without additional model fitting procedures. Our direct measure-
ments confirmed the non-trivial impact of the shear-interplay
effect (see Fig. 18). By design, our method results in large
uncertainties for low redshift bins due to the small input shear
values. Fortunately, these low redshift bins carry little cosmic
shear signals, making the overall downgrade tolerable. Albeit
following a different approach, our final result is consistent with
MacCrann et al. (2022) finding that the overall correction due
to the shear-interplay effect is negligible for the current weak
lensing surveys. However, it will potentially impact the next-
generation surveys.
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Fig. 18. Residual shear bias introduced by the shear-interplay effect (orange points) as a function of the true redshift estimated from the blending-
only simulations. The residuals are calculated from ∆mblending ≡ mvarShear
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Fig. 19. Mean residual multiplicative bias introduced by
the shear-interplay effect. It is calculated from ∆m̄blending =∫ ∞

0
dztrue n(ztrue) ∆mblending(ztrue), with n(ztrue) and ∆mblending show-

ing in Fig. 18. We stress that the results are from the blending-only
simulations. When applying to the whole sample, we must also
consider the blending fraction (the third column of Table 2).

5.3. PSF modelling bias

So far, we have ignored the PSF modelling errors, given the
expected accuracy of PSF models relative to the requirement of
the current weak lensing surveys (see e.g. Giblin et al. 2021).
We used the input PSF for shape measurements (i.e. assum-
ing perfect PSF modelling). However, as the requirement of
systematics becomes more stringent, it becomes necessary to
check the impact of PSF modelling errors. This section quanti-
fies this impact by including the PSF modelling procedure in the
simulations.

The SKiLLS images have realistic stellar populations and
variable PSFs across the field, so we can apply the PSF mod-
elling code directly to the simulated images using similar setups
as for the data. We refer to Kuijken et al. (2015) for detailed
descriptions of the PSF modelling algorithm used by KiDS. In
short, it describes the position-dependent PSFs at the detector
resolution using a set of amplitudes on a 48 × 48 pixel grid.
The spatial variation of each pixel value is fitted with a two-
dimensional polynomial of order n, with additional flexibility
for allowing the lowest order coefficients to differ from CCD to
CCD. This extra freedom allows for a more complex PSF varia-
tion between CCDs and, in principle, allows for discontinuities
in the PSF between adjacent CCDs. When fitting to individual
stars, the flux and centroid of each star are allowed to change,
and a sinc function interpolation is used to align the PSF model
with the star position. Following Giblin et al. (2021), we set
n = 4 and allow the polynomial coefficients up to order 1 to vary
between CCDs. We skipped the complicated star-galaxy separa-
tion procedure with an implicit assumption that the point-source
sample used by KiDS is sufficiently pure as verified using NIR
colours in Giblin et al. (2021). Instead, we built a perfect star
sample by cross-matching the detected catalogue with the input
star catalogue. However, we still applied the same magnitude and
signal-to-noise ratio cuts as used in the data to ensure a similar
noise level in the modelled stars.

We selected 30 tiles from the available 108 fiducial tiles to
test the influence of PSF modelling uncertainty on the multi-
plicative bias. These selected tiles cover the whole range of the
PSF size, including the minimum and maximum. We performed
the PSF modelling on the selected tiles and re-ran lensfit using
the modelled PSFs. Since all the images and detection catalogues
are unchanged, the shift of the shear bias directly quantifies the
contribution of the PSF modelling errors. Figure 21 and Table 2
show the shifts for the six tomographic bins. We find the PSF
modelling procedure does introduce small yet noticeable biases.
Our fiducial results take these additional biases into account.
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Fig. 21. Changes in multiplicative bias when modelled PSFs are used
instead of the input PSFs. The hatched regions indicate the nominal
error budgets proposed for comparison (see Sect. 6 for details).

5.4. Results

The final results after accounting for both the shear-interplay
effect and PSF modelling errors are listed as mfinal in Table 2
and shown as the red points in Fig. 16. Within the current statis-
tical uncertainties, the average shifts due to the shear-interplay
effect and PSF modelling errors are insignificant across all red-
shift bins, as indicated in Fig. 16 between the grey points and
the red points. A more noticeable change is the increased uncer-
tainty introduced by the correction of the shear-interplay effect,
especially in the low redshift bins where the input shear values
are overall small in the variable shear simulations. Our proposed

systematic error budgets account for these additional uncertain-
ties (the hatched regions in Fig. 16).

