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A B S T R A C T   

In decision making for insect conservation, one depends largely on knowledge of the relationship between 
changes in environmental factors and abundance of a very limited number of species. The species we have 
knowledge on cannot be regarded as a representative sample of all insects. How accurately do changes in the 
abundance of these species predict the changes in other species? To answer this question, we studied 373 insect 
species belonging to the Apidae (bees), Lepidoptera (butterflies), Orthoptera (grasshoppers), Ephemeroptera 
(mayflies), Trichoptera (caddisflies), Odonata (dragonflies), and Plecoptera (stoneflies), with known population 
trends and attributes in the Netherlands. The 78 attributes included morphological and demographic trait values, 
as well as habitat requirements of species. We trained Random Forests (RFs) with random samples and with 
taxonomic groups to predict the decline of the species based on their attributes. Then we used the trained RFs to 
predict the decline of the species outside the training groups and checked the accuracy of the predictions. The 
results showed that accuracy of the predictions of the RFs trained by the random samples increased from 0 to 
0.20 (maximum 0.40, on a scale of 0 to 1) with sample size increasing from 10 to 90% of the insects. Moreover, 
we found that the accuracy of the predictions by the RFs trained with the taxonomic groups were zero in case of 
butterflies and grasshoppers, and low in other groups (maximum 0.37, in case of bees predicting terrestrial 
insects). Accuracy depended significantly on the size of the taxonomic group. Large over- or underestimation of 
number of declining species occurred in all cases. Further, we found that the taxonomic groups had few attributes 
important for predicting in common. The attribute ‘Active dispersion’ had the highest importance when all in-
sects were used for training the RF. Using ‘indicator groups’ for predicting the decline of insects has a high risk of 
over- or underestimating the actual number of declining species and should therefore be advised against unless 
the indicator group is sure to be representative.   

1. Introduction 

In 2017, Hallmann et al. published a 75 % decline of terrestrially 
flying insect biomass in 27 years in German nature conservation areas. 
The study inspired much follow-up research (Wagner et al., 2021), and, 
based on 166 long-term surveys spanning the period 1925–2018, Van 
Klink et al. (2020a, 2020b) performed a meta-analysis showing a decline 
of terrestrial insect abundance by about 10.6 % per decade, but an in-
crease of freshwater insect abundance by about 12.2 % per decade. 
Recently, no net decline in insect abundance could be detected in the US 
(Crossley et al., 2023). These results show that it is important to 
acknowledge the fact that insects are an heterogenous class of organ-
isms. In fact, insects are the most species rich class on earth (Mora et al., 

2011), but the conservation status of species is only known for very few 
of them, even in well studied countries. Because it is often not feasible to 
study all insects, policy-makers and nature managers generally focus on 
specific species groups (Halme et al., 2009; Siddig et al., 2016). Species 
groups are selected according to several criteria, among which: data 
availability, relations with environmental pressures and management, 
ease of identification, and resonance with the wider public (Gregory 
et al., 2005; Pryke et al., 2015; Siddig et al., 2016). Ideally, the selected 
species groups should also be informative about biodiversity in general 
(Gaspar et al., 2010). However, although studies are available of specific 
insect groups as potential indicators for changes in abundance of insects 
in general, for example butterflies (Thomas, 2005) and dragonflies 
(Bush et al., 2013; Hassall, 2015; Pryke et al., 2015), the latter criterion 
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is often more hoped for than tested thoroughly. Some authors have been 
warning against the use of organism groups as ‘diversity surrogates’ (e. 
g., Gaspar et al., 2010 in case of spatial diversity). For example, but-
terflies could not be used to predict the declining species insects and are 
no robust indicator for pollinating insects in the Netherlands (Musters 
et al., 2013; Segre et al., 2023). 

Here, we explore the possibilities to find a subgroup that could be 
used to predict the number of declining species in a wider group of in-
sects. Ideally this subgroup, that we will call an indicator group, should 
be small, i.e., contain a limited number of species. After all, the less 
species in the indicator group, the less effort it will take to assess the 
trend in the wider group. 

