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3 Quenched cooling and the
crossover from quantum to
classical thermodynamics

3.1. Introduction

The notion of entropy is more involved in quantum systems than in classical sys-
tems as it also includes the information of potential entanglement with another
set of dynamical degrees of freedom. This can be another system with which it
is (weakly) coupled, the environment, or the measurement apparatus. In clas-
sical equilibrium thermodynamics, the change in the entropy is associated with
heat flow according to the Second Law while quantum mechanically the entropy
can be changed by the quantum correlations in the system that may or may not
necessarily involve heat flow. The field of quantum thermodynamics specifically
pursues this question how work, heat and entropy are affected by quantum cor-
relations including entanglement; see e.g. [97, 98] for recent reviews. This field is
growing rapidly, even though these many-body entanglement effects are still less
well understood than entanglement and decoherence in few-qubit systems.

Here we take a quantum thermodynamics point of view on non-equilibrium
dynamics in many-body systems with two theoretical models as example: the
Sachdev-Ye-Kitaev (SYK) model and a mixed field Ising chain. The Sachdev-Ye-
Kitaev model has a computable non-Fermi liquid ground state that is long-range
many body entangled [39, 40]. Through the holographic duality between anti-de-
Sitter quantum gravity and matrix large N quantum systems, such SYK models
at finite temperature are also dual descriptions of black holes in anti-de-Sitter
gravity [46]. Using this duality to study the profound question of black hole
evaporation through Hawking radiation and its information flow [63, 94, 62, 65,
99], recent studies have considered the quenched cooling of a hot thermal SYK
state (the black hole) suddenly being able to “evaporate” into a cooler or even
T = 0 SYK state (the container for the evaporated radiation) [13, 15, 14].1 A
surprising finding from the perspective of classical thermodynamics has been that

1Early work on SYK quenches is [57]. For other aspects of SYK dynamics, see this and citations
thereof.
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these observe an initial energy increase [15, 13, 14, 100] in the hot subsystem,
confirming results from preceding black hole evaporation studies [101]. It was
argued, using Schwinger-Keldysh field theory, that many relativistic continuum
field theories will exhibit such an energy increase in the hot system when quench
coupling two thermal states [101, 15] even though a fundamental proof or under-
standing was missing. In particular, a quenched cooling between two two-level
systems provides a counterexample [15].2

In a recent article, we showed that quantum thermodynamics [97, 98] provides the
universal explanation for this counterintuitive rise [102]. In a quenched cooling
protocol where a (hot) thermal quantum system with Hamiltonian HA is brought
into instantaneous contact with a (cooler) thermal reservoir at t = 0 through
Htotal = HA + HB + θ(t)Hint, the change in the energy of the hot subsystem A
equals

∆EA(t) = TA∆SvN,A(t) + TAD(ρA(t)||ρTA
) . (3.1)

Here SvN = −Tr(ρA ln ρA) is the von-Neumann entropy of the reduced density
matrix of the subsystem A: ρA = TrB ρ; the energy of the subsystem EA(t) is the
expectation value of its subsystem Hamiltonian EA = TrHAρ(t) = TrHAρA(t);
and D(ρA(t)||ρTA

) = Tr ρA(t) log
(
ρA(t)/ρTA

)
is the relative entropy between the

reduced density matrix of system A and the initial thermal density matrix of A
at t = 0. The change ∆E(t) = E(t)− E(0) is with respect to the same quantity
at t = 0. By symmetry an analogous relation holds for subsystem B.

As the relative entropy D(ρA(t)||ρTA
) ≥ 0 is positive semi-definite, one arrives

at an inequality that holds universally for any model Hamiltonian when such a
quenched cooling protocol is considered

∆EA(t) ≥ TA∆SvN,A(t) . (3.2)

In a quantum system the von-Neumann entropy can have a significant contri-
bution from quantum correlations including entanglement over and above the
classical thermal entropy. As the quantum correlations between the system and
the reservoir can only increase after a quench, the quantum thermodynamic in-
equality Eq.(3.2) can therefore force an associated increase in energy in system A
even if its initial energy density was higher. Moreover, in perturbation theory to
leading order the inequality saturates as the contribution of the relative entropy
is subleading and one can use the equality as a way to measure the von Neumann
entropy in a quenched cooling protocol through the energy difference [102].

A common view on non-equilibrium phenomena is that at the shortest time scales
the system is extremely sensitive to microscopic information, details of the quench

2The thermal state of a two-level system is defined through its density matrix ρ =
1
Z

∑
n

|n⟩e−βEn ⟨n| with n =↓, ↑ and Z the appropriate normalization such that Trρ = 1.
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3.2. Energy dynamics in quenched cooling

protocol etc, and it is only the longest-time-scale-relaxation to equilibrium that
is universal. Eq.(3.2) surprisingly shows that it need not be so: at the shortest
possible non-equilibrium time scale there is still a notion of the first law that
entropy is linked to energy, even though the standard first law in the absence of
work dE = TdS is relating state functions regarding equilibria.

