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1 Introduction

1.1. Two roads to thermal equilibrium

Soon after the discovery of quantum mechanics, it was realized that the probability-
preserving unitary evolution of the wave function clashed with the entropy pro-
duction needed to explain thermalization. The straightforward resolution was to
make the notion of an environmental heat bath, or more general any environment,
a more principled one. So-called open quantum systems indeed thermalize beau-
tifully though they sidestep many subtle issues intrinsic to quantum mechanics.
Thermalization in these systems is not much different from Boltzmann’s original
fully classical picture of chaotic mixing due to microscopic collisions.1

This all changed rather abruptly with the numerical findings of Rigol, Dun-
jko, and Olshanii. Simulating the unitary time evolution of a finite number of
bosonic quantum excitations, they surprisingly found that the density matrix
of this system rapidly becomes nearly indistinguishable from a thermal density
matrix [1]. Mathematically this could not be the exact thermal density matrix,
but the difference was exponentially small. It turned out that this rapid near-
indistinguishability of a unitarily evolved many-body density matrix from a ther-
mal one was already predicted independently by Deutsch [2] and Srednicki [3],
who coined it the Eigenstate Thermalization Hypothesis (ETH). In the simplest
of terms, their result boils down to the sleight of hand that in a quantum system
the system itself can act as a heat bath due to its parametrically larger Hilbert
space.2 Physically what ETH really emphasizes is that a specific quantum aspect
— entanglement — does not only play an important role in thermalization but
can actually overpower the semi-classical Boltzmann point of view.

This poses a deeper question. Given a dynamical many-body system, there
are now two drastically different ways for this system to approach equilibrium.

1Recall that even in classical physics there is an inherent paradox between thermalization and
Liouville’s theorem that the volume of phase-space is preserved under classical Hamiltonian
evolution. The extreme sensitivity to initial conditions inherent in chaotic systems resolves
this paradox. In quantum systems, it is the connection with the heat-bath that allows an
initially fully determined initial state to mix and be considered an ensemble average.

2A system of N particles has a 6N -dimensional classical phase space, but a ∼ eN -dimensional
quantum Hilbert space.
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1. Introduction

Though not so much voiced in the literature [4], this has triggered a consis-
tently recurring debate on whether a system thermalizes classically (Boltzmann)
or quantum-mechanically (ETH) and what determines this (see e.g. [5] for an
attempt to unify the descriptions). Nearly non-interacting theories (dilute gases)
clearly ought to be an example of the former. By contrast strongly interacting
theories or more precisely densely entangled theories should exhibit ETH. But
where is the boundary?

This is not only a philosophical question. Experiments on cold atoms have already
passed the threshold of the number of constituents where ETH should apply and
it has conclusively been seen [6, 7, 8, 9, 10, 11]. These same experiments have
also provided a controlled avenue into non-equilibrium phenomena. Far-from-
equilibrium physics is often cast aside in introductory physics. The intuition
is that the extreme sensitivity to initial conditions in any rapid change makes
it intractable, non-universal and therefore not interesting. Certainly, this last
statement does not hold water: there is an enormous amount of interesting far-
from-equilibrium physics (see e.g. [12]).

This thesis will explore these questions by studying the time evolution of quan-
tum systems after a rapid change: a so-called quench, with focus on the early-time
non-equilibrium behavior and the transition to late-time classical thermalization.
With this method, we probed the differences in the early stage of thermalization
between systems with a chaotic spectrum like the Mixed Field Ising, ones that
additionally display exponential out-of-time-ordered correlation growth, as is the
case with the Sachdev-Ye-Kitaev model, and quantum integrable systems. This
deep dive into the early time evolution of those systems provided us with enlight-
ening intuition that proved crucial for discerning between quantum and classical
features that are intertwined during the evolution of a quantum system far from
equilibrium. It also helped us solve the paradox of temperature rise in a hotter
system when coupled to a colder bath, which was initially identified in [13] based
on the energy increase of the hotter system. Interestingly enough, similar behavior
shows up in other physical systems during the early stages of their thermalization.
For example, it was reported in studies of evaporative black hole formation [14]
which, on the gravity side, is explained by the averaged null energy condition [15]
and in this thesis was related to the von Neumann and relative entropy of the
quantum system, which paves a way for a future holographic connection in the
same spirit as [16]. Another case in point is when the systems under consideration
are charged, chaotic, and strongly entangled, e.g. charged SYKs whose energy
and charge transport, on the road to thermalization, display features subtly re-
lated to the linear in T resistivity of strange metals [17, 18]. While it might seem
unusual, it is in accord with other results that use SYK chains as toy models for
studying high Tc superconductors [19, 20].
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1.2. Quantum thermodynamics and quenches

1.2. Quantum thermodynamics and quenches

The role of entanglement or strong quantum rather than classical correlations
is more readily encoded in the density matrix of the quantum system than its
wavefunction. Given a basis |α⟩ of states in the Hilbert space, a generic state
|ψ⟩ = cα|α⟩ that is normalized

∑
α cαc

†
α = 1 corresponds to the density matrix

ρ = |ψ⟩⟨ψ| =
∑
α,β

cαc
†
β |α⟩⟨β| (1.1)

The density matrix can also describe an ensemble of quantum states which is the
basis of quantum thermodynamics. For example, if the system can be found in
the i−th vector state from the set {|ψi⟩} with a probability pi, its state is given
by the following density matrix:

ρ =
∑

i

pi |ψi⟩⟨ψi| (1.2)

As the density matrix consists of a bra and a ket, it can also be seen as an operator.
From the Schrödinger equation we directly see that it evolves with time as

ρ(t) = ÛtρÛ
†
t , Ût = e−iĤt/ℏ (1.3)

The expectation value of an observable Ô is computed as a trace of the state times
the observable:

O = Tr
(
ρÔ
)
. (1.4)

Density matrices are positive operators with trace one (Tr(ρ) =
∑

i pi = 1),
which asserts conservation of probability. As a positive operator, it has a spectral
decomposition:

ρ =
∑

i

λi |i⟩⟨i| , ⟨i|i⟩ = 1, λi ≤ 1 (1.5)

where the vectors |i⟩ are ortho-normal, and λi are real, non-negative eigenvalues of
ρ. The quantum systems that can be described by a single vector |ψ⟩ ∈ H with the
equivalent density matrix representation ρ = |ψ⟩⟨ψ| are known as pure states. A
system represented by an ensemble, i.e. a mixture of pure states ρ =

∑
i pi |ψi⟩⟨ψi|

is accordingly named a mixed state. For the density matrix of a pure state it holds
that Tr ρ2 = 1, whereas a mixed state has Tr ρ2 < 1.

Another important difference between those two types of states is their von Neu-
mann entropy:

SvN = −Tr (ρ ln ρ) = −
∑

i

λi lnλi, (1.6)
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1. Introduction

where the last expression is obtained from the spectral decomposition of the den-
sity matrix. Now, combining (1.6) and (1.5) we immediately deduce that pure
states (λ = 1) have vanishing von Neumann entropy, wheres for mixed states
(λi < 1) SvN is a positive quantity.

