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2 Dynamics of quenched Fermi gas
after a local quench

2.1. Introduction

Entanglement entropy is a measure of non-classical correlations in quantum com-
posite systems. It is commonly defined as the von Neumann entropy of a subpart
of a quantum composite system described by a pure quantum state [21]. Con-
sideration of the later one requires zero temperature limit. Despite entanglement
being an inherent characteristic of quantumness, the entanglement entropy itself
is not easy to measure directly because of its nonlocal nature. Still, a few propos-
als are suggesting that the entanglement entropy can be related to the particle
number fluctuations in free fermion systems [74, 75, 76, 77] and elicited from the
low-energy states population dynamics in quantum many-body systems [78, 79].
A recent experiment reports that the entanglement entropy can be measured by
an interference of two clones of a many-body state in ultra-cold atoms [80].

However, one may ask if there are generic consequences of quantum correlations
between the subparts of a given system that are known to exist above zero tem-
perature. This question may be answered in the framework of quantum thermo-
dynamics – a rapidly developing field that relates general properties of quantum
systems, such as work, heat, and entropy, irrespective of their microscopic nature
[22]. Within this approach, the classical thermodynamic entities are extended
to their quantum counterparts. In quantum thermodynamics, the energy of the
evolving quantum state is usually expressed in terms of thermal free energy and
entropy production – a measure of the irreversibility of a quantum process defined
as the relative entropy between an actual state of the system and a reference state
[22, 81]. The latter is usually chosen as a thermal state of the system taken at
the same time as the evolving one. This method has proven to be quite fruit-
ful for thermodynamic analysis of quantum composite systems. In particular, it
was shown that entanglement in quantum composite systems can be converted
to work or heat [82, 23, 83, 84]. The conversion of quantum correlations to heat
arises naturally for quantum systems in a form of decoherence due to interac-
tions with environment [85, 86] and governs a borderline between quantum and
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2. Dynamics of quenched Fermi gas after a local quench

classical worlds [87, 88]. On the other hand, the conversion of quantum correla-
tions to work is actively studied as it paves the way to quantum thermal engines
potentially superior to their classical analogs [89, 90, 91].

In this paper, we are interested in the way how quantum correlations may be con-
verted to energy for quantum thermal states. We consider two arbitrary quantum
systems, each of them initially in thermal equilibrium, coupled and then jointly
evolving until decoupling. The coupling and decoupling process is controlled by a
chosen quench protocol. We show that the energy acquired during the joint evolu-
tion by a subpart of a quantum composite system can be related to its entropies
only, namely, the von Neumann entropy and the relative entropy between the
evolved state of the subsystem and its initial thermal state. The von Neumann
entropy accumulated during the joint evolution of the two systems sets the lower
bound on the energy change. We apply this inherently quantum description to
a quench-coupled system of non-interacting fermions. The composite free Fermi
systems are particularly attractive since they allow to directly access the entangle-
ment entropy between its subparts when coupled [76, 77]. For temperatures much
lower than the Fermi energy in the system, the quantum correlations between the
two subparts of the system, given by the change in the von Neumann entropy, are
transferred to the subsystem’s energy. This energy increment originates from the
external work produced by the quench to erase the correlations between the sub-
systems at the moment of decoupling. The von Neumann entropy accumulated
during the joint evolution of the two subsystems can be directly read out from
the energy increment.

2.2. Entropy to energy relation in quantum
thermodynamics

We consider two isolated quantum systems A and B, initially both in thermal
equilibrium, that are instantaneously coupled by an arbitrary interaction VAB .
The general time-dependent Hamiltonian is

H(t) = HA +HB + g(t)VAB , (2.1)

where the function g(t) defines a quench protocol that turns on/off the interaction
at a given time. The initial state of the full system is given by the product of two
thermal density matrices

ρ0 =ρA ⊗ ρB , (2.2)

ρα = 1
Zα

∑
nα

e−Enα /Tα |nα⟩⟨nα| =
e−Hα/Tα

Zα
, α = A,B. (2.3)
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2.2. Entropy to energy relation in quantum thermodynamics

Here |nα⟩ is an eigenstate of the Hamiltonian Hα with an eigenenergy Enα , Tα

is the initial temperature, and Zα = Trαe
−Hα/Tα is the partition function for

α = A,B. Below we focus on the properties of the system A for brevity and use
the units ℏ = kB = 1 everywhere.