6. Sensitivity analysis

Given the resemblance between the SKiLLS and KiDS images
and the reweighting in the signal-to-noise ratio and R when
estimating the shear biases, it is reasonable to assume that the
estimates from SKiLLS can be used to correct the actual mea-
surements. Nevertheless, it is still worth testing the robustness
of SKiLLS results and accounting for any potential systematic
uncertainties. We start with tests proposed by FC17 and K19 in
Sect. 6.1. Thanks to the broad coverage of observational condi-
tions in SKiLLS, we can quickly achieve these analyses with-
out dedicated test runs. Additionally, we test how sensitive the
lensfit results are to the changes in the input galaxy morphology
(Sect. 6.2). For comparison reasons, we propose some nominal
error budgets based on the general performance of SKiLLS and
the overall requirements of lensing analyses with KiDS. Specifi-
cally, we set an error budget of 0.02 for the first and sixth tomo-
graphic bins and 0.01 for the remaining bins. We found these
nominal error budgets are conservative enough that our results
are robust within them. Nevertheless, we note that these nominal
error budgets can be over-conservative for cosmic shear analy-
ses. In which case, we can estimate more accurate systematic
uncertainties following other more aggressive approaches pro-
posed by previous KiDS analyses (Giblin et al. 2021; Asgari
et al. 2021).

6.1. Impact of observational conditions

When developing SKiLLS, we improved most of the critical
sources of uncertainty in the previous KiDS simulations. For
instance, we based our input galaxy catalogue on N-body simu-
lations, so it has reasonable clustering features and is complete
down to 27 in the r-band magnitude. We learned realistic mor-
phologies from observations using a powerful technique, dubbed
vine copulas, which captures the multi-dimensional correlations
between ellipticities and other galaxy properties. We included
six stellar catalogues to account for the varying stellar densities
across the survey sky. We covered more variations of the PSF
models and background noise levels. Above all, we measured
photo-zs directly from the simulated multi-band images to prop-
erly account for the correlation between the measurement uncer-
tainties on the redshift and shear estimates. Consequently, most
of the sensitivity analyses proposed by FC17 and K19 are either
trivial or redundant for the SKiLLS results.

Still, we examine the robustness of the lensfit results against
some crucial properties by comparing between sub-samples. The
basic idea is to split the fiducial simulations into three sub-
samples based on a targeted property and examine the consis-
tency of their bias estimates to the fiducial results. These sub-
samples contain roughly equal numbers of measured objects
while covering different ranges of the targeted property. After
applying the overall shear correction from the whole sample to
the sub-samples, we calculate their residual biases to quantify
the impact of the variations of the targeted property. We note that
the estimated residuals are not systematic biases in our fiducial
results, but they indicate the robustness of the shape measure-
ment algorithm against the tested properties. Ideally, if the sim-
ulations fully match the data in the distributions of the targeted
property, we would still expect an accurate bias estimate even if
the estimated residuals are large. For that account, the estimated
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Fig. 22. Changes in multiplicative bias when the fiducial simulations are divided into three sub-samples containing different observational condi-
tions. From the left- to right-hand panels and top to bottom panels, the four panels show the results when splitting based on the PSF ellipticity, PSF
size, background noise level in r-band images and stellar density. The hatched regions indicate the nominal error budgets proposed for comparison
(see Sect. 6 for details). We note that the shifts correspond to the upper limits of potential systematic biases in our results (see Sect. 6.1 for details).

residuals are conservative upper limits of the systematic biases
in our results.

Figure 22 shows the estimated residuals for the variations in
four critical properties of the simulated images: the PSF elliptic-
ity, PSF size, background noise level in r-band images, and stel-
lar density. It indicates that our fiducial results are robust within
the nominal error budgets, considering the shifts shown in the
plots are the upper limits of possible deviations.

6.2. Impact of the input galaxy morphology

We learned the galaxy morphology from Griffith et al. (2012)
based on Sérsic models fitted to the HST observations. We have
shown that our copula-based learning algorithm captures the
properties of the reference sample (see Sect. 2.1.2). However,
the reference sample itself contains measurement errors. This
section examines how sensitive the lensfit measurements are to
the changes in the input galaxy morphology.

We focus on the three morphological parameters used to
describe the Sérsic profile: the half-light radius, axis ratio and
Sérsic index. To get some indication of the overall accuracy of
the reference sample, we first checked the fitting uncertainties.
We found that the median relative uncertainties for these three

parameters are .5%, .5% and .10%, respectively. We took
these values (quoted as σ below) as the benchmark for chang-
ing the input galaxy morphology. We built new input catalogues
by increasing a certain parameter with 1σ, 2σ and 3σ each time
while keeping the other parameters unchanged. We generated
test simulations using these new input catalogues and measured
the bias difference with respect to the fiducial simulations.