This positive contribution due to quantum correlations to the von Neumann en-
tropy is present in any quantum system, but our classical experience is that the
energy in the hot system decreases directly upon contact because heat must flow
from hot to cold. What must happen to restore this intuition that the energy in
the hot system decreases instantaneously is that the positive quantum correlation-
and entanglement- contribution can be overwhelmed by the semi-classical heat and
information flow from hot to cold. By studying quenched cooling in SYK models,
where entanglement is very strong, and one-dimensional mixed field Ising chains,
where entanglement can be made very weak, we exhibit this. Classical experience
is restored in a particle-like system at high temperatures where entanglement is
weak.

3.2. Energy dynamics in quenched cooling

The setup we study consists of two initially independent quantum subsystems
A and B with Hamiltonians HA and HB respectively. Initially (t < 0), each
subsystem is prepared in a thermal state at temperature TA and TB , so the full
system is in an uncorrelated product state:

ρ0 = ρTA
⊗ ρTB

ρTα
= 1
Zα

e−Hα/Tα , α = A,B. (3.3)

We will study the behaviour of the subsystems when they are brought into instan-
taneous contact at t = 0 through an interaction Hamiltonian Hint. The complete
setup is a closed system that evolves with the full Hamiltonian:

Htotal = HA +HB + θ(t)Hint . (3.4)

Motivated by current results presented in the introduction, we focus our interest
on two different models:

• Finite N Majorana SYK with each subsystem governed by the Hamiltonian

Hα = iq/2
Nα∑

j1...jq=1
Jα

j1...jq
ψα

j1
. . . ψα

jq
α = A,B (3.5)
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where q is same for both dots and can be either q = 2 or q = 4, further
labeled as SYK2 and SYK4 respectively. The couplings are drawn from a
Gaussian distribution with the following parameters:

⟨Jα
j1...jq

⟩ = 0, ⟨Jα
j1...jq

Jα
j1...jq

⟩ = (q − 1)!J2

Nq−1
α

. (3.6)

Those two SYK dots are coupled through a two Majorana tunneling inter-
action which couplings are also sampled from a Gaussian distribution:3

Hint = i

N∑
ij

λijψ
A
i ψ

B
j , (3.7)

⟨λij⟩ = 0, ⟨λ2
ij⟩ = λ2

NB
. (3.8)

This system is analyzed with exact diagonalization and averaged over R =
100 different coupling realizations. To reduce the number of free parameters
we take two equal size dots NA = NB ≡ N .

• The 1D mixed field Ising model, also analyzed using exact diagonalization,
with a particle-like contact interaction:

Hα =−
Nα∑

i

(
JZα

i Z
α
i+1 + hxX

α
i + hzZ

α
i

)
, α = A,B (3.9)

H
(tunn.)
int =− λ(X + iY )A

NA
(X − iY )B

1 + h.c. (3.10)

Dimensionful parameters are expressed in J , which is usually set to J = 1.

Fig. 3.1 shows the classically unexpected rise in energy in system A directly fol-
lowing the cooling quench with TA > TB found in [13, 15]. We shall now show
that even though EA initially increases, there is no energy flux from the cold
reservoir to the hot system. The energy increase instead follows from the energy
contribution of the interaction Hamiltonian solely but it is nevertheless a real
modification of energy, as a subsequent decoupling of A and B shows. At the
moment of decoupling work must be performed on the combined system-reservoir
as we shall show.

The above conclusions follows from the following observations in SYK systems:

1. Directly following the quench, the system-energy EA(t) and the reservoir-
energy EB(t) both grow (Fig.3.2). The fact that there is no net energy flow
from cold to hot means the energy must come from somewhere else.

3We have taken a variance in λ that is asymmetric in NA and NB to readily compare with [13,
15]. These authors chose this such that the interaction stays relevant in the large NA limit.
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Figure 3.1. Normalized change of the energy of the hotter system A (∆EA =
Tr
(
(ρA(t)− ρTA

)HA

)
as a function of time. At short times it increases counter

to intuition. Majorana SYK4 in exact diagonalization averaged over R = 100
realizations with parameters of both systems on top of the plot. Red dot marks
the bump that is reached at time tm and has a height Em relative to the initial
energy.

2. The total Hamiltonian Htotal = HA + HB + θ(t)Hint contains a third con-
tribution Hint. Its contribution to the energy is negative (Fig.3.2).