A quintessential mixed state is the density operator that describes a thermal
quantum system at inverse temperature β = 1/T . Classical systems with constant
temperature are described by the canonical ensemble, likewise, quantum thermal
states are represented by an ensemble of the Hamiltonian’s eigenstates {|n⟩} with
probabilities e−βEn/Zβ :

ρβ = 1
Zβ

∑
n

e−βEn |n⟩⟨n| ≡ 1
Zβ

e−βĤ , Zβ = Tr
(
e−βĤ

)
. (1.7)

Here, Zβ is the partition function and the free energy of the system is obtained
through the well-known relation Fβ = − 1

β lnZβ . It is easy to check this is a mixed
state, since Tr

(
ρ2

β

)
=
∑

n e
−2βEn/Z2

β < 1. It has von Neumann entropy:

Sβ = − 1
Zβ

∑
n

e−βEn ln
(
e−βEn/Zβ

)
= β

∑
n

Ene
−βEn − lnZβ = β(Eβ − Fβ).

(1.8)

It is important to note that the von Neuman entropy of a Gibbs state at inverse
temperature β is identical to the thermal entropy of a thermal system with internal
energy equal to the energy of the state Eβ = Tr

(
ρβĤ

)
and free energy Fβ . This

is the connection with classical thermodynamics.

Another quantity, important for the discussions in this thesis, is the relative en-
tropy between two density matrices ρ, ρ̃ ∈ B(H):

D
(
ρ||ρ̃

)
= Tr ρ (ln ρ− ln ρ̃) ≥ 0. (1.9)

which is often used in both quantum information processing [21] and quantum
thermodynamics [22] to distinguish between two quantum states and as a measure
of the irreversibility of a thermodynamic process [23]. In Chapter 2 and Chapter
3 we use the relative entropy as a measure of how different a certain state is from
a corresponding thermal state with the same energy D(ρ||ρβ).

The full potential of the density matrix approach comes to light when studying
composite quantum systems, as a descriptive tool for the subsystems. Imagine a
system in a state ρAB that is composed of two subsystems A and B. If we are
only interested in, or have access to, the subsystem A, we can study it through
its reduced density matrix ρA, obtained by tracing out B:

ρA = TrB (ρAB) (1.10)
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1.3. Quantum Chaos “Quantum chaology”

Naturally, for two non-interacting systems the full density matrix is a tensor
product state ρAB = ρA ⊗ ρB , and the reduced density matrix is equal to the
individual state (e.g. TrB(ρAB) = ρA TrB(ρB) = ρA), where we used that density
operators are trace 1. In general, for interacting subsystems, the full state is
not a tensor product and the reduced density matrix encodes information about
the correlations between the two subsystems which are reflected in their von
Neumann entropies (e.g. SA = −Tr (ρA ln ρA) ). The simplest example is the
entangled state between two quantum spins |ψ⟩ = 1√

2

(
| ↑↓⟩ − | ↓↑⟩

)
. Tracing

over the second spin one finds that the reduced density matrix ρA = 1
2 (| ↑⟩⟨↑

|+ | ↓⟩⟨↓ |) has von Neumann entropy SρA
= ln(2). This is why sometimes SvN is

called entanglement entropy. However, one has to be extremely careful with this
nomenclature, for, as we’ve seen above, the von Neumann entropy also captures
the thermal entropy of the system and there is no practical way of distinguishing
those two contributions. Only at zero temperature, in the absence of the thermal
contribution according to the third law of thermodynamics, is the von Neumann
entropy proportional to the entanglement between the subsystems.

Such composite systems are the focus of this thesis. More precisely we consider
situations where initially (t < 0) both subsystems A and B do not interact and
are governed by their respective Hamiltonians ĤA and ĤB . Additionally, we
shall assume that each of them has fully been made to relax to independently
to thermal equilibrium at temperature TA and TB , respectively, and the whole
system is in a decoupled state ρ0 = ρTA

⊗ρTB
. Then, at time t = 0 we quench the

system by instantaneously turning on an interaction between A and B, modeled
with the Hamiltonian Hint, and for times (t ≥ 0) the evolution of the combined
system is governed with the following Hamiltonian:

Ĥ = ĤA + ĤB + Ĥint (1.11)

Using concepts introduced in this section we study what happens to each sub-
system after the quench. Analyzing the interplay between thermal fluxes, cor-
relations, charged currents, and the exchange of information between A and B
we strive to explain the post-quench non-equilibrium dynamics, the time-scale for
the transition between quantum and conventional hydrodynamic behavior and
propose experimental applications of the discovered quantum features.

1.3. Quantum Chaos “Quantum chaology”

In the introduction we pointed out the difference between the thermalization
mechanisms in classical systems and quantum systems. Classical Boltzmannian
thermalization relies on the assumption of chaos; thermalization in closed quan-
tum systems on eigenstate thermalization. Nevertheless, some notion of mixing or
information scrambling as it has been recently called, must also occur in quantum
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1. Introduction

systems. For quantum systems, there are two notions of chaos. One is defined
by the early time evolution of quantum systems that display exponential growth
of an observable known as out-of-time-correlator (OTOC) Section 1.3.1, analo-
gously to exponentially divergent trajectories in classical phase space. The other
definition is based on some of the Hamiltonian’s spectral properties, and their
relation to random matrices, as exposed in Section 1.3.2 which is significant for
understanding the late-time evolution of quantum systems and especially their
thermalization, in light of the Eigenstate Thermalization Hypothesis (ETH). The
natural time-scale associated with the two viewpoints distinguishes them, but also
provides a window on a unifying viewpoint [5]. We shall not pursue this question
directly, but for this thesis it is useful to know the underlying thoughts concepts
and concepts in more detail and we briefly review them here.

1.3.1. Exponential growth of OTOC

The defining feature of classically chaotic dynamics is the exponential sensitivity
of the system on the initial conditions. Namely, an infinitesimal change in δqj(0)
can result in exponentially diverging trajectories (1.12), known as the butterfly
effect. For a Hamiltonian systems, where dynamics is encoded in Poisson brackets,
this is defined by:

|{qi(t), pj(0)}c| =
∣∣∣∣∣ ∂qi(t)
∂qj(0)

∣∣∣∣∣ ≈
∣∣∣∣∣ δqi(t)
δqj(0)

∣∣∣∣∣ ∼ eλt (1.12)

The rate of exponential growth is determined by the Lyapunov coefficient λ, which
is a property of the system. Going to quantum systems, this Poisson bracket
can be generalized to a commutator to construct an observable C(t) such that
it captures the early time chaotic behavior from the correlations between two
reasonably local Hermitian operators V and W , on which one has a free choice as
long as they’re not conserved charges and are simple [24].

C(t) =− Tr
(
ρ1/2[V (t),W (0)]ρ1/2[V (t),W (0)]

)
=

=2 Tr
(
V (t)ρ1/2V (t)Wρ1/2W

)
−OTOC

(
t− iβ

4

)
−OTOC

(
t+ iβ

4

)
(1.13a)

OTOC (t) = Tr
(
ρ1/4V (t)ρ1/4Wρ1/4V (t)ρ1/2W

)
(1.13b)

Here ρ is the thermal density matrix of the system. To avoid confusion with
quantum interference, one has squared the amplitude [24] and obtains an esti-
mator of the effect an initial perturbation W (0) has on a measurement of V (t)
at a time t. The choice of the particular regularization (ρ1/4 =

(
e−βH/Z

)1/4)
in the OTOC(t) was initially proposed on the basis of hermiticity [25], and later
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1.3. Quantum Chaos “Quantum chaology”

was proven to have an even more profound reasoning as it most closely reflects
physical microscopic chaos [26]. In systems with a small parameter ϵ ≪ 1, the
communtator-squared C(t) ∼ ϵ2e2λt will have exponential growth in time with
an exponent λ, which is usually used as an indication of chaotic behavior. In
known systems ϵ = ℏ or ϵ = 1/N with N the number of (field theory) degrees of
freedom. Different from classical physics, this exponential growth continues up
until the scrambling time t∗ ∼ β log 1/ϵ, It was shown in [25] that, under some
physically motivated assumptions, the rate at which a given system can scramble
information is bounded from above:

λ ≤ 2πkB

ℏβ
. (1.14)

Systems that saturate this bound are known as “fast scramblers” and the Sachdev-
Ye-Kitaev model, which we shall review shortly, is one of them and is the main
protagonist of this thesis.