Figure 23 presents the test results from 10 tiles of simula-
tions. We find minor residuals in most cases, with the most sig-
nificant shifts seen when changing the Sérsic index. We note
that we shifted all galaxies with the same amount of fractions,
resulting in an overall shift of the whole distribution, as shown in
the bottom panels of Fig. 23. Given that the entire distribution’s
uncertainty is much smaller than the individual measurement
uncertainties, we are testing the most extreme cases. Hence,
the measured residuals only indicate the sensitivity of lensfit
towards the input galaxy properties but cannot be seen as sys-
tematics in our fiducial results. To achieve tighter requirements
for future surveys, we will need a shape measurement method
that is less susceptible to the galaxy properties, as the fidelity of
image simulations will always be limited by the realism of the
input galaxy catalogue. For the upcoming KiDS-Legacy analy-
sis, we will, therefore, also explore an alternative method based
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Fig. 23. Changes in multiplicative bias when the morphological parameters of all input galaxies are increased by a certain fraction. Top panels:
the shifts of the multiplicative bias caused by changing morphological parameter values. The three shift points correspond to the increased factor
of 1 + 1σ (dark red), 1 + 2σ (dark orange) and 1 + 3σ (dark green), where σ denotes the median relative uncertainties reported by Griffith et al.
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error budget for comparison. Bottom panels: the normalised histograms comparing before and after changing morphological parameter values. We
note that we shifted all galaxies by the same fraction, resulting in an overall shift of the whole distribution, which corresponds to the most extreme
cases, as the uncertainty on the entire distribution is much smaller than on individual values.

on the Metacalibration technique (Huff & Mandelbaum
2017; Sheldon & Huff 2017), which is expected to be more
robust against the galaxy properties (Yoon et al., in prep.).

7. Discussion and conclusions

An unbiased measurement of the ensemble shear signal is the
backbone of reliable precision cosmology with weak lensing
surveys. The state-of-the-art shape measurement methods have
already reached a percent, if not a sub-percent, level of accuracy.
But meanwhile, the statistical powers of weak lensing surveys
keep growing, thus putting more stringent requirements on the
systematics. Higher-order effects distinct from the shape estima-
tion bias start drawing more and more attention, including the
selection bias, PSF modelling errors and shear-interplay bias,
which are challenging to eliminate by only improving the shape
measurement algorithms. On the other hand, image simulations
show promising performance in calibrating these higher-order
effects.

This paper presents the third-generation image simulations
for the KiDS survey, dubbed SKiLLS, after SCHOol (FC17) and
COllege (K19). The current image simulations implemented sev-
eral significant developments to meet the calibration requirement
of the KiDS-Legacy analysis, which uses an updated lensfit.
First and foremost, we simulated the full nine-band images and
produced a self-consistent joint shear-redshift mock catalogue.
We combined the cosmological simulations with deep imaging
observations as input to balance the sample volume and the real-
ism of the galaxy morphology. We also improved the realism of
images by varying PSFs between CCDs, including stellar den-
sity variations and varying noise levels between pointings. We
followed the whole KiDS procedure for the photometric mea-
surements, including the r-band detection, PSF Gaussianisation,
forced multi-band photometry and photo-z estimates. Given the
large volume of simulated galaxies and their realistic photomet-
ric properties, the joint shear-redshift mock catalogue not only

improves the shear calibration but also benefits the redshift cali-
bration (van den Busch et al., in prep.).

We further explored the impact of blends of galaxies at dif-
ferent redshifts by building realistic shear fields accounting for
the redshift and clustering of galaxies. We accounted for the
PSF modelling errors by conducting the PSF modelling proce-
dures on the image simulations. Finally, we performed a series of
sensitivity tests, including changing the input galaxy properties,
demonstrating robustness in the SKiLLS measured calibration
values for future lensing studies with KiDS. The final shear cal-
ibration results for the updated lensfit are summarised in Table 2
and shown in Fig. 16. Our statistical uncertainties and sensitiv-
ity tests suggest that the shear bias estimated from SKiLLS is
robust within the nominal error budget of 0.02 for the first and
sixth tomographic bins and 0.01 for the remaining bins. Besides,
we share some lessons and findings that can be instructive for
calibrating future weak lensing surveys.