3. The change in the expectation value in the total Hamiltonian is nevertheless
readily computed to vanish.

d

dt
⟨Htotal⟩ = i⟨[Htotal, Htotal]⟩+ δ(t)⟨Hint⟩ (3.11)

The first term vanishes trivially. When ⟨Hint⟩(0) = 0 as well, as is the case
in all the systems we study, then ⟨Htotal⟩ is constant in time. The “binding”-
energy from Ebind = −Eint(t) = Tr

(
Hintρ(t)

)
thus completely accounts for

the rise in both EA(t) and EB(t).

4. More precisely, for EA(t) to correspond to a measurable energy change (in
the sense of commuting with the Hamiltonian) one should decouple the
system from the reservoir with a second quench at a finite time tf later, as in
the standard two-point measurement protocol in quantum thermodynamics
[97, 98, 86]. Then HA commutes again with the full Hamiltonian for t > tf .4

4Formally, if one does not decouple, the eigenstates of Htot are no longer localized within
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Figure 3.2. Normalized change of energy of the two subsystem A, B, the in-
teraction energy ∆Eint = Tr

(
(ρ(t)− ρ0)Hint

)
and the total energy Etotal as a

function of time. Directly following the quench both the system-energy EA(t)
and the reservoir-energy EB(t) grow, whereas the interaction energy Eint(t) de-
creases. The sum vanishes as must be as no energy is put into the combined
system/reservoir. Majorana SYK in exact diagonalization averaged over R = 100
realizations with parameters of both systems on top of the plot.

In other words, as in our previous article [102], one considers the two-quench
protocol Htotal = HA +HB + (θ(t)− θ(tf ))Hint. Computing the change in
total energy, one clearly sees that the energy that must now be supplied
equals the binding-energy Ebind = −Eint(tf ).

d

dt
⟨Htotal⟩ = −δ(tf )⟨Hint⟩ . (3.12)

Choosing tf during the initial time period where both EA and EB increase,
one concludes that for a two-point measurement protocol of such short du-
ration the total energy in the system has increased. In particular there are
initial configurations of TA, TB where the final equilibrium temperature af-
ter such a short-time two measurement protocol is larger than both TA and
TB ; see Fig.3.3. The decoupling quench must therefore perform work on the
system.

A or B, and one cannot really say that the expectation value of HA is the energy of the
sub-system A. The expectation value of HA nevertheless comes the closest and is therefore
what is conveniently called the energy of this subsystem.
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Figure 3.3. Normalized change of energy of the two subsystem A, B, the interac-
tion energy ∆Eint = Tr

(
(ρ(t)− ρ0)Hint

)
and the total energy Etotal as a function

of time in a two-quench protocal with the interaction turned of at tf = 1. At tf
the change in total energy shows the energy supplied to the system which exactly
equals Eint. Majorana SYK in exact diagonalization averaged over R = 100 real-
izations with parameters of both systems are on top of the plot.

5. In general, since the whole system AB is closed, the total change in the
energy of each subsystem, A or B, can be due to two components, the
contribution from/debit to the “binding”-energy and the thermal exchange
between A and B:

∆EA = ∆EA,bind + ∆EB to A (3.13a)
∆EB = ∆EB,bind −∆EB to A. (3.13b)

We can estimate the binding energy for each subsystem A,B with respec-
tive initial temperatures TA ̸= TB separately from the interaction energy
of a second quench experiment with an equal temperature setup Eα,bind ≈
− 1

2Eint(TA = TB = Tα), i.e. we determine EA,bind from a quench set-up
where both system and reservoir have initial temperature TA, and EB,bind
from a quench set-up where both system and reservoir have initial temper-
ature TB . Using this estimate in the quenched cooling set-up with different
temperatures that are not too different we can numerically compute the
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Figure 3.4. Time derivatives of the energy EA of subsystem A; time derivative
of an estimate of binding energy contribution EA,bind from considering an equal
temperature quench (TA = TB = 0.5J), and the resultant thermal flux from
cold reservoir B to hot system A. The flux is always negative and always flows
from hot to cold. Majorana SYK in exact diagonalization averaged over R = 100
realizations with parameters of both systems on top of the plot.

thermal flux from B into A as

ΦA = d

dt
EB to A = 1

2

(
d

dt
EA −

d

dt
EB

)
− 1

2

(
d

dt
EA,bind −

d

dt
EB,bind

)
.

(3.14)

The flux ΦA is always negative and at early times it is subdominant to the
binding energy Fig. 3.4. This proves that even when EA increases initially,
the energy flux/heat transport is nevertheless always from the hot system
A to the cold reservoir B and the supplied energy for the increase comes
solely from the binding-energy or the outside when decoupling A and B.

