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1 Introduction

1.1. Two roads to thermal equilibrium

Soon after the discovery of quantum mechanics, it was realized that the probability-
preserving unitary evolution of the wave function clashed with the entropy pro-
duction needed to explain thermalization. The straightforward resolution was to
make the notion of an environmental heat bath, or more general any environment,
a more principled one. So-called open quantum systems indeed thermalize beau-
tifully though they sidestep many subtle issues intrinsic to quantum mechanics.
Thermalization in these systems is not much different from Boltzmann’s original
fully classical picture of chaotic mixing due to microscopic collisions.1

This all changed rather abruptly with the numerical findings of Rigol, Dun-
jko, and Olshanii. Simulating the unitary time evolution of a finite number of
bosonic quantum excitations, they surprisingly found that the density matrix
of this system rapidly becomes nearly indistinguishable from a thermal density
matrix [1]. Mathematically this could not be the exact thermal density matrix,
but the difference was exponentially small. It turned out that this rapid near-
indistinguishability of a unitarily evolved many-body density matrix from a ther-
mal one was already predicted independently by Deutsch [2] and Srednicki [3],
who coined it the Eigenstate Thermalization Hypothesis (ETH). In the simplest
of terms, their result boils down to the sleight of hand that in a quantum system
the system itself can act as a heat bath due to its parametrically larger Hilbert
space.2 Physically what ETH really emphasizes is that a specific quantum aspect
— entanglement — does not only play an important role in thermalization but
can actually overpower the semi-classical Boltzmann point of view.

This poses a deeper question. Given a dynamical many-body system, there
are now two drastically different ways for this system to approach equilibrium.

1Recall that even in classical physics there is an inherent paradox between thermalization and
Liouville’s theorem that the volume of phase-space is preserved under classical Hamiltonian
evolution. The extreme sensitivity to initial conditions inherent in chaotic systems resolves
this paradox. In quantum systems, it is the connection with the heat-bath that allows an
initially fully determined initial state to mix and be considered an ensemble average.

2A system of N particles has a 6N -dimensional classical phase space, but a ∼ eN -dimensional
quantum Hilbert space.
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1. Introduction

Though not so much voiced in the literature [4], this has triggered a consis-
tently recurring debate on whether a system thermalizes classically (Boltzmann)
or quantum-mechanically (ETH) and what determines this (see e.g. [5] for an
attempt to unify the descriptions). Nearly non-interacting theories (dilute gases)
clearly ought to be an example of the former. By contrast strongly interacting
theories or more precisely densely entangled theories should exhibit ETH. But
where is the boundary?

This is not only a philosophical question. Experiments on cold atoms have already
passed the threshold of the number of constituents where ETH should apply and
it has conclusively been seen [6, 7, 8, 9, 10, 11]. These same experiments have
also provided a controlled avenue into non-equilibrium phenomena. Far-from-
equilibrium physics is often cast aside in introductory physics. The intuition
is that the extreme sensitivity to initial conditions in any rapid change makes
it intractable, non-universal and therefore not interesting. Certainly, this last
statement does not hold water: there is an enormous amount of interesting far-
from-equilibrium physics (see e.g. [12]).

This thesis will explore these questions by studying the time evolution of quan-
tum systems after a rapid change: a so-called quench, with focus on the early-time
non-equilibrium behavior and the transition to late-time classical thermalization.
With this method, we probed the differences in the early stage of thermalization
between systems with a chaotic spectrum like the Mixed Field Ising, ones that
additionally display exponential out-of-time-ordered correlation growth, as is the
case with the Sachdev-Ye-Kitaev model, and quantum integrable systems. This
deep dive into the early time evolution of those systems provided us with enlight-
ening intuition that proved crucial for discerning between quantum and classical
features that are intertwined during the evolution of a quantum system far from
equilibrium. It also helped us solve the paradox of temperature rise in a hotter
system when coupled to a colder bath, which was initially identified in [13] based
on the energy increase of the hotter system. Interestingly enough, similar behavior
shows up in other physical systems during the early stages of their thermalization.
For example, it was reported in studies of evaporative black hole formation [14]
which, on the gravity side, is explained by the averaged null energy condition [15]
and in this thesis was related to the von Neumann and relative entropy of the
quantum system, which paves a way for a future holographic connection in the
same spirit as [16]. Another case in point is when the systems under consideration
are charged, chaotic, and strongly entangled, e.g. charged SYKs whose energy
and charge transport, on the road to thermalization, display features subtly re-
lated to the linear in T resistivity of strange metals [17, 18]. While it might seem
unusual, it is in accord with other results that use SYK chains as toy models for
studying high Tc superconductors [19, 20].

2



1.2. Quantum thermodynamics and quenches

1.2. Quantum thermodynamics and quenches

The role of entanglement or strong quantum rather than classical correlations
is more readily encoded in the density matrix of the quantum system than its
wavefunction. Given a basis |α⟩ of states in the Hilbert space, a generic state
|ψ⟩ = cα|α⟩ that is normalized

∑
α cαc

†
α = 1 corresponds to the density matrix

ρ = |ψ⟩⟨ψ| =
∑
α,β

cαc
†
β |α⟩⟨β| (1.1)

The density matrix can also describe an ensemble of quantum states which is the
basis of quantum thermodynamics. For example, if the system can be found in
the i−th vector state from the set {|ψi⟩} with a probability pi, its state is given
by the following density matrix:

ρ =
∑

i

pi |ψi⟩⟨ψi| (1.2)

As the density matrix consists of a bra and a ket, it can also be seen as an operator.
From the Schrödinger equation we directly see that it evolves with time as

ρ(t) = ÛtρÛ
†
t , Ût = e−iĤt/ℏ (1.3)

The expectation value of an observable Ô is computed as a trace of the state times
the observable:

O = Tr
(
ρÔ
)
. (1.4)

Density matrices are positive operators with trace one (Tr(ρ) =
∑

i pi = 1),
which asserts conservation of probability. As a positive operator, it has a spectral
decomposition:

ρ =
∑

i

λi |i⟩⟨i| , ⟨i|i⟩ = 1, λi ≤ 1 (1.5)

where the vectors |i⟩ are ortho-normal, and λi are real, non-negative eigenvalues of
ρ. The quantum systems that can be described by a single vector |ψ⟩ ∈ H with the
equivalent density matrix representation ρ = |ψ⟩⟨ψ| are known as pure states. A
system represented by an ensemble, i.e. a mixture of pure states ρ =

∑
i pi |ψi⟩⟨ψi|

is accordingly named a mixed state. For the density matrix of a pure state it holds
that Tr ρ2 = 1, whereas a mixed state has Tr ρ2 < 1.

Another important difference between those two types of states is their von Neu-
mann entropy:

SvN = −Tr (ρ ln ρ) = −
∑

i

λi lnλi, (1.6)
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1. Introduction

where the last expression is obtained from the spectral decomposition of the den-
sity matrix. Now, combining (1.6) and (1.5) we immediately deduce that pure
states (λ = 1) have vanishing von Neumann entropy, wheres for mixed states
(λi < 1) SvN is a positive quantity.

A quintessential mixed state is the density operator that describes a thermal
quantum system at inverse temperature β = 1/T . Classical systems with constant
temperature are described by the canonical ensemble, likewise, quantum thermal
states are represented by an ensemble of the Hamiltonian’s eigenstates {|n⟩} with
probabilities e−βEn/Zβ :

ρβ = 1
Zβ

∑
n

e−βEn |n⟩⟨n| ≡ 1
Zβ

e−βĤ , Zβ = Tr
(
e−βĤ

)
. (1.7)

Here, Zβ is the partition function and the free energy of the system is obtained
through the well-known relation Fβ = − 1

β lnZβ . It is easy to check this is a mixed
state, since Tr

(
ρ2

β

)
=
∑

n e
−2βEn/Z2

β < 1. It has von Neumann entropy:

Sβ = − 1
Zβ

∑
n

e−βEn ln
(
e−βEn/Zβ

)
= β

∑
n

Ene
−βEn − lnZβ = β(Eβ − Fβ).

(1.8)

It is important to note that the von Neuman entropy of a Gibbs state at inverse
temperature β is identical to the thermal entropy of a thermal system with internal
energy equal to the energy of the state Eβ = Tr

(
ρβĤ

)
and free energy Fβ . This

is the connection with classical thermodynamics.

Another quantity, important for the discussions in this thesis, is the relative en-
tropy between two density matrices ρ, ρ̃ ∈ B(H):

D
(
ρ||ρ̃

)
= Tr ρ (ln ρ− ln ρ̃) ≥ 0. (1.9)

which is often used in both quantum information processing [21] and quantum
thermodynamics [22] to distinguish between two quantum states and as a measure
of the irreversibility of a thermodynamic process [23]. In Chapter 2 and Chapter
3 we use the relative entropy as a measure of how different a certain state is from
a corresponding thermal state with the same energy D(ρ||ρβ).

The full potential of the density matrix approach comes to light when studying
composite quantum systems, as a descriptive tool for the subsystems. Imagine a
system in a state ρAB that is composed of two subsystems A and B. If we are
only interested in, or have access to, the subsystem A, we can study it through
its reduced density matrix ρA, obtained by tracing out B:

ρA = TrB (ρAB) (1.10)

4



1.3. Quantum Chaos “Quantum chaology”

Naturally, for two non-interacting systems the full density matrix is a tensor
product state ρAB = ρA ⊗ ρB , and the reduced density matrix is equal to the
individual state (e.g. TrB(ρAB) = ρA TrB(ρB) = ρA), where we used that density
operators are trace 1. In general, for interacting subsystems, the full state is
not a tensor product and the reduced density matrix encodes information about
the correlations between the two subsystems which are reflected in their von
Neumann entropies (e.g. SA = −Tr (ρA ln ρA) ). The simplest example is the
entangled state between two quantum spins |ψ⟩ = 1√

2

(
| ↑↓⟩ − | ↓↑⟩

)
. Tracing

over the second spin one finds that the reduced density matrix ρA = 1
2 (| ↑⟩⟨↑

|+ | ↓⟩⟨↓ |) has von Neumann entropy SρA
= ln(2). This is why sometimes SvN is

called entanglement entropy. However, one has to be extremely careful with this
nomenclature, for, as we’ve seen above, the von Neumann entropy also captures
the thermal entropy of the system and there is no practical way of distinguishing
those two contributions. Only at zero temperature, in the absence of the thermal
contribution according to the third law of thermodynamics, is the von Neumann
entropy proportional to the entanglement between the subsystems.

Such composite systems are the focus of this thesis. More precisely we consider
situations where initially (t < 0) both subsystems A and B do not interact and
are governed by their respective Hamiltonians ĤA and ĤB . Additionally, we
shall assume that each of them has fully been made to relax to independently
to thermal equilibrium at temperature TA and TB , respectively, and the whole
system is in a decoupled state ρ0 = ρTA

⊗ρTB
. Then, at time t = 0 we quench the

system by instantaneously turning on an interaction between A and B, modeled
with the Hamiltonian Hint, and for times (t ≥ 0) the evolution of the combined
system is governed with the following Hamiltonian:

Ĥ = ĤA + ĤB + Ĥint (1.11)

Using concepts introduced in this section we study what happens to each sub-
system after the quench. Analyzing the interplay between thermal fluxes, cor-
relations, charged currents, and the exchange of information between A and B
we strive to explain the post-quench non-equilibrium dynamics, the time-scale for
the transition between quantum and conventional hydrodynamic behavior and
propose experimental applications of the discovered quantum features.

1.3. Quantum Chaos “Quantum chaology”

In the introduction we pointed out the difference between the thermalization
mechanisms in classical systems and quantum systems. Classical Boltzmannian
thermalization relies on the assumption of chaos; thermalization in closed quan-
tum systems on eigenstate thermalization. Nevertheless, some notion of mixing or
information scrambling as it has been recently called, must also occur in quantum

5



1. Introduction

systems. For quantum systems, there are two notions of chaos. One is defined
by the early time evolution of quantum systems that display exponential growth
of an observable known as out-of-time-correlator (OTOC) Section 1.3.1, analo-
gously to exponentially divergent trajectories in classical phase space. The other
definition is based on some of the Hamiltonian’s spectral properties, and their
relation to random matrices, as exposed in Section 1.3.2 which is significant for
understanding the late-time evolution of quantum systems and especially their
thermalization, in light of the Eigenstate Thermalization Hypothesis (ETH). The
natural time-scale associated with the two viewpoints distinguishes them, but also
provides a window on a unifying viewpoint [5]. We shall not pursue this question
directly, but for this thesis it is useful to know the underlying thoughts concepts
and concepts in more detail and we briefly review them here.

1.3.1. Exponential growth of OTOC

The defining feature of classically chaotic dynamics is the exponential sensitivity
of the system on the initial conditions. Namely, an infinitesimal change in δqj(0)
can result in exponentially diverging trajectories (1.12), known as the butterfly
effect. For a Hamiltonian systems, where dynamics is encoded in Poisson brackets,
this is defined by:

|{qi(t), pj(0)}c| =
∣∣∣∣∣ ∂qi(t)
∂qj(0)

∣∣∣∣∣ ≈
∣∣∣∣∣ δqi(t)
δqj(0)

∣∣∣∣∣ ∼ eλt (1.12)

The rate of exponential growth is determined by the Lyapunov coefficient λ, which
is a property of the system. Going to quantum systems, this Poisson bracket
can be generalized to a commutator to construct an observable C(t) such that
it captures the early time chaotic behavior from the correlations between two
reasonably local Hermitian operators V and W , on which one has a free choice as
long as they’re not conserved charges and are simple [24].

C(t) =− Tr
(
ρ1/2[V (t),W (0)]ρ1/2[V (t),W (0)]

)
=

=2 Tr
(
V (t)ρ1/2V (t)Wρ1/2W

)
−OTOC

(
t− iβ

4

)
−OTOC

(
t+ iβ

4

)
(1.13a)

OTOC (t) = Tr
(
ρ1/4V (t)ρ1/4Wρ1/4V (t)ρ1/2W

)
(1.13b)

Here ρ is the thermal density matrix of the system. To avoid confusion with
quantum interference, one has squared the amplitude [24] and obtains an esti-
mator of the effect an initial perturbation W (0) has on a measurement of V (t)
at a time t. The choice of the particular regularization (ρ1/4 =

(
e−βH/Z

)1/4)
in the OTOC(t) was initially proposed on the basis of hermiticity [25], and later

6



1.3. Quantum Chaos “Quantum chaology”

was proven to have an even more profound reasoning as it most closely reflects
physical microscopic chaos [26]. In systems with a small parameter ϵ ≪ 1, the
communtator-squared C(t) ∼ ϵ2e2λt will have exponential growth in time with
an exponent λ, which is usually used as an indication of chaotic behavior. In
known systems ϵ = ℏ or ϵ = 1/N with N the number of (field theory) degrees of
freedom. Different from classical physics, this exponential growth continues up
until the scrambling time t∗ ∼ β log 1/ϵ, It was shown in [25] that, under some
physically motivated assumptions, the rate at which a given system can scramble
information is bounded from above:

λ ≤ 2πkB

ℏβ
. (1.14)

Systems that saturate this bound are known as “fast scramblers” and the Sachdev-
Ye-Kitaev model, which we shall review shortly, is one of them and is the main
protagonist of this thesis.

1.3.2. Spectral Chaos

The other definition of quantum chaos is inspired by similarities between the spec-
tral properties of Random Matrices (RM) and certain Hamiltonians. We know
that for large classical systems the exact knowledge of the position and momentum
of each degree of freedom, even if theoretically possible, is practically intractable
so we study those systems using statistical mechanics. Similarly, for quantum
systems, where the Hilbert space scales exponentially with the degrees of free-
dom, the exact determination of each eigenstate and corresponding eigenvalue is
unfeasible, and of limited usefulness, hence one studies their statistical proper-
ties. The origins of this idea are in Wigner’s research on large nuclei, and then
it advanced into one of the most useful approaches in understanding many-body
quantum systems. This development was substantiated by the fact that in the
middle of the spectrum, spectral properties (e.g. nearest neighbor spacing, spec-
tral form factor) of many-body Hamiltonians effectively resemble those of random
matrices. To better understand this line of reasoning, we introduce some relevant
concepts of Random Matrix Theory (RMT) [27, 28, 4] and will comment on how
they relate to chaotic quantum systems.

We are interested in square N ×N matrices H drawn from a probability distribu-
tion function P (H). Broadly speaking, there are three different Gaussian ensem-
bles based on the invariance properties of the probability (1.15a). One of them
is the Gaussian Orthogonal Ensemble (GOE), named due to its invariance under
orthogonal transformation, which samples real matrices and is used for modeling
Hamiltonians with time-reversal symmetry. Next is the Gaussian Unitary En-
semble (GUE) which samples Hermitian matrices that can represent a generic
Hamiltonian without time reversal or rotational symmetry. The third class is the

7



1. Introduction

Gaussian symplectic ensemble (GSE) which is useful for studying Hamiltonians
with time-reversal symmetry but broken rotational symmetry. Each of the Gaus-
sian ensembles (1.15b) is denoted by their Dyson index β = 1, β = 2, and β = 4
respectively [29, 30, 31], which counts the number of real degrees of freedom per
matrix element.

P (H)dH = P (H′)dH′ ; H′ =W−1HW (1.15a)

Pβ(H) = 1
Zβ

exp
{
−βN4 TrH2

}
(1.15b)

Where Zβ is an ensemble-dependent normalization constant. Using the Gaussian
PDFs (1.15b) one can derive the joint probability distribution of the eigenvalues
{λ} = {λ1, λ2 . . . λN}:

Pβ({λ}) = 1
Zβ

exp

−βN4 ∑
i

λ2
i + β

∑
i<j

log
∣∣λi − λj

∣∣, (1.16)

which is a useful object for studying their spectral properties. We note here that
the logarithmic term acts as a repulsive potential between two eigenstates, effec-
tively preventing coincident eigenstates which is the mathematical explanation
behind the famous level repulsion in quantum mechanics. Integrating (1.16) over
all but one eigenvalue the density of states can be derived [27], which in the limit
N →∞ simplifies to the Wigner semicircle distribution:

ρ(λ) = lim
N→∞

∫
P (λ, λ2, . . . λN )

N∏
i=2

dλi =


1
π

√
1− λ2 |λ| ≤ 1

0 |λ| > 1
. (1.17)

Another important spectral property is the distribution of the normalized level
spacing between two adjacent eigenstates s = (λn − λn−1)/⟨s⟩, where ⟨s⟩ =
⟨λn−λn−1⟩. In the limit N →∞ its probability distribution — first surmised by
Wigner — can be analytically computed [32].