2. Theory 

The term ‘indicator species’ in ecology can be defined in a number of 
different ways (Dufrêne and Legendre, 1997; McGeoch, 1998; De 
Cáceres et al., 2010; Niemi and McDonald, 2004; Fleishman et al., 2005; 
Halme et al., 2009; Ricotta et al., 2015; Siddig et al., 2016; Soldaat et al., 
2017; Buckland and Johnston, 2017). Here, we define an indicator 
species group as a group of species of which the change in abundance 
over time can be used to accurately predict the trends in a wider group of 
species. 

Since the causes of change in abundance may be different for 
different species and depend on the properties of species, accurate 
prediction of the trends in the wider group seems only possible when the 
distribution of the relevant properties over the species in the indicator 
group can be assumed to be equal to the distribution of those properties 
in the wider group. In that case, the indicator group can be called a 
representative subgroup of the wider group of species (Boyd et al., 
2023). A random sample of species from the wider group approaches 
representativeness with increasing sample size (Boyd et al., 2023). 

The above reasoning is in essence trait-based (Violle et al., 2007; 
Webb et al., 2010; Murray et al., 2011; Musters and van Bodegom, 2018; 
Chichorro et al., 2022). The basic idea is that, because trait modalities, 
or ‘attributes’ as we will call them here, are the evolutionary outcome of 
adaptions to the environment, the relationship between attributes and 
environmental change can assumed to be universal among a wide group 
of species (Musters and van Bodegom, 2018; Chichorro et al., 2022). So, 
species with the same attributes are supposed to react in the same way to 
environmental changes. For example, if fragmentation is the cause of the 
decline of certain species, the dispersion ability of species will predict 
which species will decline and which not. 

A trait-based approach seems needed, because pragmatic candidates 
for indicator groups are seldom known random samples of the wider 
focal group (Siddig et al., 2016; Boyd et al., 2023). Taxonomic sub-
groups, such as butterflies or dragonflies for insects, certainly are not. In 
theory, this problem could be solved when the relationship between the 
attributes and the trends of species in the indicator group is known, as 
well as the distribution of attributes in the wider group. In that case, the 
trend of the wider group could be predicted by the trend of the indicator 
group, weighted according to the distribution of the relevant attributes 
in the wider group. 

Here, we have applied this ‘model-based inference’ (Boyd et al., 
2023) and assessed the accuracy of prediction by comparing the results 
of the prediction with the actual known trends in the wider group. For 
that, the indicator group was first used to quantify the relationship be-
tween attributes and trends of species, resulting in a predicting model 
parameterized with the indicator group species, and then this model was 
used to predict the trends in the wider group. The universality of the 
relationship between the attributes and the trend in the indicator group 
was tested in this way. 

A possible explanation for the poor performance of a candidate in-
dicator group, therefore, could be the low universality of the relation-
ship between the attributes and trends because insects are a too 
heterogeneous group. If we would reduce this heterogeneity by 

subdividing insects in more homogeneous groups, a candidate group 
might become a good indicator for one of those homogeneous sub-
groups. An obvious subdivision in insects is that in species that are 
exclusively terrestrial and those that are spending at least part of their 
lifecycle in aquatic systems, because terrestrial and aquatic species have 
shown to have different trends (Van Klink et al., 2020a). 

Here we examine this possible explanation. We assessed 78 intrinsic 
attributes of insects and trained Random Forests (RFs) to predict the 
decline of species within six taxonomic groups of which we had infor-
mation of more than 35 species (Breiman, 2001; Musters et al., 2013; 
Musters and van Bodegom, 2018). Then, we used each of these trained 
RFs to predict the decline of either terrestrial or aquatic insects in gen-
eral. The reversed Normalized Brier score (rNBs), which is a strictly 
proper score of the accuracy of a prediction (Brier, 1950; Ishwaran and 
Lu, 2019; Musters and de Snoo, in prep), together with associated type I 
and type II errors, were our criteria for deciding whether a group was a 
suitable indicator group. Our results made us also assess the accuracy of 
any combination of one terrestrial and one aquatic group in predicting 
the decline of all insects. Next, we checked whether the attributes that 
were important for predicting decline per group, did correspond be-
tween the groups (Fig. 1). 