1.3.2. Spectral Chaos

The other definition of quantum chaos is inspired by similarities between the spec-
tral properties of Random Matrices (RM) and certain Hamiltonians. We know
that for large classical systems the exact knowledge of the position and momentum
of each degree of freedom, even if theoretically possible, is practically intractable
so we study those systems using statistical mechanics. Similarly, for quantum
systems, where the Hilbert space scales exponentially with the degrees of free-
dom, the exact determination of each eigenstate and corresponding eigenvalue is
unfeasible, and of limited usefulness, hence one studies their statistical proper-
ties. The origins of this idea are in Wigner’s research on large nuclei, and then
it advanced into one of the most useful approaches in understanding many-body
quantum systems. This development was substantiated by the fact that in the
middle of the spectrum, spectral properties (e.g. nearest neighbor spacing, spec-
tral form factor) of many-body Hamiltonians effectively resemble those of random
matrices. To better understand this line of reasoning, we introduce some relevant
concepts of Random Matrix Theory (RMT) [27, 28, 4] and will comment on how
they relate to chaotic quantum systems.

We are interested in square N ×N matrices H drawn from a probability distribu-
tion function P (H). Broadly speaking, there are three different Gaussian ensem-
bles based on the invariance properties of the probability (1.15a). One of them
is the Gaussian Orthogonal Ensemble (GOE), named due to its invariance under
orthogonal transformation, which samples real matrices and is used for modeling
Hamiltonians with time-reversal symmetry. Next is the Gaussian Unitary En-
semble (GUE) which samples Hermitian matrices that can represent a generic
Hamiltonian without time reversal or rotational symmetry. The third class is the
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1. Introduction

Gaussian symplectic ensemble (GSE) which is useful for studying Hamiltonians
with time-reversal symmetry but broken rotational symmetry. Each of the Gaus-
sian ensembles (1.15b) is denoted by their Dyson index β = 1, β = 2, and β = 4
respectively [29, 30, 31], which counts the number of real degrees of freedom per
matrix element.

P (H)dH = P (H′)dH′ ; H′ =W−1HW (1.15a)

Pβ(H) = 1
Zβ

exp
{
−βN4 TrH2

}
(1.15b)

Where Zβ is an ensemble-dependent normalization constant. Using the Gaussian
PDFs (1.15b) one can derive the joint probability distribution of the eigenvalues
{λ} = {λ1, λ2 . . . λN}:

Pβ({λ}) = 1
Zβ

exp

−βN4 ∑
i

λ2
i + β

∑
i<j

log
∣∣λi − λj

∣∣, (1.16)

which is a useful object for studying their spectral properties. We note here that
the logarithmic term acts as a repulsive potential between two eigenstates, effec-
tively preventing coincident eigenstates which is the mathematical explanation
behind the famous level repulsion in quantum mechanics. Integrating (1.16) over
all but one eigenvalue the density of states can be derived [27], which in the limit
N →∞ simplifies to the Wigner semicircle distribution:

ρ(λ) = lim
N→∞

∫
P (λ, λ2, . . . λN )

N∏
i=2

dλi =


1
π

√
1− λ2 |λ| ≤ 1

0 |λ| > 1
. (1.17)

Another important spectral property is the distribution of the normalized level
spacing between two adjacent eigenstates s = (λn − λn−1)/⟨s⟩, where ⟨s⟩ =
⟨λn−λn−1⟩. In the limit N →∞ its probability distribution — first surmised by
Wigner — can be analytically computed [32].

Pβ(s) =



π

2 se
− s2π

4 β = 1
32
π2 s

2e− s24
π β = 2

218

36π3 s
4e− s264

9π β = 4

(1.18)

The turnover between the polynomial rise at low s and the exponential decay
at large s shows the level repulsion between states whose eigenvalues are closer
together than the average.
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1.3. Quantum Chaos “Quantum chaology”

As mentioned before, large nuclei were the initial testing ground for the RMT ap-
plicability of to quantum many-body systems, however, the connection between
random matrix theory and quantum chaos was made by Bohigas, Giannoni and
Schmidt [33]. Studying the spectrum of a quantum particle in a Sinai billiard
potential, they discovered that in the semi-classical limit, the nearest neighbor
statistics match the GOE (β = 1) Wigner surmise . This observation led them
to conjecture that this is more general: the nearest neighbor statistics of quan-
tum systems with a classically chaotic counterpart can be described with RMT.
Afterward, this conjecture has also been used the other way around, namely as
a diagnosis of quantum chaos even for systems that don’t have good classical
analogs, like quantum chains, and lattice fermions [34, 35]. The corollary of this
conjecture was made by Berry and Tabor, who observed that in quantum sys-
tems that are non-chaotic in the classical limit the statistic of s exhibits Poisson
statistics instead of Wigner-Dyson statistics [36]. 3

It is this connection between chaos and RMT that underlies the novel quantum
mechanism of eigenstate thermalization. When talking about quantum thermal-
ization, we specifically refer to the thermalization of observables. More precisely,
if we prepare a system, with a Hamiltonian Ĥ, in a nonstationary state |ψ⟩, with
well-defined mean energy ⟨ψ| Ĥ |ψ⟩ = E, an observable Ô =

∑
i Oi |i⟩⟨i| thermal-

izes if, under the time evolution of the system, it relaxes to the microcanonical
expectation value:

lim
t→∞

〈
ψ(t)

∣∣ Ô ∣∣ψ(t)
〉

=
∑

n∈{E−∆E,E+∆E}

⟨n| Ô |n⟩ = ⟨Ô⟩microcan.,E , (1.19)

and remains close to it, meaning temporal fluctuations around the microcanonical
value are negligible. If the quantum system is isolated and evolves unitarily
with Hamiltonian Ĥ, the puzzle is how to square this expectation with the exact
expression in terms of energy eigenstates

∣∣ψ(0)
〉

=
∑

n cn|n⟩.〈
ψ(t)

∣∣ Ô ∣∣ψ(t)
〉

=
∑

n

|cn|2Onn +
∑
n ̸=m

c∗
mcne

i(Em−En)tOmn (1.20)

For an arbitrary quantum system, there is no real reason to expect the second
term to be small. If the Hamiltonian is a random matrix, however, its eigenstates
are practically random orthogonal vectors in any arbitrary basis (⟨m|i⟩ ⟨j|n⟩ =
δmnδij1/d) [38], where the overline denotes averaging over the random eigenstates
|n⟩ and |m⟩, and d is the dimension of the Hilbert space. In this case, the off-

3Neither the Bohigas-Gianonni-Schmidt nor the Berry-Tabor conjecture are strictly true.
Counterexamples are known to both, see the previous sentence and [37, 4].
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1. Introduction

diagonal terms disappear Omn = 0, the diagonal ones are state-independent:

Onn =
∑

i

Oi⟨n|i⟩ ⟨i|n⟩ = 1
d

∑
i

Oi ≡ O, (1.21)

O2
nn =

∑
ij

OiOj ⟨i|j⟩ ⟨n|i⟩ ⟨j|n⟩ =
∑

i

O2
i ⟨n|i⟩ ⟨i|n⟩ = 1

d

∑
i

O2
i ≡ O2, (1.22)

and each of the fluctuations is suppressed by the dimension of the Hilbert space
[4]. From those results, one can deduce the form of the matrix elements in the
basis of a random Hamiltonian, to a leading order in 1/d, and such that they not
only capture the average value but the fluctuations too:

ORMT
mn ≈ Ōδmn +

√
O2

d
Rmn. (1.23)

More precisely, the fluctuations are encoded in the second term where Rmn is a
zero mean and unit variance random variable that depends on the ensemble of
the random matrix.