Pβ(s) =



π

2 se
− s2π

4 β = 1
32
π2 s

2e− s24
π β = 2

218

36π3 s
4e− s264

9π β = 4

(1.18)

The turnover between the polynomial rise at low s and the exponential decay
at large s shows the level repulsion between states whose eigenvalues are closer
together than the average.
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1.3. Quantum Chaos “Quantum chaology”

As mentioned before, large nuclei were the initial testing ground for the RMT ap-
plicability of to quantum many-body systems, however, the connection between
random matrix theory and quantum chaos was made by Bohigas, Giannoni and
Schmidt [33]. Studying the spectrum of a quantum particle in a Sinai billiard
potential, they discovered that in the semi-classical limit, the nearest neighbor
statistics match the GOE (β = 1) Wigner surmise . This observation led them
to conjecture that this is more general: the nearest neighbor statistics of quan-
tum systems with a classically chaotic counterpart can be described with RMT.
Afterward, this conjecture has also been used the other way around, namely as
a diagnosis of quantum chaos even for systems that don’t have good classical
analogs, like quantum chains, and lattice fermions [34, 35]. The corollary of this
conjecture was made by Berry and Tabor, who observed that in quantum sys-
tems that are non-chaotic in the classical limit the statistic of s exhibits Poisson
statistics instead of Wigner-Dyson statistics [36]. 3

It is this connection between chaos and RMT that underlies the novel quantum
mechanism of eigenstate thermalization. When talking about quantum thermal-
ization, we specifically refer to the thermalization of observables. More precisely,
if we prepare a system, with a Hamiltonian Ĥ, in a nonstationary state |ψ⟩, with
well-defined mean energy ⟨ψ| Ĥ |ψ⟩ = E, an observable Ô =

∑
i Oi |i⟩⟨i| thermal-

izes if, under the time evolution of the system, it relaxes to the microcanonical
expectation value:

lim
t→∞

〈
ψ(t)

∣∣ Ô ∣∣ψ(t)
〉

=
∑

n∈{E−∆E,E+∆E}

⟨n| Ô |n⟩ = ⟨Ô⟩microcan.,E , (1.19)

and remains close to it, meaning temporal fluctuations around the microcanonical
value are negligible. If the quantum system is isolated and evolves unitarily
with Hamiltonian Ĥ, the puzzle is how to square this expectation with the exact
expression in terms of energy eigenstates

∣∣ψ(0)
〉

=
∑

n cn|n⟩.〈
ψ(t)

∣∣ Ô ∣∣ψ(t)
〉

=
∑

n

|cn|2Onn +
∑
n ̸=m

c∗
mcne

i(Em−En)tOmn (1.20)

For an arbitrary quantum system, there is no real reason to expect the second
term to be small. If the Hamiltonian is a random matrix, however, its eigenstates
are practically random orthogonal vectors in any arbitrary basis (⟨m|i⟩ ⟨j|n⟩ =
δmnδij1/d) [38], where the overline denotes averaging over the random eigenstates
|n⟩ and |m⟩, and d is the dimension of the Hilbert space. In this case, the off-

3Neither the Bohigas-Gianonni-Schmidt nor the Berry-Tabor conjecture are strictly true.
Counterexamples are known to both, see the previous sentence and [37, 4].

9



1. Introduction

diagonal terms disappear Omn = 0, the diagonal ones are state-independent:

Onn =
∑

i

Oi⟨n|i⟩ ⟨i|n⟩ = 1
d

∑
i

Oi ≡ O, (1.21)

O2
nn =

∑
ij

OiOj ⟨i|j⟩ ⟨n|i⟩ ⟨j|n⟩ =
∑

i

O2
i ⟨n|i⟩ ⟨i|n⟩ = 1

d

∑
i

O2
i ≡ O2, (1.22)

and each of the fluctuations is suppressed by the dimension of the Hilbert space
[4]. From those results, one can deduce the form of the matrix elements in the
basis of a random Hamiltonian, to a leading order in 1/d, and such that they not
only capture the average value but the fluctuations too:

ORMT
mn ≈ Ōδmn +

√
O2

d
Rmn. (1.23)

More precisely, the fluctuations are encoded in the second term where Rmn is a
zero mean and unit variance random variable that depends on the ensemble of
the random matrix.

The natural suppression of the variance in an RMT inspired the idea that the
evolution of an isolated quantum system can mimic thermalization. Of course,
in real systems, we know that the Hamiltonian has more structure compared to
a random matrix, hence the diagonal and off-diagonal elements have to contain
information on the energy of the system and the relaxation time. The generaliza-
tion of RMT, needed to describe real physical systems, was suggested by Deutsch
[2] and Srednicki [3] and is known as the Eigenstate Thermalization Hypothesis
(ETH):

Omn = O(E)δmn + e− S(E)
2 fO(E,ω)Rmn . (1.24)

Here E = (Em + En)/2 and ω = En − Em are the average energy and energy
difference between the two energy levels, S(E) is the thermodynamic entropy and
Rmn a random number, same as before. The important difference with RMT
is that the diagonal term in ETH is equal to the expectation value in the mi-
crocanonical ensemble at energy E, the entropy S(E) also has the appropriate
energy dependence and is not just the dimension of the Hilbert space, and a final
important requirement is that O(E) and fO(E,ω) are smooth functions of their
arguments.

Due to the exponential growth of the Hilbert space with the number of degrees
of freedom, many quantum systems in isolation have a regime where they exhibit
ETH as the physics of their very large N -body Hamiltonian becomes closer and
closer to a random one [4]. This mathematical exponential growth is the reflection
of the physically new quantum feature of entanglement. In these settings the
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1.4. Theoretical Models

scrambling and information loss driving thermalization is therefore of a physically
different origin than classical chaos, even though in the abstract it still resides in
the impracticality of tracing every bit of information with infinite precision.

1.4. Theoretical Models

We present a brief overview of the theoretical models studied in this thesis. One
of the main models we shall use in this thesis to study the dynamics of relaxation
and thermalization in an isolated quantum system is the Sachdev Ye Kitaev model
(SYK) [39, 40]. This is a strongly interacting quantum mechanical system of N
Majorana fermions with all-to-all random couplings. which is exactly solvable
in the IR limit when N → ∞. The strongly coupled IR fixed point has an
emergent reparametrization symmetry where the effective dynamic is described by
the Schwarzian action. The SYK model can be argued to be the ideal (solvable)
representative of many-body quantum systems. It displays maximally chaotic
behavior, as defined in Section 1.3.1, with an exponentially growing OTOC and
a Lyapunov coefficient that, in the deep IR, saturates the bound (1.14), but at
its heart it also obeys ETH [41]. These properties are precisely what makes the
SYK an interesting playground for studying quantum chaos, quantum gravity and
information scrambling. Moreover, as we will briefly describe for completeness
in Section 1.5, these properties are also typical for 2D dilaton gravities which
describe the near horizon physics of extremal black hole [42, 43, 44]. And a
version of SYK built on charged Dirac fermions instead of Majoranas [45, 46,
47] has proved to be a useful toy model for studying strange metals and high-
temperature superconductivity [19, 48].

The other model we shall study is the Transverse Field Ising model (TI), which
is a set of Pauli matrices on a 1D chain, a well-known model in the study of
quantum thermalization [49, 50]. On one hand, it is also solvable: using the
Jordan-Wigner (1.46) and Bogoliubov (1.51) transformations can be shown it
is equivalent to free fermions (1.52) (Section 1.4.2). On the other hand, it is
representative of systems with a second-order quantum phase transition. The
quantum phase transition occurs for an infinite chain at zero temperature T = 0
when the transverse magnetic field equals the hopping strength hx = J . At this
quantum critical point, the system becomes strongly entangled and it has distinct
dynamics even at finite temperatures and finite system sizes.

The last considered model is a generalization of the TI known as the Mixed Field
Ising (MFI) Section (1.4.3), a fruitful playground for, among others, studying
quantum thermalization, quantum chaos and information scrambling [51, 52, 53,
54]. Its usefulness comes from the ability, simply by tuning its parameters, to
describe different phenomena which range from quantum criticality, through a
phase with quantum chaotic level statistics, all the way to a classical Ising model.

11



1. Introduction

This will prove very useful in understanding possible differences between classical
and quantum thermalization in Chapter 3.

1.4.1. SYK

The Sachdev-Ye-Kitaev model (SYK) is a quantum mechanical model of N all-to-
all interacting fermions with random independent couplings drawn from a Gaus-
sian distribution with zero mean and standard deviation. The latter sets the
energy scale of the model. There are two main types of SYK models, based on
the type of fermions. One is the Majorana SYK (mSYK), where the fermions
are Majorana fields {ψi, ψj} = δij , which is usually used for studying fast scram-
blers, quantum chaos, and black holes through its duality with 2D dilaton gravity.
As we shall see, it is the model where energy dynamics alone dominates. The
other type is the complex SYK (cSYK) whose constituents are charged Dirac
fermions {c†

i , cj} = δij . This type of model includes a conserved U(1)-current
naturally used for studying phenomena in strongly correlated electron systems.
The usefulness of either type of SYK model lies in the formal solvability of its
Schwinger-Dyson equations —i.e. the full quantum evolution equations — in the
large N -limit. Here we briefly review the derivation of these Schwinger-Dyson
equations and its solution for the mSYK, directly from the disorder-averaged par-
tition function. The same result can be obtained by diagrammatic expansion, for
which we refer the reader to [55, 56].

We start from the path integral representation of SYK partition function [57]:

Zm =
∫
D[ψ] exp

i
∫
dt

 i

2
∑

j

ψj∂tψj +
N∑

j1,j2,j3,j4=1
Jj1j2j3j4ψj1ψj2ψj3ψj4

 ,

(1.25)

A key part of the SYK model is that the couplings are independent random
variables drawn from a Gaussian distribution (1.26) :

P (J) = 1
σJ

√
2π

exp
{
− 1

2σ2
J

∑
j1<j2···<j4

J2
j1j2j3j4

}}
; σJ = 3!J2

N3 , (1.26a)

⟨Jj1j2j3j4⟩J ≡
∫
DJJj1j2j3j4P (J) = 0 ; ⟨Jj1j2j3j4Jj′

1j′
2j′

3j′
4
⟩J = σ2δj1j′

1
δj2j′

2
δj3j′

3
δj4j′

4
,

(1.26b)

The physical observables are defined to be the ones that follow after averaging
over the ensemble of different couplings (quenched disorder) Formally this has to
be done through the replica trick, but for replica diagonal solutions which are the
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1.4. Theoretical Models

ones of interest4, one can just naively include the averaging in the path-integral
directly

⟨Zm⟩SYK =
∫
DJP (J)

∫
D[ψ] exp

{
i

∫
dtSm

}
(1.27)

= K ′
∫
D[ψ] exp

{
i

∫
dt

(
i

2
∑

j

ψj∂tψj+ (1.28)

+ i
σ2

J

2 · 4!

∫
dt

∫
dt′

N∑
j1,j2,j3,j4=1

ψj1ψ
′
j1
ψj2ψ

′
j2
ψj3ψ

′
j3
ψj4ψ

′
j4

)}
(1.29)

where ψ′ ≡ ψ(t′). One introduces the bilinear field

G̃(t, t′) = − i

N

N∑
i

ψi(t)ψi(t′) (1.30)

through a Lagrange multiplier Σ(t, t′) (1.32), that imposes this identity

1 =
∫
DG̃

∫
DΣ̃ exp

i2N2
∫
dt

∫
dt′Σ̃(t, t′)

G̃(t′, t) + i

N

N∑
i

ψi(t′)ψi(t)


(1.31)

Inserting this identity into the path integral and after integrating out the Ma-
jorana fields, one can write the dynamics of the model in terms of the bilinear
fields:

⟨Zm⟩SYK =
∫
DG̃

∫
DΣ̃ exp

{
− N

2

[
− Tr log

(
−i(i∂tδtt′ − Σ̃(t, t′))

)
+ (1.32)

+
∫
dt

∫
dt′
(

Σ̃(t, t′) + J2

4 G̃3(t′, t)
)
G̃(t′, t)

]}
. (1.33)

Upon using the redefinition σ2
J = 3!J2/N3, we notice that in the limit N ≫ 1,

1/N is a small parameter, analogously to ℏ, and the path integral is dominated
by the saddle point solution. This can be obtained by varying the action with
respect to G̃ and Σ̃:

δS[G̃, Σ̃]
δΣ̃(t, t′)

= 0 ⇒ Σ(t, t′) = i∂tδtt′ −G−1(t, t′) (1.34a)

δS[G̃, Σ̃]
δG̃(t′, t)

= 0 ⇒ Σ(t, t′) = −σ
2
JN

3

3! G3(t′, t) (1.34b)

4See [58, 59] for a discussion of replica symmetry breaking in SYK models.
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We adopted the notation from [55] where the tilded expressions G̃ and Σ̃ label
the dynamic fields whereas G, Σ without tildes are the classical solutions of the
Schwinger-Dyson equations (1.34) These Schwinger-Dyson equations — or when
computed on the doubled time Schwinger-Keldysh contour the Kadanoff-Baym
equations, can be solved numerically to study non-equilibrium dynamics in an
SYK system [57] as we shall do in Chapter 5. The equilibrium properties, however,
can be solved analytically at low temperatures, which are where the power of the
SYK model lies. Wick rotating the SD equations to periodic Euclidean time
t = −iτ = −i(τ + β), the first term on the RHS of (1.34a) can be neglected at
low temperatures βJ ≫ 1 equivalent to the strong coupling regime. This leads to
an emergent time reparametrization symmetry τ → f(τ), ∂τf(τ) > 0:

G(τ, τ ′)→[∂τf(τ)∂′
τf(τ ′)]∆G(f(τ), f(τ ′)), (1.35a)

Σ(τ, τ ′)→[∂τf(τ)∂′
τf(τ ′)]3∆Σ(f(τ), f(τ ′)). (1.35b)

This indicates that in the deep IR the fermions develop an anomalous conformal
dimension ∆ = 1

4 which yields a scaling solution at zero temperature β →∞:

Gc(τ) = 1
(4π)1/4

sgn (τ)
|Jτ |2∆ . (1.36)

The conformal propagator at inverse temperature β can be promptly obtained
from the reparametrization τ → tan πτ

β and the symmetry transformation
(1.35a):

Gβ
c (τ) = π1/4

√
2βJ

sgn
(

sin πτ
β

)
| sin πτ

β |2∆ , τ ∈
[
−β/2, β/2

)
(1.37)

It is important to note here that these solutions spontaneously break the emer-
gent reparametrization symmetry (1.35a) down to the SL(2,R) group. This is
because the scaling solutions (1.37), are invariant only under the reparametriza-
tion τ → aτ+b

cτ+d where ad − bc = 1. Additionally, the full reparametrization sym-
metry is also explicitly broken by i∂τδτ,τ ′ , which cannot be neglected once we
move away from the deep IR. For this reason, the reparametrization modes are
pseudo-Nambu-Goldstone bosons (also known as ”soft-mode”) with dynamics ap-
proximately described by the Schwarzian action:

SSch = −N C

J

∫
dτSch[f, τ ] ; Sch[f, τ ] =

(
f ′′′

f ′ −
3
2

(
f ′′

f ′

)2
)

(1.38)

In a similar fashion, the leading contributions (∼ 1/N) to the (Euclidean time-
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1.4. Theoretical Models

ordered) four-point function (1.39) can also be determined.

F(τ1, τ2, τ3, τ4) = 1
N2

N∑
ij

⟨T ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4)⟩ −G(τ1, τ2)G(τ3, τ4)

(1.39)

We won’t go into the details of this computation but encourage the reader to study
this beautiful derivation in [55]. However, we note that the OTOC of the SYK
can be computed from the four-point function (1.39), by analytically continuing
to Lorentzian time, and behaves as

OTOC(t) ≈G(β/2)G(β/2) + F(β4 + it,−β4 + it, 0,−β2 )

=
√
π

2βJ

(
1− CβJ

N
eκt

)
, β ≪ t≪ β log N

βJ

(1.40)

This expression is valid in the range of small but non-zero temperatures N
J ≫ β ≫ 1

J

( J
N ≪ T ≪ J) where F has two leading contributions, one coming from exci-

tations of the soft-mode, as described by the Schwarzian action (1.38), and the
other is related to fluctuations around the conformal action. One not only sees
the exponential growth characterized by the Lyapunov coefficient:

κ ≈ 2π
β

(1−# 1
βJ

), (1.41)

it is also immediately obvious that in the IR (βJ → ∞) the SYK saturates the
maximal chaos bound (1.14) and is a “fast scrambler”.

1.4.2. Transverse Field Ising Chain

The one-dimensional transverse field Ising model (TI) consists of N spins acted
on by Pauli operators σ̂x

i ≡ X̂i and σ̂z
i ≡ Ẑi residing on each site i; see Appendix

4.C.3.5 The dynamics of the model is given by the TI Hamiltonian:

HTI = −J
N∑

i=1
ẐiẐi+1 − hx

N∑
i=1

X̂i, (1.42)

where J > 0 is a dimensionful nearest-neighbor interaction constant, and hx is
the strength of the transverse field. In this thesis, the microscopic scale, set by
the interaction constant, is fixed J = 1, Consequently, the ground state of the
TI Hamiltonian depends only on hx, which is used to tune the system across the
quantum critical point at hx = 1.

5There are many reviews; we shall use [50].
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Let us first consider the phase with dominant nearest-neighbor interaction hx < 1.
At the extreme case of hx = 0, the Hamiltonian is diagonalized by the eigenstates
of Ẑi (Ẑi |↑⟩i = |↑⟩i and Ẑi |↓⟩i = − |↓⟩i). Due to the exact Z2 symmetry of HTI
(Zi → −Zi, Xi → Xi) the ground state is degenerate with all spins either up or
down:

|↑⟩ =
N∏
i

|↑⟩i ; |↓⟩ =
N∏
i

|↓⟩i ≡
N∏
i

X̂i |↑⟩ . (1.43)

Systems with small fields hx ≪ 1 have a ground-state (labeled here as
∣∣0f

〉
)

with a small fraction of spins aligned in the opposite direction, but the global
Z2 symmetry preserves the degeneracy for any small hx.6 This symmetry is
thus spontaneously broken and the normalized order parameter m̂ = 1

N

∑N
i Ẑi

is non-vanishing:
〈
0f

∣∣m̂ ∣∣0f

〉
∼ ±1. Hence this phase is known as the ordered

(ferromagnetic) phase.