3. Material and methods 

3.1. Dutch red lists 

In the Netherlands, Red Lists have been assessed for seven insect 
species groups: six orders [Lepidoptera (butterflies), Orthoptera (grass-
hoppers), Ephemeroptera (mayflies), Trichoptera (caddisflies), Odonata 
(dragonflies) and Plecoptera (stoneflies)] and one family [Apidae 
(bees)] (Table 1). These seven groups were divided in either terrestrial 
or aquatic species whose trends we want to predict using only one of the 
species groups. According to the Dutch Red List criteria, a species’ threat 
status is determined by the long-term trend since 1950 and its current 
rarity (for details see De Iongh and Bal, 2007). In the present study we 
used the information on the trend per species in 2015. So, ‘decline’ is a 
binary indicating whether or not the species range or abundance is 
declining in the Netherlands since the fifties of the last century ac-
cording to the latest Red List assessment. A total of 738 insect species 
were evaluated for the Red Lists. From these, 373 species were randomly 
selected within each group to get a more or less equal representation of 
the groups in our dataset (Table 1). Of our selected insects 48 % are 
declining, i.e., 51 % of the terrestrial and 44 % of the aquatic insects. 

3.2. Attributes 

To identify traits predicting decline of species across taxonomic 
groups, we made a ‘universal’ list of 61 traits that is supposed to cover all 
aspects of life history based on ecological theory, including morpho-
logical and demographic traits as well as habitat requirements of species 
(Musters et al., 2013). The modalities of these traits per species were 
obtained from species group experts (Musters et al., 2013). In accor-
dance with classification tree literature (Breiman, 2001), we called these 
trait modalities the attributes of the species. In several cases more than 
one attribute could be regarded as reflecting a certain trait. All attributes 
were transformed into categorical variables in order to avoid the influ-
ence of cardinality on the importance of attributes (Deng et al., 2011). In 
the case of scale variables, the scale was divided into five equal parts, 
leading to a five-point ordinal attribute. When needed, the original 
values were log-transformed for approaching a normal distribution 
before transforming into an ordinal attribute. We did our analyses based 
on all 78 intrinsic attributes available for insects, i.e., the attributes that 
can be regarded as independent of the environment (Table S1 in Sup-
plementary Information). So, attributes depending on the distribution of 
the species within the Netherlands, such as preference for certain Dutch 
habitats, were excluded. 

C.J.M. Musters et al.                                                                                                                                                                                                                           
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Fig. 1. Procedure for testing the accuracy of predicting the decline of species with a Random Forest trained by an indicator group and assessing the importance of 
attributes for the prediction. 

Table 1 
Most recent Dutch red lists of insects used in this study. N spec.: estimated number of Dutch species; Eval.: number of species evaluated for the Red List; Sel.: number of 
species selected for this study; Frac. hab.: fraction of terrestrial or aquatic selected species; Frac. all: fraction of all selected species; Prev.: prevalence of declining 
species in selected species, i.e., number of declining species divided by total number of selected species.  

Group  N spec. Eval. Sel. Frac. 
hab. 

Frac. 
all 

Prev. Published by 

Apidae Bees 359 331 116  0.59  0.31  0.48 Reemer, 2018 
Lepidoptera Butterflies 71 71 49  0.25  0.13  0.76 Van Swaay, 2006 
Orthoptera Grasshoppers 64 44 35  0.18  0.09  0.26 Reemer, 2012 
Ephemeroptera Mayflies 60 52 41  0.23  0.11  0.41 Verdonschot et al., 2003 
Trichoptera Caddisflies 175 155 69  0.39  0.18  0.38 Verdonschot et al., 2003 
Odonata Dragonflies 65 65 47  0.27  0.13  0.38 Termaat and Kalkman, 2011 
Plecoptera Stoneflies 27 20 18  0.10  0.05  0.89 Verdonschot et al., 2003 
All Insects  738 373    0.48  
Of which Terrestrial  446 198   0.53  0.51   