The fidelity of image simulations relies heavily on the real-
ism of the input galaxy population in terms of photometry,
morphology, and clustering. Therefore, the latest image sim-
ulations have used high-quality imaging observations as the
input. But, this observation-based input is limited by its sam-
ple volume and depth, which will soon be inadequate for the
next generation of weak lensing surveys. An alternative is to
acquire the input galaxy population from cosmological sim-
ulations. However, the cosmological simulations still cannot
fully reproduce the observed galaxy morphology – the first-
order feature that cannot be compromised in image simula-
tions. In our work, we show that it is possible to keep the
merits from both sides by integrating cosmological simulations
with high-quality imaging observations. We proposed a copula-
based learning algorithm that can mimic and link the observed
morphology to synthetic galaxies from cosmological simula-
tions. Our results suggest that this hybrid approach is promis-
ing for future image simulations that require a large volume of
galaxies.
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Recent studies have already pointed out that the shear cali-
bration must consider redshift-related selections, which requires
simulating multi-band observations to account for the measure-
ment of photo-zs (e.g. K19, MacCrann et al. 2022). We fur-
ther show that multi-band image simulations with a sufficiently
large volume of galaxies benefit not only the shear calibra-
tion but also the redshift calibration. It allows us to perform
the whole procedure for photometric measurements, ensuring
realistic photometric properties in the mock catalogue. This
end-to-end approach is a significant improvement compared
to previous catalogue-level simulations (e.g. Hoyle et al. 2018;
van den Busch et al. 2020; DeRose et al. 2022). Moreover, image
simulations allow us to study the blending effect in redshift esti-
mates, which are otherwise hard to consider at the catalogue
level. Given the importance of blending, we argue that unify-
ing the shear and redshift calibrations with multi-band image
simulations will be crucial for future high-accuracy tomographic
analysis.

MacCrann et al. (2022) recently studied the impact of
blended systems that contain galaxies experiencing different
shears, an effect we referred to as ‘shear interplay’ throughout
the paper. We extended their study by building realistic vari-
able shear fields accounting for both redshift and clustering
of galaxies. We also explicitly included the contribution from
galaxy-galaxy lensing. Our final results confirmed its overall
minor impact on current weak lensing surveys (see Fig. 16).
However, we measured an evident redshift-bias correlation from
our blending-only variable shear simulations, proving the pres-
ence of the shear-interplay effect and its non-trivial contributions
(see Fig. 18). We also found that the photo-z outliers showcase
the most significant shear interplay, implying a common cause of
the shear and redshift biases. A dedicated study is warranted to
further explore this coupling in blended systems, as it will soon
be relevant for the next-generation weak lensing surveys.

Image simulations usually skip the PSF modelling process,
given the PSF validation conducted in data (see e.g. Giblin et al.
2021). Thanks to the realistic SKiLLS images, we can test the
impact of the PSF modelling errors by directly running the PSF
modelling code in simulated images. By comparing the shear
biases measured from runs with and without PSF modelling, we
identified sub-percent residual biases from the PSF modelling
errors. Although this is insignificant for the current requirement,
it will concern future weak lensing surveys. Therefore, we stress
the importance of improving or including the PSF modelling
algorithm in image simulations for future surveys.

Finally, we tested the sensitivity to the properties of the input
galaxy population. By changing the input values of morpholog-
ical parameters, we found that our current fiducial shape mea-
surement method, lensfit, is sensitive to the input galaxy shapes
but within a tolerable level for KiDS analysis. Still, we will
develop an alternative method based on the Metacalibration
technique (Huff & Mandelbaum 2017; Sheldon & Huff 2017) for
KiDS-Legacy analysis, which is more robust against the galaxy
properties (Yoon et al., in prep.). It will be essential for future
weak lensing surveys to develop such a method that is less sensi-
tive to the galaxy properties, as the image simulations will never
fully represent the observed galaxy population given the limits
of its input catalogue.
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Appendix A: An empirical modification to the
synthetic photometry

We detail the proposed empirical modification of the Shark
photometry in this appendix. It intends to improve the agreement
of the magnitude counts between the simulations and observa-
tions, which is critical for the redshift and shear calibrations.
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Fig. A.1. Comparison of the stellar mass functions. For the COS-
MOS2015 catalogue (red solid lines), we use the median values of the
marginalised likelihood distributions. For the Shark catalogue (green
dashed lines), we assume that the total stellar mass equals the sum of
the stellar masses in the bulge and the disc.
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Fig. A.2. Ks-band stellar mass-to-light ratio as a function of stellar mass.
The red and green lines correspond to the COSMOS2015 and Shark
galaxies, respectively.

We took the COSMOS2015 catalogue as the benchmark
under an implicit assumption that the COSMOS field is represen-
tative. The COSMOS2015 catalogue is a near-infrared-selected
photometric catalogue containing 30-band photometry, precise
photometric redshifts and stellar masses for more than half a
million objects (Laigle et al. 2016). We note that measurement
uncertainties and modelling errors are inevitable for observa-
tions, especially for faint objects. Therefore, the COSMOS2015
catalogue cannot, in principle, be treated as the truth. Neverthe-
less, these uncertainties are tolerable for calibrating a KiDS-like
sample. Following this reasoning, we tuned the simulated prop-
erties solely based on the COSMOS2015 measurements for the
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Fig. A.3. Distribution of the magnitude modification factor ∆mag in
the redshift-stellar mass plane. The red colour denotes negative values,
whilst the blue colour denotes positive values. The definition of ∆mag
is shown in Eq. A.1. For a given galaxy, the same ∆mag value is added
to the apparent magnitudes for all available bands.

sake of simplicity, but caution any physical interpretation of our
modified results.

