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4 Early post-quench perturbative
expansion

4.1. Early time expansion

We study the early time evolution of two, initially independent, subsystems (A
and B) after coupling them with an instantaneous quench at t = 0:

Ĥ(t) =ĤA ⊗ 1dB
+ 1dA

⊗ ĤB + θ(t)Ĥint (4.1a)

Ĥint =
∑
IK

λIK Ψ̂I ⊗ Γ̂K (4.1b)

Before the quench (t < 0), each subsystem is governed by the Hamiltonians
ĤA and ĤB respectively, and the identity matrix action on the complementary
Hilbert space encodes their independence. The subscript on the identity operators
indicates the dimensionality of the respective Hilbert space: dA = dimHA and
dB = dimHB . Initially, we consider a generic interaction Hamiltonian Ĥint (4.1b),
given in a tensor-product basis of the individual Hilbert spaces Ψ̂I ∈ HA and
Γ̂K ∈ HB and later we will demonstrate our results on two specific models, SYK
and Mixed Field Ising.

Before the quench, the whole system is prepared in a tensor product state of the
two individual subsystems:

ρ0 = ρA ⊗ ρB , (4.2)

and the post-quench time evolution is given by the unitary transformation with
the full interacting Hamiltonian which can be expanded as a time series with
operator-valued coefficients R̂n:

ρ(t) =e−iHtρ0e
iHt =

(
1− iHt− 1

2H
2t2 . . .

)
ρ0

(
1 + iHt− 1

2H
2t2 . . .

)
=

=
∑
n=0

tn

n! R̂n

(4.3a)
R0 = ρ0 ; R̂n+1 = i[R̂n, Ĥ] (4.3b)
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4. Early post-quench perturbative expansion

By explicitly computing the first few terms in the expansion (4.3a), a recursive
relation appears that determines all of the R̂n operators (4.3b). However, in
this letter, we are interested in the evolution of the reduced density matrices
which, similarly to ρ, can be expressed as a time series by simply tracing out the
complementary subsystem from R̂n. So, to obtain the reduced density matrix
ρA(t) of subsystem A one traces out the subsystem B, and tracing out subsystem
A yields ρB(t).

ρA(t) = TrB(ρ(t)) =
∑
n=0

tn

n! Ân ; Ân = TrB(R̂n) (4.4a)

ρB(t) = TrA(ρ(t)) =
∑
n=0

tn

n! B̂n ; B̂n = TrA(R̂n) (4.4b)

Once the reduced density matrices are obtained, we can compute the time evolu-
tion of any observable in each individual subsystem, for example the behavior of
the energy EA(t) is:

EA(t) = TrA(ρA(t)ĤA) =
N∑

n=0

tn

n! TrA(ÂnĤA) =
∑

n

en

n! t
n. (4.5)

Despite the compactness of the expansion, evaluating the operators R̂n and sub-
sequently Ân or B̂n is rather tedious for n > 2, so we will restrict our study to
only the second-order expansion of the energy of the subsystem A:

EA(t) = TrA(ρA(t)ĤA) = e0 + e1t+ e2

2 t
2 +O(t3) (4.6)

The particular initial states we are interested in — thermal or energy eigenstates
— commute with their respective Hamiltonians (e.g. [ρA(0), HA] = 0) leading
to many vanishing terms in the coefficients Ân (4.7), when compared to the co-
efficients from a general state (4.28). We will drop the time t = 0 argument
ρA(0) from here on, and implicitly will mean the density matrix at t = 0 when
no argument is given ρA ≡ ρA(0).

Â0 =ρA; (4.7a)

Â1 =i
∑
IK

λIK [ρA, Ψ̂I ] TrB(ρB Γ̂K); (4.7b)

Â2 =i2
{∑

IK

λIK [[ρA, Ψ̂I ], ĤA] TrB(ρB Γ̂K)+

+
∑
IK

∑
K′I′

λIKλI′K′

(
[ρA Ψ̂I , Ψ̂I′ ] TrB(ρB Γ̂K Γ̂K′)−

− [Ψ̂I ρA, Ψ̂I′ ] TrB(ρB Γ̂K′ Γ̂K)
)}

;

(4.7c)
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4.2. Examples

Additionally, when studying the time evolution of observables that commute with
the Hamiltonian the coefficients in their expansion simplify even further. This
condition is trivially satisfied for the energy of the subsystem EA(t) and using the
relation (4.40) we can compute the first three coefficients:

e0 = TrA(ρAĤA) ≡ EA(0) (4.8a)

e1 =i
∑
IK

λIK TrA

(
[ρA, Ψ̂I ]ĤA

)
TrB(ρB Γ̂K) =

=i
∑
IK

λIK TrA

(
[ĤA, ρA] Ψ̂I

)
TrB(ρB Γ̂K) = 0;

(4.8b)

e2 =i2
{∑

IK

λIK TrA

(
[[ρA, Ψ̂I ], ĤA]ĤA

)
TrB(ρB Γ̂K)+

+
∑
IK

∑
I′K′

λIKλI′K′

(
TrA

(
[ρA Ψ̂I , Ψ̂I′ ]ĤA

)
TrB(ρB Γ̂K Γ̂K′)−

− TrA

(
[Ψ̂I ρA, Ψ̂I′ ]ĤA

)
TrB(ρB Γ̂K′ Γ̂K)

)}
=

=i2
{∑

IK

∑
I′K′

λIKλI′K′

(
TrA

(
ρA Ψ̂I [Ψ̂I′ , ĤA]

)
TrB(ρB Γ̂K Γ̂K′)

− TrA

(
ρA[Ψ̂I′ , ĤA] Ψ̂I

)
TrB(ρB Γ̂K′ Γ̂K)

)}
.