3.2.1. Energy rise driven by quantum correlations

As previewed in the introduction the quantity that controls this rise in energy EA

from the contribution of the “binding”-energy to the combined system-reservoir
is the von Neumann entropy of the reduced density matrix of system A: ρA(t) =
TrB ρ(t) . To see this, consider the relative entropy between ρA(t) and the initial
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3.2. Energy dynamics in quenched cooling

thermal density matrix

D(ρA(t)||ρTA
) = Tr

(
ρA(t) ln ρA(t)

)
− Tr

(
ρA(t) ln ρTA

)
. (3.15)

Substituting that ρTA
= 1

ZA
e−ĤA/TA one immediately has

TAD(ρA(t)||ρTA
) + TASvN,A(t) = EA(t)− FA . (3.16)

where FA = − lnZA = EA(0) − TASA(0) is the free energy of the initial ther-
mal state. The time-dependent terms form the definition of the information free
energy

F(t : TA) = EA(t)− TASvN,A(t) = FA + TAD(ρA(t)||ρTA
). (3.17)

It encodes the energy-available-for-work and its full counting statistics in open
quantum systems that decohere due to their interaction with the environment.
The loss of information due to decoherence and decorrelation costs work according
the Landauer’s principle and the information free energy accounts for that [97,
98].

The change in energy of system A after the quench directly follows from Eq.(3.16)
and immediately brings us to Eq.(3.1).

∆EA(t) = EA(t)− EA(0) = TA∆SvN,A(t) + TAD(ρA(t)||ρTA
),

and using the semi-positive definiteness of the relative entropy Eq.(3.2)

∆EA(t) ≥ TA∆SvN,A.

Both the equality and the inequality are readily observed in exact diagonalization
of Majorana SYK models, see Fig.3.5.

Two important remarks can be made:

1. As the relative entropy is very small at early times the initial rise in energy
is completely determined by the rise in the von-Neumann entropy.5

2. This rise is even present when the reservoir B is at TB = 0, as well as when
the system and reservoir are at equal T (Fig.3.5). This unambiguously
points to the growth of quantum entanglement as the contributing factor to
the rise in the von-Neumann entropy; (see also [102]).
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Figure 3.5. The energy EA is verified to equal the sum of the von Neumann
entropy ∆SvN,A times the initial temperature TA and the relative entropy DA ≡
D(ρA(t)||ρTA

). The initial rise in the energy in particular is controlled by the
initial rise in the von Neumann entropy. This persists when the reservoir is in
the groundstate T = 0 and at equal system-and-reservoir temperature TA = TB

pointing to entanglement as cause of the rise in von-Neumann entropy. Data from
Majorana SYK in exact diagonalization averaged over R = 100 realizations with
parameters on top of the plot.

Given that it is the von Neumann entropy growth that controls the early time
dynamics between the two subsystem, it is natural to also consider the evolution
of mutual information between the two:6

I(A : B, t) = SvN,A(t) + SvN,B(t)− SvN,A∪B(t) , (3.19)

where SvN,A∪B = −TrA,B ρA∪B ln ρA∪B with ρA∪B being the density matrix of
the full system. It displays two qualitatively distinct regimes: an initial poly-
nomial increase followed by an exponentially decaying approach to equilibrium.
Qualitatively, the early time (t < tm) behaviour of the mutual information re-

5Strictly speaking fine tuned initial conditions can exist where the von-Neumann entropy de-
creases, but decreases so little that the small rise in relative entropy nevertheless results in
an energy increase in the hotter system.

6When the system and the reservoir have equal T , then

∆EA(t) + ∆EB(t) = T ∆I(A : B) + D(ρA(t)||ρT ) + D(ρB(t)||ρT )) . (3.18)

since ∆SA∪B(t) = ∆Stotal(t) = 0 due to unitary evolution of the combined system-reservoir
combination as a whole. In the early time regime where the relative entropies are very small,
the combined energy change in A and B, equal to work needed at the moment of a decoupling
quench, is then equal to the mutual information. This was first pointed out in [103] where it
was shown that the minimum amount of noise to decorrelate two systems equals the mutual
information. By Landauer’s principle this is then also the minimal amount of work. Note,
however, that the energy increase here is not directly related to decorrelation between A and
B.
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sembles the results reported in [104, 105] where mutual information was used as
a better measure of quantum scrambling, compared to the OTOC. In particular
these articles prove that I(A : B) bounds the OTOC from above. This sup-
ports our deduction above that the initial energy increase is caused by quantum
correlation- and/or entanglement-growth and scrambling. Note that the OTOC
of operators between two quenched quantum dots depends on the initial state and
interaction between the two dots, hence the early time polynomial increase in our
setup. This should not be confused with the exponential growth of OTOC within
a single SYK dot, which is driven by strong entanglement. The articles [104, 105]
also emphasize the role of decoherence in addition to scrambling. It would be
interesting to dissect and analyze their interplay further but we leave this for the
future.