Once the two systems are coupled they become correlated. A natural measure to
study the correlations between A and B is the von Neumann entropy. The von
Neumann entropy for the system A is

SvN(t) = −TrA ρA(t) ln ρA(t), (2.4)

where ρA(t) = TrB ρ(t) is the reduced density matrix. Here we are not limiting
ourselves to the unitary evolution of the full density matrix ρ(t). For example,
it can be drawn from the Lindblad master equation in case the system (2.1) is
dissipative.

Let us introduce the relative entropy, which is often used in both quantum in-
formation processing [21] and quantum thermodynamics [22] to distinguish two
quantum states. For our purpose, we define the relative entropy between the
evolved state ρA(t) of the system A from its initial thermal state ρA:

S
(
ρA(t)||ρA

)
=TrA ρA(t)

(
ln ρA(t)− ln ρA

)
≥ 0. (2.5)

As we shall use shortly, the relative entropy is defined as non-negative [21].

Now, we substitute the von Neumann entropy (2.4) into Eq. (2.5). Using that the
initial state of A is a thermal state at temperature TA, we relate the expectation
value of the Hamiltonian HA to the combination of the von Neumann and relative
entropy

TrA ρA(t)HA = FA + TA

(
SvN(t) + S(ρA(t)||ρA)

)
. (2.6)

Here FA = −TA lnZA is the initial thermal free energy of the system A. Sub-
tracting the initial energy value TrA ρAHA = FA + TASvN(0) from Eq. (2.6), we
derive

∆EA(t) = TA

(
∆SvN(t) + S(ρA(t)||ρA)

)
, (2.7)

where ∆EA(t) = TrA ρA(t)HA − TrA ρAHA and ∆SvN(t) = SvN(t) − SvN(0).
The relation (2.7) combines the first and the second law of thermodynamics for
a subpart of an arbitrary quantum composite system. Being a thermodynamic
statement, Eq. (2.7) should be understood as the equation of the energy-to-
entropy balance after the process is over. In contrast with the previous studies,
see e.g. Refs. [82, 23, 83, 86], we relate the energy of the system A to its entropy
properties solely. At low temperatures, the energy change is set by the amount
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2. Dynamics of quenched Fermi gas after a local quench

of correlations with the other subpart of the full system, that emerge when the
coupling is switched-on, and by its deviation from the initial state.

When the two systems are coupled, it is not possible to completely isolate them
from each other to determine the actual energy shift in A or B. However, one
can count whether the energy of the system changes if A and B are decoupled
later on. Since the relative entropy is non-negative, the von Neumann entropy
provides the lower bound on the overall energy shift:

∆EA ≥ TA∆SvN. (2.8)

The inequality (2.8) is a generic thermodynamic property of quantum composite
systems and yield quite intriguing consequences at low temperatures. Indeed,
turning on the interaction between the subparts of a quantum composite system
induces quantum correlations. Ergo, their von Neumann entropy increases in
absence of thermal imbalance between the subsystems. According to Eq. (2.8), it
necessarily leads to the energy increment when the systems are decoupled (∆EA >
0). This prompts the question: can one directly detect quantum correlations
between the subparts of a quantum composite system by measuring the resulting
energy increment? Putting this in perspective, we explain the physics of this effect
by taking the thermodynamic point of view on the quench-coupling/decoupling
protocol in a free fermion system.

2.3. The case study: free fermions

The possibility of detection quantum correlations and entanglement entropy, in
particular, is widely discussed for the free Fermi systems [75, 76, 74, 77]. In
light of this, free fermions seem as a natural framework to proceed with our
thermodynamic consideration.

Consider for systems A and B two isolated spinless fermionic reservoirs at tem-
peratures TA and TB . At time t = 0 we instantaneously couple the reservoirs
together and then disconnect them at t = t0. The coupling/decoupling process is
controlled by the quench protocol g(t) = θ(t)− θ(t− t0) in the Hamiltonian (2.1).
The Hamiltonian (2.1) reads

HA =
∑

p

ξpa
†
pap, (2.9)

HB =
∑
p′

ξp′b†
p′bp′ , (2.10)

VAB =λδ(x)a†(x)b(x) + h.c., (2.11)

where A and B are coupled locally. Here a, a† and b, b† are the fermionic operators,
ξp is the corresponding dispersion, and λ is the coupling constant. Note that
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2.3. The case study: free fermions

[VAB , HA] ̸= 0 and [VAB , HB ] ̸= 0. Below we put both reservoirs at the same
chemical potential to avoid electric currents.

The chosen quench protocol leads to the non-conservation of energy in our model.
It immediately follows from the general form of the Hamiltonian (2.1) that the
energy can be added to the system at the moment of turning on/off the interaction
between A and B:

d⟨H(t)⟩
dt

= g′(t)⟨VAB(t)⟩ = δ(t)⟨VAB(0)⟩ − δ(t− t0)⟨VAB(t0)⟩. (2.12)

The origin of this effect is quite simple. The quench can produce work to couple
and decouple the reservoirs.

