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5 Quantum tunneling in a
fermionic Sachdev-Ye-Kitaev
model

5.1. Introduction

Non-equilibrium dynamics of the celebrated Sachdev-Ye-Kitaev (SYK) model [40,
39] – dual to a black hole in a two-dimensional anti-de Sitter space – instanta-
neously coupled to a larger cold media has been recently scrutinized [15, 13]
intending to mimic black hole evaporation [116, 117, 118, 94, 64] in a compact
quantum mechanical setup. Alongside, several platforms have been proposed for
experimental realization of the SYK model: as a low-energy effective description of
a topological insulator/superconductor interface with an irregular opening [119],
Majorana wires coupled through a disordered quantum dot [120], ultracold atoms
trapped in optical lattices [121, 122], graphene flake with a random boundary
[123], and digital quantum simulation [124, 125, 126]. In this context, opening
up the system to an outer environment arises naturally as the “black-hole chip”
[119] is necessarily in contact with a substrate and probes.

Once the system is opened due to quench-coupling, it starts to equilibrate with
the external reservoir. Of particular interest is how the initial shock and the
subsequent equilibration affects the initial SYK state and transport observables.
The SYK model describes strongly interacting fermions in (0 + 1)-dimensions.
As such, it can be considered as a quantum dot that is usually characterized via
tunneling current. In this manuscript, we consider the complex SYK model [46,
47] abruptly coupled to a zero temperature bath. We input the initial electro-
chemical potential in the SYK subsystem to enable quantum charge tunneling
apart from the temperature drop between the SYK dot and the reservoir [15, 13].
Unlike equilibrium transport in the SYK quantum dot coupled to metallic leads
[127, 128, 129, 130, 131], we are focused on the time evolution of both spectral
properties and the tunneling current.

It was indicated earlier that right after the quench the SYK subsystem surpris-
ingly heats up despite coupling to the colder bath [15, 13] and cools down later
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

equilibrating with the reservoir’s temperature. In the holographic picture this
initial heating is aligned with the increase of the subsystem energy that accom-
panies the information carried by the quench-induced shock-wave falling into the
black hole [94]. We recover this result in the absence of a potential difference and
confirm that the applied quench protocol cools down the SYK dot preserving an
exotic SYK non-Fermi liquid phase after the relaxation. Proceeding to transport,
we analyze the tunneling current evolution at low temperatures. We observe nu-
merically that the current half-life – the time required for current to relax back
to half its maximum value – grows linearly with the initial temperature of the
SYK quantum dot. In contrast, replacing the SYK subsystem with a disordered
Fermi liquid leads to a quadratic temperature increment of the current’s half-life.
This enables one to distinguish the SYK non-Fermi liquid from a more common
disordered phase by means of the quench-tunneling protocol.

5.2. The model

We begin our analysis with the SYK model in thermal equilibrium (chemical
potential µ, temperature T ) coupled to a reservoir at zero chemical potential and
zero temperature via tunneling term at time t = 0. The Hamiltonian reads

H = HSYK +Hres + θ(t)Htun, (5.1)

HSYK = 1
(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
i c

†
jckcl − µ

N∑
i=1

c†
i ci, (5.2)

Hres = 1√
M

M∑
α,β=1

ξαβψ
†
αψβ + h.c., (5.3)

Htun = 1
(NM)1/4

N∑
i=1

M∑
α=1

λiαc
†
iψα + h.c., (5.4)

where Jij;kl = J∗
kl;ij = −Jji;kl = −Jij;lk, ξαβ , and λiα are Gaussian random

variables with finite variances |Jij;kl|2 = J2, |ξαβ |2 = ξ2, |λiα|2 = λ2 and zero
means. Below we assume the reservoir much larger than the SYK subsystem,
which imposes M ≫ N for the modes numbers. The charging energy [129, 131,
132, 133] is supposed to be negligible comparing to the SYK band-width J .