(4.8c)

Naturally, the time-independent contribution e0 is equal to the pre-quench energy
and the first term is zero due to the aforementioned vanishing commutators.
Therefore, we need to determine only the e2 term, which is presented in the next
section for two specific models.

4.2. Examples

In this section, we derive the early time evolution of the energy EA(t), to the
second order in time, for two models the SYK4 and Mixed Field Ising model
(MFI). The analytical expressions help us understand why the energy bump in the
SYK4 happens for any temperature TA, and provide an insight into the emergence
of the critical temperature Tc(hx, hz) in the MFI that marks the disappearance
of the energy bump for TA > Tc.
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4. Early post-quench perturbative expansion

4.2.1. SYK

First, we consider two, initially decoupled SYK dots of size NA and NB governed
by the following Hamiltonians:

ĤA = −
NA∑
j=1

JA
j1,j2,j3,j4

ψ̂j1 ψ̂j2 . . . ψ̂j4 ; ĤB = −
NB∑
l=1

JB
l1,l2...l4

χ̂l1 χ̂l2 χ̂l3 χ̂l4 (4.9)

⟨Jα
j1,j2,j3,j4

Jα
j1,j2,j3,j4

⟩J = J2
α

N3 , α ∈ {A,B} (4.10)

We prepare the system in a tensor product state (4.2) then, at t = 0, we quench
couple both SYKs with a two-point interaction Hamiltonian with random inter-
actions:

Ĥint = i
∑

ij

λijψ̂iγ̂c ⊗ χ̂j (4.11a)

⟨λijλi′j′⟩λ = λ2

NB
δii′δjj′ (4.11b)

Here, γ̂c is proportional to the product of all Majorana fields in A and, as explained
in Appendix 4.B, it is necessary for proper anti-commutation relations between
the two subsystems. Substituting this interaction Hamiltonian in (4.8) we get the
second order coefficient of EA(t):

e2 = i4
NA∑
ii′

NB∑
jj′

λijλi′j′

(
TrA

(
ρAψ̂iγ̂c[ψ̂i′ γ̂c, ĤA]

)
TrB(ρBχ̂jχ̂j′)−

−TrA

(
ρA[ψ̂i′ γ̂c, ĤA]ψ̂iγ̂c

)
TrB(ρBχ̂j′ χ̂j)

)
.

(4.12)

For SYK-like interactions, the coefficients en simplify even further upon disorder-
averaging which, due to the independence between the inter-dot and intra-dots
couplings, can either be averaged simultaneously or one after the other. Here, we
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4.2. Examples

take the latter route and initially average e2 over the inter-dot coupling λij :

⟨e2⟩λ = λ2

NB

NA∑
i

(
TrA

(
ρAψ̂iγ̂c[ψ̂iγ̂c, ĤA]

)
−

− TrA

(
ρA[ψ̂iγ̂c, ĤA]ψ̂iγ̂c

)) NB∑
j

TrB(ρBχ̂jχ̂j)

= λ2

NB

NA∑
i

(
TrA

(
ρAψ̂iγ̂c[ψ̂iγ̂c, ĤA]

)
− TrA

(
ρA[ψ̂iγ̂c, ĤA]ψ̂iγ̂c

)) NB

2

=λ2

2

NA∑
i

TrA

(
ρA

[
ψ̂iγ̂c, [ψ̂iγ̂c, ĤA]

])
= −λ

2

2 2 · 4 TrA

(
ρAĤA

)
=− 4λ2EA(0).

(4.13)

In the second row we used the Majorana identity χ̂2
j = 1/2. The double commu-

tator on the last line is evaluated in Appendix 4.C.2 with result (4.50) for q = 4.
Lastly, by disorder-averaging over the intra-dot couplings ⟨·⟩J :

⟨e0⟩ =⟨EA(0)⟩J (4.14a)
⟨e1⟩ =0; (4.14b)
⟨e2⟩ =− 4λ2⟨EA(0)⟩J , (4.14c)

we notice that the first two non-zero coefficients depend only on the initial energy
of the analyzed subsystem and the interaction constant λ. Using these coefficients
in (4.6), we obtain the averaged energy of the subsystem A up to the second order
in time:

⟨∆E(t)⟩ = ⟨e2⟩
2 t2 = −2λ2⟨EA(0)⟩J t2. (4.15)

In Fig. 4.1, we compare this expression with the energy obtained from a numerical
time evolution of two equally-sized SYKs (NA = NB) with JA = JB ≡ J when the
quench happens from two independent thermal states at temperatures TA = 0.5J
and TB = 0.1J . We observe that (4.15) qualitatively matches the early time
behavior of ⟨EA(t)⟩J . In order to quantify how well the analytical expression
explains the behavior of the numerical results, we fit the data from the early-
time interval to a quadratic model (4.16) and study the ratio between the two
coefficients a2/e2.

f(t) = a0 + a2

2 t
2 (4.16)
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4. Early post-quench perturbative expansion
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Figure 4.1. Early time evolution of ⟨∆EA(t)⟩ computed numerically (blue dots)
and analytically from (4.15) (red line). Numerical results are obtained from a
quench of two equally sized (NA = NB = 10) SYK4 dots.