When A and B are coupled at t = 0 they become correlated and, hence, one can
not measure their energy separately until the systems are disconnected at t = t0.
To evaluate the overall energy shift in the reservoir A after decoupling from B,
we compute the corresponding energy flux

d⟨HA(t)⟩
dt

=i⟨[H,HA]⟩ = −ig(t)
∑
pp′

ξp(λ⟨a†
pbp′⟩ − h.c.). (2.13)

The correlation functions that define the energy flux (2.13) satisfy the equation

λ
d⟨a†

pbp′⟩
dt

=iλ(ξp − ξp′)⟨a†
pbp′⟩ − ig(t)|λ|2

∑
q

(⟨a†
paq⟩ − ⟨b†

qbp′⟩). (2.14)

The exact solution of Eq. (2.14) requires notion of the correlation functions ⟨a†
paq⟩

and ⟨b†
qbp′⟩, the momenta-diagonal components of which are dynamic occupation

numbers nα(ξp, t) of fermions α = a, b with momentum p at time t. We solve Eq.
(2.14) perturbatively in the lowest order in λ implying the equilibrium occupation
numbers of the initial state of the system. Indeed, since there are no inter-
momenta couplings before the quench, we use diagonal correlations ⟨a†

paq⟩ =
δpq⟨a†

pap⟩ = δpqnA(ξp) and ⟨b†
qbp′⟩ = δqp′⟨b†

p′bp′⟩ = δqp′nB(ξp′) in Eq. (2.14),

where nα(ξp) =
(
eξp/Tα + 1

)−1
is the Fermi distribution function. The sought-

for correlation function is

λ⟨a†
pbp′⟩ =− i|λ|2(nA(ξp)− nB(ξp′))

∫ t

0
dt′ei(ξp−ξp′ )(t−t′)g(t′). (2.15)

It follows form the correlation function (2.15) that ⟨VAB(0)⟩ = 0 in Eq. (2.12),
since there are no correlations between A and B at t = 0.
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2. Dynamics of quenched Fermi gas after a local quench

Substituting Eq. (2.15) into Eq. (2.13), we obtain the Fermi golden rule formula
for the energy flux

d⟨HA(t)⟩
dt

=− 2g(t) |λ|
2

ε2
F

∫
dωdω′ ω

sin
(
ω − ω′)t
ω − ω′ (nA(ω)− nB(ω′)). (2.16)

Here we introduced the density of states (DoS) for both fermion species νA(ω) =∑
p
δ(ω−ξp) and νB(ω′) =

∑
p′
δ(ω′−ξp′) and assume the two-dimensional reservoirs

with constant DoS given by the inverse Fermi energy να ∼ 1/εF. Then the overall
energy shift in A is given by ∆EA =

∫ t0
0 dt d⟨HA(t)⟩

dt . An identical computation of
the energy flux can be done for the reservoir B.

Let’s consider A and B at zero temperature prior the quench. In equilibrium,
there would not be an energy shift in either of the reservoirs. However, turning
on the coupling entangles the states in the reservoirs and, therefore, results in
presence of entanglement entropy between A and B that can be captured by
the particle number fluctuations [76, 77]. So, does the energy of the A-reservoir
remain unchanged once A and B are decoupled?

At zero temperature the distribution function nα(ω) is a unit-step function θ(−ω)
for both reservoirs. Substituting the zero temperature distribution functions into
the Fermi golden rule formula (2.16) and providing the UV cut-off ∼ εF for the
frequency integrals, we derive the energy flux

d⟨HA(t)⟩
dt

=2g(t)|λ|2 sin(εFt)
sin2 (εFt/2

)(
εFt/2

)2 . (2.17)

Accordingly, the overall energy shift in the reservoir A is

∆EQ
A = 2|λ|2

εF

∫ εFt0

0
dζ sin ζ

sin2 (ζ/2)(
ζ/2
)2 . (2.18)

As it is shown in Fig. 2.1 (blue solid curve), the energy of the system increases
in the absence of temperature or charge imbalance. The effect is suppressed in
the continuous limit (small lattice spacing for the free fermions) where the Fermi
energy is large. Here we use the superscript Q in Eq. (2.18) to stress that the
effect is manifestly quantum since both systems are initially at zero temperature.
The system B has the same energy increase.