The conventional way to address non-equilibrium dynamics of a quantum many-
body system is solving Kadanoff-Baym (KB) equations for the two-point functions
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G≷(t, t′) = −iN−1
N∑

i=1
⟨ci(t∓)c̄i(t′±)⟩, where ± denotes the top/bottom branches

of the Keldysh time contour [134]. Inasmuch as Schwinger-Keldysh formalism has
been widely applied to the SYK model in both thermalization [57, 135, 13, 15,
136, 137] and transport [138, 127, 128] context, we leave the detailed derivation
for Appendix 5.A and proceed straight to the Kadanoff-Baym equations that hold
in the large N,M limit:

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(

ΣR(t, u)G≷(u, t′)

+ Σ≷(t, u)GA(u, t′)
)
, (5.5)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′)

+G≷(t, u)ΣA(u, t′)
)
, (5.6)

The self-energy

Σ≷(t, t′) =J2G≷(t, t′)2G≶(t′, t)
+√p λ2θ(t)θ(t′)Q≷(t, t′) (5.7)

includes the contribution of the cool-bath as a time dependent background

Q≷(t, t′) = −
H1
(
2ξ(t− t′)

)
± iJ1

(
2ξ(t− t′)

)
2ξ(t− t′) (5.8)

expressed through Struve H1 and Bessel J1 functions [139]; see Appendix 5.A.
Here we introduce the ratio p = M/N and limit ourselves to the large reservoir
case p≫ 1. Below we assume ξ = J for brevity.

The initial state of the system is settled by the thermal state of the bare SYK
model (5.2) in absence of coupling to the reservoir. At the moment of quench
the SYK subsystem (5.2) begins to deviate from the initial thermal state until it
finally thermalizes at late times. Characterizing thermalization dynamics requires
notion of the retarded, advanced, and Keldysh Green’s functions

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
, (5.9)

GA(t, t′) = −θ(t′− t)
(
G>(t, t′)−G<(t, t′)

)
, (5.10)

GK(t, t′) = G>(t, t′) +G<(t, t′) (5.11)
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

expressed above in terms of the “greater” and “lesser” components. The same
rules (5.9–5.11) apply to the self-energy (5.7).

The Green’s functions are found numerically from the KB equations (5.5,5.6)
with the self-energies (5.7,5.8). At first, we calculate the equilibrium Green’s
functions of the bare SYK model using an iterative approach [140, 141]. We
apply an extra constraint manifesting the fluctuation-dissipation relation at initial
temperature and chemical potential 1. The equilibrium Green’s functions set
the initial condition for the Kadanoff-Baym equations and evolve as follows: the
integrals in the KB equations are computed with the trapezoidal rule and the
remaining differential equations are solved by the predictor-corrector scheme. The
corrector adjusts self-consistently at every iteration [57, 135]. For the spectral
properties we use the two-dimensional time grid with a step δt = 0.02 and n ∼ 104

points in each direction, while for the transport calculations the numerical grid is
more refined δt = 0.005 but has a smaller size n ∼ 103.

5.3. Relaxation after the quench

In a while after the quench the system relaxes and approaches a thermal state.
To demonstrate that, we rotate the time frame t, t′ in the numerically computed
Green’s functions towards τ = t− t′, T = (t+ t′)/2 and make a Fourier transform
along τ . Indeed, the system returns to a nearly-thermal state if the extended
fluctuation dissipation relation

iGK(ω, T )
A(ω, T ) = tanh ω − µ̃(T )

2T̃ (T )
(5.12)

is fulfilled at frequencies in the vicinity of µ̃, where A(ω, T ) = −2ImGR(ω, T )
is the SYK spectral function. In contrast to the equilibrium case, the extended
fluctuation dissipation relation (5.12) is manifestly time dependent via the “centre
of mass” coordinate T which enters the effective temperature T̃ and chemical
potential µ̃. Overall, the ratio (5.12) determines the effective distribution function
of the SYK fermions in a quasi-equilibrium state, since tanh ω−µ̃

2T̃
= 1− 2nF(ω −

µ̃, T ), where nF is the Fermi distribution function.