First of all, we must locate the cause of the discrepancy. As
the Shark free parameters were tuned using the observed stel-
lar mass functions, we would expect the number density of the
Shark galaxies is realistic. This is confirmed by Figure A.1,
where we see a good agreement of the stellar mass distributions
between the data and simulations. As a next step, we inspected
the stellar mass-to-light ratio (Υ?), for which took the Ks-band
photometry as an indicator of the total luminosity as it is least
affected by the dust extinctions. Figure A.2 shows the compar-
ing results as a function of the stellar mass in several redshift
bins. Noticeably, the Shark Υ? is systematically higher than
the COSMOS2015 one, especially in the low stellar mass and
low redshift ranges. It can, at least partially, explain the discrep-
ancy seen in the magnitude distributions. Fortunately, this Υ?

difference is easy to calibrate without changing other intrinsic
properties, such as the colours, redshifts, and positions.

We, therefore, conducted an empirical modification of the
simulated magnitudes to account for the Υ? difference. We
divided Shark and COSMOS2015 galaxies into 24×23 evenly
spaced small bins based on their redshifts and stellar masses.
In each bin, we calculated the median Υ? for the Shark and
COSMOS2015 galaxies, separately. To mitigate the observa-
tional uncertainties, we only used the COSMOS2015 galaxies
with good stellar mass estimations (δM? < 0.15M?). For bins
that lack observations, we extrapolated Υ?, obs as a function of
M? for each redshift slice. After inspecting the general trend, we
found a good fit by combining an exponential descending func-
tion in the low M? end and a linear ascending function in the
high M? end. From these estimates, we constructed a magnitude
modification factor ∆mag as

∆mag = −2.5 log10

(
median[Υ?, Shark]

median[Υ?, obs]

)
. (A.1)

Figure A.3 demonstrates the estimated ∆mag values in the 2D
redshift-stellar mass plane. Following the difference seen in
Fig. A.2, substantial modifications happen in the low mass and
low redshift bins. Therefore, the magnitude modification reduces
the range of magnitudes of Shark galaxies. We note that the
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different bands share the same ∆mag values, so the colours of
individual galaxies are preserved.

Appendix B: Modelling multivariate distributions
with vine copulas

We outline some necessary background on the vine-copula mod-
elling in this appendix. For a comprehensive introduction, we
refer to Joe (2014) and Czado (2019).

A copula is simply a multivariate cumulative distribu-
tion function (CDF) with uniformly distributed margins. The
Sklar (1959) theorem states that any d-dimensional CDF F(x),
with univariate margins F1(x1), ..., Fd(xd), can be described as
F(x) = C1,...,d(F1(x1), ..., Fd(xd)), where C1,...,d is the corre-
sponding copula function. Therefore, given a joint probability
distribution function (PDF) f (x) with d-dimensional variables
x = (x1, ..., xd), we can always find a copula density c1,...,d that is
the partial differentiation of the copula C1,...,d, such that

f (x) = c1,...,d(F1(x1), ..., Fd(xd)) · f1(x1) · · · fd(xd) . (B.1)

It means we can divide the modelling of any joint multi-
dimensional PDF into two parts: one for the independent dis-
tributions of the individual random variables { fi(xi)}, and the
other for their mutual dependence captured by the copula den-
sity c1,...,d(F1(x1), ..., Fd(xd)).

The restriction of the classical copula method is that most of
the flexible copula families available in the literature are bivari-
ate, making it tricky to deal with high-dimensional distributions.
In this aspect, the vine copula method stands out as an effective
approach (Bedford & Cooke 2002; Aas et al. 2009). A vine cop-
ula is a graphical model organising a set of bivariate copulas,
called pair-copulas. The chain rule states that any PDF f (x) can
be decomposed as

f (x) = f (xd)· f (xd−1|xd)· f (xd−2|xd−1, xd)··· f (x1|x2, ..., xd) , (B.2)

with f (.|.) being the conditional PDF. Aas et al. (2009) further
states that each term in Eq. (B.2) can be decomposed into an
appropriate pair-copula times a conditional marginal density as
described by the following general formula

f (x|u) = cxv j |u− j (F(x|u− j), F(v j|u− j)) · f (x|u− j) , (B.3)

where u stands for a d-dimensional vector, v j is an arbitrary com-
ponent of u, and u− j denotes the v-vector excluding this compo-
nent. Therefore, the multiple dependence can be captured by a
product of pair-copulas acting on underlying conditional proba-
bility distributions. Since the decomposition shown in Eq. (B.2)
is not unique, there is a significant number of possible pair-
copula constructions. These possibilities are organised by the
graphical models, that is the vines.