Fig. 4.2 shows that this ratio is close to 1 for a few different temperatures TA,
proving the validity of the analytical expression (4.15) and the perturbative ap-
proach in general. The error bars on this Fig. 4.2 are computed with the error
propagation relation using 99.7% confidence estimators for the errors σa2 and σEA

(3.21).

σa2/e2 =
∣∣∣∣a2

e2

∣∣∣∣
√(

σa2

a2

)2
+
(

σEA

⟨EA(0)⟩J

)2
(4.17)

It is important to emphasize that for SYK dots with random interaction of the
form (4.11a) the time evolution of EA(t), up to the second order, depends on
the temperature TA only implicitly through EA(0), and is completely impartial
to any parameter of the subsystem B. The same holds, the other way around,
for EB(t). From the exposition above, we see that the initial energy rise happens
when ⟨EA(0)⟩J < 0, regardless of the initial temperature TB . Recalling that
⟨EA(0)⟩J < 0 holds always for the SYK4 [55] explains why the energy increases
initially for any temperature TA.
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Figure 4.2. The ratio of the second order coefficients obtained from a fit of the
numerical results a2 and the analytical perturbative expansion e2 with error bars
given by the error propagation relation (4.17).

4.2.2. Mixed Field Ising

Next, we consider a system composed of two Mixed Field Ising models:

Hα =−
Nα∑

i

(
JZα

i Z
α
i+1 + gXα

i + hZα
i

)
, α = A,B (4.18)

coupled at t = 0, by the same quench procedure as before, with an interaction
Hamiltonian that connects the last site of A to the first site of B:

Hint = −λ+−σ̂
+
NA
⊗ σ̂−

1B
− λ−+σ̂

−
NA
⊗ σ̂+

1B
=−

∑
ab∈{+,−}

λa,bσ̂
a
NA
⊗ σ̂b

1B
,

λ∗
−+ = λ+− ≡ λ, λ++ =λ−− = 0.

(4.19)

Here, σ± = X±iY are the ladder operators and we express Hint in this particular
form so it is readily usable in the general relations (4.8). Then we proceed the same
as before, preparing the system in a tensor product of two decoupled subsystems,
with density matrices that satisfy [ρα, Ĥα] = 0, and directly substituting those
parameters in (4.8) to obtain the early time evolution of the MFI subsystem A.
As explained in Sec. 4.1, the time-independent contribution is equal to the pre-
quench energy e0 = EA(0), the first-order term vanishes e1 = 0 and e2 is evaluated
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4. Early post-quench perturbative expansion

below:

e2 =i2
∑
aa′

∑
bb′

λabλa′b′

(
TrA

(
ρAσ̂

a
NA

[σ̂a′

NA
, ĤA]

)
TrB(ρBσ̂

b
1B
σ̂b′

1B
)−

− TrA

(
ρA[σ̂a′

NA
, ĤA]σ̂a

NA

)
TrB(ρBσ̂

b′

1B
σ̂b

1B
)
)
.

(4.20)

First we expand the double sum:

e2 = i2

{
λ+−λ+−

(
TrA

(
ρAσ̂

+
NA

[σ̂+
NA
, ĤA]

)
TrB(ρBσ̂

−
1B
σ̂−

1B
)−

−TrA

(
ρA[σ̂+

NA
, ĤA]σ̂+

NA

)
TrB(ρBσ̂

−
1B
σ̂−

1B
)
)

+

+λ+−λ−+

(
TrA

(
ρAσ̂

+
NA

[σ̂−
NA
, ĤA]

)
TrB(ρBσ̂

−
1B
σ̂+

1B
)−

−TrA

(
ρA[σ̂−

NA
, ĤA]σ̂+

NA

)
TrB(ρBσ̂

+
1B
σ̂−

1B
)
)

+

+λ−+λ+−

(
TrA

(
ρAσ̂

−
NA

[σ̂+
NA
, ĤA]

)
TrB(ρBσ̂

+
1B
σ̂−

1B
)−

−TrA

(
ρA[σ̂+

NA
, ĤA]σ̂−

NA

)
TrB(ρBσ̂

−
1B
σ̂+

1B
)
)

+

+λ−+λ−+

(
TrA

(
ρAσ̂

−
NA

[σ̂−
NA
, ĤA]

)
TrB(ρBσ̂

+
1B
σ̂+

1B
)−

−TrA

(
ρA[σ̂−

NA
, ĤA]σ̂−

NA

)
TrB(ρBσ̂

+
1B
σ̂+

1B
)
)}

,

(4.21)

and notice that the terms on the first and last lines of (4.21) vanish due to identity
σ̂±σ̂± = 0 (4.54). Taking this into account and regrouping the other four terms
the expression for e2 simplifies to:

e2 = i2|λ|2
{(

TrA

(
ρAσ̂

−
NA

[σ̂+
NA
, ĤA]

)
− TrA

(
ρA[σ̂−

NA
, ĤA]σ̂+

NA

))
TrB(ρBσ̂

+
1B
σ̂−

1B
)+

+
(

TrA

(
ρAσ̂

+
NA

[σ̂−
NA
, ĤA]