The natural suppression of the variance in an RMT inspired the idea that the
evolution of an isolated quantum system can mimic thermalization. Of course,
in real systems, we know that the Hamiltonian has more structure compared to
a random matrix, hence the diagonal and off-diagonal elements have to contain
information on the energy of the system and the relaxation time. The generaliza-
tion of RMT, needed to describe real physical systems, was suggested by Deutsch
[2] and Srednicki [3] and is known as the Eigenstate Thermalization Hypothesis
(ETH):

Omn = O(E)δmn + e− S(E)
2 fO(E,ω)Rmn . (1.24)

Here E = (Em + En)/2 and ω = En − Em are the average energy and energy
difference between the two energy levels, S(E) is the thermodynamic entropy and
Rmn a random number, same as before. The important difference with RMT
is that the diagonal term in ETH is equal to the expectation value in the mi-
crocanonical ensemble at energy E, the entropy S(E) also has the appropriate
energy dependence and is not just the dimension of the Hilbert space, and a final
important requirement is that O(E) and fO(E,ω) are smooth functions of their
arguments.

Due to the exponential growth of the Hilbert space with the number of degrees
of freedom, many quantum systems in isolation have a regime where they exhibit
ETH as the physics of their very large N -body Hamiltonian becomes closer and
closer to a random one [4]. This mathematical exponential growth is the reflection
of the physically new quantum feature of entanglement. In these settings the
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1.4. Theoretical Models

scrambling and information loss driving thermalization is therefore of a physically
different origin than classical chaos, even though in the abstract it still resides in
the impracticality of tracing every bit of information with infinite precision.

1.4. Theoretical Models

We present a brief overview of the theoretical models studied in this thesis. One
of the main models we shall use in this thesis to study the dynamics of relaxation
and thermalization in an isolated quantum system is the Sachdev Ye Kitaev model
(SYK) [39, 40]. This is a strongly interacting quantum mechanical system of N
Majorana fermions with all-to-all random couplings. which is exactly solvable
in the IR limit when N → ∞. The strongly coupled IR fixed point has an
emergent reparametrization symmetry where the effective dynamic is described by
the Schwarzian action. The SYK model can be argued to be the ideal (solvable)
representative of many-body quantum systems. It displays maximally chaotic
behavior, as defined in Section 1.3.1, with an exponentially growing OTOC and
a Lyapunov coefficient that, in the deep IR, saturates the bound (1.14), but at
its heart it also obeys ETH [41]. These properties are precisely what makes the
SYK an interesting playground for studying quantum chaos, quantum gravity and
information scrambling. Moreover, as we will briefly describe for completeness
in Section 1.5, these properties are also typical for 2D dilaton gravities which
describe the near horizon physics of extremal black hole [42, 43, 44]. And a
version of SYK built on charged Dirac fermions instead of Majoranas [45, 46,
47] has proved to be a useful toy model for studying strange metals and high-
temperature superconductivity [19, 48].

The other model we shall study is the Transverse Field Ising model (TI), which
is a set of Pauli matrices on a 1D chain, a well-known model in the study of
quantum thermalization [49, 50]. On one hand, it is also solvable: using the
Jordan-Wigner (1.46) and Bogoliubov (1.51) transformations can be shown it
is equivalent to free fermions (1.52) (Section 1.4.2). On the other hand, it is
representative of systems with a second-order quantum phase transition. The
quantum phase transition occurs for an infinite chain at zero temperature T = 0
when the transverse magnetic field equals the hopping strength hx = J . At this
quantum critical point, the system becomes strongly entangled and it has distinct
dynamics even at finite temperatures and finite system sizes.

The last considered model is a generalization of the TI known as the Mixed Field
Ising (MFI) Section (1.4.3), a fruitful playground for, among others, studying
quantum thermalization, quantum chaos and information scrambling [51, 52, 53,
54]. Its usefulness comes from the ability, simply by tuning its parameters, to
describe different phenomena which range from quantum criticality, through a
phase with quantum chaotic level statistics, all the way to a classical Ising model.

11



1. Introduction

This will prove very useful in understanding possible differences between classical
and quantum thermalization in Chapter 3.

1.4.1. SYK

The Sachdev-Ye-Kitaev model (SYK) is a quantum mechanical model of N all-to-
all interacting fermions with random independent couplings drawn from a Gaus-
sian distribution with zero mean and standard deviation. The latter sets the
energy scale of the model. There are two main types of SYK models, based on
the type of fermions. One is the Majorana SYK (mSYK), where the fermions
are Majorana fields {ψi, ψj} = δij , which is usually used for studying fast scram-
blers, quantum chaos, and black holes through its duality with 2D dilaton gravity.
As we shall see, it is the model where energy dynamics alone dominates. The
other type is the complex SYK (cSYK) whose constituents are charged Dirac
fermions {c†

i , cj} = δij . This type of model includes a conserved U(1)-current
naturally used for studying phenomena in strongly correlated electron systems.
The usefulness of either type of SYK model lies in the formal solvability of its
Schwinger-Dyson equations —i.e. the full quantum evolution equations — in the
large N -limit. Here we briefly review the derivation of these Schwinger-Dyson
equations and its solution for the mSYK, directly from the disorder-averaged par-
tition function. The same result can be obtained by diagrammatic expansion, for
which we refer the reader to [55, 56].

We start from the path integral representation of SYK partition function [57]:

Zm =
∫
D[ψ] exp

i
∫
dt

 i

2
∑

j

ψj∂tψj +
N∑

j1,j2,j3,j4=1
Jj1j2j3j4ψj1ψj2ψj3ψj4

 ,

(1.25)

A key part of the SYK model is that the couplings are independent random
variables drawn from a Gaussian distribution (1.26) :

P (J) = 1
σJ

√
2π

exp
{
− 1

2σ2
J

∑
j1<j2···<j4

J2
j1j2j3j4

}}
; σJ = 3!J2

N3 , (1.26a)

⟨Jj1j2j3j4⟩J ≡
∫
DJJj1j2j3j4P (J) = 0 ; ⟨Jj1j2j3j4Jj′

1j′
2j′

3j′
4
⟩J = σ2δj1j′

1
δj2j′

2
δj3j′

3
δj4j′

4
,

(1.26b)

The physical observables are defined to be the ones that follow after averaging
over the ensemble of different couplings (quenched disorder) Formally this has to
be done through the replica trick, but for replica diagonal solutions which are the

12



1.4. Theoretical Models

ones of interest4, one can just naively include the averaging in the path-integral
directly

⟨Zm⟩SYK =
∫
DJP (J)

∫
D[ψ] exp

{
i

∫
dtSm

}
(1.27)

= K ′
∫
D[ψ] exp

{
i

∫
dt

(
i

2
∑

j

ψj∂tψj+ (1.28)

+ i
σ2

J

2 · 4!