Appendix C: Transformation of the SDSS filters to
the KiDS/VIKING filters

This appendix details the transformation of the Sloan Digital Sky
Survey (SDSS) photometric system to the KiDS/VIKING sys-
tem. The SDSS photometric system comprises five colour bands
(u, g, r, i, z) that cover wavelengths ranging from ultra-violet
at 3000 Å to near-infrared at 11 000 Å (Fukugita et al. 1996),
whilst the KiDS/VIKING system contains optical filters (u, g,
r, i) mounted on the VST OmegaCAM camera (Kuijken 2011)
and near-infrared filters (Z, Y , J, H, Ks) mounted on the VISTA
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Fig. C.1. Comparison of the normalised transmission curves of the
ugriZ filters in the SDSS photometric system (red solid lines) and the
KiDS/VIKING system (green dashed lines).
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Fig. C.2. Joint distributions of the initially measured magnitude
and the magnitude modifications. The dashed lines show the 16
and 84 percentiles. The ‘MAG_GAAP_X’ magnitudes correspond to
those measured by GAaP in the Astro-WISE images, whilst the
‘MAG_AUTO’ is measured by SExtractor in the r-band theli
images (see Sect. 3).

infrared camera (González-Fernández et al. 2018). Figure C.1
compares the filter curves from these two systems. The dif-
ferences are noticeable, especially for the Z filter, where the
KiDS/VIKING system cuts the tail towards long wavelengths.
We used the following relation to correct these differences:

XKiDS/VIKING = XSDSS + j(ztrue) (XSDSS −WSDSS) + h(ztrue) , (C.1)

where X corresponds to the target filter, whilst W is another fil-
ter, helping to define the colour. Given the superior depth of the
r-band measurement, we picked it as the Y filter whenever pos-
sible. When the r band is the target filter, we chose the g band
as the Y filter. The coefficients j(ztrue) and h(ztrue) are correlated
with the redshift, for which we took values from the ProSpect
web-portal18. For the redshift, we used the true redshift from the
input SURFS-Shark simulations.

As for the SKiLLS measured photometry, we need to correct
six measurements: the five u-, g-, r-, i-, Z-band magnitudes mea-
sured in the Astro-WISE images (MAG_GAAP_X) and the r-
band magnitudes measured in the theli images (MAG_AUTO).
18 https://transformcalc.icrar.org/
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in the peaks around the zB∼0.55 and 1.55.

There is no need to correct the remaining Y JHKs bands as
SKiLLS also uses VISTA filters for them. Figure C.2 shows
the distributions of the magnitude modification as a function
of the initially measured magnitude. The modifications are gen-
erally small, especially for the u and g bands. Even for the r
and Z bands with the most significant differences, the majority
of objects has a modification . 0.05. Accordingly, the changes
in the overall magnitude and colour distributions are negligible.
Still, we get a better agreement with the data in the photo-z distri-
butions after transforming to the KiDS/VIKING filters, as shown
in Fig. C.3.

Appendix D: Selection criteria for the updated
lensfit catalogue

This appendix details all selections we propose to the updated
lensfit shear catalogue. Most of the selection criteria were taken
from earlier KiDS analyses, documented in Hildebrandt et al.
(2017). These include:
1. Several lensfit fitclass cuts to discard:

(a) objects without sufficient data, for example, those fall
near the image edge or a defect (fitclass = −1),

(b) objects classified as duplicates (fitclass = −10),
(c) objects poorly fitted by the given bulge plus disc galaxy

model (fitclass = −4),
(d) objects identified as stars and star-like point sources

(fitclass = 1 and 2),
(e) objects whose fitted centroid is more than 4 pixels away

from the input centroid (fitclass = −7),
(f) objects that are unmeasurable, usually because of being

too faint (fitclass = −3).
2. A magnitude cut to remove bright objects (MAG_AUTO > 20).
3. A contamination radius cut to mitigate blending effects

(contamination_radius > 4.25 pixels)
4. Removing asteroids based on the object colours

(MAG_GAAP_g − MAG_GAAP_r ≤ 1.5 or MAG_GAAP_i −
MAG_GAAP_r ≤ 1.5).

5. Removing unresolved binary stars by requiring objects with
ellipticity > 0.8 to have a measured scalelength

≥ 0.5 × 10(24.2−MAG_GAAP_r)/3.5 pixels .
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Fig. D.1. PSF leakage and effective number density as a function of the
resolution factor. The upper panel shows the measured PSF leakage,
whilst the lower panel shows the effective cumulative distribution. The
resolution factor R is defined in Eq. (7), and the PSF leakage factor α is
measured from the linear regression with Eq. (9). We perform the mea-
surement to the weighted average ellipticity ε1 (dark-red down-pointing
triangle) and ε2 (dark-orange up-pointing triangle) using the lensfit mea-
surements before the correction of PSF contamination. The vertical red
dashed line indicates the proposed resolution cut of R < 0.9. The loss
of effective number density due to this resolution cut is ∼2 per cent.