Now, we move on to finite temperature. To do so, we apply a temperature imbal-
ance between the reservoirs and compute the energy flux. We restrict ourselves
to the low temperature regime max(TA, TB) ≪ εF and times much less than the
inverse temperature. This limitation naturally arises from the perturbative ori-
gin of the Fermi golden rule formula (2.16). Indeed, at high temperatures the
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2.3. The case study: free fermions

Figure 2.1. Energy increment in the reservoir A due to quench-coupling with the
reservoir B as a function of time at low temperature. The energy increment at zero
temperature ∆EQ

A ≃ |λ|2

εF
(εFt0)2 for t0 ≪ 1/εF and reaches its maximum value of

3.2 |λ|2/εF at tm = π/εF, which is defined by the first zero of the energy flux (2.17).

dynamics in the integral (2.16) is set by t ∼ 1/max(TA, TB)≪ 1/εF but the en-
ergy flux formula itself is perturbative in |λ|2/ε2

F. The neglected dynamics of the
occupation numbers appears in higher order in |λ|2/ε2

F. Therefore, once reaching
the timescale of t ∼ 1/max(TA, TB), the dynamics of the occupation numbers
can not be considered slow and, hence, is no longer negligible. Still, consideration
of small temperatures allows us to derive the energy dynamics perturbatively at
the timescale t ∼ 1/εF ≪ 1/max(TA, TB). This logic applies to t0, so that we
disregard the thermalization of A and B while they are coupled.

We compute the energy flux (2.16) for TA = T ≪ εF and TB ≪ T using the
equilibrium occupation numbers nA(ω) =

(
eω/T + 1

)−1
and nB(ω) = θ(−ω).

This realises a quantum cooling protocol for the reservoir A. Since A is at low
temperature T ≪ εF, we use the Sommerfeld expansion∫ εF

−εF

dω
F (ω, t)
eω/T + 1 ≃

∫ 0

−εF

dωF (ω, t) + π2T 2

6 F ′(0, t), (2.19)

where F ′(0, t) denotes the frequency derivative of F at ω = 0. Here the function
F (ω, t) = ω

∫ εF
−εF

dω′ sin(ω−ω′)t

ω−ω′ has a well defined derivative F ′(ω, t) in the con-

sidered energy interval, so that F ′(0, t) = 2
εFt∫
0
dζ sin ζ

ζ . Finally, we reinstate the
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2. Dynamics of quenched Fermi gas after a local quench

result in Eq. (2.18) with a small temperature correction:

∆EA =∆EQ
A −

2|λ|2
3εF

(
πT

εF

)2 ∫ εFt0

0
dζ

∫ ζ

0
dζ ′ sin ζ ′

ζ ′ , t0 ≪ 1/T. (2.20)

In Fig. 2.1 (the dashed curve) we demonstrate that the overall energy change in
the reservoir remains positive. Remarkably, cooling down the system at temper-
ature T ≪ εF results in the energy increment of the refrigerated system if the
system and the cold bath are coupled for t0 ∼ 1/εF.

Finally, we can consider A and B at the same temperature TA = TB = T ≪ εF.
We proceed the same way as above and use the Sommerfeld expansion (2.19) for
both systems. This produces the energy increment

∆EA = ∆EQ
A −

8|λ|2
3εF

(
πT

εF

)2
sin2

(
εFt0

2

)
, t0 ≪ 1/T. (2.21)

The effect still persists when both systems evolve starting from thermal states, as
seen in Fig. 2.1 (dotted curve).

In contrast to the subsystem’s energy, the time-dependent correlations between
the subsystems initialized at t = 0 are well defined by the von Neumann entropy
of the corresponding subsystem. The von Neumann entropy of the subpart of a
free fermion system is known to be expressed in terms of its occupation numbers
nα(ξp, t) [76, 77, 92]. The von Neumann entropy of the reservoir A is

SvN(t) =−
∑

p

(
nA(t, ξp) lnnA(t, ξp) + (1− nA(t, ξp)) ln

(
1− nA(t, ξp)

))
.

(2.22)

Within the accuracy of the Fermi golden rule formula (2.16), the entropy flux can
be computed perturbatively in the lowest order in λ:

dSvN(t)
dt

= −
∑

p

dnA(t, ξp)
dt

ln nA(ξp)
1− nA(ξp) , (2.23)

where the distribution function inside the logarithm is taken in equilibrium. Using
that ⟨HA(t)⟩ =

∑
p
ξpnA(t, ξp) and nA(ξp)/(1−nA(ξp)) = exp

(
−ξp/TA

)
, we notice

that the entropy and the energy fluxes are related as TAdSvN(t)/dt = d⟨HA(t)⟩/dt.
Hence, when the systems are decoupled, we get