The effective temperature can be extracted from the fluctuation dissipation rela-
tion (5.12) by an inverse slope of the Green’s functions ratio

T̃ (T ) =
(

∂

∂ω

2iGK(ω, T )
A(ω, T )

∣∣∣∣
ω=µ̃

)−1

(5.13)

1In thermal equilibrium the fluctuation dissipation relation states [134]: GK(ω) =
2i ImGR(ω) tanh

ω − µ

2T
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5.3. Relaxation after the quench

Figure 5.1. [Top] Deviation of the SYK subsystem from the initial thermal state: ratio
between the Keldysh Green’s function and the spectral function of the SYK model
at charge neutrality (Left panel) and at finite chemical potential (Right panel). The
equilibrium distribution functions at the initial temperature are profiled with the dashed
lines. The oscillations noticeable in the orange curves have a numerical origin, viz. the
quality of the computation depends on the size and refinement of the time grid. The
time grid is designated in the t, t′ space, while Fourier transform is done along diagonal
τ = t − t′. Ergo, the τ -lattices differ by length for separate slices of T . Extension and
refinement of the time grid suppress the oscillations. [Bottom] Spectral function of the
SYK model as a function of frequency at charge neutrality (Left panel) and at finite
chemical potential (Right panel). The dashed/dash-dot lines show the equilibrium SYK
spectral function in the infrared regime for different parameters.

at ω = µ̃. Following the top panel of Fig. 5.1, which shows the ratio (5.12),
one notices the effective temperature increase around T = 0, in spite of coupling
to a colder reservoir. The initial effective temperature increment is followed by
the subsequent temperature decay to the reservoir’s temperature T = 0. This
behavior was revealed earlier for the SYK model with Majorana zero-modes [15,
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

Figure 5.2. Effective chemical potential in the SYK quantum dot coupled to a large
reservoir with Tres = 0 and µres = 0.

13], however, as we show in a follow-up work [72, 102], this doesn’t result in
an increase of the actual temperature of the system unless there is a second
decoupling quench. At late times JT ≃ 17.8, the system clearly relaxes after
the quench since the ratio (5.12) corresponds to the Fermi distribution at low
temperature.

In comparison to the previous studies [13, 15], the new ingredient here is a charge
imbalance between the SYK quantum dot and the cool-bath. Thereby, we track
the electrochemical potential in the SYK subsystem which changes substantially
once the quench is on. The effective chemical potential µ̃(T ) is set by the fre-
quency where the ratio (5.12) turns to zero, as shown in Fig. 5.1 (top right).
We plot the SYK chemical potential in Fig. 5.2, where µ̃ originates from the
initial value µ = 0.1J in the SYK quantum dot for T → −∞ and adjusts to the
reservoir’s µres = 0 at late times T → +∞. As noted in Fig. 5.2, the chemical
potential responds to the quench with a non-monotonic behavior as a function of
time T , akin to the effective temperature. Note that the “centre of mass” time
coordinate T and the actual time are not equivalent unless in a long-time limit.
This explains why the chemical potential can already rise at small negative T .

Since the tunneling between the SYK quantum dot and the reservoir turns on not
adiabatically, of importance is whether the SYK non-Fermi liquid phase survives
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5.3. Relaxation after the quench

Figure 5.3. Spectral of the SYK quantum dot after the quench as a function of fre-
quency. The blue dots show the result of the saddle-point numerics done for the evolution
of the SYK subsystem with the initial temperature T = 0.1J connected to a zero tem-
perature reservoir with a coupling strength √

pλ2/J2 = 0.2. The red dash-dot curve is
the equilibrium saddle-point numerics for the bare SYK model at low temperatures, the
black dashed line is the infrared (IR) solution of the bare SYK model (5.14), and the
green line is the spectral function of the disordered Fermi liquid (dFl). The energy scale
δω = pλ4/J3 indicates the region where the SYK nFl crosses over to a Fermi liquid.

the quench. We compare the SYK spectral function A(ω, T ) a while after the
quench to the equilibrium spectral function of the bare SYK model AIR(ω) =
−2ImGIR

R (ω) in the infrared regime J/N ≪ ω, T ≪ J , where

GIR
R (ω) = −iC(θ)e−iθ

√
2πJT

Γ
( 1

4 − i
ω

2πT + iE
)