∫
dt

∫
dt′

N∑
j1,j2,j3,j4=1

ψj1ψ
′
j1
ψj2ψ

′
j2
ψj3ψ

′
j3
ψj4ψ

′
j4

)}
(1.29)

where ψ′ ≡ ψ(t′). One introduces the bilinear field

G̃(t, t′) = − i

N

N∑
i

ψi(t)ψi(t′) (1.30)

through a Lagrange multiplier Σ(t, t′) (1.32), that imposes this identity

1 =
∫
DG̃

∫
DΣ̃ exp

i2N2
∫
dt

∫
dt′Σ̃(t, t′)

G̃(t′, t) + i

N

N∑
i

ψi(t′)ψi(t)


(1.31)

Inserting this identity into the path integral and after integrating out the Ma-
jorana fields, one can write the dynamics of the model in terms of the bilinear
fields:

⟨Zm⟩SYK =
∫
DG̃

∫
DΣ̃ exp

{
− N

2

[
− Tr log

(
−i(i∂tδtt′ − Σ̃(t, t′))

)
+ (1.32)

+
∫
dt

∫
dt′
(

Σ̃(t, t′) + J2

4 G̃3(t′, t)
)
G̃(t′, t)

]}
. (1.33)

Upon using the redefinition σ2
J = 3!J2/N3, we notice that in the limit N ≫ 1,

1/N is a small parameter, analogously to ℏ, and the path integral is dominated
by the saddle point solution. This can be obtained by varying the action with
respect to G̃ and Σ̃:

δS[G̃, Σ̃]
δΣ̃(t, t′)

= 0 ⇒ Σ(t, t′) = i∂tδtt′ −G−1(t, t′) (1.34a)

δS[G̃, Σ̃]
δG̃(t′, t)

= 0 ⇒ Σ(t, t′) = −σ
2
JN

3

3! G3(t′, t) (1.34b)

4See [58, 59] for a discussion of replica symmetry breaking in SYK models.
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We adopted the notation from [55] where the tilded expressions G̃ and Σ̃ label
the dynamic fields whereas G, Σ without tildes are the classical solutions of the
Schwinger-Dyson equations (1.34) These Schwinger-Dyson equations — or when
computed on the doubled time Schwinger-Keldysh contour the Kadanoff-Baym
equations, can be solved numerically to study non-equilibrium dynamics in an
SYK system [57] as we shall do in Chapter 5. The equilibrium properties, however,
can be solved analytically at low temperatures, which are where the power of the
SYK model lies. Wick rotating the SD equations to periodic Euclidean time
t = −iτ = −i(τ + β), the first term on the RHS of (1.34a) can be neglected at
low temperatures βJ ≫ 1 equivalent to the strong coupling regime. This leads to
an emergent time reparametrization symmetry τ → f(τ), ∂τf(τ) > 0:

G(τ, τ ′)→[∂τf(τ)∂′
τf(τ ′)]∆G(f(τ), f(τ ′)), (1.35a)

Σ(τ, τ ′)→[∂τf(τ)∂′
τf(τ ′)]3∆Σ(f(τ), f(τ ′)). (1.35b)

This indicates that in the deep IR the fermions develop an anomalous conformal
dimension ∆ = 1

4 which yields a scaling solution at zero temperature β →∞:

Gc(τ) = 1
(4π)1/4

sgn (τ)
|Jτ |2∆ . (1.36)

The conformal propagator at inverse temperature β can be promptly obtained
from the reparametrization τ → tan πτ

β and the symmetry transformation
(1.35a):

Gβ
c (τ) = π1/4

√
2βJ

sgn
(

sin πτ
β

)
| sin πτ

β |2∆ , τ ∈
[
−β/2, β/2

)
(1.37)

It is important to note here that these solutions spontaneously break the emer-
gent reparametrization symmetry (1.35a) down to the SL(2,R) group. This is
because the scaling solutions (1.37), are invariant only under the reparametriza-
tion τ → aτ+b

cτ+d where ad − bc = 1. Additionally, the full reparametrization sym-
metry is also explicitly broken by i∂τδτ,τ ′ , which cannot be neglected once we
move away from the deep IR. For this reason, the reparametrization modes are
pseudo-Nambu-Goldstone bosons (also known as ”soft-mode”) with dynamics ap-
proximately described by the Schwarzian action:

SSch = −N C

J

∫
dτSch[f, τ ] ; Sch[f, τ ] =

(
f ′′′

f ′ −
3
2

(
f ′′

f ′

)2
)

(1.38)

In a similar fashion, the leading contributions (∼ 1/N) to the (Euclidean time-
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ordered) four-point function (1.39) can also be determined.

F(τ1, τ2, τ3, τ4) = 1
N2

N∑
ij

⟨T ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4)⟩ −G(τ1, τ2)G(τ3, τ4)

(1.39)

We won’t go into the details of this computation but encourage the reader to study
this beautiful derivation in [55]. However, we note that the OTOC of the SYK
can be computed from the four-point function (1.39), by analytically continuing
to Lorentzian time, and behaves as

OTOC(t) ≈G(β/2)G(β/2) + F(β4 + it,−β4 + it, 0,−β2 )

=
√
π

2βJ

(
1− CβJ

N
eκt

)
, β ≪ t≪ β log N

βJ

(1.40)

This expression is valid in the range of small but non-zero temperatures N
J ≫ β ≫ 1

J

( J
N ≪ T ≪ J) where F has two leading contributions, one coming from exci-

tations of the soft-mode, as described by the Schwarzian action (1.38), and the
other is related to fluctuations around the conformal action. One not only sees
the exponential growth characterized by the Lyapunov coefficient:

κ ≈ 2π
β

(1−# 1
βJ

), (1.41)

it is also immediately obvious that in the IR (βJ → ∞) the SYK saturates the
maximal chaos bound (1.14) and is a “fast scrambler”.

1.4.2. Transverse Field Ising Chain

The one-dimensional transverse field Ising model (TI) consists of N spins acted
on by Pauli operators σ̂x

i ≡ X̂i and σ̂z
i ≡ Ẑi residing on each site i; see Appendix

4.C.3.5 The dynamics of the model is given by the TI Hamiltonian:

HTI = −J
N∑

i=1
ẐiẐi+1 − hx

N∑
i=1

X̂i, (1.42)

where J > 0 is a dimensionful nearest-neighbor interaction constant, and hx is
the strength of the transverse field. In this thesis, the microscopic scale, set by
the interaction constant, is fixed J = 1, Consequently, the ground state of the
TI Hamiltonian depends only on hx, which is used to tune the system across the
quantum critical point at hx = 1.

5There are many reviews; we shall use [50].
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Let us first consider the phase with dominant nearest-neighbor interaction hx < 1.
At the extreme case of hx = 0, the Hamiltonian is diagonalized by the eigenstates
of Ẑi (Ẑi |↑⟩i = |↑⟩i and Ẑi |↓⟩i = − |↓⟩i). Due to the exact Z2 symmetry of HTI
(Zi → −Zi, Xi → Xi) the ground state is degenerate with all spins either up or
down:

|↑⟩ =
N∏
i

|↑⟩i ; |↓⟩ =
N∏
i

|↓⟩i ≡
N∏
i

X̂i |↑⟩ . (1.43)

Systems with small fields hx ≪ 1 have a ground-state (labeled here as
∣∣0f

〉
)

with a small fraction of spins aligned in the opposite direction, but the global
Z2 symmetry preserves the degeneracy for any small hx.6 This symmetry is
thus spontaneously broken and the normalized order parameter m̂ = 1

N

∑N
i Ẑi

is non-vanishing:
〈
0f

∣∣m̂ ∣∣0f

〉
∼ ±1. Hence this phase is known as the ordered

(ferromagnetic) phase.