)
− TrA

(
ρA[σ̂+

NA
, ĤA]σ̂−

NA

))
TrB(ρBσ̂

−
1B
σ̂+

1B
)
}

(4.22)

Additionally, using (4.57), (4.58) and the relation between the ladder operators
and Pauli matrices σ̂±σ̂∓ = 2(1 − Ẑ) we can express this coefficient in terms of
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one-point and two-point functions of the spin operators:

e2 =2i2|λ|2
{(

TrA

(
ρA

[
σ̂−

NA
, [σ̂+

NA
, ĤA]

])
+ TrA

(
ρA

[
σ̂+

NA
, [σ̂−

NA
, ĤA]

]))
+

+
(

TrA

(
ρA

{
σ̂−

NA
, [σ̂+

NA
, ĤA]

})
− TrA

(
ρA

{
σ̂+

NA
, [σ̂−

NA
, ĤA]

}))
TrB(ρBẐ1B

)
}

=2i2|λ|2
((
−16J⟨ẐN−1ẐN ⟩A − 8hx

N ⟨X̂N ⟩A − 16hz
N ⟨ẐN ⟩A

)
+

+
(

16J⟨ẐN−1⟩A + 16hz
N

)
⟨Ẑ1B

⟩B

)

=− 32i2|λ|2
(
J
(
⟨ẐN−1ẐN ⟩A − ⟨ẐN−1⟩A⟨Ẑ1B

⟩B
)

+

+ 1
2h

x
N ⟨X̂N ⟩A + hz

N

(
⟨ẐN ⟩A − ⟨Ẑ1B

⟩B
))

.

(4.23)

With this, we have solved the early time behavior of EA(t) up to the second
order in time, however, there are no analytical relations for the temperature de-
pendence of the one-point and two-point functions at arbitrary field strengths
(hx, hz). Therefore, in order to evaluate e2, we numerically compute the thermal
expectation values in the last line of (4.23).

In Chapter 3, using numerical time evolution of the whole system, we discovered
that when A is coupled to an equivalent MFI at temperature TB = 0.1 there
is no energy increase in the classical case hx = 0, and on the other extreme,
the increase appears for any temperature TA when the system is at the critical
point hx = 1, hz = 0. Interestingly, moving slightly away from hx = 1, hz = 0 a
finite critical temperature Tc emerges above which the early time energy increase
disappears, but below which it is present. The height of the numerically obtained
energy bump Em for those three examples is depicted in Figure 4.3 (left), and the
critical temperature for the particular case hx = 1 and hz = 0.05 is Tc ≃ 77.845J .

The newly derived analytical relation for the energy (4.6) predicts the existence
of an initial energy increase when e2 > 0 in the case under consideration when
e1 = 0. Now, using the expansion for e2 in (4.23), we compute and show in Fig.
4.3 (right) the e2 value as a function of TA for the three particular cases elaborated
above. These results confirm our previous findings on the existence of the energy
increase. For any TA, e2 < 0 in the classical case, e2 > 0 at the quantum critical
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Figure 4.3. Existence of the early time energy bump in the classical (hx = 0, hz =
1), quantum critical (hx = 1, hz = 0) and arbitrary case with (hx = 1, hz = 0.05).
On the left, the height of the energy bump Em is presented with Em = 0 indicating
its absence. The right panel presents the e2 coefficient (4.23), for the same three
models. The energy bump disappears when e2 < 0.

point and when the system is tuned slightly away from it the coefficient changes
from a positive sign when TA < 77.5 to negative for TA > 77.5.

To show that this match between the numerical results and the analytical expres-
sion is not limited to these three special cases we apply the same reasoning to
three other models with results presented in Fig. 4.4. As before, the left panel
displays the height of the energy bump Em, which goes to zero when the bump
disappears. On the right panel, which plots the second coefficient e2, one notices
that it turns negative exactly at the same temperature for which Em → 0.

This match in the critical temperature demonstrates the equivalence and validity
of our two approaches and allows us to use the early time expansion to understand
the early time behavior and in particular the quantum energy ruse in the hot
system A. Note that for the MFI we can write the second coefficient (4.23) as a
difference of two separate contributions, eA

2 that depends only on the subsystem
under consideration A and eAB

2 which depends on both A and B, therefore being
sensitive on the temperature TB :

e2 = 32|λ|2
(
eA

2 − eAB
2

)
, (4.24a)

eA
2 = J⟨ẐN−1ẐN ⟩A + hx

N

2 ⟨X̂N ⟩A + hz
N ⟨ẐN ⟩A; (4.24b)

eAB
2 =

(
J⟨ẐN−1⟩A + hz

N

)
⟨Ẑ1B

⟩B . (4.24c)

Here we see that, similar to the SYK model, the result for eA
2 depends only on the
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Figure 4.4. Disappearance of the energy bump, for three different models, com-
puted by a time evolution of the full model (left) and from the exact thermody-
namic evaluation of the e2 coefficient (right).

properties of the subsystem under consideration A. However, unlike before, the
additional term eAB

2 depends also on the subsystem B, therefore being sensitive
to the temperature TB . Since both of these terms are positive, the energy bump
disappears (e2 < 0) in the temperature regime where eA

2 < eAB
2 , as shown on Fig.