The other limit of the model is at large fields hx ≫ 1 with ground state
∣∣0p

〉
that,

to leading order in 1/hx, is given by the eigenstate of X̂i with positive eigenvalue
(X̂i |→⟩i = |→⟩i, and X̂i |→⟩i = − |→⟩i):

∣∣0p

〉
=

N∏
i

|→⟩i , (1.44)

|→⟩i = 1√
2
(
|↑⟩i + |↓⟩i

)
; |←⟩i = 1√

2
(
|↑⟩i − |↓⟩i

)
(1.45)

In this phase, the symmetry remains unbroken and the order parameter vanishes〈
0p

∣∣m̂ ∣∣0p

〉
∼ 0, so this is the disordered (paramagnetic) phase.

The usefulness of the TI model results from the observation that it can also be
exactly solved by finding a basis in which the Hamiltonian is diagonal [50, 60].
Firstly, using the Jordan-Wigner transformation and the ladder operators (σ̂±),
defined in Appendix 4.C.3, one can transform the spin- 1

2 operators to spinless
fermions:

ci =

∏
j<i

Ẑj

 σ̂+
i ; c†

i =

∏
j<i

Ẑj

 σ̂−
i (1.46)

{ĉi, ĉ
†
j} = δij , {ĉi, ĉj} = {ĉ†

i , ĉ
†
j} = 0, (1.47)

6The global Z2 symmetry may be broken by boundary conditions, but we shall not consider
that here.
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which, upon rotation of the spin axis by 90◦, constitute a basis in which the TI
Hamiltonian (1.42) reads

HT I = −J
N∑
i

(
ĉ†

i ĉi+1 + ĉ†
i+1ĉi + ĉi+1ĉi + ĉ†

i ĉ
†
i+1 − 2hx

J
ĉ†

i ĉi

)
. (1.48)

This form of the TI Hamiltonian does not have a conserved fermion number, due
to the ĉi+1ĉi and ĉ†

i ĉ
†
i+1 terms. However, it is quadratic in operators suggesting

it can be diagonalized. Indeed, the Fourier transformation:

ĉk = 1√
N

N∑
i

ĉje
−ikaj , (1.49)

brings the Hamiltonian (1.48) to :

HT I = J

N∑
k

(
2
(
hx

J
− cos(ka)

)
ĉ†

k ĉk + i sin(ka)
(
ĉ−k ĉk + ĉ†

−k ĉ
†
k

)
− hx

J

)
.

(1.50)

From here, one can use the Bogoliubov transformation (1.51):

γk = ukck − ivkc
†
−k, (1.51a)

uk = cos
(
θk

2

)
, vk = sin

(
θk

2

)
; tan θk = sin(ka)

cos(ka)− hx

J

, (1.51b)

u2
k + v2

k = 1, u−k = uk, v−k = −vk, uk, vk ∈ R, (1.51c)

which map the ĉ(†)
i operators to a new set of fermions (γk) that satisfy the cannon-

ical fermionic relations {γ̂k, γ̂
†
k′} = δkk′ , {γ̂k, γ̂

′
k} = {γ̂†

k, γ̂
′†
k } = 0. In this basis,

the Hamiltonian has a conserved fermionic number and is manifestly solvable,
since it represents a set of N free fermions with dispersion relation εk:

HTI =
N∑
k

εk

(
γ̂kγ̂k −

1
2

)
(1.52)

εk = 2J
√

1 + h2
x

J2 − 2hx

J
cos(k) . (1.53)

1.4.3. Mixed Field Ising Chain

The Mixed Field Ising model (MFI) is a simple generalization of the Transverse
Field Ising model with dynamics is governed by the following Hamiltonian:

HMFI = −J
N∑

i=1
ẐiẐi+1 − hx

N∑
i=1

X̂i − hz

N∑
i=1

Ẑi. (1.54)
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This model has a few different manifestations, dependent on the point in the
parameter space (hx, hz), which make it a rich playground for the theoretical
testing of new hypotheses. For hz = 0 this model reduces to the TI model (1.4.2),
and for hx = 0 reduces to the regular Ising model. We used the latter in Chapter
3 as a representative case of classical systems. The prominence of this model is
that it is an archetype of quantum-chaotic behavior. At a particular point in the
parameter space hx = −1.05 and hz = 0.5 it has the RMT-like spectral statistics
[61]. Even though this point is not an isolated instance of chaotic behavior,
sometimes it is referred to as ”strong-chaoticity” [52], since, by varying (hx, hz),
the spectral statistics of the model continuously transform between Wigner-Dyson
distribution at hx = −1.05 and hz = 0.5 and Poisson distribution at an integrable
point hx = 0 or hz = 0 in the parameter space. This smooth interpolation between
chaotic and integrable regimes is what makes this model particularly convenient
as a theoretical toy model.

1.5. Holographic duality

Though holographic duality itself is not part of the research presented in this
thesis, the studies using holography to understand the dynamics of quantum black
holes through its duality with non-gravitational quantum systems did provide a
large motivating factor. For that reason we do briefly review it here.

The specific version of holography of relevance is the conjectured holographic du-
ality of the SYK model with a 2D anti-de-Sitter (AdS) dilaton gravity [40, 55].
Below we outline how these pure two-dimensional dilaton gravities are described
by the same Schwarzian action Eq.(1.38) in the IR limit and thus also exhibit
maximal chaotic behavior with the Lyapunov coefficient saturating the bound
Although it is much more difficult to find a gravitational theory and prove their
duality in the full RG flow, the equivalence in the IR behavior of both theories
has been an encouraging aspect in the quest for understanding their connection.
There has been vast excitement around this duality because, for the first time,
we have an exactly solvable field theory that can probe the realms of quantum
gravity. Moreover, the far-reaching impact is far reaching since, as we’ll demon-
strate below, these 2D gravities appear as a universal behavior in the near-horizon
limit of extremal black holes. Using an extension of this universal sector of the
duality with the newly developed double-holographic paradigm [62, 63, 64, 65],
that studies dualities between 1D field theories and 2D gravity with matter that’s
then dual to a 3D gravity, results from the SYK model have proven useful in
understanding the process of black hole evaporation while preserving unitarity
of the underlying physical process. In particular for the first time a tractable
computation was able to reproduce the Page curve describing the evolution of
the entanglement entropy between the black hole and its Hawking radiation. The
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holographically dual description of this process in terms of the SYK physics is
that of quenched cooling, and this is what motivated us to study the latter.7

First, we introduce pure AdS2 in Euclidean signature and with radius set to unity.
The particular choice of signature is useful for latter consideration of correlation
functions in the dual boundary theory. In the Euclidean case, AdS2 is simply a
hyperbolic disk that is fully covered by both Poincaré:

ds2 = dt2 + dz2

z2 , (1.55)

and Rindler coordinates:

ds2 = dρ2 + sinh2 ρdφ2. (1.56)

In order to regularize the infinite volume of this space one cuts off the AdS2 space
along some curve (t(τ), z(τ)) close to the boundary, with a local affine parameter
(the “time” on this boundary curve) in the interval τ ∈ [0, β). The physical length
of this boundary curve goes to infinity in the limit ϵ→ 0 :

dsb =
√
ds2

dτ2 dτ =
√
dt′2 + dz′2

z2 = dτ

ϵ
.

∫
dsb =

∫ β

0

dτ

ϵ
= dβ

ϵ
, (1.57)

Due to the isometry of Euclidean AdS2, curves with the following SL(2,R)/Z2
reparametrisation describe the same geometry.

t̃(τ) = at(τ) + b

ct(τ) + d
; ad− bc = 1, a, b, c, d ∈ R (1.58)

Already here we notice the first possible hint of a duality with SYK as the dy-
namics in the AdS2 space with cutoff is captured by a one-dimensional curve t(τ)
with the same symmetry as the IR limit of the SYK model in Section 1.4.1.

In the same way that the full SYK model starts with weakly interacting fermions
in the IR that flow to the strongly interacting theory in the IR, it is also useful
to start from a full model defined in the UV on the holographic side. This UV
will clearly not be the same UV as the SYK model, but it will serve as an anchor
for studying the resulting AdS2 IR. We will use electromagnetically charged AdS4
Reissner-Nordström black holes to demonstrate how AdS2 appears. These AdS4
RN black holes are described by the metric

ds2 = (r − r+)(r − r−)
r2 dt2 + r2

(r − r+)(r − r−)dr
2 + r2dΩ2 (1.59a)

r± = lpQ+ l2pE ±
√

2l3pQE + l4pE
2 ; Frt = Q

r2 , (1.59b)

7In earlier papers this was called evaporative cooling. However, the actual process is prompted
by an instantaneous change and hence a quench in the language of non-equilibrium physics.
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where lP =
√
G is the Planck length, M and Q are the mass and charge of the

black hole and r± the two horizons that coincide at extremality E = 0. The
near-horizon geometry is obtained by taking r → r+, lP → 0 while keeping the
variable z constant:

z = Q2l2P
r − r+

. (1.60)

Expressing the the RN metric (1.59) in the new coordinate z (1.60), the near-
horizon geometry of extremal black holes factorizes into an AdS2 and a 2D
sphere:

ds2 ≈ Q2l2P

(
−dt2 + dz2

z2 + dΩ2

)
. (1.61)

While this is the ground state of the extremal RN black hole, excitations above
it are described by two-dimensional dilaton gravities, Φ being the dilaton field.
This follows from its derivation from the Einstein-Hilbert action:

I = − 1
16πl2P

∫
dx4√−g

(
Rg −

l2P
4 FµνF

µν

)
, (1.62)

and focusing only on static, spherically symmetric field configurations [42, 66, 56]
of the form:

ds2 = hij(r, t)dxidxj + Φ2(r, t)dΩ2. (1.63)

One obtains, after reduction over the two-sphere, an effective 2D theory:

I = − 1
4l2P

∫
dx2√−h

(
Φ2Rh + 2(∇Φ)2 + 2− 2Q2l2P

Φ2

)
. (1.64)

This is a special case of a class of 2D dilaton gravity models with an arbitrary
scalar potential U , studied extensively in [42].

I = 1
16πGN

∫
dx2√−h

(
Φ2Rh + λ(∇Φ)2 − U

(
Φ2
))

. (1.65)

Returning to the specific model (1.64), one can remove the dilaton kinetic term
with a Weyl transformation [42]:

I = − 1
4l2P

∫
dx2√−h

(
Φ2Rh + 2− 2Q2l2P

Φ2

)
. (1.66)
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1.5. Holographic duality

and readily obtain the saddle point solution,

δΦI|ϕ0 = 0⇒ Rh = −2Q
2l2P
ϕ4

0
(1.67)

which is an AdS2-like space with radius L = ϕ2
0/(|Q|lP ). The remaining variation

δhijIhij,0 = 0 has the AdS4 RN black hole as solution but also just the near-horizon
AdS2 limit of the extremal RN black hole (1.61), in which case Φ(x, r) = ϕ0.

Without proof we will state that the fluctuations around this solution with non-
trivial dependency on the coordinates on the two-sphere are all energetically costly
and the low lying excitations are given by small fluctuations of the dilaton field
around its AdS2 saddle point:

Φ2 = ϕ2
0 + ϕ(x0, x1), ϕ(x0, x1)≪ ϕ2

0. (1.68)

Substituting this ansatz in (1.66) and expanding to second order in ϕ/ϕ2
0 the

following action is obtained:

I ≈− 1
2l2P

∫
dx2√−h− Φ2

0
4l2P

[∫
dx2√−h

(
Rh + 2

L2

)
+ 2

∫
∂AdS

K

]

− 1
4l2P

[∫
dx2√−hϕ

(
Rh + 2

L2

)
+ 2

∫
∂AdS

ϕbK

]
, (1.69)

where we have restored the proper AdS2 boundary terms proportional to trace of
the extrinsic curvature K [66]. In this action, the first term is proportional to the
volume of the AdS2 space, the second represents the ordinary 2D Einstein gravity,
and the last one (1.70), known as the Jackiw-Teitelboim (JT) gravity [67, 68], is
the subject of our interest since it gives rise to a non-trivial dynamics.

IJT = − 1
4l2P

[∫
dx2√−hϕ

(
Rh + 2

L2

)
+ 2

∫
∂AdS

ϕbK

]
, (1.70)

If one derives the equation of motion for the dilaton ϕ, with a boundary condition
given by ϕb, the bulk term in the JT gravity manifestly sets the spacetime to an
(asymptotically) AdS2 with constant scalar curvature Rh = −2. When we restrict
the analysis to a nearly-AdS geometry the last term encodes the dynamics of the
cutoff curve (t(τ), z(τ)), which after proper treatment of the arising infinities [69,
43, 55] is described by the Schwarzian action to leading order in ϵ:

Ib ≈ −
ϕr

8πG

∫ β

0
dτSch[t(τ), τ ], (1.71)
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where ϕr(τ) is renormalized boundary dilaton (ϕr(τ)/ϵ ≈ ϕb). The Schwarzian
action is obtained under the assumption that the dilaton is constant at the bound-
ary ϕr(τ) = ϕr, a more detailed treatment, leading to the same result, can be
found in [56, 66] and citations therein. With the knowledge that the dynamics of
the cutoff modes in fact comprise the full low energy, this proves the duality with
the IR action of the reparametrization modes in the SYK (1.38): they are both
described by the Schwarzian action. It is a beautiful example of IR universality
in that the two wildly differing UVs flow to the same fixed point in the IR.

At last, to establish the connection in the chaotic behavior, the introduction of
matter fields ξ(t, z) is required on top of the empty dilaton gravity. We consider
a minimally coupled free theory in the cut-off AdS2 background,

Im = 1
2

∫
dx2√−h

[
∂aξ∂aξ +m2ξ2

]
. (1.72)

Its saddle point solution is completely determined by its boundary value ξr(t)
defined as

ξ(t, z) = z1−∆ξr(t) + · · · ; ∆ = 1
2 +

√
1
4 +m2. (1.73)

The AdS/CFT dictionary tells us that, in the dual field theory, there is an operator
V (τ) with conformal dimension ∆ that is conjugate to ξr(τ). Introducing a second
free field χ(t, z), with the same action (1.72), that is conjugate to another operator
W (τ) with the same conformal dimension ∆, one can show [70, 43] that the
leading behavior of the OTOC of those operators arises from the fluctuations of
the boundary shape and is given by:

OTOC(t) ≈
(
π

β

)2(
1− 2∆2 βG

ϕr
e

2πt
β

)
, β ≪ t≪ β log ϕr

βG
. (1.74)

From the exponential growth of the second term in (1.74) with a Lyapunov coef-
ficient λ = 2π/β that saturates the bound (1.14) we conclude that the 2D dilaton
gravity exhibits a maximally chaotic behavior that coincides with the SYK (1.13)
as it should.

1.6. Thesis outline

This thesis studies the non-equilibrium dynamics of composite quantum systems
following the quench described in the introduction at early times specifically. The
time scales of interest are well before the validity of ETH and even hydrodynam-
ics, so the analysis is based on the evolution of energy, the von Neumann and
relative entropies, as well as the information spread between different parts of
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the system. This was initially motivated by an observation in numerical simula-
tions of a peculiar early-time energy increase in the hotter of two quench-coupled
systems. This thesis not only provides a detailed explanation of this quantum
phenomenon but also explores how it can be used for experimentally measuring
quantum correlations, both as a feature for detecting a lab realization of an SYK
system as well as the implications it has on the formation of black holes. Those
results have been published in three different papers [71, 72, 73] plus one yet un-
published manuscript. Before elaborating on them we provided a brief overview
of each of the four chapters.

In the first Chapter 2, we introduce this paradoxical early time rise in energy
in the hotter of the two baths and the quantum thermodynamic approach to
studying post-quench dynamics. To understand the essence of this phenomenon,
without the interference of model-dependent peculiarities, we use the 1D free
fermion model as a case study. Conveniently, in the time regime of interest, we
obtain analytical expressions for the energy and for the von Neumann entropies,
which is an additional benefit of this model. In addition to the theoretical study,
we have suggested an experimentally realizable quench protocol that can measure
entanglement between two subsystems using the energy increase and its relation to
von Neumann entropy. In this quench, one starts with two originally independent
systems of free fermions A and B initially prepared in quantum thermal states at
temperatures TA and TB . At low temperatures, when quenched, the increasing
entanglement contribution to the von Neumann entropy is dominant over the
decreasing thermal one. As a consequence the von Neumann entropy of each
subsystem increases for a certain period after the subsystems are coupled. If
in this period one decouples the subsystems there is an energy transfer to the
system in the amount set by the von Neumann entropy accumulated during the
joint evolution of A and B. This energy transfer appears as work produced
by the quench to decouple the reservoirs. Once A and B are disconnected, the
information about their mutual correlations – von Neumann entropy – is stored in
the energy increment of each reservoir which allows a direct readout of quantum
correlations by measuring the energy of the subsystems. While this thesis doesn’t
cover the details on the feasibility of the experimental realization and subtleties
when the temperature of either subsystem approaches T → 0, interested readers
are advised to consult [71].