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

Figure 3.6. Growth of the mutual information between subsystems A and B.

3.3. The transition from quantum to classical cooling

At late times after the quench, the system behaves fully as expected in that the
energy of the hotter system exponentially decreases until it equilibrates. Given
that the initial rise of energy is controlled by the rise in entanglement driven
von-Neumann entropy, there are two clear regimes: this initial rise and the late
time relaxation (Fig.3.7). For the specific case of the quenched cooling two SYK
dots, one can use the fact that large N SYK is exactly solvable to make analytic
estimates for both these regimes as well as the intermediate regime and the long-
time hydrodynamic tails which eventually change the relaxation to equilibrium
from exponential to power law [15].
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Figure 3.7. The generic contact quench is characterized by an early time quan-
tum scrambling dominated regime (red) that transitions to a regime exhibiting
conventional classical relaxation (green). The transitions between these regimes
are not sharp, but roughly indicated by the top of the initial energy bump and
the saturation of the relative entropy, where the final density matrix has become
approximately thermal.

Here we ask a different question. Having argued that the initial rise is generically
universally controlled by the rising quantum correlation contribution to the von-
Neumann entropy, under what circumstances does the expected classical physics
emerge, where heat immediately flows from hot to cold? The quantum correlation-
and/or entanglement-growth is always present (except if the full system is purely
classical where all the terms in the full Hamiltonian, including the coupling term,
commute with each other). This can therefore only happen in circumstances where
the “classical” relaxation overwhelms the quantum growth. Or more precisely,
knowing that

∆EA(t) ≥ TA∆SvN,A(t),

this transition can only happen if the “classical” thermal contribution to the
von-Neumann entropy dominates over the entanglement contribution to the von-
Neumann entropy already at the earliest possible time. From the atomic statistical
mechanics underpinning of classical thermodynamics we know that this must hap-
pen when we have a theory with well defined particles with suppressed quantum
correlations. This should be the case at high temperatures (weak coupling) and
low densities.

However, when we study the high T (TA, TB ≫ J2 and TA ≫ TB) regime in
quenched cooling two SYK4-dots, this disappearance of the initial rise and a
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transition to immediate classical energy flow from hot to cold is not seen to
emerge. This is even so when we extrapolate our finite size exact diagonalization
result to the thermodynamic limit (N →∞) (with the assumption that the finite
N studies do capture the appropriate large N behavior). Fig. 3.8 shows the
height of the energy bump Em = Emax − E(t = 0) per particle (Em/N) in the
Majorana SYK4 model directly before it starts to decrease as a function of the
temperature TA. Any finite N system will always contain quantum signatures
and the classical behavior need only emerge in a thermodynamic limit. Numerics
directly gives away that Em has a leading scaling with N . Dividing this overall
scaling out, a rough extrapolation to N = ∞ nevertheless shows that a positive
energy bump remains.7

To try to find the crossover to expected classical behavior where the energy rise
in the hot system is absent, we change the quenched cooling set-up from two SYK
quantum dots to two mixed field Ising half-lines Eq. (4.18) with a tunneling in-
teraction at the end point of each line Eq.(4.19). Both at the free hx = 0, hz = 0
[106] and at the conformal fixed point hx = 1, hz = 0 in the continuum (thermo-
dynamic) limit one can use conformal field theory techniques to study this type
of quenched cooling [107, 108, 109]. Then one indeed finds that there is no initial
energy rise, but the energy starts to flow instantaneously from hot to cold. As
is well known by now, in the regime h = 0 the late time behavior of the two
subsystems, if isolated, is controlled by the large number of conserved charges
and an associated generalized hydrodynamical relaxation towards a generalized
Gibbs ensemble [110, 111]. The presence of the coupling term λ makes the full
system not integrable.

Indeed for the case hx = 0 (hz ̸= 0) there is for any system size an immediate
energy decrease in the hot subsystem, as shown in Fig. 3.9 (top). This case is
classical with only a small quantum tunneling between the two subsystems. For
generic values of hx and hz, on the other hand, there is an initial rise in energy
in accordance with the universal relation Eq.(3.2). The height of the energy
bump (Em) is now independent of N , due to the more local point-like interaction
compared to the SYK non-local all-to-all tunneling. This suggests that the bump
energy per particle (Em/N) will vanish in the thermodynamic limit to match
our classical intuition. However, instead of such a thermodynamic vanishing,
we should expect that also a finite-size system exists where semi-classical hot-
to-cold energy dynamics overwhelms the information-driven gain at short times.
Indeed for a fixed temperature, we can estimate where the bump disappears, by
extrapolating the Em/N to large N . Now we see the foretold disappearance of the
bump at a fixed finite temperature at a finite value of N , restoring our classical