6. A non-zero weight cut using the weight bias corrected weight
(Sect. 4.2.1).

7. A resolution cut to remove poorly resolved objects (R < 0.9).
The resolution cut is a new criterion proposed in this work.

When developing our empirical correction method for the PSF
contamination (Sect. 4.2), we noticed that objects with poor
resolution contain very high PSF leakages, as demonstrated in
Fig. D.1. These poor-resolution outliers contribute little to the
effective number density but introduce significant bias. So we
propose a new selection using the resolution factor defined in
Eq. (7). We found the proposed cut of R < 0.9 can remove most
outliers while only decreasing the effective number density by
∼2 per cent.

Appendix E: Building the variable shear field

In this appendix, we detail the creation of a realistic shear field
accounting for the shear dependence on the redshift and clus-
tering of galaxies. We considered the two main contributions to
the weak lensing signals: the cosmic shear from the large-scale
structure, and the tangential shear from the foreground objects
(also known as the galaxy-galaxy lensing effect).

We split the blending-only sample into two classes based
on their relative line-of-sight distances to their brightest neigh-
bours. Those more distant than their brightest neighbours are
referred as the background galaxies, whilst the remaining are the
foreground galaxies. This classification is necessary to quantify
the shear correlations within the blended systems. We found a
roughly equal number of foreground and background galaxies in
our sample.

For the cosmic shear effect, we learned it from the galaxy
lensing mocks associated with the MICE Grand Challenge
(MICE-GC) simulation (Fosalba et al. 2015b). The MICE-
GC simulation is a large volume N-body light-cone simulation
developed by the Marenostrum Institut de Ciències de l’Espai
(MICE) collaboration (Fosalba et al. 2015a). It contains ∼6.9 ×
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1010 dark matter particles with a mass of ∼2.9 × 1010 h−1M�
and a softening length of 50 h−1kpc, in a box of 3072 h−1Mpc
aside. The simulation starts at zi = 100 and produces the light-
cone in 265 steps from z = 1.4 to 0. It builds halo catalogues
using the Friends-of-Friends algorithm (Crocce et al. 2015), and
subsequently populates galaxies using halo occupation distribu-
tion recipes along with the subhalo abundance matching tech-
nique (Carretero et al. 2015). The construction of all-sky lens-
ing maps follows the Onion Universe approach, which reaches a
sub-arcminute spatial resolution up to z = 1.4 (Fosalba et al.
2015b). Here we used the second version of the catalogue,
named MICECAT2, from the CosmoHub web-portal (Carretero
et al. 2017; Tallada et al. 2020)19.

Following the building of the blending-only sample for
SKiLLS, we selected blended objects and classified foreground
and background galaxies for MICECAT2 under the same condi-
tions expect for the magnitude cut. We first estimated the rela-
tionship between the mean cosmic shear amplitude and red-
shifts by averaging individual shear values of galaxies in redshift
bins defined with a width of 0.1. These redshift-dependent mean
amplitudes are good approximations for cosmic shears experi-
enced by the foreground galaxies. It is more intricate to get
proper cosmic shears for the background galaxies. Because of
the overlapping line-of-sights of the blended objects, we expect
the cosmic shear experienced by the background galaxy (γB) to
correlate with that in its neighbour (γF). Based on our tests, the
correlation can be described by a linear formula

γB(zB, zF) = A(zB, zF) · γF + γI(zB, zF) , (E.1)

with the scaling factor

A(zB, zF) ≡
Dc,B − 0.5Dc,F

Dc,B
·

Dc,F

Dc,F − 0.5Dc,F
, (E.2)

and an offset γI(zB, zF) = N [0, σI(zB, zF)] following the Gaus-
sian distribution with a mean of zero and variance depending
on redshifts of both galaxies. The Dc,B and Dc,F denote the
comoving distances to the background galaxy and its neighbour,
respectively. The scaling factor A reflects the geometrical rela-
tion between the blended objects; whilst the offset γI specifies
contributions from the intermediate structures between blended
galaxies. We estimated the redshift-dependent variance of γI
again from MICECAT2 by measuring the dispersion of γB−A·γF
in each redshift bin. Because the MICECAT2 stops at z = 1.4,
we linearly extrapolated measured values to z = 2.5, which is
the limit of SKiLLS. Figure E.1 shows the learned cosmic shear
as a function of redshift. The black solid line indicates the mean
amplitude of the γF component; whilst the coloured lines present
the dispersion of the γI component. It illustrates that the linear
extrapolation captures the general trends towards the high red-
shift for both components.