The other limit of the model is at large fields hx ≫ 1 with ground state
∣∣0p

〉
that,

to leading order in 1/hx, is given by the eigenstate of X̂i with positive eigenvalue
(X̂i |→⟩i = |→⟩i, and X̂i |→⟩i = − |→⟩i):

∣∣0p

〉
=

N∏
i

|→⟩i , (1.44)

|→⟩i = 1√
2
(
|↑⟩i + |↓⟩i

)
; |←⟩i = 1√

2
(
|↑⟩i − |↓⟩i

)
(1.45)

In this phase, the symmetry remains unbroken and the order parameter vanishes〈
0p

∣∣m̂ ∣∣0p

〉
∼ 0, so this is the disordered (paramagnetic) phase.

The usefulness of the TI model results from the observation that it can also be
exactly solved by finding a basis in which the Hamiltonian is diagonal [50, 60].
Firstly, using the Jordan-Wigner transformation and the ladder operators (σ̂±),
defined in Appendix 4.C.3, one can transform the spin- 1

2 operators to spinless
fermions:

ci =

∏
j<i

Ẑj

 σ̂+
i ; c†

i =

∏
j<i

Ẑj

 σ̂−
i (1.46)

{ĉi, ĉ
†
j} = δij , {ĉi, ĉj} = {ĉ†

i , ĉ
†
j} = 0, (1.47)

6The global Z2 symmetry may be broken by boundary conditions, but we shall not consider
that here.
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1.4. Theoretical Models

which, upon rotation of the spin axis by 90◦, constitute a basis in which the TI
Hamiltonian (1.42) reads

HT I = −J
N∑
i

(
ĉ†

i ĉi+1 + ĉ†
i+1ĉi + ĉi+1ĉi + ĉ†

i ĉ
†
i+1 − 2hx

J
ĉ†

i ĉi

)
. (1.48)

This form of the TI Hamiltonian does not have a conserved fermion number, due
to the ĉi+1ĉi and ĉ†

i ĉ
†
i+1 terms. However, it is quadratic in operators suggesting

it can be diagonalized. Indeed, the Fourier transformation:

ĉk = 1√
N

N∑
i

ĉje
−ikaj , (1.49)

brings the Hamiltonian (1.48) to :

HT I = J

N∑
k

(
2
(
hx

J
− cos(ka)

)
ĉ†

k ĉk + i sin(ka)
(
ĉ−k ĉk + ĉ†

−k ĉ
†
k

)
− hx

J

)
.

(1.50)

From here, one can use the Bogoliubov transformation (1.51):

γk = ukck − ivkc
†
−k, (1.51a)

uk = cos
(
θk

2

)
, vk = sin

(
θk

2

)
; tan θk = sin(ka)

cos(ka)− hx

J

, (1.51b)

u2
k + v2

k = 1, u−k = uk, v−k = −vk, uk, vk ∈ R, (1.51c)

which map the ĉ(†)
i operators to a new set of fermions (γk) that satisfy the cannon-

ical fermionic relations {γ̂k, γ̂
†
k′} = δkk′ , {γ̂k, γ̂

′
k} = {γ̂†

k, γ̂
′†
k } = 0. In this basis,

the Hamiltonian has a conserved fermionic number and is manifestly solvable,
since it represents a set of N free fermions with dispersion relation εk:

HTI =
N∑
k

εk

(
γ̂kγ̂k −

1
2

)
(1.52)

εk = 2J
√

1 + h2
x

J2 − 2hx

J
cos(k) . (1.53)

1.4.3. Mixed Field Ising Chain

The Mixed Field Ising model (MFI) is a simple generalization of the Transverse
Field Ising model with dynamics is governed by the following Hamiltonian:

HMFI = −J
N∑

i=1
ẐiẐi+1 − hx

N∑
i=1

X̂i − hz

N∑
i=1

Ẑi. (1.54)
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This model has a few different manifestations, dependent on the point in the
parameter space (hx, hz), which make it a rich playground for the theoretical
testing of new hypotheses. For hz = 0 this model reduces to the TI model (1.4.2),
and for hx = 0 reduces to the regular Ising model. We used the latter in Chapter
3 as a representative case of classical systems. The prominence of this model is
that it is an archetype of quantum-chaotic behavior. At a particular point in the
parameter space hx = −1.05 and hz = 0.5 it has the RMT-like spectral statistics
[61]. Even though this point is not an isolated instance of chaotic behavior,
sometimes it is referred to as ”strong-chaoticity” [52], since, by varying (hx, hz),
the spectral statistics of the model continuously transform between Wigner-Dyson
distribution at hx = −1.05 and hz = 0.5 and Poisson distribution at an integrable
point hx = 0 or hz = 0 in the parameter space. This smooth interpolation between
chaotic and integrable regimes is what makes this model particularly convenient
as a theoretical toy model.

1.5. Holographic duality

Though holographic duality itself is not part of the research presented in this
thesis, the studies using holography to understand the dynamics of quantum black
holes through its duality with non-gravitational quantum systems did provide a
large motivating factor. For that reason we do briefly review it here.

The specific version of holography of relevance is the conjectured holographic du-
ality of the SYK model with a 2D anti-de-Sitter (AdS) dilaton gravity [40, 55].
Below we outline how these pure two-dimensional dilaton gravities are described
by the same Schwarzian action Eq.(1.38) in the IR limit and thus also exhibit
maximal chaotic behavior with the Lyapunov coefficient saturating the bound
Although it is much more difficult to find a gravitational theory and prove their
duality in the full RG flow, the equivalence in the IR behavior of both theories
has been an encouraging aspect in the quest for understanding their connection.
There has been vast excitement around this duality because, for the first time,
we have an exactly solvable field theory that can probe the realms of quantum
gravity. Moreover, the far-reaching impact is far reaching since, as we’ll demon-
strate below, these 2D gravities appear as a universal behavior in the near-horizon
limit of extremal black holes. Using an extension of this universal sector of the
duality with the newly developed double-holographic paradigm [62, 63, 64, 65],
that studies dualities between 1D field theories and 2D gravity with matter that’s
then dual to a 3D gravity, results from the SYK model have proven useful in
understanding the process of black hole evaporation while preserving unitarity
of the underlying physical process. In particular for the first time a tractable
computation was able to reproduce the Page curve describing the evolution of
the entanglement entropy between the black hole and its Hawking radiation. The
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holographically dual description of this process in terms of the SYK physics is
that of quenched cooling, and this is what motivated us to study the latter.7

First, we introduce pure AdS2 in Euclidean signature and with radius set to unity.
The particular choice of signature is useful for latter consideration of correlation
functions in the dual boundary theory. In the Euclidean case, AdS2 is simply a
hyperbolic disk that is fully covered by both Poincaré:

ds2 = dt2 + dz2

z2 , (1.55)

and Rindler coordinates:

ds2 = dρ2 + sinh2 ρdφ2. (1.56)

In order to regularize the infinite volume of this space one cuts off the AdS2 space
along some curve (t(τ), z(τ)) close to the boundary, with a local affine parameter
(the “time” on this boundary curve) in the interval τ ∈ [0, β). The physical length
of this boundary curve goes to infinity in the limit ϵ→ 0 :

dsb =
√
ds2

dτ2 dτ =
√
dt′2 + dz′2

z2 = dτ

ϵ
.