Next, in Chapter 3 we study the post-quench quantum dynamics of both strongly
correlated SYK systems and weakly correlated mixed field Ising chains. As previ-
ously mentioned, the quantum thermodynamic relations require exact knowledge
of the time evolution of energy and the von Neumann and relative entropies. For
those systems these cannot be obtained analytically, therefore, we resort to exact
diagonalization. While this approach is limited to finite sized systems, it allows us
to study their evolution at an arbitrary time-scale allowing us to distinguish two
qualitatively different behaviours. Namely, the early time polynomial increase of
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energy in both sub-systems is followed by a conventional classical-like evaporation
with the energy of the hotter/colder system exponentially decreasing/increasing.
At the transition time tm the energy of the hotter system peaks, a feature known
as the energy bump. We show that even in the quantum regime the origin of this
energy bump is not due to thermal flux from the hot to the cold, contrary to what
has been reported before [13]. Instead the early-time energy increase of the hotter
subsystem is not related to a temperature increase but results from the potential
energy gained by coupling the two systems. The size of the energy increase is set
by the entropy gain and lasts until correlations between the subsystems saturate.
When the systems of interests are SYK dots we have numerically found that the
energy bump appears regardless of the initial temperature difference, which isn’t
surprising, given the ultra quantum nature of this system.8 To answer the ques-
tion “Why we haven’t seen this phenomenon in everyday life?”, we use the MFI
model which has classical, integrable, chaotic and critical regimes. At the critical
point, same as with SYK, the energy bump always appears, but moving even
slightly away from criticality there is a distinct temperature Tc such that, when
the hotter system is initiated above TA > Tc, its energy decreases from the very
beginning in full agreement with our (classical) intuition. If MFI is tuned to the
classical regime this distinct temperature vanishes Tc = 0 and classical dynamics
is recovered at any initial configuration.

In order to better understand the numerical results for the SYK and MFI models
we analyze in Chapter 4 their properties with a perturbative time expansion of
each subsystem’s energy. We derive the coefficients up to the third order and
focus on situations where both subsystems are initialized in a thermal state. In
this case the first and third coefficients vanish and the second coefficient captures
the relation between the appearance of the early time energy increase in the
hotter subsystem and before-quench thermodynamic states. More precisely, the
bump appears whenever the second coefficient is larger than zero. Using this
approach we have shown that, for two quench-coupled SYKs, the existence of
the quantum regime isn’t conditioned on the temperature difference. since the
second coefficient of each subsystem depends only on its own parameters and
they’re always positive. Consequently, the early time energy increase will always
appear, as we’ve suspected from the numerical results. However, if the systems
under consideration are MFI models, the second coefficient has two competing
contributions. One is always positive, similar to the SYK case, and depends
only on the analyzed subsystem, whereas the other is negative and depends on
the initial parameters of both, hence, the bump persists as long as the former
term is dominant over the former. Both terms have the same magnitude at the
critical temperature Tc, after which the second term dominates resulting in the
bump disappearance, for any temperature T ≥ Tc. Here, using the perturbative

8This is intrinsically linked to the ANEC inequality when modeling evaporative black hole
formation with SYK dots [14, 15].
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analytical expressions, we were able to compute the critical temperature as a
function of quantities evaluated in the initial thermal state and prove it matches
with results obtained from numerical time evolution.

In the last Chapter 5 we study the post-quench dynamics, using the same proto-
col of coupling two initially independent subsystems, but now for charged SYKs.
Furthermore, the first hot system is a SYK4 dot, but unlike before, the second is a
much larger disordered Fermi liquid heat bath modeled by an SYK2 at zero tem-
perature and chemical potential. This project was motivated by efforts to engineer
an experimental realization of the SYK model and the fragility upon measurement
of the non-Fermi liquid SYK4 phase. By studying the time evolution of the SYK’s
spectral properties we demonstrated that, while the non-Fermi liquid phase even-
tually breaks under the influence of the bath, it is preserved right after the quench
and we were able to estimate the transition timescale, which matches with results
obtained from extrapolation of equilibrium studies. In early post-quench times,
before the non-FL/Fermi liquid transition, we discovered that the charged cur-
rent undergoes a power-law increase and reaches maximum before exponentially
relaxing, resembling the energy behavior analyzed in the three previous chap-
ters. The half-life of the current is inversely proportional to the coupling between
the system and the bath and it increases with temperature. Investigating this
temperature dependence of the half-life we have found that at low temperatures
its temperature dependence behaves as t1/2 ∼ T when the hot system is a non-
Fermi liquid SYK4 dot. However, when the hot system is a disordered regular
Fermi liquid SYK2 system, at the same chemical potential, the half-life scales
as t1/2 ∼ T 2. Based on this result, we proposed measuring the half-life of the
discharging current in the quench-coupling protocol, as a feasible experimental
setup for detecting the fragile non-Fermi liquid SYK phase and differentiating it
from a disordered Fermi-liquid phase.
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2 Dynamics of quenched Fermi gas
after a local quench

2.1. Introduction

Entanglement entropy is a measure of non-classical correlations in quantum com-
posite systems. It is commonly defined as the von Neumann entropy of a subpart
of a quantum composite system described by a pure quantum state [21]. Con-
sideration of the later one requires zero temperature limit. Despite entanglement
being an inherent characteristic of quantumness, the entanglement entropy itself
is not easy to measure directly because of its nonlocal nature. Still, a few propos-
als are suggesting that the entanglement entropy can be related to the particle
number fluctuations in free fermion systems [74, 75, 76, 77] and elicited from the
low-energy states population dynamics in quantum many-body systems [78, 79].
A recent experiment reports that the entanglement entropy can be measured by
an interference of two clones of a many-body state in ultra-cold atoms [80].

However, one may ask if there are generic consequences of quantum correlations
between the subparts of a given system that are known to exist above zero tem-
perature. This question may be answered in the framework of quantum thermo-
dynamics – a rapidly developing field that relates general properties of quantum
systems, such as work, heat, and entropy, irrespective of their microscopic nature
[22]. Within this approach, the classical thermodynamic entities are extended
to their quantum counterparts. In quantum thermodynamics, the energy of the
evolving quantum state is usually expressed in terms of thermal free energy and
entropy production – a measure of the irreversibility of a quantum process defined
as the relative entropy between an actual state of the system and a reference state
[22, 81]. The latter is usually chosen as a thermal state of the system taken at
the same time as the evolving one. This method has proven to be quite fruit-
ful for thermodynamic analysis of quantum composite systems. In particular, it
was shown that entanglement in quantum composite systems can be converted
to work or heat [82, 23, 83, 84]. The conversion of quantum correlations to heat
arises naturally for quantum systems in a form of decoherence due to interac-
tions with environment [85, 86] and governs a borderline between quantum and
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2. Dynamics of quenched Fermi gas after a local quench

classical worlds [87, 88]. On the other hand, the conversion of quantum correla-
tions to work is actively studied as it paves the way to quantum thermal engines
potentially superior to their classical analogs [89, 90, 91].

In this paper, we are interested in the way how quantum correlations may be con-
verted to energy for quantum thermal states. We consider two arbitrary quantum
systems, each of them initially in thermal equilibrium, coupled and then jointly
evolving until decoupling. The coupling and decoupling process is controlled by a
chosen quench protocol. We show that the energy acquired during the joint evolu-
tion by a subpart of a quantum composite system can be related to its entropies
only, namely, the von Neumann entropy and the relative entropy between the
evolved state of the subsystem and its initial thermal state. The von Neumann
entropy accumulated during the joint evolution of the two systems sets the lower
bound on the energy change. We apply this inherently quantum description to
a quench-coupled system of non-interacting fermions. The composite free Fermi
systems are particularly attractive since they allow to directly access the entangle-
ment entropy between its subparts when coupled [76, 77]. For temperatures much
lower than the Fermi energy in the system, the quantum correlations between the
two subparts of the system, given by the change in the von Neumann entropy, are
transferred to the subsystem’s energy. This energy increment originates from the
external work produced by the quench to erase the correlations between the sub-
systems at the moment of decoupling. The von Neumann entropy accumulated
during the joint evolution of the two subsystems can be directly read out from
the energy increment.

2.2. Entropy to energy relation in quantum
thermodynamics

We consider two isolated quantum systems A and B, initially both in thermal
equilibrium, that are instantaneously coupled by an arbitrary interaction VAB .
The general time-dependent Hamiltonian is

H(t) = HA +HB + g(t)VAB , (2.1)

where the function g(t) defines a quench protocol that turns on/off the interaction
at a given time. The initial state of the full system is given by the product of two
thermal density matrices

ρ0 =ρA ⊗ ρB , (2.2)

ρα = 1
Zα

∑
nα

e−Enα /Tα |nα⟩⟨nα| =
e−Hα/Tα

Zα
, α = A,B. (2.3)
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Here |nα⟩ is an eigenstate of the Hamiltonian Hα with an eigenenergy Enα , Tα

is the initial temperature, and Zα = Trαe
−Hα/Tα is the partition function for

α = A,B. Below we focus on the properties of the system A for brevity and use
the units ℏ = kB = 1 everywhere.

Once the two systems are coupled they become correlated. A natural measure to
study the correlations between A and B is the von Neumann entropy. The von
Neumann entropy for the system A is

SvN(t) = −TrA ρA(t) ln ρA(t), (2.4)

where ρA(t) = TrB ρ(t) is the reduced density matrix. Here we are not limiting
ourselves to the unitary evolution of the full density matrix ρ(t). For example,
it can be drawn from the Lindblad master equation in case the system (2.1) is
dissipative.

Let us introduce the relative entropy, which is often used in both quantum in-
formation processing [21] and quantum thermodynamics [22] to distinguish two
quantum states. For our purpose, we define the relative entropy between the
evolved state ρA(t) of the system A from its initial thermal state ρA:

S
(
ρA(t)||ρA

)
=TrA ρA(t)

(
ln ρA(t)− ln ρA

)
≥ 0. (2.5)

As we shall use shortly, the relative entropy is defined as non-negative [21].

Now, we substitute the von Neumann entropy (2.4) into Eq. (2.5). Using that the
initial state of A is a thermal state at temperature TA, we relate the expectation
value of the Hamiltonian HA to the combination of the von Neumann and relative
entropy

TrA ρA(t)HA = FA + TA

(
SvN(t) + S(ρA(t)||ρA)

)
. (2.6)

Here FA = −TA lnZA is the initial thermal free energy of the system A. Sub-
tracting the initial energy value TrA ρAHA = FA + TASvN(0) from Eq. (2.6), we
derive

∆EA(t) = TA

(
∆SvN(t) + S(ρA(t)||ρA)

)
, (2.7)

where ∆EA(t) = TrA ρA(t)HA − TrA ρAHA and ∆SvN(t) = SvN(t) − SvN(0).
The relation (2.7) combines the first and the second law of thermodynamics for
a subpart of an arbitrary quantum composite system. Being a thermodynamic
statement, Eq. (2.7) should be understood as the equation of the energy-to-
entropy balance after the process is over. In contrast with the previous studies,
see e.g. Refs. [82, 23, 83, 86], we relate the energy of the system A to its entropy
properties solely. At low temperatures, the energy change is set by the amount
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of correlations with the other subpart of the full system, that emerge when the
coupling is switched-on, and by its deviation from the initial state.

When the two systems are coupled, it is not possible to completely isolate them
from each other to determine the actual energy shift in A or B. However, one
can count whether the energy of the system changes if A and B are decoupled
later on. Since the relative entropy is non-negative, the von Neumann entropy
provides the lower bound on the overall energy shift:

∆EA ≥ TA∆SvN. (2.8)

The inequality (2.8) is a generic thermodynamic property of quantum composite
systems and yield quite intriguing consequences at low temperatures. Indeed,
turning on the interaction between the subparts of a quantum composite system
induces quantum correlations. Ergo, their von Neumann entropy increases in
absence of thermal imbalance between the subsystems. According to Eq. (2.8), it
necessarily leads to the energy increment when the systems are decoupled (∆EA >
0). This prompts the question: can one directly detect quantum correlations
between the subparts of a quantum composite system by measuring the resulting
energy increment? Putting this in perspective, we explain the physics of this effect
by taking the thermodynamic point of view on the quench-coupling/decoupling
protocol in a free fermion system.

2.3. The case study: free fermions

The possibility of detection quantum correlations and entanglement entropy, in
particular, is widely discussed for the free Fermi systems [75, 76, 74, 77]. In
light of this, free fermions seem as a natural framework to proceed with our
thermodynamic consideration.

Consider for systems A and B two isolated spinless fermionic reservoirs at tem-
peratures TA and TB . At time t = 0 we instantaneously couple the reservoirs
together and then disconnect them at t = t0. The coupling/decoupling process is
controlled by the quench protocol g(t) = θ(t)− θ(t− t0) in the Hamiltonian (2.1).
The Hamiltonian (2.1) reads

HA =
∑

p

ξpa
†
pap, (2.9)

HB =
∑
p′

ξp′b†
p′bp′ , (2.10)

VAB =λδ(x)a†(x)b(x) + h.c., (2.11)

where A and B are coupled locally. Here a, a† and b, b† are the fermionic operators,
ξp is the corresponding dispersion, and λ is the coupling constant. Note that
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[VAB , HA] ̸= 0 and [VAB , HB ] ̸= 0. Below we put both reservoirs at the same
chemical potential to avoid electric currents.

The chosen quench protocol leads to the non-conservation of energy in our model.
It immediately follows from the general form of the Hamiltonian (2.1) that the
energy can be added to the system at the moment of turning on/off the interaction
between A and B:

d⟨H(t)⟩
dt

= g′(t)⟨VAB(t)⟩ = δ(t)⟨VAB(0)⟩ − δ(t− t0)⟨VAB(t0)⟩. (2.12)

The origin of this effect is quite simple. The quench can produce work to couple
and decouple the reservoirs.

When A and B are coupled at t = 0 they become correlated and, hence, one can
not measure their energy separately until the systems are disconnected at t = t0.
To evaluate the overall energy shift in the reservoir A after decoupling from B,
we compute the corresponding energy flux

d⟨HA(t)⟩
dt

=i⟨[H,HA]⟩ = −ig(t)
∑
pp′

ξp(λ⟨a†
pbp′⟩ − h.c.). (2.13)

The correlation functions that define the energy flux (2.13) satisfy the equation

λ
d⟨a†

pbp′⟩
dt

=iλ(ξp − ξp′)⟨a†
pbp′⟩ − ig(t)|λ|2

∑
q

(⟨a†
paq⟩ − ⟨b†

qbp′⟩). (2.14)

The exact solution of Eq. (2.14) requires notion of the correlation functions ⟨a†
paq⟩

and ⟨b†
qbp′⟩, the momenta-diagonal components of which are dynamic occupation

numbers nα(ξp, t) of fermions α = a, b with momentum p at time t. We solve Eq.
(2.14) perturbatively in the lowest order in λ implying the equilibrium occupation
numbers of the initial state of the system. Indeed, since there are no inter-
momenta couplings before the quench, we use diagonal correlations ⟨a†

paq⟩ =
δpq⟨a†

pap⟩ = δpqnA(ξp) and ⟨b†
qbp′⟩ = δqp′⟨b†

p′bp′⟩ = δqp′nB(ξp′) in Eq. (2.14),

where nα(ξp) =
(
eξp/Tα + 1

)−1
is the Fermi distribution function. The sought-

for correlation function is

λ⟨a†
pbp′⟩ =− i|λ|2(nA(ξp)− nB(ξp′))

∫ t

0
dt′ei(ξp−ξp′ )(t−t′)g(t′). (2.15)

It follows form the correlation function (2.15) that ⟨VAB(0)⟩ = 0 in Eq. (2.12),
since there are no correlations between A and B at t = 0.
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Substituting Eq. (2.15) into Eq. (2.13), we obtain the Fermi golden rule formula
for the energy flux

d⟨HA(t)⟩
dt

=− 2g(t) |λ|
2

ε2
F

∫
dωdω′ ω

sin
(
ω − ω′)t
ω − ω′ (nA(ω)− nB(ω′)). (2.16)

Here we introduced the density of states (DoS) for both fermion species νA(ω) =∑
p
δ(ω−ξp) and νB(ω′) =

∑
p′
δ(ω′−ξp′) and assume the two-dimensional reservoirs

with constant DoS given by the inverse Fermi energy να ∼ 1/εF. Then the overall
energy shift in A is given by ∆EA =

∫ t0
0 dt d⟨HA(t)⟩

dt . An identical computation of
the energy flux can be done for the reservoir B.

Let’s consider A and B at zero temperature prior the quench. In equilibrium,
there would not be an energy shift in either of the reservoirs. However, turning
on the coupling entangles the states in the reservoirs and, therefore, results in
presence of entanglement entropy between A and B that can be captured by
the particle number fluctuations [76, 77]. So, does the energy of the A-reservoir
remain unchanged once A and B are decoupled?

At zero temperature the distribution function nα(ω) is a unit-step function θ(−ω)
for both reservoirs. Substituting the zero temperature distribution functions into
the Fermi golden rule formula (2.16) and providing the UV cut-off ∼ εF for the
frequency integrals, we derive the energy flux

d⟨HA(t)⟩
dt

=2g(t)|λ|2 sin(εFt)
sin2 (εFt/2

)(
εFt/2

)2 . (2.17)

Accordingly, the overall energy shift in the reservoir A is

∆EQ
A = 2|λ|2

εF

∫ εFt0

0
dζ sin ζ

sin2 (ζ/2)(
ζ/2
)2 . (2.18)

As it is shown in Fig. 2.1 (blue solid curve), the energy of the system increases
in the absence of temperature or charge imbalance. The effect is suppressed in
the continuous limit (small lattice spacing for the free fermions) where the Fermi
energy is large. Here we use the superscript Q in Eq. (2.18) to stress that the
effect is manifestly quantum since both systems are initially at zero temperature.
The system B has the same energy increase.

Now, we move on to finite temperature. To do so, we apply a temperature imbal-
ance between the reservoirs and compute the energy flux. We restrict ourselves
to the low temperature regime max(TA, TB) ≪ εF and times much less than the
inverse temperature. This limitation naturally arises from the perturbative ori-
gin of the Fermi golden rule formula (2.16). Indeed, at high temperatures the

32
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Figure 2.1. Energy increment in the reservoir A due to quench-coupling with the
reservoir B as a function of time at low temperature. The energy increment at zero
temperature ∆EQ

A ≃ |λ|2

εF
(εFt0)2 for t0 ≪ 1/εF and reaches its maximum value of

3.2 |λ|2/εF at tm = π/εF, which is defined by the first zero of the energy flux (2.17).

dynamics in the integral (2.16) is set by t ∼ 1/max(TA, TB)≪ 1/εF but the en-
ergy flux formula itself is perturbative in |λ|2/ε2

F. The neglected dynamics of the
occupation numbers appears in higher order in |λ|2/ε2

F. Therefore, once reaching
the timescale of t ∼ 1/max(TA, TB), the dynamics of the occupation numbers
can not be considered slow and, hence, is no longer negligible. Still, consideration
of small temperatures allows us to derive the energy dynamics perturbatively at
the timescale t ∼ 1/εF ≪ 1/max(TA, TB). This logic applies to t0, so that we
disregard the thermalization of A and B while they are coupled.