7This turns out to also be true for SYK2 models. Though within the random ensemble of SYK2
couplings, there are empirically always realizations for which the energy EA does decrease
instantaneously.
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Figure 3.8. Quenched cooling of two SYK4 dots. Top: Height Em of the energy
bump (left) and time tm of the bump (right) for various initial temperatures
TA = 1/βA. Bottom: Height Em of the energy bump roughly extrapolated to
larger N for two different initial temperatures βA. The height stays finite in this
thermodynamic limit, indicated by a > 0. Combining the top and the bottom,
the initial rise in the hotter system energy EA seems to persist for any finite TA

and infinite N .

intuition (Fig.3.9). An explicit finite N example is given in Fig.3.10. This finite
N example shows that it is not simply the fact that the interaction is local and
thus non-extensive in the thermodynamic limit, that causes it to vanish for higher
temperatures.

The most interesting case is the conformal point of the Ising model (Fig. 3.9) (see
also [112]). At exactly hx = 1, hz = 0 the bump only disappears by extrapolation
to the continuum limit, similar to the SYK4 results. This is still consistent with
the earlier results on quenched cooling in conformal systems [107, 108, 109]. The
absence of a bump found there relies on conformal symmetry which is only a true
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Figure 3.9. Quenched cooling in two Ising half lines. Top: Height Em of the
energy bump (left) and time tm of the bump (right) in for various parameter
choices. Bottom: Height Em of the energy bump extrapolated to larger N for
various initial temperatures TA = 1/βA. For each initial temperature there is a
finite extrapolated value of N for which the bump disappears (a ≤ 0) and the
system will cool instantaneously upon contact. The higher the initial temperature,
the lower is this value of N .

symmetry in the continuum limit. At the same time for any finite size quantum
system at low T , there appears to always be a small but non-zero counterintuitive
initial rise. The bump is a correlation driven effect, as a simple ballistic collision
model based on the Boltzmann equation will never have an initial energy rise in
the hot system [106].8 The correlation can still be either quantum or classical
statistical. In the latter case, this classical statistical two-particle correlation

8Perhaps the easiest way to see this is to realize that the quenched cooling protocol is the
quantum version of the Riemann problem in hydrodynamics. In hydrodynamics one assumes
local equilibrium and thus an absence of correlations between different spatial points at
distances larger than the local mean free path.
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Figure 3.10. Quenched cooling in two Ising half lines. For T < Tc ≃ 77.845J
one still observes the initial rise in the hotter system A, but for T > Tc one
transitions to a regime where classical intuition is restored and the system cools
instantaneously upon contact.

(the two-particle distribution function) vanishes in the thermodynamic limit in
accordance with the assumption of molecular chaos.

In summary, classical thermodynamics — or rather hydrodynamics as we are
studying time-dependent processes — emerges in the quasi-particle (high tem-
perature low density) limit with a non-extensive interaction between system and
reservoir and after taking the thermodynamic limit. The converse is that in quan-
tum systems the initial rise in energy in the hot system that undergoes quenched
cooling is robust and generic, though not required, and universally explained by
Eq.(3.1).

3.4. Conclusion

In this manuscript, we have analyzed the origins of the observed counter-intuitive
early time energy increase in hotter systems quench-coupled to a cooler reservoir
in quantum simulations. Our numerical study of Majorana SYK4, using exact
diagonalization demonstrates that the early time energy behaviour is proportional
to the increase of the von Neumann entropy and is not related to a thermal
flux from the cold to the hot system, demonstrating the quantum nature of this
phenomenon. The energy increase is counterbalanced by the negative interaction
potential (expectation value of the tunneling term in the Hamiltonian). In the
setup here, the coupling quench does not supply energy into the system and the
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total energy is conserved. The same potential sets the amount of work needed to
decouple the systems at given later time.

This peculiar phenomenon is well explained by the quantum non-equilibrium ex-
tension of the first law of thermodynamics Eq.(3.1) where the relative entropy
D(ρ(t)||ρT ) plays a crucial role. Starting from a thermal state D(ρ(t = 0)||ρT ) = 0
and using the positive semi-definiteness D(ρ(t)||ρT ) ≥ 0 the von Neumann en-
tropy, scaled by the initial temperature, then sets a lower bound on the energy in
each subsystem (3.2). This links the observed energy increase even in the hotter
subsystem to an increase of the von Neumann entropy. Moreover, at sufficiently
early times the change of the relative entropy is negligible compared to the en-
ergy which has two interesting consequences. Firstly, the early time evolution
of the energy is almost directly proportional to the von Neumann entropy as we
emphasized in our earlier paper [102]; this provides a way to measure (dynami-
cal) entanglement between two subsystems.9 Secondly, it proves that the initial
thermal state isn’t instantaneously destroyed, hence the initial energy rise is not
related to a temperature increase.