4.5.
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Figure 4.5. Those plots present the eA
2 (full line) and the eAB

2 (dashed line) terms
of the e2 coefficient (4.24), for the same models as on Fig. 4.4.

4.3. Conclusion

In this Chapter we presented how to expand the post-quench time evolution of the
density matrix into a time series and how to obtain from there the time evolution
of the subsystem-reduced density matrices perturbatively in the time t since the
quench. We have derived a general expression for the first three coefficients of
the expansion and used it to analyze the early time behavior of the subsystems

73



4. Early post-quench perturbative expansion

energies for two distinct models. Namely, in order to compare results we studied
the same models as Chapter 3: SYK as a representative of a strongly interacting
highly entangled, and chaotic model and the Mixed Field Ising in its classical,
fully quantum quantum critical, and mixed quantum-classical regimes.

We have shown that this analytical approach not only reproduces the results from
our study on a numerical time evolution but it provides an explanation for the
omnipresence of the bump in the SYK and its disappearance above a critical
temperature in the MFI models. The peculiar nature of the Majorana SYK
conspires in such a way that the first three coefficients of the energy expansion
are completely independent of the other subsystem resulting in an energy increase
even when the analyzed subsystem is at a higher temperature than the other one.
On the other hand, the second term e2 of the MFI expansion depends on both
subsystems leading to the appearance of the critical temperature Tc.

Continuing this analytic approach to derive the third and fourth coefficients of
the energy expansion might give access to the time at which the maximum in the
bump appears. This would be useful in understanding how the system transitions
from this early-time quantum behavior to the late-time evaporation. Additionally,
one expects a universal behavior of the energy coefficients in the SYK setup and it
would be interesting to see what other thermodynamic quantities appear in those
higher-order terms. We leave this for future work.
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4.A. General State Expansion

Series expansion of the density matrix — Here we represent the time-dependent
density matrix, after an instantaneous quench (4.1b), as a time series, similar to
the main text, under the assumption of a separable initial state ρ0 = ρA ⊗ ρB

composed of arbitrary subsystem states ρα:

ρ(t) =e−iHtρ0e
iHt =

(
1− iHt− 1

2H
2t2 . . .

)
ρ0

(
1 + iHt− 1

2H
2t2 . . .

)
=

=
∑
n=0

tn

n!Rn

(4.25a)
R0 =ρ0 ; Rn+1 = i[Rn, H] (4.25b)

Where Rn are operator-valued coefficients and the first four are given below:

R̂0 =ρ0 (4.26a)
R̂1 =i[R̂0, H] = i

(
[ρ1, H1]⊗ ρ2 + ρ1 ⊗ [ρ2, H2] + [ρ0, Hint]

)
(4.26b)

R̂2 =i[R̂1, H] = i
(

[R̂1, H1 ⊗ 1d2 ] + [R̂1,1d1 ⊗H2] + [R1, Hint]
)

(4.26c)

R̂3 =i[R2, H] = i
(

[R̂2, H1 ⊗ 1d2 ] + [R̂2,1d1 ⊗H2] + [R2, Hint]
)

(4.26d)

Expanding the commutators we obtain:

R̂0 =ρ0 (4.27a)
R̂1 =i[R̂0, Ĥ] = i[ρA, ĤA]⊗ ρB + iρA ⊗ [ρB , ĤB ]+

+ i
∑
IK

λIK [ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ] (4.27b)

R̂2 =i[R̂1, Ĥ] = i[R̂1, ĤA ⊗ 1dB
] + i[R̂1,1dA

⊗ ĤB ] + i
∑
IK

λIK [R̂1, Ψ̂I ⊗ Γ̂K ]

=i2
{[

[ρA, ĤA], ĤA

]
⊗ ρB + ρA ⊗

[
[ρB , ĤB ], ĤB

]
+ 2[ρA, ĤA]⊗ [ρB , ĤB ]+

+
∑
IK

λIK

([
[ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ], ĤA

]
+
[
[ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ], ĤB

]
+

+
[
[ρA, ĤA]⊗ ρB , Ψ̂I ⊗ Γ̂K

]
+
[
ρA ⊗ [ρB , ĤB ], Ψ̂I ⊗ Γ̂K

])
+
∑
IK

∑
I′K′

λIKλI′K′

[
[ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ], Ψ̂I′ ⊗ Γ̂K′

]}
(4.27c)
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R̂3 =i[R̂2, Ĥ] = i[R̂2, ĤA ⊗ 1dB
] + i[R̂2,1dA

⊗ ĤB ] + i
∑
IK

λIK [R̂2, Ψ̂I ⊗ Γ̂K ] .

(4.27d)

Next, we present the operator-valued coefficients Ân (4.28) which define the time
evolution of the reduced density matrix ρA(t) (4.4a). Note that many terms vanish
due to (4.39a).

Â0 = TrB(R̂0) = TrB(ρ0) = ρA; (4.28a)

Â1 = TrB(R̂1) = i

{
[ρA, ĤA] +

∑
IK

λIK [ρA, Ψ̂I ] TrB(ρB Γ̂K)
}

; (4.28b)

Â2 = TrB(R̂2) = i2

{[
[ρA, ĤA], ĤA

]
+

+
∑
IK

λIK

(([
[ρA, Ψ̂I ], ĤA

]
+
[
[ρA, ĤA], Ψ̂I

] )
TrB(ρB Γ̂K)+

+ [ρA, Ψ̂I ] TrB([ρB , ĤB ], Γ̂K)
)

+
∑
IK

∑
K′I′

λIKλI′K′

(
[ρA Ψ̂I , Ψ̂I′ ] TrB(ρB Γ̂K Γ̂K′)−

− [Ψ̂I ρA, Ψ̂I′ ] TrB(ρB Γ̂K′ Γ̂K)
)}

.