We compute the energy flux (2.16) for TA = T ≪ εF and TB ≪ T using the
equilibrium occupation numbers nA(ω) =

(
eω/T + 1

)−1
and nB(ω) = θ(−ω).

This realises a quantum cooling protocol for the reservoir A. Since A is at low
temperature T ≪ εF, we use the Sommerfeld expansion∫ εF

−εF

dω
F (ω, t)
eω/T + 1 ≃

∫ 0

−εF

dωF (ω, t) + π2T 2

6 F ′(0, t), (2.19)

where F ′(0, t) denotes the frequency derivative of F at ω = 0. Here the function
F (ω, t) = ω

∫ εF
−εF

dω′ sin(ω−ω′)t

ω−ω′ has a well defined derivative F ′(ω, t) in the con-

sidered energy interval, so that F ′(0, t) = 2
εFt∫
0
dζ sin ζ

ζ . Finally, we reinstate the
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2. Dynamics of quenched Fermi gas after a local quench

result in Eq. (2.18) with a small temperature correction:

∆EA =∆EQ
A −

2|λ|2
3εF

(
πT

εF

)2 ∫ εFt0

0
dζ

∫ ζ

0
dζ ′ sin ζ ′

ζ ′ , t0 ≪ 1/T. (2.20)

In Fig. 2.1 (the dashed curve) we demonstrate that the overall energy change in
the reservoir remains positive. Remarkably, cooling down the system at temper-
ature T ≪ εF results in the energy increment of the refrigerated system if the
system and the cold bath are coupled for t0 ∼ 1/εF.

Finally, we can consider A and B at the same temperature TA = TB = T ≪ εF.
We proceed the same way as above and use the Sommerfeld expansion (2.19) for
both systems. This produces the energy increment

∆EA = ∆EQ
A −

8|λ|2
3εF

(
πT

εF

)2
sin2

(
εFt0

2

)
, t0 ≪ 1/T. (2.21)

The effect still persists when both systems evolve starting from thermal states, as
seen in Fig. 2.1 (dotted curve).

In contrast to the subsystem’s energy, the time-dependent correlations between
the subsystems initialized at t = 0 are well defined by the von Neumann entropy
of the corresponding subsystem. The von Neumann entropy of the subpart of a
free fermion system is known to be expressed in terms of its occupation numbers
nα(ξp, t) [76, 77, 92]. The von Neumann entropy of the reservoir A is

SvN(t) =−
∑

p

(
nA(t, ξp) lnnA(t, ξp) + (1− nA(t, ξp)) ln

(
1− nA(t, ξp)

))
.

(2.22)

Within the accuracy of the Fermi golden rule formula (2.16), the entropy flux can
be computed perturbatively in the lowest order in λ:

dSvN(t)
dt

= −
∑

p

dnA(t, ξp)
dt

ln nA(ξp)
1− nA(ξp) , (2.23)

where the distribution function inside the logarithm is taken in equilibrium. Using
that ⟨HA(t)⟩ =

∑
p
ξpnA(t, ξp) and nA(ξp)/(1−nA(ξp)) = exp

(
−ξp/TA

)
, we notice

that the entropy and the energy fluxes are related as TAdSvN(t)/dt = d⟨HA(t)⟩/dt.
Hence, when the systems are decoupled, we get

∆EA = TA∆SvN, (2.24)

that states that the overall energy change in A (2.20) is set by the amount of
correlations the system acquired during the joint evolution of A and B. The
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equation (2.24) resembles the lower energy bound in the energy-entropy balance
equation (2.7) with zero relative entropy

S(ρA(t0)||ρA) = 0. (2.25)

The relative entropy (2.25) between the evolved and initial state of the reservoir
A saturates the lower bound in Klein’s inequality [21]. Within the accuracy of
our perturbation theory, this means that at t = t0 the evolved state ρA(t0) is
indistinguishable from its initial thermal state ρA, despite that the reservoirs A
and B were evolving together from t = 0 to t = t0. The same holds for the
reservoir B. Therefore, the correlations between A and B are erased at the
moment of decoupling. However, t = t0 is a special moment when, according to
Eq. (2.12), the energy is not conserved. Indeed, all the energy acquired by both
systems is transferred at the precise moment of decoupling. Using the correlation
function (2.15), we derive

d⟨H(t)⟩
dt

= −δ(t− t0)⟨VAB(t0)⟩ = δ(t− t0) (∆EA + ∆EB) . (2.26)

In our model the two systems become correlated at t = 0 and then are fully
decoupled at t = t0. At low temperatures, the amount of energy transferred
to the system by the quench at t = t0 is set by the von Neumann entropies
of each system accumulated during joint evolution of A and B, which captures
the correlations between A and B up to the moment of decoupling. The work
produced by the quench −∆EA−∆EB is utilized to erase the correlations between
the reservoirs. The information about the erased correlations is stored in the
energy increment of each subsystem. As we illustrate in Fig. 2.1, the energy
increment of the subsystem is well-described by its quantum part ∆EQ

A for a short
quench protocol t0 ≲ 1/εF at low temperatures max(TA, TB) ≪ εF. As such, we
refer to ∆EQ

A + ∆EQ
B as the binding energy of quantum correlations between A

and B – the amount of energy required to erase the quantum correlations between
the subparts of a quantum composite system.

2.4. Conclusion

In this paper, we discuss non-equilibrium dynamics in quantum composite systems
in a thermodynamic framework. We consider two arbitrary quantum systems A
and B at finite temperature instantaneously coupled together. We show that
the energy of a subpart of a quantum composite system can be related to its
entropy properties solely. Specifically, the energy change of the system A is set
by the change of its von Neumann entropy and by the relative entropy between
the evolved state of A and its initial thermal state.
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2. Dynamics of quenched Fermi gas after a local quench

We consider a quench protocol for the free fermion system, where A and B are
described by non-interacting fermions. Starting with zero temperature limit, we
show that the subsystem’s energy increases in absence of charge or temperature
imbalance. Proceeding to the finite temperature case, we find out that the energy
increment is still present for the temperatures much less than the Fermi energy
in the system. We demonstrate that the energy is transferred to the system in
the moment of decoupling, while the amount of energy is given by change of the
von Neumann entropy multiplied by the initial temperature. Here the decoupling
quench acts as an external force which produces work to erase the correlations
between A and B. Meanwhile, the von Neumann entropy accumulated during
the joint evolution of A and B is stored in the corresponding energy increment.
Hereby, we refer to this effect as an information to energy conversion.

During the final stage of preparing this manuscript, we have noticed a preprint
by Popovic et al. [86], which shows that there is a heat transfer from the system
described by a quantum pure state to the thermal bath at the moment of decou-
pling. This heat dissipation is argued to originate from an energetic cost for a
decoherence process. We note a similar energy transfer in the coupling/decoupling
protocol for quantum thermal states, where the system and the bath are described
by non-interacting fermions at low temperature. We argue that the amount of
energy accumulated by a subpart of a quantum composite system is set by the
amount of correlations with the other subpart developed by the moment of de-
coupling.

The effect of information to energy conversion is quite generic for quantum com-
posite systems and appears as long as the Hamiltonian of the system contains
non-commuting parts. The conversion happens when the subpart of the system
is separated from the rest of the system as a consequence of the energetic cost of
decoupling. The fingerprints of this effect are also present in strongly-correlated
systems. In Ref. [89], a quantum system where non-local random interaction is
turned on/off by a quench increases its energy drastically after the interaction
is off. At the same time, the entropy flux presented in this paper qualitatively
explains the anomalous growth of the energy flux in the evaporating Sachdev-Ye-
Kitaev quantum dot [15, 13]. This subject will be addressed in details as well as
its relation to the recent studies of the evaporating black holes [93, 94, 95] in the
upcomming article [96].
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3 Quenched cooling and the
crossover from quantum to
classical thermodynamics

3.1. Introduction

The notion of entropy is more involved in quantum systems than in classical sys-
tems as it also includes the information of potential entanglement with another
set of dynamical degrees of freedom. This can be another system with which it
is (weakly) coupled, the environment, or the measurement apparatus. In clas-
sical equilibrium thermodynamics, the change in the entropy is associated with
heat flow according to the Second Law while quantum mechanically the entropy
can be changed by the quantum correlations in the system that may or may not
necessarily involve heat flow. The field of quantum thermodynamics specifically
pursues this question how work, heat and entropy are affected by quantum cor-
relations including entanglement; see e.g. [97, 98] for recent reviews. This field is
growing rapidly, even though these many-body entanglement effects are still less
well understood than entanglement and decoherence in few-qubit systems.

Here we take a quantum thermodynamics point of view on non-equilibrium
dynamics in many-body systems with two theoretical models as example: the
Sachdev-Ye-Kitaev (SYK) model and a mixed field Ising chain. The Sachdev-Ye-
Kitaev model has a computable non-Fermi liquid ground state that is long-range
many body entangled [39, 40]. Through the holographic duality between anti-de-
Sitter quantum gravity and matrix large N quantum systems, such SYK models
at finite temperature are also dual descriptions of black holes in anti-de-Sitter
gravity [46]. Using this duality to study the profound question of black hole
evaporation through Hawking radiation and its information flow [63, 94, 62, 65,
99], recent studies have considered the quenched cooling of a hot thermal SYK
state (the black hole) suddenly being able to “evaporate” into a cooler or even
T = 0 SYK state (the container for the evaporated radiation) [13, 15, 14].1 A
surprising finding from the perspective of classical thermodynamics has been that

1Early work on SYK quenches is [57]. For other aspects of SYK dynamics, see this and citations
thereof.
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these observe an initial energy increase [15, 13, 14, 100] in the hot subsystem,
confirming results from preceding black hole evaporation studies [101]. It was
argued, using Schwinger-Keldysh field theory, that many relativistic continuum
field theories will exhibit such an energy increase in the hot system when quench
coupling two thermal states [101, 15] even though a fundamental proof or under-
standing was missing. In particular, a quenched cooling between two two-level
systems provides a counterexample [15].2

In a recent article, we showed that quantum thermodynamics [97, 98] provides the
universal explanation for this counterintuitive rise [102]. In a quenched cooling
protocol where a (hot) thermal quantum system with Hamiltonian HA is brought
into instantaneous contact with a (cooler) thermal reservoir at t = 0 through
Htotal = HA + HB + θ(t)Hint, the change in the energy of the hot subsystem A
equals

∆EA(t) = TA∆SvN,A(t) + TAD(ρA(t)||ρTA
) . (3.1)

Here SvN = −Tr(ρA ln ρA) is the von-Neumann entropy of the reduced density
matrix of the subsystem A: ρA = TrB ρ; the energy of the subsystem EA(t) is the
expectation value of its subsystem Hamiltonian EA = TrHAρ(t) = TrHAρA(t);
and D(ρA(t)||ρTA

) = Tr ρA(t) log
(
ρA(t)/ρTA

)
is the relative entropy between the

reduced density matrix of system A and the initial thermal density matrix of A
at t = 0. The change ∆E(t) = E(t)− E(0) is with respect to the same quantity
at t = 0. By symmetry an analogous relation holds for subsystem B.

As the relative entropy D(ρA(t)||ρTA
) ≥ 0 is positive semi-definite, one arrives

at an inequality that holds universally for any model Hamiltonian when such a
quenched cooling protocol is considered

∆EA(t) ≥ TA∆SvN,A(t) . (3.2)

In a quantum system the von-Neumann entropy can have a significant contri-
bution from quantum correlations including entanglement over and above the
classical thermal entropy. As the quantum correlations between the system and
the reservoir can only increase after a quench, the quantum thermodynamic in-
equality Eq.(3.2) can therefore force an associated increase in energy in system A
even if its initial energy density was higher. Moreover, in perturbation theory to
leading order the inequality saturates as the contribution of the relative entropy
is subleading and one can use the equality as a way to measure the von Neumann
entropy in a quenched cooling protocol through the energy difference [102].

A common view on non-equilibrium phenomena is that at the shortest time scales
the system is extremely sensitive to microscopic information, details of the quench

2The thermal state of a two-level system is defined through its density matrix ρ =
1
Z

∑
n

|n⟩e−βEn ⟨n| with n =↓, ↑ and Z the appropriate normalization such that Trρ = 1.
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3.2. Energy dynamics in quenched cooling

protocol etc, and it is only the longest-time-scale-relaxation to equilibrium that
is universal. Eq.(3.2) surprisingly shows that it need not be so: at the shortest
possible non-equilibrium time scale there is still a notion of the first law that
entropy is linked to energy, even though the standard first law in the absence of
work dE = TdS is relating state functions regarding equilibria.

This positive contribution due to quantum correlations to the von Neumann en-
tropy is present in any quantum system, but our classical experience is that the
energy in the hot system decreases directly upon contact because heat must flow
from hot to cold. What must happen to restore this intuition that the energy in
the hot system decreases instantaneously is that the positive quantum correlation-
and entanglement- contribution can be overwhelmed by the semi-classical heat and
information flow from hot to cold. By studying quenched cooling in SYK models,
where entanglement is very strong, and one-dimensional mixed field Ising chains,
where entanglement can be made very weak, we exhibit this. Classical experience
is restored in a particle-like system at high temperatures where entanglement is
weak.

3.2. Energy dynamics in quenched cooling

The setup we study consists of two initially independent quantum subsystems
A and B with Hamiltonians HA and HB respectively. Initially (t < 0), each
subsystem is prepared in a thermal state at temperature TA and TB , so the full
system is in an uncorrelated product state:

ρ0 = ρTA
⊗ ρTB

ρTα
= 1
Zα

e−Hα/Tα , α = A,B. (3.3)

We will study the behaviour of the subsystems when they are brought into instan-
taneous contact at t = 0 through an interaction Hamiltonian Hint. The complete
setup is a closed system that evolves with the full Hamiltonian:

Htotal = HA +HB + θ(t)Hint . (3.4)

Motivated by current results presented in the introduction, we focus our interest
on two different models:

• Finite N Majorana SYK with each subsystem governed by the Hamiltonian

Hα = iq/2
Nα∑

j1...jq=1
Jα

j1...jq
ψα

j1
. . . ψα

jq
α = A,B (3.5)

41



3. Quenched cooling and the crossover from quantum to classical
thermodynamics

where q is same for both dots and can be either q = 2 or q = 4, further
labeled as SYK2 and SYK4 respectively. The couplings are drawn from a
Gaussian distribution with the following parameters:

⟨Jα
j1...jq

⟩ = 0, ⟨Jα
j1...jq

Jα
j1...jq

⟩ = (q − 1)!J2

Nq−1
α

. (3.6)

Those two SYK dots are coupled through a two Majorana tunneling inter-
action which couplings are also sampled from a Gaussian distribution:3

Hint = i

N∑
ij

λijψ
A
i ψ

B
j , (3.7)

⟨λij⟩ = 0, ⟨λ2
ij⟩ = λ2

NB
. (3.8)

This system is analyzed with exact diagonalization and averaged over R =
100 different coupling realizations. To reduce the number of free parameters
we take two equal size dots NA = NB ≡ N .

• The 1D mixed field Ising model, also analyzed using exact diagonalization,
with a particle-like contact interaction:

Hα =−
Nα∑

i

(
JZα

i Z
α
i+1 + hxX

α
i + hzZ

α
i

)
, α = A,B (3.9)

H
(tunn.)
int =− λ(X + iY )A

NA
(X − iY )B

1 + h.c. (3.10)

Dimensionful parameters are expressed in J , which is usually set to J = 1.

Fig. 3.1 shows the classically unexpected rise in energy in system A directly fol-
lowing the cooling quench with TA > TB found in [13, 15]. We shall now show
that even though EA initially increases, there is no energy flux from the cold
reservoir to the hot system. The energy increase instead follows from the energy
contribution of the interaction Hamiltonian solely but it is nevertheless a real
modification of energy, as a subsequent decoupling of A and B shows. At the
moment of decoupling work must be performed on the combined system-reservoir
as we shall show.

The above conclusions follows from the following observations in SYK systems:

1. Directly following the quench, the system-energy EA(t) and the reservoir-
energy EB(t) both grow (Fig.3.2). The fact that there is no net energy flow
from cold to hot means the energy must come from somewhere else.

3We have taken a variance in λ that is asymmetric in NA and NB to readily compare with [13,
15]. These authors chose this such that the interaction stays relevant in the large NA limit.
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Figure 3.1. Normalized change of the energy of the hotter system A (∆EA =
Tr
(
(ρA(t)− ρTA

)HA

)
as a function of time. At short times it increases counter

to intuition. Majorana SYK4 in exact diagonalization averaged over R = 100
realizations with parameters of both systems on top of the plot. Red dot marks
the bump that is reached at time tm and has a height Em relative to the initial
energy.

2. The total Hamiltonian Htotal = HA + HB + θ(t)Hint contains a third con-
tribution Hint. Its contribution to the energy is negative (Fig.3.2).

3. The change in the expectation value in the total Hamiltonian is nevertheless
readily computed to vanish.

d

dt
⟨Htotal⟩ = i⟨[Htotal, Htotal]⟩+ δ(t)⟨Hint⟩ (3.11)

The first term vanishes trivially. When ⟨Hint⟩(0) = 0 as well, as is the case
in all the systems we study, then ⟨Htotal⟩ is constant in time. The “binding”-
energy from Ebind = −Eint(t) = Tr

(
Hintρ(t)

)
thus completely accounts for

the rise in both EA(t) and EB(t).

4. More precisely, for EA(t) to correspond to a measurable energy change (in
the sense of commuting with the Hamiltonian) one should decouple the
system from the reservoir with a second quench at a finite time tf later, as in
the standard two-point measurement protocol in quantum thermodynamics
[97, 98, 86]. Then HA commutes again with the full Hamiltonian for t > tf .4

4Formally, if one does not decouple, the eigenstates of Htot are no longer localized within
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Figure 3.2. Normalized change of energy of the two subsystem A, B, the in-
teraction energy ∆Eint = Tr

(
(ρ(t)− ρ0)Hint

)
and the total energy Etotal as a

function of time. Directly following the quench both the system-energy EA(t)
and the reservoir-energy EB(t) grow, whereas the interaction energy Eint(t) de-
creases. The sum vanishes as must be as no energy is put into the combined
system/reservoir. Majorana SYK in exact diagonalization averaged over R = 100
realizations with parameters of both systems on top of the plot.