Aquatic  292 175   0.47  0.44   
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3.3. Random forests 

For studying the suitability of the groups as indicator group, we grew 
Random Forests for predicting whether a species was declining or not 
with attributes as predictors (Breiman, 2001; Breiman and Cutler, 
2012). We used the function rfsrc() of the randomForestSRC package in R 
(Ishwaran and Kogalur, 2007; Ishwaran et al., 2008; R Development 
Core Team, 2015) for the classification. 

The accuracy of the prediction is our criterion for assessing the 
suitability of the groups as indicator: this should be as high as possible. It 
was calculated as 1 – Normalized Brier score, i.e., the reversed 
Normalized Brier score (rNBs; Musters and de Snoo, in prep). The 
Normalized Brier score is a strictly proper score of the accuracy of a 
prediction, but it runs from 0 (perfect accuracy) to 1 (zero accuracy, i.e., 
when the prediction is not different from throwing a coin). By sub-
tracting it from 1, the rNBs indicates a high accuracy with a high score. 

3.3.1. Random samples of all insects 
We started our analysis by training RFs with random samples of all 

insect species, and then trying to predict the number of declining species 
in all species. We did this analysis with a random sample of size 0.1, 0.2, 
etc. times the total number of insect species (n = 373). Since these 
random samples can be regarded as representative for all insects, we 
expect optimal accuracy of the predictions, and therefore we can use the 
results as a kind of standard of the results in the next analyses. We 
performed the predictions ten times with each sample size in order to 
assess the variation in accuracy resulting from the randomness of the 
sample. Because one can expect that the accuracy of the prediction in-
creases with the percentage of species used for training in the total 
number of species, we assessed the accuracy for both the prediction of all 
species and for all non-trained species. 

3.3.2. Indicator groups 
We trained RFs with the following six indicator groups: bees, but-

terflies, grasshoppers (terrestrial species); mayflies, caddisflies, drag-
onflies (aquatic species). We then used these RFs to classify our sample 
of the terrestrial and aquatic insects, respectively, into either declining 
or non-declining species and assessed the accuracy of the prediction 
(Fig. 1). 

A high accuracy does not exclude a high chance of either type I (the 
chance of a false positive) or type II (the chance of a false negative) 
errors. These chances were therefore also taken into consideration and 
regarded as significant when lower than 0.05. Since we have no a priori 
idea on which of these two types of errors is worse, we assume that both 
should be as low as possible, i.e., both should be as close to zero as 
possible. A good measure for this is the Euclidean distance to the origin 
in the two-dimensional space with type I and type II errors as axes: Eucl. 

D =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(type I)2
+ (type II)2

√

. But both should also be as equal as possible, 
because if the type I is larger than the type II error, the number of 
declining species will be overestimated, while it will be underestimated 
in case of type I is smaller than type II errors. The percentage over- and 
underestimation [(100*Predicted prevalence of declining species/ 
Actual prevalence of declining species)-100] was used to check this. In 
all cases, we trained the RFs ten times so that we could assess the effect 
of the stochastic parts of procedure on the results. Tables and figures 
show the averages of these ten runs. The tables also give standard de-
viation, but the figures give the 95 % confidence interval. 

3.3.3. Importance of attributes 
Of the last of the ten RF trainings, we calculated the mean and 

confidential interval of the importance per attribute with the delete-d- 
jackknife subsampling procedure as recommended by Ishwaran and Lu 
(2019), using the subsample() and extract.subsample() functions of ran-
domForestSRC package of R. Attributes that had an importance that was 
significantly higher than zero were considered to contribute 

significantly to the prediction of the decline of species. 