Γ
( 3

4 − i
ω

2πT + iE
) , (5.14)

e2πE =
sin
(

π
4 + θ

)
sin
(

π
4 − θ

) , C(θ) =
(

π

cos 2θ

)1/4
. (5.15)

The low-frequency asymptotic (5.14), known as the conformal Green’s function
of the SYK model, does not explicitly depend on chemical potential. Instead, it
depends on the independent parameter – the spectral asymmetry angle [46, 47].
The asymmetry angle θ [142] is nonzero away from charge neutrality (µ ̸= 0) and
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

related to the charge per site on the SYK quantum dot

⟨Q⟩ = 1
N

N∑
i=1
⟨c†

i ci⟩ −
1
2 = − θ

π
− sin 2θ

4 , (5.16)

where ⟨Q⟩ ∈ (−1/2, 1/2) and θ ∈ (−π/4, π/4) [46, 47].

As mentioned earlier, the system relaxes to the low-temperature Fermi distribu-
tion at JT ≃ 17.8 (see Fig. 5.1 (top left)). In Fig. 5.3 we plot the spectral
function of the SYK quantum dot in this regime. The spectral function after the
quench is well aligned with the bare SYK spectral function at low temperatures.
The SYK nFl state is known to break down in the presence of a Fermi liquid [143,
144]. Here we can estimate the timescale of the crossover to a Fermi liquid from
the self-energy (5.7) comparing the SYK nFl and the reservoir’s contributions.
Indeed, substitution of the Green’s functions G(t) ∝ 1/

√
Jt and Q(t) ∝ 1/(Jt)

to the self-energy (5.7) shows that the crossover to a Fermi liquid happens for
tF L ≳ 1/δω, where δω = pλ4/J3. This implies that after relaxation from the
quench the SYK nFl behavior can be read out from the spectral function for

δω ≲ ω ≪ J. (5.17)

The lower bound in inequality (5.17) can be suppressed as √pλ2/J ≪ J in the
weak tunneling limit. This observation agrees with the long timescale of the SYK
nFl/Fermi liquid crossover found earlier in equilibrium studies [138, 145, 143,
129].

In Figs. 5.1 (top right), 5.2 we demonstrate that the system at finite initial µ
tends to zero chemical potential in the long time limit. This is aligned with
the discharging of the SYK quantum dot coupled to the large reservoir, which is
kept at charge neutrality. At the level of the equilibrium SYK Green’s function
(5.14), this naively implies θ ≈ 0. However, the spectral function in Fig. 5.1
(bottom right) at long times is close enough to the conformal one with non-zero
asymmetry angle θ. We plot the conformal spectral function with θ = 0.2 as a
reference. The origin of this mismatch may be that the asymmetry parameter θ is
usually related to ∂µ/∂T but not to the equilibrium value of the chemical potential
[46]. In its turn, the temperature-independent part of the chemical potential in
the SYK model is not a monotonic function of the asymmetry parameter [146].
Additionally, the SYK subsystem after the quench suffers the particle leak, that
may require to account not only for a self-energy shift by the real-valued µ [46],
but also an extra imaginary contribution to the self-energy. This issue could lead
to the renormalization of θ in the final state, which is beyond the scope of this
paper.
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5.4. Tunneling current

5.4. Tunneling current

Having discussed the SYK subsystem inner properties we proceed to transport.
Specifically, we focus on the tunneling current:

Q̇= i[H,Q]=− i

N

θ(t)
(NM)1/4

N∑
i=1

M∑
α=1

λiαc
†
iψα + h.c. (5.18)

The current’s expectation value in the SYK quantum dot/cool-bath system is
found from the generating functional lnZ[χ] [127]

I = 1
tm

∫ tm

0
dt⟨Q̇(t)⟩ = 1

tm

∂

∂(iχ) lnZ[χ]
∣∣∣∣
χ=0

, (5.19)

Z[χ] =
〈

TCe
−i
∫

C
dtH(χ)

〉
=
∫
D[c̄, c]D[ψ̄, ψ]eiS[χ], (5.20)

where TC is the time ordering along the Keldysh contour, tm is the measurement
time, and S[χ] is the effective action of the model with a counting field χ [147,
148]. The counting field χ transforms the tunneling Hamiltonian

H(χ) = HSYK +Hres + θ(t)Htun(χ), (5.21)

Htun(χ) = 1
(NM)1/4

N∑
i=1

M∑
α=1

λiαe
iχ(t)

2N c†
iψα + h.c., (5.22)

so that

χ(t) =
{
χ for 0 < t < tm

0 otherwise
, (5.23)

The factor of two in the coupling phase in the tunneling term (5.22) accounts
for the doubling due to the forward and backward branches of the Keldysh time
contour.