In other words, as in our previous article [102], one considers the two-quench
protocol Htotal = HA +HB + (θ(t)− θ(tf ))Hint. Computing the change in
total energy, one clearly sees that the energy that must now be supplied
equals the binding-energy Ebind = −Eint(tf ).

d

dt
⟨Htotal⟩ = −δ(tf )⟨Hint⟩ . (3.12)

Choosing tf during the initial time period where both EA and EB increase,
one concludes that for a two-point measurement protocol of such short du-
ration the total energy in the system has increased. In particular there are
initial configurations of TA, TB where the final equilibrium temperature af-
ter such a short-time two measurement protocol is larger than both TA and
TB ; see Fig.3.3. The decoupling quench must therefore perform work on the
system.

A or B, and one cannot really say that the expectation value of HA is the energy of the
sub-system A. The expectation value of HA nevertheless comes the closest and is therefore
what is conveniently called the energy of this subsystem.
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Figure 3.3. Normalized change of energy of the two subsystem A, B, the interac-
tion energy ∆Eint = Tr

(
(ρ(t)− ρ0)Hint

)
and the total energy Etotal as a function

of time in a two-quench protocal with the interaction turned of at tf = 1. At tf
the change in total energy shows the energy supplied to the system which exactly
equals Eint. Majorana SYK in exact diagonalization averaged over R = 100 real-
izations with parameters of both systems are on top of the plot.

5. In general, since the whole system AB is closed, the total change in the
energy of each subsystem, A or B, can be due to two components, the
contribution from/debit to the “binding”-energy and the thermal exchange
between A and B:

∆EA = ∆EA,bind + ∆EB to A (3.13a)
∆EB = ∆EB,bind −∆EB to A. (3.13b)

We can estimate the binding energy for each subsystem A,B with respec-
tive initial temperatures TA ̸= TB separately from the interaction energy
of a second quench experiment with an equal temperature setup Eα,bind ≈
− 1

2Eint(TA = TB = Tα), i.e. we determine EA,bind from a quench set-up
where both system and reservoir have initial temperature TA, and EB,bind
from a quench set-up where both system and reservoir have initial temper-
ature TB . Using this estimate in the quenched cooling set-up with different
temperatures that are not too different we can numerically compute the
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Figure 3.4. Time derivatives of the energy EA of subsystem A; time derivative
of an estimate of binding energy contribution EA,bind from considering an equal
temperature quench (TA = TB = 0.5J), and the resultant thermal flux from
cold reservoir B to hot system A. The flux is always negative and always flows
from hot to cold. Majorana SYK in exact diagonalization averaged over R = 100
realizations with parameters of both systems on top of the plot.

thermal flux from B into A as

ΦA = d

dt
EB to A = 1

2

(
d

dt
EA −

d

dt
EB

)
− 1

2

(
d

dt
EA,bind −

d

dt
EB,bind

)
.

(3.14)

The flux ΦA is always negative and at early times it is subdominant to the
binding energy Fig. 3.4. This proves that even when EA increases initially,
the energy flux/heat transport is nevertheless always from the hot system
A to the cold reservoir B and the supplied energy for the increase comes
solely from the binding-energy or the outside when decoupling A and B.

3.2.1. Energy rise driven by quantum correlations

As previewed in the introduction the quantity that controls this rise in energy EA

from the contribution of the “binding”-energy to the combined system-reservoir
is the von Neumann entropy of the reduced density matrix of system A: ρA(t) =
TrB ρ(t) . To see this, consider the relative entropy between ρA(t) and the initial
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thermal density matrix

D(ρA(t)||ρTA
) = Tr

(
ρA(t) ln ρA(t)

)
− Tr

(
ρA(t) ln ρTA

)
. (3.15)

Substituting that ρTA
= 1

ZA
e−ĤA/TA one immediately has

TAD(ρA(t)||ρTA
) + TASvN,A(t) = EA(t)− FA . (3.16)

where FA = − lnZA = EA(0) − TASA(0) is the free energy of the initial ther-
mal state. The time-dependent terms form the definition of the information free
energy

F(t : TA) = EA(t)− TASvN,A(t) = FA + TAD(ρA(t)||ρTA
). (3.17)

It encodes the energy-available-for-work and its full counting statistics in open
quantum systems that decohere due to their interaction with the environment.
The loss of information due to decoherence and decorrelation costs work according
the Landauer’s principle and the information free energy accounts for that [97,
98].

The change in energy of system A after the quench directly follows from Eq.(3.16)
and immediately brings us to Eq.(3.1).

∆EA(t) = EA(t)− EA(0) = TA∆SvN,A(t) + TAD(ρA(t)||ρTA
),

and using the semi-positive definiteness of the relative entropy Eq.(3.2)

∆EA(t) ≥ TA∆SvN,A.

Both the equality and the inequality are readily observed in exact diagonalization
of Majorana SYK models, see Fig.3.5.

Two important remarks can be made:

1. As the relative entropy is very small at early times the initial rise in energy
is completely determined by the rise in the von-Neumann entropy.5

2. This rise is even present when the reservoir B is at TB = 0, as well as when
the system and reservoir are at equal T (Fig.3.5). This unambiguously
points to the growth of quantum entanglement as the contributing factor to
the rise in the von-Neumann entropy; (see also [102]).
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Figure 3.5. The energy EA is verified to equal the sum of the von Neumann
entropy ∆SvN,A times the initial temperature TA and the relative entropy DA ≡
D(ρA(t)||ρTA

). The initial rise in the energy in particular is controlled by the
initial rise in the von Neumann entropy. This persists when the reservoir is in
the groundstate T = 0 and at equal system-and-reservoir temperature TA = TB

pointing to entanglement as cause of the rise in von-Neumann entropy. Data from
Majorana SYK in exact diagonalization averaged over R = 100 realizations with
parameters on top of the plot.

Given that it is the von Neumann entropy growth that controls the early time
dynamics between the two subsystem, it is natural to also consider the evolution
of mutual information between the two:6

I(A : B, t) = SvN,A(t) + SvN,B(t)− SvN,A∪B(t) , (3.19)

where SvN,A∪B = −TrA,B ρA∪B ln ρA∪B with ρA∪B being the density matrix of
the full system. It displays two qualitatively distinct regimes: an initial poly-
nomial increase followed by an exponentially decaying approach to equilibrium.
Qualitatively, the early time (t < tm) behaviour of the mutual information re-

5Strictly speaking fine tuned initial conditions can exist where the von-Neumann entropy de-
creases, but decreases so little that the small rise in relative entropy nevertheless results in
an energy increase in the hotter system.

6When the system and the reservoir have equal T , then

∆EA(t) + ∆EB(t) = T ∆I(A : B) + D(ρA(t)||ρT ) + D(ρB(t)||ρT )) . (3.18)

since ∆SA∪B(t) = ∆Stotal(t) = 0 due to unitary evolution of the combined system-reservoir
combination as a whole. In the early time regime where the relative entropies are very small,
the combined energy change in A and B, equal to work needed at the moment of a decoupling
quench, is then equal to the mutual information. This was first pointed out in [103] where it
was shown that the minimum amount of noise to decorrelate two systems equals the mutual
information. By Landauer’s principle this is then also the minimal amount of work. Note,
however, that the energy increase here is not directly related to decorrelation between A and
B.
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3.3. The transition from quantum to classical cooling

sembles the results reported in [104, 105] where mutual information was used as
a better measure of quantum scrambling, compared to the OTOC. In particular
these articles prove that I(A : B) bounds the OTOC from above. This sup-
ports our deduction above that the initial energy increase is caused by quantum
correlation- and/or entanglement-growth and scrambling. Note that the OTOC
of operators between two quenched quantum dots depends on the initial state and
interaction between the two dots, hence the early time polynomial increase in our
setup. This should not be confused with the exponential growth of OTOC within
a single SYK dot, which is driven by strong entanglement. The articles [104, 105]
also emphasize the role of decoherence in addition to scrambling. It would be
interesting to dissect and analyze their interplay further but we leave this for the
future.
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Figure 3.6. Growth of the mutual information between subsystems A and B.

3.3. The transition from quantum to classical cooling

At late times after the quench, the system behaves fully as expected in that the
energy of the hotter system exponentially decreases until it equilibrates. Given
that the initial rise of energy is controlled by the rise in entanglement driven
von-Neumann entropy, there are two clear regimes: this initial rise and the late
time relaxation (Fig.3.7). For the specific case of the quenched cooling two SYK
dots, one can use the fact that large N SYK is exactly solvable to make analytic
estimates for both these regimes as well as the intermediate regime and the long-
time hydrodynamic tails which eventually change the relaxation to equilibrium
from exponential to power law [15].
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Figure 3.7. The generic contact quench is characterized by an early time quan-
tum scrambling dominated regime (red) that transitions to a regime exhibiting
conventional classical relaxation (green). The transitions between these regimes
are not sharp, but roughly indicated by the top of the initial energy bump and
the saturation of the relative entropy, where the final density matrix has become
approximately thermal.

Here we ask a different question. Having argued that the initial rise is generically
universally controlled by the rising quantum correlation contribution to the von-
Neumann entropy, under what circumstances does the expected classical physics
emerge, where heat immediately flows from hot to cold? The quantum correlation-
and/or entanglement-growth is always present (except if the full system is purely
classical where all the terms in the full Hamiltonian, including the coupling term,
commute with each other). This can therefore only happen in circumstances where
the “classical” relaxation overwhelms the quantum growth. Or more precisely,
knowing that

∆EA(t) ≥ TA∆SvN,A(t),

this transition can only happen if the “classical” thermal contribution to the
von-Neumann entropy dominates over the entanglement contribution to the von-
Neumann entropy already at the earliest possible time. From the atomic statistical
mechanics underpinning of classical thermodynamics we know that this must hap-
pen when we have a theory with well defined particles with suppressed quantum
correlations. This should be the case at high temperatures (weak coupling) and
low densities.

However, when we study the high T (TA, TB ≫ J2 and TA ≫ TB) regime in
quenched cooling two SYK4-dots, this disappearance of the initial rise and a
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3.3. The transition from quantum to classical cooling

transition to immediate classical energy flow from hot to cold is not seen to
emerge. This is even so when we extrapolate our finite size exact diagonalization
result to the thermodynamic limit (N →∞) (with the assumption that the finite
N studies do capture the appropriate large N behavior). Fig. 3.8 shows the
height of the energy bump Em = Emax − E(t = 0) per particle (Em/N) in the
Majorana SYK4 model directly before it starts to decrease as a function of the
temperature TA. Any finite N system will always contain quantum signatures
and the classical behavior need only emerge in a thermodynamic limit. Numerics
directly gives away that Em has a leading scaling with N . Dividing this overall
scaling out, a rough extrapolation to N = ∞ nevertheless shows that a positive
energy bump remains.7

To try to find the crossover to expected classical behavior where the energy rise
in the hot system is absent, we change the quenched cooling set-up from two SYK
quantum dots to two mixed field Ising half-lines Eq. (4.18) with a tunneling in-
teraction at the end point of each line Eq.(4.19). Both at the free hx = 0, hz = 0
[106] and at the conformal fixed point hx = 1, hz = 0 in the continuum (thermo-
dynamic) limit one can use conformal field theory techniques to study this type
of quenched cooling [107, 108, 109]. Then one indeed finds that there is no initial
energy rise, but the energy starts to flow instantaneously from hot to cold. As
is well known by now, in the regime h = 0 the late time behavior of the two
subsystems, if isolated, is controlled by the large number of conserved charges
and an associated generalized hydrodynamical relaxation towards a generalized
Gibbs ensemble [110, 111]. The presence of the coupling term λ makes the full
system not integrable.

Indeed for the case hx = 0 (hz ̸= 0) there is for any system size an immediate
energy decrease in the hot subsystem, as shown in Fig. 3.9 (top). This case is
classical with only a small quantum tunneling between the two subsystems. For
generic values of hx and hz, on the other hand, there is an initial rise in energy
in accordance with the universal relation Eq.(3.2). The height of the energy
bump (Em) is now independent of N , due to the more local point-like interaction
compared to the SYK non-local all-to-all tunneling. This suggests that the bump
energy per particle (Em/N) will vanish in the thermodynamic limit to match
our classical intuition. However, instead of such a thermodynamic vanishing,
we should expect that also a finite-size system exists where semi-classical hot-
to-cold energy dynamics overwhelms the information-driven gain at short times.
Indeed for a fixed temperature, we can estimate where the bump disappears, by
extrapolating the Em/N to large N . Now we see the foretold disappearance of the
bump at a fixed finite temperature at a finite value of N , restoring our classical

7This turns out to also be true for SYK2 models. Though within the random ensemble of SYK2
couplings, there are empirically always realizations for which the energy EA does decrease
instantaneously.
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Figure 3.8. Quenched cooling of two SYK4 dots. Top: Height Em of the energy
bump (left) and time tm of the bump (right) for various initial temperatures
TA = 1/βA. Bottom: Height Em of the energy bump roughly extrapolated to
larger N for two different initial temperatures βA. The height stays finite in this
thermodynamic limit, indicated by a > 0. Combining the top and the bottom,
the initial rise in the hotter system energy EA seems to persist for any finite TA

and infinite N .

intuition (Fig.3.9). An explicit finite N example is given in Fig.3.10. This finite
N example shows that it is not simply the fact that the interaction is local and
thus non-extensive in the thermodynamic limit, that causes it to vanish for higher
temperatures.

The most interesting case is the conformal point of the Ising model (Fig. 3.9) (see
also [112]). At exactly hx = 1, hz = 0 the bump only disappears by extrapolation
to the continuum limit, similar to the SYK4 results. This is still consistent with
the earlier results on quenched cooling in conformal systems [107, 108, 109]. The
absence of a bump found there relies on conformal symmetry which is only a true
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Figure 3.9. Quenched cooling in two Ising half lines. Top: Height Em of the
energy bump (left) and time tm of the bump (right) in for various parameter
choices. Bottom: Height Em of the energy bump extrapolated to larger N for
various initial temperatures TA = 1/βA. For each initial temperature there is a
finite extrapolated value of N for which the bump disappears (a ≤ 0) and the
system will cool instantaneously upon contact. The higher the initial temperature,
the lower is this value of N .

symmetry in the continuum limit. At the same time for any finite size quantum
system at low T , there appears to always be a small but non-zero counterintuitive
initial rise. The bump is a correlation driven effect, as a simple ballistic collision
model based on the Boltzmann equation will never have an initial energy rise in
the hot system [106].8 The correlation can still be either quantum or classical
statistical. In the latter case, this classical statistical two-particle correlation

8Perhaps the easiest way to see this is to realize that the quenched cooling protocol is the
quantum version of the Riemann problem in hydrodynamics. In hydrodynamics one assumes
local equilibrium and thus an absence of correlations between different spatial points at
distances larger than the local mean free path.
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Figure 3.10. Quenched cooling in two Ising half lines. For T < Tc ≃ 77.845J
one still observes the initial rise in the hotter system A, but for T > Tc one
transitions to a regime where classical intuition is restored and the system cools
instantaneously upon contact.

(the two-particle distribution function) vanishes in the thermodynamic limit in
accordance with the assumption of molecular chaos.

In summary, classical thermodynamics — or rather hydrodynamics as we are
studying time-dependent processes — emerges in the quasi-particle (high tem-
perature low density) limit with a non-extensive interaction between system and
reservoir and after taking the thermodynamic limit. The converse is that in quan-
tum systems the initial rise in energy in the hot system that undergoes quenched
cooling is robust and generic, though not required, and universally explained by
Eq.(3.1).

3.4. Conclusion

In this manuscript, we have analyzed the origins of the observed counter-intuitive
early time energy increase in hotter systems quench-coupled to a cooler reservoir
in quantum simulations. Our numerical study of Majorana SYK4, using exact
diagonalization demonstrates that the early time energy behaviour is proportional
to the increase of the von Neumann entropy and is not related to a thermal
flux from the cold to the hot system, demonstrating the quantum nature of this
phenomenon. The energy increase is counterbalanced by the negative interaction
potential (expectation value of the tunneling term in the Hamiltonian). In the
setup here, the coupling quench does not supply energy into the system and the
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total energy is conserved. The same potential sets the amount of work needed to
decouple the systems at given later time.

This peculiar phenomenon is well explained by the quantum non-equilibrium ex-
tension of the first law of thermodynamics Eq.(3.1) where the relative entropy
D(ρ(t)||ρT ) plays a crucial role. Starting from a thermal state D(ρ(t = 0)||ρT ) = 0
and using the positive semi-definiteness D(ρ(t)||ρT ) ≥ 0 the von Neumann en-
tropy, scaled by the initial temperature, then sets a lower bound on the energy in
each subsystem (3.2). This links the observed energy increase even in the hotter
subsystem to an increase of the von Neumann entropy. Moreover, at sufficiently
early times the change of the relative entropy is negligible compared to the en-
ergy which has two interesting consequences. Firstly, the early time evolution
of the energy is almost directly proportional to the von Neumann entropy as we
emphasized in our earlier paper [102]; this provides a way to measure (dynami-
cal) entanglement between two subsystems.9 Secondly, it proves that the initial
thermal state isn’t instantaneously destroyed, hence the initial energy rise is not
related to a temperature increase.

The universality of this bound gives rise to an even more puzzling question: Why
is such an energy increase not commonly encountered in our daily life? The
reason lies in the quantum nature of this phenomenon. We show that at high
temperatures in weakly interacting quasi-particle systems the height of the bump
is suppressed and the time it crests gets very short. In the thermodynamic limit
it vanishes altogether, making it essentially unnoticeable at everyday macroscopic
scales. As our results for SYK and the conformal point of the mixed field Ising
model show, the more quantum mechanical the system is the closer one must
push to the continuum quasiparticle limit for this bump to disappear and classical
intuition to be restored. By extrapolation of our numerical simulation this is only
ever possible to achieve in the strict thermodynamic limit.

This energy increase of the hotter system defies our intuition and understanding
of classical thermodynamics but, as demonstrated here, it is well in accord with
the laws of quantum thermodynamics.