The universality of this bound gives rise to an even more puzzling question: Why
is such an energy increase not commonly encountered in our daily life? The
reason lies in the quantum nature of this phenomenon. We show that at high
temperatures in weakly interacting quasi-particle systems the height of the bump
is suppressed and the time it crests gets very short. In the thermodynamic limit
it vanishes altogether, making it essentially unnoticeable at everyday macroscopic
scales. As our results for SYK and the conformal point of the mixed field Ising
model show, the more quantum mechanical the system is the closer one must
push to the continuum quasiparticle limit for this bump to disappear and classical
intuition to be restored. By extrapolation of our numerical simulation this is only
ever possible to achieve in the strict thermodynamic limit.

This energy increase of the hotter system defies our intuition and understanding
of classical thermodynamics but, as demonstrated here, it is well in accord with
the laws of quantum thermodynamics.

There are three notable considerations that follow: There has been an substantial
amount of research in the past few years on the out-of-time-ordered correlation
function as a probe of classical and quantum chaos resulting in information ex-
change, scrambling and entropy growth (see e.g. [113]). The standard wisdom
is that this information flow is separate and faster than energy flow, because the
latter is constrained by a conservation equation, as recalled for instance in [114].

9As the relative entropy is a measure of how distinguishable two states are, extremely small
relative entropy means that at early times the subsystem is nearly indistinguishable from its
initial thermal state implying that the energy increase is not related to a temperature rise,
contrary to what was suggested in other papers [13, 15].
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The result here and particular the inequality Eq.(3.2) shows that this information
flow, even though it is faster, must always drag some energy with it.

Secondly, one of the motivations to study SYK quenched cooling has been the
equivalence with black hole evaporation through the holographic AdS/CFT cor-
respondence. Because the evaporation of the black hole must expose the infor-
mation behind the horizon, the quench can be modeled in the black hole context
by a negative energy shock wave [44, 101], which shrinks the horizon upon con-
tact. The result here shows that at very early times (before the shock hits the
horizon in global time), there should be an interesting connection between the
Ryu-Takayanagi entanglement surface encoding the von-Neumann entropy and
the dynamics of the energy wavefront that holographically encodes Eq.(3.2).

Finally, as already emphasized in [102], the inequality Eq.(3.2) saturates in per-
turbation theory and can therefore be used in quenched cooling of weakly coupled
systems to probe the von-Neumann entropy. Moreover, this is a universal result
in the short time scale regime which is normally considered too sensitive to pecu-
liar details of the experimental set-up and the system to be of interest. It invites
an experimental measurement of this universal way the von-Neumann entropy
determines the energy response.
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3.A. Numerical Disorder Averaging

3.A. Numerical Disorder Averaging

Disorder averaging of observables O(t) in an SYK system was computed by nu-
merically evaluating their evolution R-times (Oi(t), i ∈ {1, 2, · · ·R}), for R SYK
Hamiltonians drawn from the same distribution, and then computing the average
at each time point:

O(t) = 1
R

R∑
i

Oi(t) (3.20)

Below, we present descriptive plots of the energy Fig.3.11 (top row) and entropy
(bottom row) of system A where one can see 30 different realizations (gray) of
the respective observable and the disorder averaged analog (blue) obtained from
by disorder averaging over R = 100 realizations.
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Figure 3.11. Different realizations of the energy (gray) and the disordered aver-
aged energy (blue) obtained from averaging over R = 100 realizations. The left
plot is the energy of system A, and the right plot is the same energy with the
initial value subtracted ∆EA(t) = EA(t)− EA(t = 0).

Additionally, one can compute the confidence interval of an averaged observable
O(t) (3.20), depicted as colored bands in Figure 3.13, with the following relation:

O(t)± z
σO(t)√
R

(3.21)

where z is the normal distribution score (e.g. z = 3 results in a 3σ, or equivalently
99.7%, confidence interval) and σO(t) is the standard deviation of the observable:

σO(t) =

√√√√ 1
R− 1

R∑
i

(
Oi(t)−O(t)

)2
. (3.22)

Next, Fig. 3.12 depicts the same averaging procedure but for the entropy.

57



3. Quenched cooling and the crossover from quantum to classical
thermodynamics

0 20 40 60 80
2.9

3.0

3.1

3.2

3.3

3.4

0 20 40 60 80
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Figure 3.12. Different realizations of the entropy (gray) and the disordered aver-
aged entropy (blue) obtained from averaging over R = 100 realizations. The left
plot is the entropy of system A, and the right plot is the same entropy with the
initial value subtracted ∆SA(t) = SA(t)− SA(t = 0).