(4.28c)

4.B. Proper anti-commuting interactions between
coupled SYK dots

There are different ways to study two N -Majorana SYK dots. For example,
one can take 2N Majoranas and model the subsystems through the interactions.
However, we want to have manifestly separate subsystems so we will generate two
Hilbert spaces using the techniques from [115]. First dot has N1 = 2K1 Majoranas
denoted with ψi and the second has N2 = 2K2 Majoranas denoted with χj , living
in their respective Hilbert spaces, H1 and H2:

N1 = 2K1 : ψ̃i ∈ H1, dimH1 = 2K1 ; {ψ̃i, ψ̃j} = δi,j1 ψ̃2
i = 1

21

[ψ̃i, ψ̃j ] = 2ψ̃iψ̃j − δij = −2ψ̃jψ̃i + δij

[ψ̃i, ψ̃jγc] = {ψ̃i, ψ̃j}γc = δijγc ; (ψiγc)2 = −ψ2
i γ

2
c = −1

2

(4.29a)

N2 = 2K2 : χ̃i ∈ H2, dimH2 = 2K2 ; {χ̃i, χ̃j} = δi,j1 χ̃2
i = 1

21 (4.29b)
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h1 = −
N1∑
j=1

J
(1)
j1j2j3j4

ψ̃j1 ψ̃j2 ψ̃j3 ψ̃j4 ; h2 = −
N2∑
l=1

J
(2)
l1l2l3l4

χ̃l1 χ̃l2 χ̃l3 χ̃l4 (4.30)

The whole Hilbert space consists of the two dots H has N = 2K = N1 + N2
Majoranas in total:

N = N1 +N2 : ψi, χj ∈ H, dimH = 2K

{ψi, ψj} = δi,j1, {χi, χj} = δi,j1, {ψi, χj} = 0
(4.31)

In order to generate those Majoranas we need to recall that Majorana operators
are closely related to the Clifford algebra of dimension n = 2k:{

γi, γj

}
= 2δij1 ⇒ γ2

i = 1 (4.32)
γc = (−i)kγ1γ2 . . . γn, γ†

c = γc; γ2
c = 1 ; {γi, γc} = 0 (4.33)

4.B.1. Numerical implementation of Majoranas

Now we would like to generate the two dots from Clifford algebra {Γi}. We will
consider the simple case when N1 = N2 so N = 2N1 = 4K1, which would be
easy to extend to a system of asymmetric dots. The Clifford algebra {Γi} can be
written in terms of subsystem algebra {γi}:

γi ∈H1, dimH1 = 2K1 (4.34a)
Γi =γi ⊗ 1, i ∈ {1, 2, . . . N1} (4.34b)

ΓN1+j =γc ⊗ γj , j ∈ {1, 2, . . . N2} (4.34c)

The Majorana operators are obtained by renormalizing {Γi}:

Γ1,Γ2 . . .ΓN (4.35a)

ψi = 1√
2

Γi = 1√
2
γi ⊗ 1 ≡ ψ̃i ⊗ 1, i ∈ {1, 2, . . . N1} (4.35b)

χj = 1√
2

ΓN1+j = 1√
2
γc ⊗ γj ≡ γc ⊗ χ̃j , j ∈ {1, 2, . . . N2}. (4.35c)

The noteworthy part is the appearance of the matrix γc that ensures anticommu-
tation between the Majoranas in the two dots:

{ψi, ψj} =1
2{γi, γj} ⊗ 1 = δij1⊗ 1 (4.36a)

{χi, χj} =1
2γ

2
c ⊗ {γi, γj} ≡

1
21⊗ {γi, γj} = δij1⊗ 1 (4.36b)

{ψi, χj} =1
2{γi, γc} ⊗ γj = 0 (4.36c)
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In this basis, before the quench, the two Hamiltonians are manifestly decoupled :

H1 =−
∑

i1,...i4

Ji1...i4ψi1ψi2ψi3ψi4

=−
∑

i1,...i4

Ji1...i4 ψ̃i1 ψ̃i2 ψ̃i3 ψ̃i4 ⊗ 14 = h1 ⊗ 1
(4.37a)

H2 =−
∑

l1,...l4

Jl1...l4χl1χl2χl3χl4

=− γ4
c ⊗

∑
l1,...l4

Jl1...l4 χ̃l1 χ̃i2 χ̃i3 χ̃i4 ⊗ 14 = 1⊗ h2
(4.37b)

Hint =i
∑
xy

λxyψxχy =
∑
xy

λxyψ̃xγc ⊗ χ̃y (4.37c)

4.C. Operators relations

In this appendix we gather some useful relations needed for coefficients derivation
in the early time expansion.