One notices that the Hamiltonian transformation (5.22) is equivalent to a simple
rotation of the coupling constants λiα → λiαe

iχ(t)
2N in the original theory (5.1).

Thus, the Kadanoff-Baym equations (5.5,5.6) describe the valid saddle-point for
the partition function (5.20) up to the redefinition of the coupling constants λi.
Indeed, the current can be deduced from the tunneling part of the effective ac-
tion

Stun(χ) =i
√
NMλ2

∑
ss′=±

∫ +∞

0
dtdt′ss′e

i(sχ(t)−s′χ(t′))
2N

×Gss′(t, t′)Qs′s(t′, t). (5.24)
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Figure 5.4. Tunneling current as a function of time normalized on its maximum
value. The insets show time dependence of the current in log-log and log scales for√

pλ2/J2 = 0.3. The log-log plot reveals the initial power law increase of the tunneling
current, while the log plot is consistent with the exponential decay. We illustrate the
current’s half-life t1/2 for √

pλ2/J2 = 0.4.

Here the Green’s functions Gss′ and Qss′ describe the saddle-point of the SYK-
bath system and are found from the equations (5.5-5.8), where s = ± denotes the
forward and backward branch of the Keldysh contour. Accordingly, the counting
field χ is defined on the Keldysh contour as χs(t) = sχ(t). Leaving the detailed
derivation of the full effective action of the SYK-bath coupled system for the
Appendix 5.A, we proceed to the tunneling current

Applying the prescription (5.19), we derive the expectation value of current as a
function of the measurement time tm:

I =−
√
pλ2

2tm

∑
ss′

∫ tm

0
dt

∫ +∞

0
dt′
(
Gss′(t, t′)s′Qs′s(t′, t)

−Qs′s(t, t′)sGss′(t′, t)
)

=−
√
pλ2

2tm

∫ tm

0
dt

∫ +∞

0
dt′ tr

(
σxĜ(t, t′)Q̂(t′, t)

− σxQ̂(t, t′)Ĝ(t′, t)
)
, (5.25)
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Figure 5.5. Half-life of the tunneling current as a function of the initial temperature.
In the left panel, we compare the half-lives for the SYK model connected to a cool-bath
for different coupling strengths. Meanwhile in the right panel, we show the difference
between SYK4 (SYK non-Fermi liquid initial state) and SYK2 (disordered Fermi liquid
initial state) behavior as a tested subsystem; the curves are shifted to the same origin
for better visual comparison. The initial temperature changes from T = 0.1J to T = J
with a step δT = 0.01J . The dashed/dashdot lines stand for the linear/quadratic fits
made for the temperature interval T ∈ [0.1J, 0.2J ].

where

Ĝ =
(
GR GK

0 GA

)
, Q̂ =

(
QR QK

0 QA

)
(5.26)

are the Green’s functions of the SYK quantum dot and the cool-bath set by the
equations (5.5-5.8) and transformed to the R,A,K basis according to the rules
(5.9-5.11) 2. From here, the dynamics of the tunneling current is given by

⟨Q̇(t)⟩ =−
√
pλ2

2 θ(t)
∫ t

0
dt′J (t, t′), (5.27)

J (t, t′) =GR(t, t′)QK(t′, t)−QK(t, t′)GA(t′, t)
−QR(t, t′)GK(t′, t) +GK(t, t′)QA(t′, t). (5.28)

Time dependence of the tunneling current is shown in Fig. 5.4. The current grows
initially as a power law, reaches the maximum value, and decays exponentially