∆EA = TA∆SvN, (2.24)

that states that the overall energy change in A (2.20) is set by the amount of
correlations the system acquired during the joint evolution of A and B. The
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equation (2.24) resembles the lower energy bound in the energy-entropy balance
equation (2.7) with zero relative entropy

S(ρA(t0)||ρA) = 0. (2.25)

The relative entropy (2.25) between the evolved and initial state of the reservoir
A saturates the lower bound in Klein’s inequality [21]. Within the accuracy of
our perturbation theory, this means that at t = t0 the evolved state ρA(t0) is
indistinguishable from its initial thermal state ρA, despite that the reservoirs A
and B were evolving together from t = 0 to t = t0. The same holds for the
reservoir B. Therefore, the correlations between A and B are erased at the
moment of decoupling. However, t = t0 is a special moment when, according to
Eq. (2.12), the energy is not conserved. Indeed, all the energy acquired by both
systems is transferred at the precise moment of decoupling. Using the correlation
function (2.15), we derive

d⟨H(t)⟩
dt

= −δ(t− t0)⟨VAB(t0)⟩ = δ(t− t0) (∆EA + ∆EB) . (2.26)

In our model the two systems become correlated at t = 0 and then are fully
decoupled at t = t0. At low temperatures, the amount of energy transferred
to the system by the quench at t = t0 is set by the von Neumann entropies
of each system accumulated during joint evolution of A and B, which captures
the correlations between A and B up to the moment of decoupling. The work
produced by the quench −∆EA−∆EB is utilized to erase the correlations between
the reservoirs. The information about the erased correlations is stored in the
energy increment of each subsystem. As we illustrate in Fig. 2.1, the energy
increment of the subsystem is well-described by its quantum part ∆EQ

A for a short
quench protocol t0 ≲ 1/εF at low temperatures max(TA, TB) ≪ εF. As such, we
refer to ∆EQ

A + ∆EQ
B as the binding energy of quantum correlations between A

and B – the amount of energy required to erase the quantum correlations between
the subparts of a quantum composite system.

2.4. Conclusion

In this paper, we discuss non-equilibrium dynamics in quantum composite systems
in a thermodynamic framework. We consider two arbitrary quantum systems A
and B at finite temperature instantaneously coupled together. We show that
the energy of a subpart of a quantum composite system can be related to its
entropy properties solely. Specifically, the energy change of the system A is set
by the change of its von Neumann entropy and by the relative entropy between
the evolved state of A and its initial thermal state.
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2. Dynamics of quenched Fermi gas after a local quench

We consider a quench protocol for the free fermion system, where A and B are
described by non-interacting fermions. Starting with zero temperature limit, we
show that the subsystem’s energy increases in absence of charge or temperature
imbalance. Proceeding to the finite temperature case, we find out that the energy
increment is still present for the temperatures much less than the Fermi energy
in the system. We demonstrate that the energy is transferred to the system in
the moment of decoupling, while the amount of energy is given by change of the
von Neumann entropy multiplied by the initial temperature. Here the decoupling
quench acts as an external force which produces work to erase the correlations
between A and B. Meanwhile, the von Neumann entropy accumulated during
the joint evolution of A and B is stored in the corresponding energy increment.
Hereby, we refer to this effect as an information to energy conversion.

During the final stage of preparing this manuscript, we have noticed a preprint
by Popovic et al. [86], which shows that there is a heat transfer from the system
described by a quantum pure state to the thermal bath at the moment of decou-
pling. This heat dissipation is argued to originate from an energetic cost for a
decoherence process. We note a similar energy transfer in the coupling/decoupling
protocol for quantum thermal states, where the system and the bath are described
by non-interacting fermions at low temperature. We argue that the amount of
energy accumulated by a subpart of a quantum composite system is set by the
amount of correlations with the other subpart developed by the moment of de-
coupling.

The effect of information to energy conversion is quite generic for quantum com-
posite systems and appears as long as the Hamiltonian of the system contains
non-commuting parts. The conversion happens when the subpart of the system
is separated from the rest of the system as a consequence of the energetic cost of
decoupling. The fingerprints of this effect are also present in strongly-correlated
systems. In Ref. [89], a quantum system where non-local random interaction is
turned on/off by a quench increases its energy drastically after the interaction
is off. At the same time, the entropy flux presented in this paper qualitatively
explains the anomalous growth of the energy flux in the evaporating Sachdev-Ye-
Kitaev quantum dot [15, 13]. This subject will be addressed in details as well as
its relation to the recent studies of the evaporating black holes [93, 94, 95] in the
upcomming article [96].
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