4.C.1. General relations

[AB,C] =[A,C]B +A[B,C] (4.38a)
{AB,C} =A[B,C] + {A,C}B (4.38b)

[ρ1 ⊗ ρ2, ÔX ⊗ ÔY ] =ρ1ÔX ⊗ ρ2ÔY − ÔXρ1 ⊗ ÔY ρ2 (4.38c)

Tr
(

[Â, B̂]
)

= Tr
(
ÂB̂
)
− Tr

(
B̂Â
)

= 0 (4.39a)

Tr2

(
[α̂⊗ β̂, ÔX ⊗ ÔY ]

)
=α̂ÔX ⊗ Tr

(
β̂ÔY

)
− ÔX α̂⊗ Tr

(
ÔY β̂

)
=

=[α̂, ÔX ] Tr
(
β̂ÔY

) (4.39b)

Tr
(
[A,B]C

)
= Tr (ABC −BAC) = Tr (ABC −ACB) =

= Tr
{
A[B,C]

}
= Tr

{
[C,A]B

} (4.40a)

Tr
(
[[[[R,A1], A2], · · · ], An−1]An

)
= Tr

(
R, [A1, [A2, [· · · , [An−1, An]]]]

)
(4.40b)
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4.C.2. Majoranas

General Majoranas —

Here, we consider a system with N Majoranas, forming a d = dim(H) = 2N/2 di-
mensional Hilbert space H, and we use the same normalization for the Majoranas
as in the numerical code.

{ψi, ψj} =δij ; {ψc, ψj} = 0 ; ψ2
i = 1

21d ; γ2
c = 1 ; (ψiγc)2 = −1

2
(4.41a)

[ψi, ψj ] =2ψiψj − δij = −2ψjψi + δij ; [ψiγc, ψj ] = −{ψi, ψj}γc = −δijγc

(4.41b)

Next, we present some common commutators of Majorana strings, but first, we
introduce a notation for such strings that will help us write more compact expres-
sions, especially for large q SYKs.

Ψ(q)
I =ψi1ψi2 . . . ψiq

(4.42a)

Ψ(q−1)
Iσ

=ψi1 . . . ψiσ−1ψiσ+1 . . . ψiq
(4.42b)

The easiest is to start with four Majoranas Strings (q = 4):

[ψα,Ψ(4)
I ] =[ψα, ψi1ψi2ψi3ψi4 ]

= (δi1αψi2ψi3ψi4 − δi2αψi1ψi3ψi4 + δi3αψi1ψi2ψi4 − δi4αψi1ψi2ψi3)

=
4∑

σ=1
δαiσ

(−1)σ+1Ψ(3)
Iσ

(4.43a)

[ψαγc,Ψ(4)
I ] =[ψαγc, ψi1ψi2ψi3ψi4 ]

=− (δi1αγcψi2ψi3ψi4 + δi2αψi1γcψi3ψi4 + δi3αψi1ψi2γcψi4 + δi4αψi1ψi2ψi3γc)

=− γc

4∑
σ=1

δαiσ (−1)σ+1Ψ(3)
Iσ

(4.43b)

Then, those results can be generalized for an arbitrarily sized string with (q = 2p):

[ψα,Ψ(q)
I ] =

q∑
σ=1

δαiσ
(−1)σ+1Ψ(q−1)

Iσ
(4.44a)

[ψαγc,Ψ(q)
I ] =− γc

q∑
σ=1

δαiσ
(−1)σ+1Ψ(q−1)

Iσ
(4.44b)
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SYK like interaction —

Relations obtained in the previous paragraph can be used for commutators of
an SYK Hamiltonian with a string of Majoranas. Initially we’re interested in a
(q = 4) SYK Hamiltonians (4.9) :

[ψα, H
(4)] =i2

N∑
i1···i4=1

Ji1i2i3i4 [ψα, ψi1ψi2ψi3ψi4 ]

=− 4i2
N∑

i1i2i3=1
Ji1i2i3αψi1ψi2ψi3 ,

(4.45a)

[ψαγc, H
(4)] =i2

N∑
i1···i4=1

Ji1i2i3i4 [ψαγc, ψi1ψi2ψi3ψi4 ]

=4i2
N∑

i1i2i3=1
Ji1i2i3αγcψi1ψi2ψi3 .

(4.45b)

Same as before, those commutators can be easily generalized to (q = 2p) SYK
Hamiltonians:

[ψα, H
(q)] =iq/2

N∑
I=1

JI [ψα,Ψ(q)
I ] = −qiq/2

N∑
i1···iq−1=1

Ji1···iq−1αΨ(q−1)
Iq

, (4.46a)

[ψαγc, H
(q)] =iq/2

N∑
I=1

JI [ψαγc,Ψ(q)
I ] = qiq/2

N∑
i1···iq−1=1

Ji1···iq−1αγcΨ(q−1)
Iq

.