2In equilibrium the fluctuation dissipation relation holds GK(ω) = −2πi(1 −
2nSYK(ω))νSYK(ω), QK(ω) = −2πi(1 − 2nres(ω))νres(ω), where nSYK and nres are the
Fermi distribution functions and νSYK = − 1

π
ImGR and νres = − 1

π
ImQR are the densities

of states. Substituting those to Eq. (5.25), one gets a familiar Fermi golden rule formula for
the tunneling current [134]:
I = 2π

√
pλ2
∫

dω νSYK(ω)νres(ω)(nSYK(ω) − nres(ω)).
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to zero consistently with the discharging process of the SYK quantum dot. With
intention to mark the lifetime of the effect we extract the half-life – the time in
which the current is decreased in half of its maximum value. Varying the initial
temperature T of the SYK quantum dot, we show the current’s half-life for several
coupling strengths in Fig. 5.5 (left). The stronger the coupling, the shorter the
half-life of the tunneling current. Oppositely, the half-life increases with the initial
temperature rise. For the temperatures T ≲ 0.4J the tunneling current half-life
grows linearly in T .

To check if the T -linear current’s half-life is specific for the SYK state, we substi-
tute the SYK model with the one-body random Hamiltonian (5.3), often referred
to as the SYK2 model, the same that describes the reservoir. This model has a
typical Fermi liquid Green’s function GR(t) ∝ 1/t in the long time limit Jt≫ 1,
which makes it legitimate to build the SYK nFl/Fermi liquid comparison. Match-
ing the tunneling current half-life for the SYK vs SYK2 model in Fig. 5.5 (right),
we ascertain that their temperature dependencies are drastically different. The
current’s half-life in the system of the SYK2 quantum dot coupled to the cold
bath increases as T 2 at low temperatures, which discerns it from the SYK model
cooling protocol displaying the linearin temperature increase.

The duration of the tunneling event in our system is defined by the tunneling
contact resistance, similarly to an exponentially relaxing capacitor discharge. As
such, our results resemble the prominent resistivity predictions for strange metals
ρSM ∼ T [149, 138, 145] and Fermi liquid ρF L ∼ T 2.

5.5. Conclusion

The Sachdev-Ye-Kitaev model quench-coupled with a cold bath has been a sub-
ject of close attention aiming to simulate evaporation of a black hole [15, 13]. At
the same time, both connecting the system to the environment and its further
characterization are inherent for realization proposals of the SYK model in con-
densed matter systems [119, 123, 120, 121, 122]. In this manuscript, we consider
a quantum dot described by the complex SYK model at finite temperature in-
stantaneously coupled to a zero temperature reservoir. Analyzing the dynamical
spectral function of the SYK quantum dot at charge neutrality, we show that the
considered quench protocol preserves the SYK non-Fermi liquid state for the en-
ergies δω ≪ ω ≪ J . Here the lower bound δω is suppressed in the weak tunneling
limit. Further, we put an initial electrochemical potential in the quantum dot
and compute the tunneling current dynamics due to the discharging of the dot.
The tunneling current half-life shows distinct temperature dependencies for dif-
ferent systems that are being cooled down. In case of the SYK quantum dot, the
half-life increases linearly in the initial temperature T , while for the Fermi liquid
the increase is ∝ T 2. Therefore, this temperature dependence of the tunneling
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5.5. Conclusion

current half-life provides a distinguishing feature for the disordered quantum dot
exhibiting the SYK nFl phase against more common Fermi liquid behavior.
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

5.A. Derivation of the Kadanoff-Baym equations
from the SYK saddle-point

Here we derive the Kadanoff-Baym equations for the SYK quantum dot coupled
to a cool-bath by a quench.