There are three notable considerations that follow: There has been an substantial
amount of research in the past few years on the out-of-time-ordered correlation
function as a probe of classical and quantum chaos resulting in information ex-
change, scrambling and entropy growth (see e.g. [113]). The standard wisdom
is that this information flow is separate and faster than energy flow, because the
latter is constrained by a conservation equation, as recalled for instance in [114].

9As the relative entropy is a measure of how distinguishable two states are, extremely small
relative entropy means that at early times the subsystem is nearly indistinguishable from its
initial thermal state implying that the energy increase is not related to a temperature rise,
contrary to what was suggested in other papers [13, 15].
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The result here and particular the inequality Eq.(3.2) shows that this information
flow, even though it is faster, must always drag some energy with it.

Secondly, one of the motivations to study SYK quenched cooling has been the
equivalence with black hole evaporation through the holographic AdS/CFT cor-
respondence. Because the evaporation of the black hole must expose the infor-
mation behind the horizon, the quench can be modeled in the black hole context
by a negative energy shock wave [44, 101], which shrinks the horizon upon con-
tact. The result here shows that at very early times (before the shock hits the
horizon in global time), there should be an interesting connection between the
Ryu-Takayanagi entanglement surface encoding the von-Neumann entropy and
the dynamics of the energy wavefront that holographically encodes Eq.(3.2).

Finally, as already emphasized in [102], the inequality Eq.(3.2) saturates in per-
turbation theory and can therefore be used in quenched cooling of weakly coupled
systems to probe the von-Neumann entropy. Moreover, this is a universal result
in the short time scale regime which is normally considered too sensitive to pecu-
liar details of the experimental set-up and the system to be of interest. It invites
an experimental measurement of this universal way the von-Neumann entropy
determines the energy response.
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3.A. Numerical Disorder Averaging

3.A. Numerical Disorder Averaging

Disorder averaging of observables O(t) in an SYK system was computed by nu-
merically evaluating their evolution R-times (Oi(t), i ∈ {1, 2, · · ·R}), for R SYK
Hamiltonians drawn from the same distribution, and then computing the average
at each time point:

O(t) = 1
R

R∑
i

Oi(t) (3.20)

Below, we present descriptive plots of the energy Fig.3.11 (top row) and entropy
(bottom row) of system A where one can see 30 different realizations (gray) of
the respective observable and the disorder averaged analog (blue) obtained from
by disorder averaging over R = 100 realizations.
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Figure 3.11. Different realizations of the energy (gray) and the disordered aver-
aged energy (blue) obtained from averaging over R = 100 realizations. The left
plot is the energy of system A, and the right plot is the same energy with the
initial value subtracted ∆EA(t) = EA(t)− EA(t = 0).

Additionally, one can compute the confidence interval of an averaged observable
O(t) (3.20), depicted as colored bands in Figure 3.13, with the following relation:

O(t)± z
σO(t)√
R

(3.21)

where z is the normal distribution score (e.g. z = 3 results in a 3σ, or equivalently
99.7%, confidence interval) and σO(t) is the standard deviation of the observable:

σO(t) =

√√√√ 1
R− 1

R∑
i

(
Oi(t)−O(t)

)2
. (3.22)

Next, Fig. 3.12 depicts the same averaging procedure but for the entropy.
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Figure 3.12. Different realizations of the entropy (gray) and the disordered aver-
aged entropy (blue) obtained from averaging over R = 100 realizations. The left
plot is the entropy of system A, and the right plot is the same entropy with the
initial value subtracted ∆SA(t) = SA(t)− SA(t = 0).

3.B. Reduced Number of Inter-dot Interacting
Majoranas

In the initial phase of the project, we were not aware if and why the bump would
always appear when the quench is between two SYKs at different temperatures.
The analytical proof, presented here in Chapter 4, that this is always the case
came much later. In the meantime, we had analyzed if excessive temperature
gradients between the two subsystems (e.g. TA = 1000 and TB = 0.1), or reducing
the number of Majoranas that participate in the inter-dot interaction (P < N),
might lead to a disappearance of the bump in the hotter system, however, the
initial energy rise was always present. While it now seems trivial, thanks to (4.15),
here we present some legacy results in Figure 3.13 that reinforced our motivation
to look for the analytical explanation of this phenomenon.

Even though we tested much higher temperatures the outcome was always the
same hence, for clarity in the plot, we show results from a setup where the initial
temperatures of the two SYKs are TA = 250 and TB = 0.1. They are quench
coupled at t = 0 with the same protocol that’s been described before, the only
difference here is that the number of Majoranas (P ) that participate in the inter-
action Hamiltonian can be varied:

Hint = i

P∑
ij

λijψ
A
i ψ

B
j , (3.23)

As is obvious from Figure 3.13 the energy of the hotter system initially increases
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even at very high temperature gradients. Additionally, although the increase is
slower when only a few Majoranas couple the two dots (P < N), qualitatively the
energy bump appears even in the extreme case of a single coupling between the
SYKs.
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Figure 3.13. Early time energy evolution of an SYK system (TA = 250), when
it is quenched coupled to another colder SYK (TB = 0.1) with the interaction
Hamiltonian (3.23). Three different scenarios are presented, when only one (P =
1), two (P = 2), and all P = N Majoranas from each dot participate in the
interaction between the two SYKs.

3.C. SYK Hamiltonians and Late Time
Thermalisation

When the quench between two SYK systems is analyzed, for each realization, the
two Hamiltonians (HA and HB) are drawn separately, even when they have the
same parameters qA = qB = q, JA = JB = J and NA = NB = N . This way, even
though the two systems have identical dynamics after disorder averaging they
still differ, not only on a single realization but also when the disorder averaging
is performed on a finite number of realizations R. This difference is especially
prominent in the post-quench thermalization of two SYK systems at late, but
finite, times when finite system sizes are considered, as is the case with the exact
diagonalization numerical studies in this thesis. For example, looking into the
disorder averaged late time energies of two SYKs (q = 4, J = 1, and N = 12)
that are quench coupled from temperatures TA = 0.5 and TB = 0.01, one expects
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they thermalize at the same value. However, looking into their time evolution
Figure 3.14 (blue and yellow lines) seems like they saturate at different energies,
although within one standard deviation of each other. It is worth noting that
the higher temperature of system A doesn’t precondition its saturation at higher
energy, since that varies with each realization and there certainly are realizations
where the initially colder system B saturates above the energy of A, see gray lines
in Figure 3.14.
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Figure 3.14. Energy and 99.7% confidence interval bands (3.21) of the disorder
averaged energies of system A (blue) and B (yellow), computed with R = 60
realizations. At late times, when the system thermalizes, the two energies do
not exactly match but get close to each other within their 3σ confidence interval.
Additionally, the energies of the systems, full and dashed gray lines respectively,
are presented for a single realization which was particularly chosen to demonstrate
that for some combination of couplings the initially colder system B can thermalize
at a higher energy than the hotter system A.

We tested our hypothesis, that the difference in the averaged energies of systems
A and B is coming from the limited number of realizations R, as well as the finite
system size N , and results are presented in Figure 3.15. There we study the
dependence of the energy difference (EA(t = 100)−EB(t = 100)) at time t = 100
as a function of the number of realizations R that the average is computed with
3.20. Additionally, we analyze the dependence on the size of the SYK dot by
repeating the same exercise for SYKs with different numbers of Majoranas N .
As can be clearly seen from Figure 3.15 the two energies are coming closer and
closer as one considers more and more realizations. Additionally, the difference
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drastically decreases when the number of Majoranas, in each of the dots, increases
from 8 to 10 and then to 12. This confirms that when R→∞ and N →∞, at late
times, the two energies will be indistinguishable, in line with the large N results.
Note that, since analyzing systems with N = 12 is computationally expensive, we
have evaluated the energy difference only for up to R = 60 realizations. However,
even this is enough to see that the system size plays a crucial role in the late time
thermalization.
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Figure 3.15. Dependence of the difference between the averaged energies of the
two systems at t = 100 as a function of the number of realizations used in the
disorder averaging procedure. To test the dependence on the system size we
analyzed the same quantity for SYK dots with N = 6, 8, 10 and12 Majoranas in
each. Limited by the CPU time when evaluating systems with N = 12 Majoranas
we have computed the energies for only 60 realizations.
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4 Early post-quench perturbative
expansion

4.1. Early time expansion

We study the early time evolution of two, initially independent, subsystems (A
and B) after coupling them with an instantaneous quench at t = 0:

Ĥ(t) =ĤA ⊗ 1dB
+ 1dA

⊗ ĤB + θ(t)Ĥint (4.1a)

Ĥint =
∑
IK

λIK Ψ̂I ⊗ Γ̂K (4.1b)

Before the quench (t < 0), each subsystem is governed by the Hamiltonians
ĤA and ĤB respectively, and the identity matrix action on the complementary
Hilbert space encodes their independence. The subscript on the identity operators
indicates the dimensionality of the respective Hilbert space: dA = dimHA and
dB = dimHB . Initially, we consider a generic interaction Hamiltonian Ĥint (4.1b),
given in a tensor-product basis of the individual Hilbert spaces Ψ̂I ∈ HA and
Γ̂K ∈ HB and later we will demonstrate our results on two specific models, SYK
and Mixed Field Ising.

Before the quench, the whole system is prepared in a tensor product state of the
two individual subsystems:

ρ0 = ρA ⊗ ρB , (4.2)

and the post-quench time evolution is given by the unitary transformation with
the full interacting Hamiltonian which can be expanded as a time series with
operator-valued coefficients R̂n:

ρ(t) =e−iHtρ0e
iHt =

(
1− iHt− 1

2H
2t2 . . .

)
ρ0

(
1 + iHt− 1

2H
2t2 . . .

)
=

=
∑
n=0

tn

n! R̂n

(4.3a)
R0 = ρ0 ; R̂n+1 = i[R̂n, Ĥ] (4.3b)
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4. Early post-quench perturbative expansion

By explicitly computing the first few terms in the expansion (4.3a), a recursive
relation appears that determines all of the R̂n operators (4.3b). However, in
this letter, we are interested in the evolution of the reduced density matrices
which, similarly to ρ, can be expressed as a time series by simply tracing out the
complementary subsystem from R̂n. So, to obtain the reduced density matrix
ρA(t) of subsystem A one traces out the subsystem B, and tracing out subsystem
A yields ρB(t).

ρA(t) = TrB(ρ(t)) =
∑
n=0

tn

n! Ân ; Ân = TrB(R̂n) (4.4a)

ρB(t) = TrA(ρ(t)) =
∑
n=0

tn

n! B̂n ; B̂n = TrA(R̂n) (4.4b)

Once the reduced density matrices are obtained, we can compute the time evolu-
tion of any observable in each individual subsystem, for example the behavior of
the energy EA(t) is:

EA(t) = TrA(ρA(t)ĤA) =
N∑

n=0

tn

n! TrA(ÂnĤA) =
∑

n

en

n! t
n. (4.5)

Despite the compactness of the expansion, evaluating the operators R̂n and sub-
sequently Ân or B̂n is rather tedious for n > 2, so we will restrict our study to
only the second-order expansion of the energy of the subsystem A:

EA(t) = TrA(ρA(t)ĤA) = e0 + e1t+ e2

2 t
2 +O(t3) (4.6)

The particular initial states we are interested in — thermal or energy eigenstates
— commute with their respective Hamiltonians (e.g. [ρA(0), HA] = 0) leading
to many vanishing terms in the coefficients Ân (4.7), when compared to the co-
efficients from a general state (4.28). We will drop the time t = 0 argument
ρA(0) from here on, and implicitly will mean the density matrix at t = 0 when
no argument is given ρA ≡ ρA(0).

Â0 =ρA; (4.7a)

Â1 =i
∑
IK

λIK [ρA, Ψ̂I ] TrB(ρB Γ̂K); (4.7b)

Â2 =i2
{∑

IK

λIK [[ρA, Ψ̂I ], ĤA] TrB(ρB Γ̂K)+

+
∑
IK

∑
K′I′

λIKλI′K′

(
[ρA Ψ̂I , Ψ̂I′ ] TrB(ρB Γ̂K Γ̂K′)−

− [Ψ̂I ρA, Ψ̂I′ ] TrB(ρB Γ̂K′ Γ̂K)
)}

;

(4.7c)
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Additionally, when studying the time evolution of observables that commute with
the Hamiltonian the coefficients in their expansion simplify even further. This
condition is trivially satisfied for the energy of the subsystem EA(t) and using the
relation (4.40) we can compute the first three coefficients:

e0 = TrA(ρAĤA) ≡ EA(0) (4.8a)

e1 =i
∑
IK

λIK TrA

(
[ρA, Ψ̂I ]ĤA

)
TrB(ρB Γ̂K) =

=i
∑
IK

λIK TrA

(
[ĤA, ρA] Ψ̂I

)
TrB(ρB Γ̂K) = 0;

(4.8b)

e2 =i2
{∑

IK

λIK TrA

(
[[ρA, Ψ̂I ], ĤA]ĤA

)
TrB(ρB Γ̂K)+

+
∑
IK

∑
I′K′

λIKλI′K′

(
TrA

(
[ρA Ψ̂I , Ψ̂I′ ]ĤA

)
TrB(ρB Γ̂K Γ̂K′)−

− TrA

(
[Ψ̂I ρA, Ψ̂I′ ]ĤA

)
TrB(ρB Γ̂K′ Γ̂K)

)}
=

=i2
{∑

IK

∑
I′K′

λIKλI′K′

(
TrA

(
ρA Ψ̂I [Ψ̂I′ , ĤA]

)
TrB(ρB Γ̂K Γ̂K′)

− TrA

(
ρA[Ψ̂I′ , ĤA] Ψ̂I

)
TrB(ρB Γ̂K′ Γ̂K)

)}
.

(4.8c)

Naturally, the time-independent contribution e0 is equal to the pre-quench energy
and the first term is zero due to the aforementioned vanishing commutators.
Therefore, we need to determine only the e2 term, which is presented in the next
section for two specific models.

4.2. Examples

In this section, we derive the early time evolution of the energy EA(t), to the
second order in time, for two models the SYK4 and Mixed Field Ising model
(MFI). The analytical expressions help us understand why the energy bump in the
SYK4 happens for any temperature TA, and provide an insight into the emergence
of the critical temperature Tc(hx, hz) in the MFI that marks the disappearance
of the energy bump for TA > Tc.
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4. Early post-quench perturbative expansion

4.2.1. SYK

First, we consider two, initially decoupled SYK dots of size NA and NB governed
by the following Hamiltonians:

ĤA = −
NA∑
j=1

JA
j1,j2,j3,j4

ψ̂j1 ψ̂j2 . . . ψ̂j4 ; ĤB = −
NB∑
l=1

JB
l1,l2...l4

χ̂l1 χ̂l2 χ̂l3 χ̂l4 (4.9)

⟨Jα
j1,j2,j3,j4

Jα
j1,j2,j3,j4

⟩J = J2
α

N3 , α ∈ {A,B} (4.10)

We prepare the system in a tensor product state (4.2) then, at t = 0, we quench
couple both SYKs with a two-point interaction Hamiltonian with random inter-
actions:

Ĥint = i
∑

ij

λijψ̂iγ̂c ⊗ χ̂j (4.11a)

⟨λijλi′j′⟩λ = λ2

NB
δii′δjj′ (4.11b)

Here, γ̂c is proportional to the product of all Majorana fields in A and, as explained
in Appendix 4.B, it is necessary for proper anti-commutation relations between
the two subsystems. Substituting this interaction Hamiltonian in (4.8) we get the
second order coefficient of EA(t):

e2 = i4
NA∑
ii′

NB∑
jj′

λijλi′j′

(
TrA

(
ρAψ̂iγ̂c[ψ̂i′ γ̂c, ĤA]

)
TrB(ρBχ̂jχ̂j′)−

−TrA

(
ρA[ψ̂i′ γ̂c, ĤA]ψ̂iγ̂c

)
TrB(ρBχ̂j′ χ̂j)

)
.

(4.12)

For SYK-like interactions, the coefficients en simplify even further upon disorder-
averaging which, due to the independence between the inter-dot and intra-dots
couplings, can either be averaged simultaneously or one after the other. Here, we
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4.2. Examples

take the latter route and initially average e2 over the inter-dot coupling λij :

⟨e2⟩λ = λ2

NB

NA∑
i

(
TrA

(
ρAψ̂iγ̂c[ψ̂iγ̂c, ĤA]

)
−

− TrA

(
ρA[ψ̂iγ̂c, ĤA]ψ̂iγ̂c

)) NB∑
j

TrB(ρBχ̂jχ̂j)

= λ2

NB

NA∑
i

(
TrA

(
ρAψ̂iγ̂c[ψ̂iγ̂c, ĤA]

)
− TrA

(
ρA[ψ̂iγ̂c, ĤA]ψ̂iγ̂c

)) NB

2

=λ2

2

NA∑
i

TrA

(
ρA

[
ψ̂iγ̂c, [ψ̂iγ̂c, ĤA]

])
= −λ

2

2 2 · 4 TrA

(
ρAĤA

)
=− 4λ2EA(0).

(4.13)

In the second row we used the Majorana identity χ̂2
j = 1/2. The double commu-

tator on the last line is evaluated in Appendix 4.C.2 with result (4.50) for q = 4.
Lastly, by disorder-averaging over the intra-dot couplings ⟨·⟩J :

⟨e0⟩ =⟨EA(0)⟩J (4.14a)
⟨e1⟩ =0; (4.14b)
⟨e2⟩ =− 4λ2⟨EA(0)⟩J , (4.14c)

we notice that the first two non-zero coefficients depend only on the initial energy
of the analyzed subsystem and the interaction constant λ. Using these coefficients
in (4.6), we obtain the averaged energy of the subsystem A up to the second order
in time:

⟨∆E(t)⟩ = ⟨e2⟩
2 t2 = −2λ2⟨EA(0)⟩J t2. (4.15)

In Fig. 4.1, we compare this expression with the energy obtained from a numerical
time evolution of two equally-sized SYKs (NA = NB) with JA = JB ≡ J when the
quench happens from two independent thermal states at temperatures TA = 0.5J
and TB = 0.1J . We observe that (4.15) qualitatively matches the early time
behavior of ⟨EA(t)⟩J . In order to quantify how well the analytical expression
explains the behavior of the numerical results, we fit the data from the early-
time interval to a quadratic model (4.16) and study the ratio between the two
coefficients a2/e2.

f(t) = a0 + a2

2 t
2 (4.16)
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Figure 4.1. Early time evolution of ⟨∆EA(t)⟩ computed numerically (blue dots)
and analytically from (4.15) (red line). Numerical results are obtained from a
quench of two equally sized (NA = NB = 10) SYK4 dots.