We note that MICECAT2 assumes a ΛCDM cosmology
with parameters from the Wilkinson Microwave Anisotropy
Probe five-year data (WMAP5, Dunkley et al. 2009), whilst our
base SURFS-Shark simulation uses cosmological parameters
from Planck Collaboration XIII (2016). Therefore, the cosmic
shear field we learned from MICECAT2 does not necessarily
match the galaxy mock we are using. But, since the current cal-
ibration still adopts one-point statistics (see Eq. 11), our cal-
ibration results are robust against detailed galaxy populations
or underlying cosmologies and even more so to the higher-
order correlation between galaxy populations and cosmology.

19 https://cosmohub.pic.es/
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Fig. E.1. Cosmic shear signals learned from the MICECAT2 (Eq. E.1).
The black solid line and points indicate the mean amplitude of the γF
component, whilst the coloured lines and points show the γI disper-
sion for several redshifts of the foreground galaxies. The points are
direct measurements from the MICECAT2, while the lines are linear
extrapolations.

We defer the proper treatment using a ray-tracing approach with
consistent properties from the underlying cosmological simula-
tions to future studies.

Besides the cosmic shear, a background galaxy also suffers
from the tangential shear induced by the host dark matter halo
of its neighbour. We calculated this effect analytically by assum-
ing Navarro-Frenk-White (NFW) density profiles for dark matter
halos presented in the SURFS-Shark simulation. The NFW
profile, proposed by Navarro et al. (1995), is the most popu-
lar analytical model for dark matter halos, given its ability to
describe the radial matter distribution of dark matter halos over
a wide range of masses (Navarro et al. 1996, 1997). Its mass
density is described by the formula

ρ(r) =
ρcr δc

(r/rs)(1 + r/rs)2 , (E.3)

where δc and rs are two free parameters known as the charac-
teristic overdensity and the scale radius, respectively. We set the
normalisation to the critical density at the redshift of the halo
ρcr ≡ 3H2(z)/(8πG) with H(z) the Hubble parameter at that same
redshift and G the gravitational constant. With the definition of
the virial radius, r200c, the radius inside which the mean mass
density of the halo equals 200ρcr, we can construct a so-called
concentration parameter c ≡ r200c/rs and relate it to δc through

δc =
200

3
c3

ln(1 + c) − c/(1 + c)
. (E.4)

In practice, we used mvir_subhalo, the virial mass of the
subhalo from the SURFS-Shark simulation20, to calculate the
virial radius for each lens. For the concentration parameter, we
adopted the concentration–mass relation from Duffy et al. (2008)

c = 7.85
(

Mvir

2 × 1012 h−1M�

)−0.081

(1 + z)−0.71 . (E.5)

We note that Eq. (E.5) is estimated from N-body simula-
tions based on a WMAP5 cosmology (Komatsu et al. 2009),

20 https://shark-sam.readthedocs.io/en/latest/output_
files.html
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which has slightly different parameter values from the Planck
Collaboration XIII (2016) cosmology used by the SURFS
simulations. Nevertheless, the weak-lensing shear amplitude is
dominated by the enclosed mass of the lens but has minor sensi-
tivity to the concentration (e.g., Viola et al. 2015). Therefore, we
ignored any potential WMAP5-to-Planck cosmology correction
to Eq. (E.5).

Recognising the spherically symmetric feature of the NFW
profile, we can derive the radial-dependent tangential shear
as (Bartelmann 1996; Wright & Brainerd 2000):

γt(x) =
ρcr δc rs

Σcr
g(x) , (E.6)

where x ≡ RFB/rs is a dimensionless radial distance fac-
tor defined as the ratio of RFB, the projected radial separation
between the lens and the source, to the scale radius of the lens.
The critical surface mass density

Σcr ≡
c2

4πG
Da,B

Da,F Da,FB
(E.7)

is a geometric term depending on the angular diameter distances
to the source Da,B, to the lens Da,F and between the lens and the
source Da,FB. The radial dependence of the shear is captured by
the function g(x) as

g(x) =
4
x2 ln

( x
2

)

+


2

1−x2 + 8−12x2

x2(1−x2)3/2 arctanh
√

1−x
1+x (x < 1)

10
3 (x = 1)

2
1−x2 + 12x2−8

x2(x2−1)3/2 arctan
√

x−1
1+x (x > 1)

.

With all these ingredients in hand, we can now assign galaxy
a specific shear value based on its redshift and neighbouring con-
ditions. In summary, those identified as foreground galaxies only
contain the redshift-dependent mean amplitude γF(zF), whilst the
background galaxies combine the cosmic shear from Eq. (E.1)
and the tangential shear from Eq. (E.6). This treatment accounts
for not only the redshift-shear dependence but also the correla-
tions between the blended objects.
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