4. Results 

4.1. Random samples of all species 

The accuracy of the prediction of the decline of all species by RFs 
trained with a random, i.e., with a representative, sample of species 
could be as high as 0.73 rNBs, but showed a dependency on the fraction 
of species that was taken as sample size (Fig. 2). Also, the accuracy was 
clearly lower when the prediction was only made for the species that 
were not in the training group (Fig. 2). The predicted prevalence of 
declining species is independent of the fraction and on average slightly 
lower than it actually is, but the variance in prediction decreases with 
the fraction is (mean predicted prevalence = 0.44, sd = 0.050; actual 
prevalence = 0.48; p-value actual prevalence is higher than predicted <
0.001; Table 1; Fig S1 in Supplementary Information). When the com-
plete dataset of insects is used to train the RF, 46 out of all 78 attributes 
turn out to have an importance higher than zero, with the attribute 
‘Active dispersion’ having the highest importance (Table S1). 

4.2. Indicator groups 

The RFs trained by the different taxonomic groups resulted in a 
highest accuracy of 0.37 rNBs in predicting declining terrestrial species 
when trained by the bee dataset and of 0.23 rNBs in predicting declining 
aquatic species when trained by the dragonfly dataset (Table 2, Fig. 3). 
RFs trained by butterflies or grasshoppers were not able to predict 
terrestrial insects at all (accuracy not different from zero). The accuracy 
as compared to the accuracy of a representative sample with the same 
fraction of species shows that in all groups the accuracy is lower than 
that of the representative group (Fig. S2). In case of the grasshoppers, 
caddisflies, and dragonflies, the chance for type I error was significant; 
for all the groups the chance of type II was never below 0.05, although 
for butterflies it was nearly significant (Table 2 and 3). In all cases, either 
the type I or type II error was higher than 0.5, except for the RFs trained 
by the bees (Fig. S3) and, therefore, the Euclidian distance to the origin 
was large (Table 2 and 3). Also, the number of declining species was 
always significantly over- or underestimated (Fig. 4). The least deviation 
of the estimated number of declining species from the actual number 
was found in using bees for training the RF for predicting the number of 
declining terrestrial species (10.6 % overestimation, Table 2). 

Calculations of the accuracy of predicting the decline and prevalence 
of declining species in all insect species using one taxonomic group or 
any combination of one terrestrial and one aquatic group for training the 
RFs showed the same low accuracies and high over- or underestimations 
as in the previous results and no large difference between single groups 
and combinations of two groups (Fig. 5, S11, S12, S13). However, the 
accuracy showed a clear positive correlation with the number of species 
in the indicator group (F[1,16] = 32.55, p < 0.001; Fig. 5). 

4.3. Importance of attributes 

The number of attributes that significantly contributed to the pre-
diction of declining species, that is, that had an importance significantly 
higher than zero, varied between three and fifteen per taxonomic group 
(Table S2). Only one attribute was important in four of our seven species 
groups, viz. CQ46: Active dispersion, the attribute that also had the 
highest importance when all insects were used for training the RF 
(Table S1). Two attributes were important in three groups, viz. CLogQ1: 
Number of European species in the genus, and Q11c: Species that have 
their Western border through the Netherlands, i.e., Eastern species. 
Figs. S4-S10 give the relationship between the attribute value and the 
probability of decline of all the important attributes. Usually, the 
number of important attributes per group that groups have in common is 
low (Table 4). Only in case of the dragonflies and the stoneflies, the two 
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Fig. 2. Relationship between the fraction of species and the accuracy of predicting the decline of all species and of the species outside the training group. All species: 
rNBs = 0.2968 * ln(Fraction of species) + 0.681; Non training species: rNBs = 0.1019 * ln(Fraction of species) + 0.2067. 

Table 2 
Results predictions terrestrial insects. Accuracy: reversed Normalized Brier score 
(rNBs); Err I: chance of type I error; Err II: chance of type II error; Eucl D: 
Euclidian distance to the origin of the Fig. 2; Pred. prev.: predicted prevalence of 
the declining species, i.e., number of declining species divided by total number; 
Overest. %: percentage of overestimated number of declining species, negative 
values are underestimations.  

Group rNBs Err I Err II Eucl 
D 

Pred. 
prev. 