(4.46b)

When analyzing the time evolution of operators similar expressions to (4.46) ap-
pear with an additional sum over the Majorana field (ψα):

N∑
α=1

ψα[ψα, H
(q)] =− qiq/2

N∑
i1···iq−1=1

N∑
α=1

Ji1···iq−1αψαΨ(q−1)
Iq

=qiq/2
N∑

i1···iq−1=1

N∑
α=1

Ji1···iq−1αΨ(q−1)
Iq

ψα = qH(q)

(4.47a)

N∑
α=1

ψαγc[ψαγc, H
(q)] =qiq/2

N∑
i1···iq−1=1

N∑
α=1

Ji1···iq−1αψαγ
2
c Ψ(q−1)

Iq

=− qiq/2
N∑

i1···iq−1=1

N∑
α=1

Ji1···iq−1αΨ(q−1)
Iq

ψα = −qH(q),

(4.47b)
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N∑
α=1

[ψα, H
(q)]ψα =− qH(q), (4.48a)

N∑
α=1

[ψαγc, H
(q)]ψαγc =qH(q), (4.48b)

where we have used (γ2
c = 1) and the fact that the interaction constant (Ji1···iq−1α)

vanishes in the case of at least two identical indices, hence permuting (ψα) past
the other Majoranas results only in an additional minus sign since

(
(−1)q−1 =

(−1)2p−1 = −1
)
.

Other related expressions are:

N∑
α=1

[ψα, [ψα, H
(q)]] = 2qH(q), (4.49a)

N∑
α=1

[ψαγc[ψαγc, H
(q)]] = −2qH(q). (4.49b)

N∑
α=1

[ψαγc, [H(q), [ψαγc, H
(q)]]] =

=
N∑

α=1

(
2ψαγcH

(q)ψαγcH
(q) − 2H(q)ψαγcH

(q)ψαγc − (ψαγc)2(H(q))2+

+ (ψαγc)(H(q))2(ψαγc)− (ψαγc)(H(q))2(ψαγc) + (H(q))2(ψαγc)2)
=2

N∑
α=1

(
ψαγcH

(q)ψαγcH
(q) −H(q)ψαγcH

(q)ψαγc

)
=2

N∑
α=1

[ψαγc, H
(q)ψαγcH

(q)]

=2
N∑

α=1

(
[ψαγc, H

(q)]ψαγcH
(q) +H(q)ψαγc[ψαγc, H

(q)]
)

= 0

(4.50)
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4.C.3. Pauli

General Pauli matrices - Single site —

Note that the following (anti)commutation relations are for same site operators.
Operators on different sites act on different spin states, so they commute.

X ≡ σx =
(

0 1
1 0

)
; Y ≡ σy =

(
0 −i
i 0

)
; Z ≡ σz =

(
1 0
0 −1

)
(4.51)

σα† = σα ; σα2 = 1d ; α, β, γ ∈ {x, y, z} (4.52a)
{σα, σβ} = 2δαβ1d ; [σα, σβ ] = 2iϵαβγσ

γ (4.52b)

From the Pauli matrices ladder operators can be formed

σ+ ≡ X + iY =
(

0 2
0 0

)
; σ− ≡ X − iY =

(
0 0
2 0

)
(4.53)

σ±† = σ∓ ; σ±σ± = 0 ; σ±σ∓ = 2 (1± Z)
[σ±, X] = ±2Z ; [σ±, Y ] = ∓2iZ ; [σ±, Z] = ∓2σ± ; [σ+, σ−] = 4Z
{σ±, X} = 21 ; {σ±, Y } = ±i1 ; {σ±, Z} = 0 ; {σ+, σ−} = 41

Mixed Field Ising with position-dependent fields (hx
i , h

z
i ) —

Here we present commutator/anti-commutator relations for the most generic
Mixed Field Ising with position-dependent couplings (4.55). Setting the couplings
to the same constant at each site one recovers the standard MFI.

HMF I1 = −J
N−1+pf∑

i=1
ẐiẐi+1 −

N∑
i=1

hx
i X̂i −

N∑
i=1

hz
i Ẑi (4.55)

[σ̂−
N , ĤMF I1] =− 2J

(
ẐN−1σ̂

−
N + pf σ̂

−
N Ẑ1

)
+ 2hx

N ẐN − 2hz
N σ̂

−
N (4.56a)

[σ̂+
N , ĤMF I1] =− 2J

(
−ZN−1σ̂

+
N − pf σ̂

+
NZ1

)
− 2hx

NZN + 2hz
N σ̂

+
N (4.56b)

[σ̂+
N , [σ̂

−
N , ĤMF I1]] = −8J

(
ẐN−1ẐN + pf ẐN Ẑ1

)
− 4hx

N σ̂
+
N − 8hz

N ẐN (4.57a)
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[σ̂−
N , [σ̂

+
N , ĤMF I1]] = −8J

(
ẐN−1ẐN + pf ẐN Ẑ1

)
− 4hx

N σ̂
−
N − 8hz

N ẐN (4.57b)

[σ̂−
N , [σ̂

+
N , ĤMF I1]] + [σ̂+

N , [σ̂
−
N , ĤMF I1]] =

= −16J
(
ẐN−1ẐN + pf ẐN Ẑ1

)
− 8hx

N X̂N − 16hz
N ẐN

(4.57c)

{σ̂+
N , [σ̂

−
N , ĤMF I1]} = −8J

(
ẐN−1 + pf Ẑ1

)
− 8hz

N (4.58a)

{σ̂−
N , [σ̂

+
N , ĤMF I1]} = 8J

(
ẐN−1 + pf Ẑ1

)
+ 8hz

N (4.58b)

{σ̂−
N , [σ̂

+
N , ĤMF I1]} − {σ̂+

N , [σ̂
−
N , ĤMF I1]} = 16J

(
ẐN−1 + pf Ẑ1

)
+ 16hz

N

(4.58c)
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