3.B. Reduced Number of Inter-dot Interacting
Majoranas

In the initial phase of the project, we were not aware if and why the bump would
always appear when the quench is between two SYKs at different temperatures.
The analytical proof, presented here in Chapter 4, that this is always the case
came much later. In the meantime, we had analyzed if excessive temperature
gradients between the two subsystems (e.g. TA = 1000 and TB = 0.1), or reducing
the number of Majoranas that participate in the inter-dot interaction (P < N),
might lead to a disappearance of the bump in the hotter system, however, the
initial energy rise was always present. While it now seems trivial, thanks to (4.15),
here we present some legacy results in Figure 3.13 that reinforced our motivation
to look for the analytical explanation of this phenomenon.

Even though we tested much higher temperatures the outcome was always the
same hence, for clarity in the plot, we show results from a setup where the initial
temperatures of the two SYKs are TA = 250 and TB = 0.1. They are quench
coupled at t = 0 with the same protocol that’s been described before, the only
difference here is that the number of Majoranas (P ) that participate in the inter-
action Hamiltonian can be varied:

Hint = i

P∑
ij

λijψ
A
i ψ

B
j , (3.23)

As is obvious from Figure 3.13 the energy of the hotter system initially increases
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even at very high temperature gradients. Additionally, although the increase is
slower when only a few Majoranas couple the two dots (P < N), qualitatively the
energy bump appears even in the extreme case of a single coupling between the
SYKs.
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Figure 3.13. Early time energy evolution of an SYK system (TA = 250), when
it is quenched coupled to another colder SYK (TB = 0.1) with the interaction
Hamiltonian (3.23). Three different scenarios are presented, when only one (P =
1), two (P = 2), and all P = N Majoranas from each dot participate in the
interaction between the two SYKs.

3.C. SYK Hamiltonians and Late Time
Thermalisation

When the quench between two SYK systems is analyzed, for each realization, the
two Hamiltonians (HA and HB) are drawn separately, even when they have the
same parameters qA = qB = q, JA = JB = J and NA = NB = N . This way, even
though the two systems have identical dynamics after disorder averaging they
still differ, not only on a single realization but also when the disorder averaging
is performed on a finite number of realizations R. This difference is especially
prominent in the post-quench thermalization of two SYK systems at late, but
finite, times when finite system sizes are considered, as is the case with the exact
diagonalization numerical studies in this thesis. For example, looking into the
disorder averaged late time energies of two SYKs (q = 4, J = 1, and N = 12)
that are quench coupled from temperatures TA = 0.5 and TB = 0.01, one expects

59



3. Quenched cooling and the crossover from quantum to classical
thermodynamics

they thermalize at the same value. However, looking into their time evolution
Figure 3.14 (blue and yellow lines) seems like they saturate at different energies,
although within one standard deviation of each other. It is worth noting that
the higher temperature of system A doesn’t precondition its saturation at higher
energy, since that varies with each realization and there certainly are realizations
where the initially colder system B saturates above the energy of A, see gray lines
in Figure 3.14.
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Figure 3.14. Energy and 99.7% confidence interval bands (3.21) of the disorder
averaged energies of system A (blue) and B (yellow), computed with R = 60
realizations. At late times, when the system thermalizes, the two energies do
not exactly match but get close to each other within their 3σ confidence interval.
Additionally, the energies of the systems, full and dashed gray lines respectively,
are presented for a single realization which was particularly chosen to demonstrate
that for some combination of couplings the initially colder system B can thermalize
at a higher energy than the hotter system A.

We tested our hypothesis, that the difference in the averaged energies of systems
A and B is coming from the limited number of realizations R, as well as the finite
system size N , and results are presented in Figure 3.15. There we study the
dependence of the energy difference (EA(t = 100)−EB(t = 100)) at time t = 100
as a function of the number of realizations R that the average is computed with
3.20. Additionally, we analyze the dependence on the size of the SYK dot by
repeating the same exercise for SYKs with different numbers of Majoranas N .
As can be clearly seen from Figure 3.15 the two energies are coming closer and
closer as one considers more and more realizations. Additionally, the difference
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drastically decreases when the number of Majoranas, in each of the dots, increases
from 8 to 10 and then to 12. This confirms that when R→∞ and N →∞, at late
times, the two energies will be indistinguishable, in line with the large N results.
Note that, since analyzing systems with N = 12 is computationally expensive, we
have evaluated the energy difference only for up to R = 60 realizations. However,
even this is enough to see that the system size plays a crucial role in the late time
thermalization.
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Figure 3.15. Dependence of the difference between the averaged energies of the
two systems at t = 100 as a function of the number of realizations used in the
disorder averaging procedure. To test the dependence on the system size we
analyzed the same quantity for SYK dots with N = 6, 8, 10 and12 Majoranas in
each. Limited by the CPU time when evaluating systems with N = 12 Majoranas
we have computed the energies for only 60 realizations.
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