Overest. 
% 

Bees 0.373 ±
0.007  

0.351  0.130  0.374 0.616 ±
0.010  

10.6 

Butterflies − 0.018 ±
0.019  

0.806  0.056  0.808 0.876 ±
0.026  

36.6 

Grasshoppers − 0.050 ±
0.027  

0.007  0.846  0.846 0.082 ±
0.008  

− 42.7  

Fig. 3. Accuracy of prediction of declining terrestrial (green) and aquatic insects (blue) by using the Random Forest trained by bees, butterflies, grasshoppers, 
mayflies, caddisflies, and dragonflies. Error bars indicate the 95% confidence interval based on ten Random Forests. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Results predictions aquatic insects. Accuracy: reversed Normalized Brier score 
(rNBs); Err I: chance of type I error; Err II: chance of type II error; Eucl D: 
Euclidian distance to the origin of the Fig. 2; Pred. prev.: predicted prevalence of 
the declining species, i.e., number of declining species divided by total number; 
Overest. %: percentage of overestimated number of declining species, negative 
values are underestimations.  

Group rNBs Err I Err II Eucl 
D 

Pred. 
prev. 

Overest. 
% 

Mayflies 0.097 ±
0.005  

0.152  0.609  0.628 0.257 ±
0.015  

− 18.3 

Caddisflies 0.188 ±
0.009  

0.029  0.674  0.675 0.159 ±
0.006  

− 28.1 

Dragonflies 0.231 ±
0.004  

0.035  0.571  0.573 0.208 ±
0.006  

–23.2  
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Fig. 4. The predicted prevalence of the declining terrestrial (green) and aquatic (blue) species by using the Random Forest trained by bees, butterflies, grasshoppers, 
mayflies, caddisflies, and dragonflies. The dashed green line shows the actual percentage of declining terrestrial species and the dashed blue line that of declining 
aquatic species. Error bars indicate the 95% confidence interval based on ten Random Forests. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 5. Relationship between number of species in the indicator group and the accuracy of predicting the decline of all species with RFs trained with either one or two 
groups. Regression line: rNBs = 0.0027 * Number of species – 0.1668. 

Table 4 
Number of important attributes in common between groups of species.   

Bees Butterflies Grasshoppers Mayflies Caddisflies Dragonflies Stoneflies 

Bees  Q29 Q11c Q10 CLogQ1 CLogQ1, Q11c 
Butterflies 1  Q17d, CQ46    CQ46 
Grasshoppers 1 2   Q22d, Q12 CQ46, Q11c CQ46 
Mayflies 1 0 0  Q22a Q38c  
Caddisflies 1 0 2 1  CLogQ1  
Dragonflies 2 0 2 1 1  CQ46, Q25, Q18c 
Stoneflies 0 1 1 0 0 3   
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groups had three important attributes in common. In all other combi-
nations of groups this number was lower. 

5. Discussion 

High accuracy of predicting the decline of insect species could only 
be reached by training the RF with a random sample that includes a large 
fraction of all the species to be predicted. But even in the case that all the 
species are used for training, the accuracy of prediction was not higher 
than 0.73 rNBs. More importantly, our results showed that the high 
accuracy was not found when only the decline of species was predicted 
that were not used for training. In that case, the accuracy was not above 
0.4 rNBs, but usually around 0.2 rNBs. Based on knowledge of declining 
species, the decline of other species seemed never to be predicted very 
accurately, even when that knowledge was based on a representative 
sample of the species. 

The accuracy of the prediction of decline of both terrestrial and 
aquatic species was low when using the RF trained by the taxonomic 
species groups and lower than that of a representative group of the same 
size. In case of the highest accuracy, the prediction of terrestrial insects 
using the RF of the bees, the accuracy was below 0.4 rNBs. Further, the 
number of important attributes for predicting decline that have species 
groups in common was low, never exceeding three. So, in case of the 
Dutch insects that were well studied, we were not able to recommend 
any taxonomic species group as an indicator group for predicting the 
decline of insects in general. 