∫
dsb =

∫ β

0

dτ

ϵ
= dβ

ϵ
, (1.57)

Due to the isometry of Euclidean AdS2, curves with the following SL(2,R)/Z2
reparametrisation describe the same geometry.

t̃(τ) = at(τ) + b

ct(τ) + d
; ad− bc = 1, a, b, c, d ∈ R (1.58)

Already here we notice the first possible hint of a duality with SYK as the dy-
namics in the AdS2 space with cutoff is captured by a one-dimensional curve t(τ)
with the same symmetry as the IR limit of the SYK model in Section 1.4.1.

In the same way that the full SYK model starts with weakly interacting fermions
in the IR that flow to the strongly interacting theory in the IR, it is also useful
to start from a full model defined in the UV on the holographic side. This UV
will clearly not be the same UV as the SYK model, but it will serve as an anchor
for studying the resulting AdS2 IR. We will use electromagnetically charged AdS4
Reissner-Nordström black holes to demonstrate how AdS2 appears. These AdS4
RN black holes are described by the metric

ds2 = (r − r+)(r − r−)
r2 dt2 + r2

(r − r+)(r − r−)dr
2 + r2dΩ2 (1.59a)

r± = lpQ+ l2pE ±
√

2l3pQE + l4pE
2 ; Frt = Q

r2 , (1.59b)

7In earlier papers this was called evaporative cooling. However, the actual process is prompted
by an instantaneous change and hence a quench in the language of non-equilibrium physics.
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where lP =
√
G is the Planck length, M and Q are the mass and charge of the

black hole and r± the two horizons that coincide at extremality E = 0. The
near-horizon geometry is obtained by taking r → r+, lP → 0 while keeping the
variable z constant:

z = Q2l2P
r − r+

. (1.60)

Expressing the the RN metric (1.59) in the new coordinate z (1.60), the near-
horizon geometry of extremal black holes factorizes into an AdS2 and a 2D
sphere:

ds2 ≈ Q2l2P

(
−dt2 + dz2

z2 + dΩ2

)
. (1.61)

While this is the ground state of the extremal RN black hole, excitations above
it are described by two-dimensional dilaton gravities, Φ being the dilaton field.
This follows from its derivation from the Einstein-Hilbert action:

I = − 1
16πl2P

∫
dx4√−g

(
Rg −

l2P
4 FµνF

µν

)
, (1.62)

and focusing only on static, spherically symmetric field configurations [42, 66, 56]
of the form:

ds2 = hij(r, t)dxidxj + Φ2(r, t)dΩ2. (1.63)

One obtains, after reduction over the two-sphere, an effective 2D theory:

I = − 1
4l2P

∫
dx2√−h

(
Φ2Rh + 2(∇Φ)2 + 2− 2Q2l2P

Φ2

)
. (1.64)

This is a special case of a class of 2D dilaton gravity models with an arbitrary
scalar potential U , studied extensively in [42].

I = 1
16πGN

∫
dx2√−h

(
Φ2Rh + λ(∇Φ)2 − U

(
Φ2
))

. (1.65)

Returning to the specific model (1.64), one can remove the dilaton kinetic term
with a Weyl transformation [42]:

I = − 1
4l2P

∫
dx2√−h

(
Φ2Rh + 2− 2Q2l2P

Φ2

)
. (1.66)
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and readily obtain the saddle point solution,

δΦI|ϕ0 = 0⇒ Rh = −2Q
2l2P
ϕ4

0
(1.67)

which is an AdS2-like space with radius L = ϕ2
0/(|Q|lP ). The remaining variation

δhijIhij,0 = 0 has the AdS4 RN black hole as solution but also just the near-horizon
AdS2 limit of the extremal RN black hole (1.61), in which case Φ(x, r) = ϕ0.

Without proof we will state that the fluctuations around this solution with non-
trivial dependency on the coordinates on the two-sphere are all energetically costly
and the low lying excitations are given by small fluctuations of the dilaton field
around its AdS2 saddle point:

Φ2 = ϕ2
0 + ϕ(x0, x1), ϕ(x0, x1)≪ ϕ2

0. (1.68)

Substituting this ansatz in (1.66) and expanding to second order in ϕ/ϕ2
0 the

following action is obtained:

I ≈− 1
2l2P

∫
dx2√−h− Φ2

0
4l2P

[∫
dx2√−h

(
Rh + 2

L2

)
+ 2

∫
∂AdS

K

]

− 1
4l2P

[∫
dx2√−hϕ

(
Rh + 2

L2

)
+ 2

∫
∂AdS

ϕbK

]
, (1.69)

where we have restored the proper AdS2 boundary terms proportional to trace of
the extrinsic curvature K [66]. In this action, the first term is proportional to the
volume of the AdS2 space, the second represents the ordinary 2D Einstein gravity,
and the last one (1.70), known as the Jackiw-Teitelboim (JT) gravity [67, 68], is
the subject of our interest since it gives rise to a non-trivial dynamics.

IJT = − 1
4l2P

[∫
dx2√−hϕ

(
Rh + 2

L2

)
+ 2

∫
∂AdS

ϕbK

]
, (1.70)

If one derives the equation of motion for the dilaton ϕ, with a boundary condition
given by ϕb, the bulk term in the JT gravity manifestly sets the spacetime to an
(asymptotically) AdS2 with constant scalar curvature Rh = −2. When we restrict
the analysis to a nearly-AdS geometry the last term encodes the dynamics of the
cutoff curve (t(τ), z(τ)), which after proper treatment of the arising infinities [69,
43, 55] is described by the Schwarzian action to leading order in ϵ:

Ib ≈ −
ϕr

8πG

∫ β

0
dτSch[t(τ), τ ], (1.71)
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where ϕr(τ) is renormalized boundary dilaton (ϕr(τ)/ϵ ≈ ϕb). The Schwarzian
action is obtained under the assumption that the dilaton is constant at the bound-
ary ϕr(τ) = ϕr, a more detailed treatment, leading to the same result, can be
found in [56, 66] and citations therein. With the knowledge that the dynamics of
the cutoff modes in fact comprise the full low energy, this proves the duality with
the IR action of the reparametrization modes in the SYK (1.38): they are both
described by the Schwarzian action. It is a beautiful example of IR universality
in that the two wildly differing UVs flow to the same fixed point in the IR.

At last, to establish the connection in the chaotic behavior, the introduction of
matter fields ξ(t, z) is required on top of the empty dilaton gravity. We consider
a minimally coupled free theory in the cut-off AdS2 background,

Im = 1
2

∫
dx2√−h

[
∂aξ∂aξ +m2ξ2

]
. (1.72)

Its saddle point solution is completely determined by its boundary value ξr(t)
defined as

ξ(t, z) = z1−∆ξr(t) + · · · ; ∆ = 1
2 +

√
1
4 +m2. (1.73)

The AdS/CFT dictionary tells us that, in the dual field theory, there is an operator
V (τ) with conformal dimension ∆ that is conjugate to ξr(τ). Introducing a second
free field χ(t, z), with the same action (1.72), that is conjugate to another operator
W (τ) with the same conformal dimension ∆, one can show [70, 43] that the
leading behavior of the OTOC of those operators arises from the fluctuations of
the boundary shape and is given by:

OTOC(t) ≈
(
π

β

)2(
1− 2∆2 βG

ϕr
e

2πt
β

)
, β ≪ t≪ β log ϕr

βG
. (1.74)

From the exponential growth of the second term in (1.74) with a Lyapunov coef-
ficient λ = 2π/β that saturates the bound (1.14) we conclude that the 2D dilaton
gravity exhibits a maximally chaotic behavior that coincides with the SYK (1.13)
as it should.