5.A.1. Saddle-point equations

We perform the disorder average of with the Hamiltonian (5.1), pursuing [138,
128]. The effective action can be written in terms of bilocal fields Gs′s(t′, t) =
iN−1∑

i c̄is(t)cis(t′), Qs′s(t′, t) = iM−1∑
α ψ̄αs(t)ψαs(t′) and Σss′(t, t′), Πss′(t, t′)

as the corresponding Lagrange multipliers

S =− iNtrln
[
σz

ss′δ(t− t′) (i∂t + µ)− Σss′(t, t′)
]
−

− iN
∑
ss′

∫
dtdt′

(
Σss′(t, t′)Gs′s(t′, t)− ss′J2

4 Gss′(t, t′)2Gs′s(t′, t)2

)
−

− iMtrln
[
σz

ss′δ(t− t′) i∂t −Πss′(t, t′)
]
−

− iM
∑
ss′

∫
dtdt′

(
Πss′(t, t′)Qs′s(t′, t)− ss′ξ2

2 Qss′(t, t′)Qs′s(t′, t)
)

+

+ i
√
NM

∑
ss′

∫
dtdt′ss′λ2θ(t)θ(t′)Gss′(t, t′)Qs′s(t′, t). (5.29)

where s = ± denotes forward and backward branches of the Keldysh time contour
[134]. In the large N , M limit, the saddle-point equations are

Σss′(t, t′) = J2Gss′(t, t′)2Gs′s(t′, t) +√p λ2θ(t)θ(t′)Qss′(t, t′), (5.30)

Πss′(t, t′) = ξ2Qss′(t, t′) + λ2
√
p
θ(t)θ(t′)Gss′(t, t′), (5.31)

∑
r

∫ +∞

−∞
du
(
σz

srδ(t− u) (i∂t + µ)− srΣsr(t, u)
)
Grs′(u, t′) = δss′δ(t− t′),

(5.32)∑
r

∫ +∞

−∞
du
(
σz

srδ(t− u)i∂t − srΠsr(t, u)
)
Qrs′(u, t′) = δss′δ(t− t′), (5.33)

where p = M/N is the mode ratio.
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5.A. Derivation of the Kadanoff-Baym equations from the SYK saddle-point

Following Ref. [57], we derive the self-consistent Kadanoff-Baym equations con-
sidering s, s′ = ±,∓ components of Eqs. (5.32, 5.33):

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(

ΣR(t, u)G≷(u, t′) + Σ≷(t, u)GA(u, t′)
)
, (5.34)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′) +G≷(t, u)ΣA(u, t′)

)
, (5.35)

i∂tQ
≷(t, t′) =

∫ +∞

−∞
du
(

ΠR(t, u)Q≷(u, t′) + Π≷(t, u)QA(u, t′)
)
, (5.36)

−i∂t′Q≷(t, t′) =
∫ +∞

−∞
du
(
QR(t, u)Π≷(u, t′) +Q≷(t, u)ΠA(u, t′)

)
, (5.37)

where the self-energies are

Σ≷(t, t′) = J2G≷(t, t′)2G≶(t′, t) +√p λ2θ(t)θ(t′)Q≷(t, t′), (5.38)

Π≷(t, t′) = ξ2Q≷(t, t′) + λ2
√
p
θ(t)θ(t′)G≷(t, t′). (5.39)

5.A.2. Reservoir as an external potential

Since we assume the reservoir to be large enough p ≫ 1, it can be considered as
a closed dynamic background to the SYK subsystem∫ +∞

−∞
du
(
δ(t− u)i∂t − ξ2Q̂(t, u)

)
Q̂(u, t′) = δ(t− t′) (5.40)

describing a decoupled random free fermion in equilibrium. Here we perform a
rotation towards retarded, advanced, and Keldysh basis

Q̂ =
(
QR QK

0 QA

)
= Lσz

(
Q++ Q+−
Q−+ Q−−

)
L†, L = 1√

2

(
1 −1
1 1

)
.

The retarded Green’s function is found from

(
ω − ξ2QR(ω)

)
QR(ω) = 1 ⇒ QR(ω) = ω

2ξ2 −
i

ξ

√
1− ω2

4ξ2 =

= 2

ω + 2iξ
√

1−
(
ω/2ξ

)2
,
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

where the spectral function obeys the semicircle law ρ(ω) = −2 ImQR(ω) =
2
ξ

Re

√
1− ω2

4ξ2 . Let’s derive the time representation of QR:

QR(t, t′) = QA(t′, t)∗ =
∫ +∞

−∞

dω

2π e
−iω(t−t′)QR(ω) =

=− lim
δ→0+

∫ +∞

−∞

dω

2π e
−iω(t−t′)eδ(t−t′) 1

2ξ2

√
(ω + iδ)2 − 4ξ2.