Our results support the idea that each taxonomic group of insects has 
its own specific set of attributes that predict their decline and none of the 
species groups is a good indicator group for other insects. This seems to 
be in line with the results of a study of traits and the environmental 
responses of aquatic macroinvertebrate (Pilière et al., 2016). 

Moreover, the general pattern of a positive relationship between the 
accuracy of the prediction of the decline of species and the size of the 
indicator group we found (Fig. 5) can easily be explained by the rela-
tionship in the accuracy of prediction and the number of species in the 
training group as proportion of all species (Fig. 2). 

The fact that when using all species for training the RF, the predic-
tion of the RF has an accuracy of only 0.73 rNBs shows that our method 
has fundamental uncertainties. Potential sources of these uncertainties 
are numerous, such as uncertainties in the RF procedure which includes 
random sampling steps, in the assessment of the attributes of species, in 
the completeness of our attribute list (Musters and van Bodegom, 2018) 
and in the assessment of declining species (Porszt et al., 2012; Soldaat 
et al., 2017; Buckland and Johnston, 2017). But, most importantly, we 
think that changes in natural populations are largely indeterministic. In 
that light, an accuracy of 0.73 rNBs might even be regarded as high. 

In general, our study shows that one should be careful in claiming 
that a species group acts as indicator group. We have found little evi-
dence for the idea of the existence of indicator groups and warn against 
their use without doing an accuracy check, such as the one we per-
formed here. Selecting one species group to inform about the trend in 
wider biodiversity in an area may easily over- or underestimate the 
latter trend. Also, the selection of at least more than one species group 
and to combine several groups, may not solve this problem. 

Contrary, our results seem to suggest that for assessing the general 
trend in at least the insects, trying to find an indicator group among the 
species of which presently information is available is not the way for-
ward. The only reliable approach seems to be to select a random sample 
of all species, and then monitor these selected species (Boyd et al., 
2023). This does not solve the present need for information on species 
trends, bares no guarantee for high accuracy of the prediction of the 
general trend in insects, and is probably very costly. Cost may in the 
future be reduced, though, by collecting massive data combined with 
automatic identification techniques, as are now in development for 
eDNA sampling and automatic photo-identification (Zenker et al., 2020; 
Kirkeby et al., 2021; Bjerge et al., 2023). 

If such an approach is chosen, the question how large a random 
sample should be becomes emergent. Our study gave little information 
on that: Fig. 2 showed almost straight regression lines between the 
relative number of random species and accuracy of prediction. Besides, 
our study included only 373 out of at least 19,244 established insect 
species in the Netherlands (Noordijk et al., 2010). 

We call for careful and extensive evaluation of all studies where re-
searchers claim that the state of a specific group of species is indicating 
the state of a wider group of species, both within and outside the insects 
(Gaspar et al., 2010). Only with more attention for generalization in 
ecology, we can hope to develop ecology into a predictive science (Spake 
et al., 2022). Increasing the accuracy of forecasting in ecology is ur-
gently needed to justify the use of ecological knowledge in nature con-
servation and policy making (Musters et al., 2023). 

6. Conclusion 

Selecting a taxonomic subgroup to inform about the trends of the 
species in the wider taxon in an area may easily lead to over- or un-
derestimation of the number of declining species. Furthermore, selecting 
more than one subgroup and/or combining several groups may not 
accurately address this problem. The only reliable approach seems to be 
to select an as large as possible random sample of all species of the taxon, 
but that bares no guarantee for high accuracy of the prediction of the 
trends, even when a large number of the trait values of the species are 
known. 
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Gregory, R.D., van Strien, A., Voří̌sek, P., Gmelig Meyling, A.W., Noble, D.G., Foppen, R. 
P.B., Gibbons, D.W., 2005. Developing indicators for European birds. Philos. T. R. 
Soc. B. 360, 269–288. 

Halme, P., Mönkkönen, M., Kotiaho, J., Ylisirniö, A.L., Markkanen, A., 2009. Quantifying 
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