1.6. Thesis outline

This thesis studies the non-equilibrium dynamics of composite quantum systems
following the quench described in the introduction at early times specifically. The
time scales of interest are well before the validity of ETH and even hydrodynam-
ics, so the analysis is based on the evolution of energy, the von Neumann and
relative entropies, as well as the information spread between different parts of
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the system. This was initially motivated by an observation in numerical simula-
tions of a peculiar early-time energy increase in the hotter of two quench-coupled
systems. This thesis not only provides a detailed explanation of this quantum
phenomenon but also explores how it can be used for experimentally measuring
quantum correlations, both as a feature for detecting a lab realization of an SYK
system as well as the implications it has on the formation of black holes. Those
results have been published in three different papers [71, 72, 73] plus one yet un-
published manuscript. Before elaborating on them we provided a brief overview
of each of the four chapters.

In the first Chapter 2, we introduce this paradoxical early time rise in energy
in the hotter of the two baths and the quantum thermodynamic approach to
studying post-quench dynamics. To understand the essence of this phenomenon,
without the interference of model-dependent peculiarities, we use the 1D free
fermion model as a case study. Conveniently, in the time regime of interest, we
obtain analytical expressions for the energy and for the von Neumann entropies,
which is an additional benefit of this model. In addition to the theoretical study,
we have suggested an experimentally realizable quench protocol that can measure
entanglement between two subsystems using the energy increase and its relation to
von Neumann entropy. In this quench, one starts with two originally independent
systems of free fermions A and B initially prepared in quantum thermal states at
temperatures TA and TB . At low temperatures, when quenched, the increasing
entanglement contribution to the von Neumann entropy is dominant over the
decreasing thermal one. As a consequence the von Neumann entropy of each
subsystem increases for a certain period after the subsystems are coupled. If
in this period one decouples the subsystems there is an energy transfer to the
system in the amount set by the von Neumann entropy accumulated during the
joint evolution of A and B. This energy transfer appears as work produced
by the quench to decouple the reservoirs. Once A and B are disconnected, the
information about their mutual correlations – von Neumann entropy – is stored in
the energy increment of each reservoir which allows a direct readout of quantum
correlations by measuring the energy of the subsystems. While this thesis doesn’t
cover the details on the feasibility of the experimental realization and subtleties
when the temperature of either subsystem approaches T → 0, interested readers
are advised to consult [71].

Next, in Chapter 3 we study the post-quench quantum dynamics of both strongly
correlated SYK systems and weakly correlated mixed field Ising chains. As previ-
ously mentioned, the quantum thermodynamic relations require exact knowledge
of the time evolution of energy and the von Neumann and relative entropies. For
those systems these cannot be obtained analytically, therefore, we resort to exact
diagonalization. While this approach is limited to finite sized systems, it allows us
to study their evolution at an arbitrary time-scale allowing us to distinguish two
qualitatively different behaviours. Namely, the early time polynomial increase of
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energy in both sub-systems is followed by a conventional classical-like evaporation
with the energy of the hotter/colder system exponentially decreasing/increasing.
At the transition time tm the energy of the hotter system peaks, a feature known
as the energy bump. We show that even in the quantum regime the origin of this
energy bump is not due to thermal flux from the hot to the cold, contrary to what
has been reported before [13]. Instead the early-time energy increase of the hotter
subsystem is not related to a temperature increase but results from the potential
energy gained by coupling the two systems. The size of the energy increase is set
by the entropy gain and lasts until correlations between the subsystems saturate.
When the systems of interests are SYK dots we have numerically found that the
energy bump appears regardless of the initial temperature difference, which isn’t
surprising, given the ultra quantum nature of this system.8 To answer the ques-
tion “Why we haven’t seen this phenomenon in everyday life?”, we use the MFI
model which has classical, integrable, chaotic and critical regimes. At the critical
point, same as with SYK, the energy bump always appears, but moving even
slightly away from criticality there is a distinct temperature Tc such that, when
the hotter system is initiated above TA > Tc, its energy decreases from the very
beginning in full agreement with our (classical) intuition. If MFI is tuned to the
classical regime this distinct temperature vanishes Tc = 0 and classical dynamics
is recovered at any initial configuration.

In order to better understand the numerical results for the SYK and MFI models
we analyze in Chapter 4 their properties with a perturbative time expansion of
each subsystem’s energy. We derive the coefficients up to the third order and
focus on situations where both subsystems are initialized in a thermal state. In
this case the first and third coefficients vanish and the second coefficient captures
the relation between the appearance of the early time energy increase in the
hotter subsystem and before-quench thermodynamic states. More precisely, the
bump appears whenever the second coefficient is larger than zero. Using this
approach we have shown that, for two quench-coupled SYKs, the existence of
the quantum regime isn’t conditioned on the temperature difference. since the
second coefficient of each subsystem depends only on its own parameters and
they’re always positive. Consequently, the early time energy increase will always
appear, as we’ve suspected from the numerical results. However, if the systems
under consideration are MFI models, the second coefficient has two competing
contributions. One is always positive, similar to the SYK case, and depends
only on the analyzed subsystem, whereas the other is negative and depends on
the initial parameters of both, hence, the bump persists as long as the former
term is dominant over the former. Both terms have the same magnitude at the
critical temperature Tc, after which the second term dominates resulting in the
bump disappearance, for any temperature T ≥ Tc. Here, using the perturbative

8This is intrinsically linked to the ANEC inequality when modeling evaporative black hole
formation with SYK dots [14, 15].
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analytical expressions, we were able to compute the critical temperature as a
function of quantities evaluated in the initial thermal state and prove it matches
with results obtained from numerical time evolution.

In the last Chapter 5 we study the post-quench dynamics, using the same proto-
col of coupling two initially independent subsystems, but now for charged SYKs.
Furthermore, the first hot system is a SYK4 dot, but unlike before, the second is a
much larger disordered Fermi liquid heat bath modeled by an SYK2 at zero tem-
perature and chemical potential. This project was motivated by efforts to engineer
an experimental realization of the SYK model and the fragility upon measurement
of the non-Fermi liquid SYK4 phase. By studying the time evolution of the SYK’s
spectral properties we demonstrated that, while the non-Fermi liquid phase even-
tually breaks under the influence of the bath, it is preserved right after the quench
and we were able to estimate the transition timescale, which matches with results
obtained from extrapolation of equilibrium studies. In early post-quench times,
before the non-FL/Fermi liquid transition, we discovered that the charged cur-
rent undergoes a power-law increase and reaches maximum before exponentially
relaxing, resembling the energy behavior analyzed in the three previous chap-
ters. The half-life of the current is inversely proportional to the coupling between
the system and the bath and it increases with temperature. Investigating this
temperature dependence of the half-life we have found that at low temperatures
its temperature dependence behaves as t1/2 ∼ T when the hot system is a non-
Fermi liquid SYK4 dot. However, when the hot system is a disordered regular
Fermi liquid SYK2 system, at the same chemical potential, the half-life scales
as t1/2 ∼ T 2. Based on this result, we proposed measuring the half-life of the
discharging current in the quench-coupling protocol, as a feasible experimental
setup for detecting the fragile non-Fermi liquid SYK phase and differentiating it
from a disordered Fermi-liquid phase.
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