(5.41)

Here the branch cut is in the lower half plane, so we close the contour corre-
spondingly for t − t′ > 0. Since there are no poles in the lower half plane, we
shrink the contour to the anticlockwise traverse around the branch cut. Note
that an additional phase is acquired when crossing the branch cut

√
ω2 − 4ξ2 →

e
1
2 ln(ω2+4ξ2)+iπ = eiπ

√
ω2 − 4ξ2. Therefore, we get

QR(t, t′) =− θ(t− t′)1− eiπ

4πξ2

∫ 2ξ

−2ξ

dω e−iω(t−t′)
√
ω2 − 4ξ2 =

=− iθ(t− t′)
J1
(
2ξ(t− t′)

)
ξ(t− t′) ,

(5.42)

where J1 is the first Bessel function of the first kind. The Keldysh component at
zero temperature is

QK(t, t′) =
∫ +∞

−∞

dω

2π e
−iω(t−t′)QK(ω) =

∫ +∞

−∞

dω

2π e
−iω(t−t′)2i sgn(ω)ImQR(ω)

=− i

2πξ2

∫ 2ξ

−2ξ

dω e−iω(t−t′) sgn(ω)
√

4ξ2 − ω2 = −
H1
(
2ξ(t− t′)

)
ξ(t− t′) ,

(5.43)

where H1 is the first Struve function.

5.A.3. Dynamics of the SYK subsystem

In the large p limit, the dynamics of the SYK subsystem is described by Eqs.
(5.34,5.35,5.38), where the reservoir Green’s function Q(t − t′) enters the SYK
self-energy (5.38) as the external potential derived in Section 5.A.2. Thereby, the
Kadanoff-Baym equations simplify to

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(

ΣR(t, u)G≷(u, t′) + Σ≷(t, u)GA(u, t′)
)
, (5.44)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′) +G≷(t, u)ΣA(u, t′)

)
, (5.45)
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5.A. Derivation of the Kadanoff-Baym equations from the SYK saddle-point

with the self-energy (5.30)

Σ≷(t, t′) = J2G≷(t, t′)2G≶(t′, t) +√p λ2θ(t)θ(t′)Q≷(t, t′), (5.46)

Q≷(t, t′) = − 1
2ξ(t− t′)

(
H1
(
2ξ(t− t′)

)
± iJ1

(
2ξ(t− t′)

) )
. (5.47)

Here we introduced [134] G>(t, t′) ≡ G−+(t, t′), G<(t, t′) ≡ G+−(t, t′), Σ>(t, t′) ≡
Σ−+(t, t′), Σ<(t, t′) ≡ Σ+−(t, t′) and account for

G++(t, t′) = θ(t− t′)G>(t, t′) + θ(t′− t)G<(t, t′), (5.48)
G−−(t, t′) = θ(t′− t)G>(t, t′) + θ(t− t′)G<(t, t′), (5.49)
Σ++(t, t′) = θ(t− t′)Σ>(t, t′) + θ(t′− t)Σ<(t, t′), (5.50)
Σ−−(t, t′) = θ(t′− t)Σ>(t, t′) + θ(t− t′)Σ<(t, t′). (5.51)

The retarded, advanced, and Keldysh components are expressed in terms of >
and < as

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
, (5.52)

GA(t, t′) = −θ(t′− t)
(
G>(t, t′)−G<(t, t′)

)
, (5.53)

GK(t, t′) = G>(t, t′) +G<(t, t′), (5.54)

ΣR(t, t′) = θ(t− t′)
(

Σ>(t, t′)− Σ<(t, t′)
)
, (5.55)

ΣA(t, t′) = −θ(t′− t)
(

Σ>(t, t′)− Σ<(t, t′)
)
, (5.56)

ΣK(t, t′) = Σ>(t, t′) + Σ<(t, t′). (5.57)
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