Fig. 4.2 shows that this ratio is close to 1 for a few different temperatures TA,
proving the validity of the analytical expression (4.15) and the perturbative ap-
proach in general. The error bars on this Fig. 4.2 are computed with the error
propagation relation using 99.7% confidence estimators for the errors σa2 and σEA

(3.21).

σa2/e2 =
∣∣∣∣a2

e2

∣∣∣∣
√(

σa2

a2

)2
+
(

σEA

⟨EA(0)⟩J

)2
(4.17)

It is important to emphasize that for SYK dots with random interaction of the
form (4.11a) the time evolution of EA(t), up to the second order, depends on
the temperature TA only implicitly through EA(0), and is completely impartial
to any parameter of the subsystem B. The same holds, the other way around,
for EB(t). From the exposition above, we see that the initial energy rise happens
when ⟨EA(0)⟩J < 0, regardless of the initial temperature TB . Recalling that
⟨EA(0)⟩J < 0 holds always for the SYK4 [55] explains why the energy increases
initially for any temperature TA.
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Figure 4.2. The ratio of the second order coefficients obtained from a fit of the
numerical results a2 and the analytical perturbative expansion e2 with error bars
given by the error propagation relation (4.17).

4.2.2. Mixed Field Ising

Next, we consider a system composed of two Mixed Field Ising models:

Hα =−
Nα∑

i

(
JZα

i Z
α
i+1 + gXα

i + hZα
i

)
, α = A,B (4.18)

coupled at t = 0, by the same quench procedure as before, with an interaction
Hamiltonian that connects the last site of A to the first site of B:

Hint = −λ+−σ̂
+
NA
⊗ σ̂−

1B
− λ−+σ̂

−
NA
⊗ σ̂+

1B
=−

∑
ab∈{+,−}

λa,bσ̂
a
NA
⊗ σ̂b

1B
,

λ∗
−+ = λ+− ≡ λ, λ++ =λ−− = 0.

(4.19)

Here, σ± = X±iY are the ladder operators and we express Hint in this particular
form so it is readily usable in the general relations (4.8). Then we proceed the same
as before, preparing the system in a tensor product of two decoupled subsystems,
with density matrices that satisfy [ρα, Ĥα] = 0, and directly substituting those
parameters in (4.8) to obtain the early time evolution of the MFI subsystem A.
As explained in Sec. 4.1, the time-independent contribution is equal to the pre-
quench energy e0 = EA(0), the first-order term vanishes e1 = 0 and e2 is evaluated
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4. Early post-quench perturbative expansion

below:

e2 =i2
∑
aa′

∑
bb′

λabλa′b′

(
TrA

(
ρAσ̂

a
NA

[σ̂a′

NA
, ĤA]

)
TrB(ρBσ̂

b
1B
σ̂b′

1B
)−

− TrA

(
ρA[σ̂a′

NA
, ĤA]σ̂a

NA

)
TrB(ρBσ̂

b′

1B
σ̂b

1B
)
)
.

(4.20)

First we expand the double sum:

e2 = i2

{
λ+−λ+−

(
TrA

(
ρAσ̂

+
NA

[σ̂+
NA
, ĤA]

)
TrB(ρBσ̂

−
1B
σ̂−

1B
)−

−TrA

(
ρA[σ̂+

NA
, ĤA]σ̂+

NA

)
TrB(ρBσ̂

−
1B
σ̂−

1B
)
)

+

+λ+−λ−+

(
TrA

(
ρAσ̂

+
NA

[σ̂−
NA
, ĤA]

)
TrB(ρBσ̂

−
1B
σ̂+

1B
)−

−TrA

(
ρA[σ̂−

NA
, ĤA]σ̂+

NA

)
TrB(ρBσ̂

+
1B
σ̂−

1B
)
)

+

+λ−+λ+−

(
TrA

(
ρAσ̂

−
NA

[σ̂+
NA
, ĤA]

)
TrB(ρBσ̂

+
1B
σ̂−

1B
)−

−TrA

(
ρA[σ̂+

NA
, ĤA]σ̂−

NA

)
TrB(ρBσ̂

−
1B
σ̂+

1B
)
)

+

+λ−+λ−+

(
TrA

(
ρAσ̂

−
NA

[σ̂−
NA
, ĤA]

)
TrB(ρBσ̂

+
1B
σ̂+

1B
)−

−TrA

(
ρA[σ̂−

NA
, ĤA]σ̂−

NA

)
TrB(ρBσ̂

+
1B
σ̂+

1B
)
)}

,

(4.21)

and notice that the terms on the first and last lines of (4.21) vanish due to identity
σ̂±σ̂± = 0 (4.54). Taking this into account and regrouping the other four terms
the expression for e2 simplifies to:

e2 = i2|λ|2
{(

TrA

(
ρAσ̂

−
NA

[σ̂+
NA
, ĤA]

)
− TrA

(
ρA[σ̂−

NA
, ĤA]σ̂+

NA

))
TrB(ρBσ̂

+
1B
σ̂−

1B
)+

+
(

TrA

(
ρAσ̂

+
NA

[σ̂−
NA
, ĤA]

)
− TrA

(
ρA[σ̂+

NA
, ĤA]σ̂−

NA

))
TrB(ρBσ̂

−
1B
σ̂+

1B
)
}

(4.22)

Additionally, using (4.57), (4.58) and the relation between the ladder operators
and Pauli matrices σ̂±σ̂∓ = 2(1 − Ẑ) we can express this coefficient in terms of
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one-point and two-point functions of the spin operators:

e2 =2i2|λ|2
{(

TrA

(
ρA

[
σ̂−

NA
, [σ̂+

NA
, ĤA]

])
+ TrA

(
ρA

[
σ̂+

NA
, [σ̂−

NA
, ĤA]

]))
+

+
(

TrA

(
ρA

{
σ̂−

NA
, [σ̂+

NA
, ĤA]

})
− TrA

(
ρA

{
σ̂+

NA
, [σ̂−

NA
, ĤA]

}))
TrB(ρBẐ1B

)
}

=2i2|λ|2
((
−16J⟨ẐN−1ẐN ⟩A − 8hx

N ⟨X̂N ⟩A − 16hz
N ⟨ẐN ⟩A

)
+

+
(

16J⟨ẐN−1⟩A + 16hz
N

)
⟨Ẑ1B

⟩B

)

=− 32i2|λ|2
(
J
(
⟨ẐN−1ẐN ⟩A − ⟨ẐN−1⟩A⟨Ẑ1B

⟩B
)

+

+ 1
2h

x
N ⟨X̂N ⟩A + hz

N

(
⟨ẐN ⟩A − ⟨Ẑ1B

⟩B
))

.

(4.23)

With this, we have solved the early time behavior of EA(t) up to the second
order in time, however, there are no analytical relations for the temperature de-
pendence of the one-point and two-point functions at arbitrary field strengths
(hx, hz). Therefore, in order to evaluate e2, we numerically compute the thermal
expectation values in the last line of (4.23).

In Chapter 3, using numerical time evolution of the whole system, we discovered
that when A is coupled to an equivalent MFI at temperature TB = 0.1 there
is no energy increase in the classical case hx = 0, and on the other extreme,
the increase appears for any temperature TA when the system is at the critical
point hx = 1, hz = 0. Interestingly, moving slightly away from hx = 1, hz = 0 a
finite critical temperature Tc emerges above which the early time energy increase
disappears, but below which it is present. The height of the numerically obtained
energy bump Em for those three examples is depicted in Figure 4.3 (left), and the
critical temperature for the particular case hx = 1 and hz = 0.05 is Tc ≃ 77.845J .

The newly derived analytical relation for the energy (4.6) predicts the existence
of an initial energy increase when e2 > 0 in the case under consideration when
e1 = 0. Now, using the expansion for e2 in (4.23), we compute and show in Fig.
4.3 (right) the e2 value as a function of TA for the three particular cases elaborated
above. These results confirm our previous findings on the existence of the energy
increase. For any TA, e2 < 0 in the classical case, e2 > 0 at the quantum critical
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Figure 4.3. Existence of the early time energy bump in the classical (hx = 0, hz =
1), quantum critical (hx = 1, hz = 0) and arbitrary case with (hx = 1, hz = 0.05).
On the left, the height of the energy bump Em is presented with Em = 0 indicating
its absence. The right panel presents the e2 coefficient (4.23), for the same three
models. The energy bump disappears when e2 < 0.

point and when the system is tuned slightly away from it the coefficient changes
from a positive sign when TA < 77.5 to negative for TA > 77.5.

To show that this match between the numerical results and the analytical expres-
sion is not limited to these three special cases we apply the same reasoning to
three other models with results presented in Fig. 4.4. As before, the left panel
displays the height of the energy bump Em, which goes to zero when the bump
disappears. On the right panel, which plots the second coefficient e2, one notices
that it turns negative exactly at the same temperature for which Em → 0.

This match in the critical temperature demonstrates the equivalence and validity
of our two approaches and allows us to use the early time expansion to understand
the early time behavior and in particular the quantum energy ruse in the hot
system A. Note that for the MFI we can write the second coefficient (4.23) as a
difference of two separate contributions, eA

2 that depends only on the subsystem
under consideration A and eAB

2 which depends on both A and B, therefore being
sensitive on the temperature TB :

e2 = 32|λ|2
(
eA

2 − eAB
2

)
, (4.24a)

eA
2 = J⟨ẐN−1ẐN ⟩A + hx

N

2 ⟨X̂N ⟩A + hz
N ⟨ẐN ⟩A; (4.24b)

eAB
2 =

(
J⟨ẐN−1⟩A + hz

N

)
⟨Ẑ1B

⟩B . (4.24c)

Here we see that, similar to the SYK model, the result for eA
2 depends only on the
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Figure 4.4. Disappearance of the energy bump, for three different models, com-
puted by a time evolution of the full model (left) and from the exact thermody-
namic evaluation of the e2 coefficient (right).

properties of the subsystem under consideration A. However, unlike before, the
additional term eAB

2 depends also on the subsystem B, therefore being sensitive
to the temperature TB . Since both of these terms are positive, the energy bump
disappears (e2 < 0) in the temperature regime where eA

2 < eAB
2 , as shown on Fig.

4.5.
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Figure 4.5. Those plots present the eA
2 (full line) and the eAB

2 (dashed line) terms
of the e2 coefficient (4.24), for the same models as on Fig. 4.4.

4.3. Conclusion

In this Chapter we presented how to expand the post-quench time evolution of the
density matrix into a time series and how to obtain from there the time evolution
of the subsystem-reduced density matrices perturbatively in the time t since the
quench. We have derived a general expression for the first three coefficients of
the expansion and used it to analyze the early time behavior of the subsystems
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energies for two distinct models. Namely, in order to compare results we studied
the same models as Chapter 3: SYK as a representative of a strongly interacting
highly entangled, and chaotic model and the Mixed Field Ising in its classical,
fully quantum quantum critical, and mixed quantum-classical regimes.

We have shown that this analytical approach not only reproduces the results from
our study on a numerical time evolution but it provides an explanation for the
omnipresence of the bump in the SYK and its disappearance above a critical
temperature in the MFI models. The peculiar nature of the Majorana SYK
conspires in such a way that the first three coefficients of the energy expansion
are completely independent of the other subsystem resulting in an energy increase
even when the analyzed subsystem is at a higher temperature than the other one.
On the other hand, the second term e2 of the MFI expansion depends on both
subsystems leading to the appearance of the critical temperature Tc.

Continuing this analytic approach to derive the third and fourth coefficients of
the energy expansion might give access to the time at which the maximum in the
bump appears. This would be useful in understanding how the system transitions
from this early-time quantum behavior to the late-time evaporation. Additionally,
one expects a universal behavior of the energy coefficients in the SYK setup and it
would be interesting to see what other thermodynamic quantities appear in those
higher-order terms. We leave this for future work.
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4.A. General State Expansion

4.A. General State Expansion

Series expansion of the density matrix — Here we represent the time-dependent
density matrix, after an instantaneous quench (4.1b), as a time series, similar to
the main text, under the assumption of a separable initial state ρ0 = ρA ⊗ ρB

composed of arbitrary subsystem states ρα:

ρ(t) =e−iHtρ0e
iHt =

(
1− iHt− 1

2H
2t2 . . .

)
ρ0

(
1 + iHt− 1

2H
2t2 . . .

)
=

=
∑
n=0

tn

n!Rn

(4.25a)
R0 =ρ0 ; Rn+1 = i[Rn, H] (4.25b)

Where Rn are operator-valued coefficients and the first four are given below:

R̂0 =ρ0 (4.26a)
R̂1 =i[R̂0, H] = i

(
[ρ1, H1]⊗ ρ2 + ρ1 ⊗ [ρ2, H2] + [ρ0, Hint]

)
(4.26b)

R̂2 =i[R̂1, H] = i
(

[R̂1, H1 ⊗ 1d2 ] + [R̂1,1d1 ⊗H2] + [R1, Hint]
)

(4.26c)

R̂3 =i[R2, H] = i
(

[R̂2, H1 ⊗ 1d2 ] + [R̂2,1d1 ⊗H2] + [R2, Hint]
)

(4.26d)

Expanding the commutators we obtain:

R̂0 =ρ0 (4.27a)
R̂1 =i[R̂0, Ĥ] = i[ρA, ĤA]⊗ ρB + iρA ⊗ [ρB , ĤB ]+

+ i
∑
IK

λIK [ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ] (4.27b)

R̂2 =i[R̂1, Ĥ] = i[R̂1, ĤA ⊗ 1dB
] + i[R̂1,1dA

⊗ ĤB ] + i
∑
IK

λIK [R̂1, Ψ̂I ⊗ Γ̂K ]

=i2
{[

[ρA, ĤA], ĤA

]
⊗ ρB + ρA ⊗

[
[ρB , ĤB ], ĤB

]
+ 2[ρA, ĤA]⊗ [ρB , ĤB ]+

+
∑
IK

λIK

([
[ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ], ĤA

]
+
[
[ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ], ĤB

]
+

+
[
[ρA, ĤA]⊗ ρB , Ψ̂I ⊗ Γ̂K

]
+
[
ρA ⊗ [ρB , ĤB ], Ψ̂I ⊗ Γ̂K

])
+
∑
IK

∑
I′K′

λIKλI′K′

[
[ρA ⊗ ρB , Ψ̂I ⊗ Γ̂K ], Ψ̂I′ ⊗ Γ̂K′

]}
(4.27c)
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R̂3 =i[R̂2, Ĥ] = i[R̂2, ĤA ⊗ 1dB
] + i[R̂2,1dA

⊗ ĤB ] + i
∑
IK

λIK [R̂2, Ψ̂I ⊗ Γ̂K ] .

(4.27d)

Next, we present the operator-valued coefficients Ân (4.28) which define the time
evolution of the reduced density matrix ρA(t) (4.4a). Note that many terms vanish
due to (4.39a).

Â0 = TrB(R̂0) = TrB(ρ0) = ρA; (4.28a)

Â1 = TrB(R̂1) = i

{
[ρA, ĤA] +

∑
IK

λIK [ρA, Ψ̂I ] TrB(ρB Γ̂K)
}

; (4.28b)

Â2 = TrB(R̂2) = i2

{[
[ρA, ĤA], ĤA

]
+

+
∑
IK

λIK

(([
[ρA, Ψ̂I ], ĤA

]
+
[
[ρA, ĤA], Ψ̂I

] )
TrB(ρB Γ̂K)+

+ [ρA, Ψ̂I ] TrB([ρB , ĤB ], Γ̂K)
)

+
∑
IK

∑
K′I′

λIKλI′K′

(
[ρA Ψ̂I , Ψ̂I′ ] TrB(ρB Γ̂K Γ̂K′)−

− [Ψ̂I ρA, Ψ̂I′ ] TrB(ρB Γ̂K′ Γ̂K)
)}

.

(4.28c)

4.B. Proper anti-commuting interactions between
coupled SYK dots

There are different ways to study two N -Majorana SYK dots. For example,
one can take 2N Majoranas and model the subsystems through the interactions.
However, we want to have manifestly separate subsystems so we will generate two
Hilbert spaces using the techniques from [115]. First dot has N1 = 2K1 Majoranas
denoted with ψi and the second has N2 = 2K2 Majoranas denoted with χj , living
in their respective Hilbert spaces, H1 and H2:

N1 = 2K1 : ψ̃i ∈ H1, dimH1 = 2K1 ; {ψ̃i, ψ̃j} = δi,j1 ψ̃2
i = 1

21

[ψ̃i, ψ̃j ] = 2ψ̃iψ̃j − δij = −2ψ̃jψ̃i + δij

[ψ̃i, ψ̃jγc] = {ψ̃i, ψ̃j}γc = δijγc ; (ψiγc)2 = −ψ2
i γ

2
c = −1

2

(4.29a)

N2 = 2K2 : χ̃i ∈ H2, dimH2 = 2K2 ; {χ̃i, χ̃j} = δi,j1 χ̃2
i = 1

21 (4.29b)
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h1 = −
N1∑
j=1

J
(1)
j1j2j3j4

ψ̃j1 ψ̃j2 ψ̃j3 ψ̃j4 ; h2 = −
N2∑
l=1

J
(2)
l1l2l3l4

χ̃l1 χ̃l2 χ̃l3 χ̃l4 (4.30)

The whole Hilbert space consists of the two dots H has N = 2K = N1 + N2
Majoranas in total:

N = N1 +N2 : ψi, χj ∈ H, dimH = 2K

{ψi, ψj} = δi,j1, {χi, χj} = δi,j1, {ψi, χj} = 0
(4.31)

In order to generate those Majoranas we need to recall that Majorana operators
are closely related to the Clifford algebra of dimension n = 2k:{

γi, γj

}
= 2δij1 ⇒ γ2

i = 1 (4.32)
γc = (−i)kγ1γ2 . . . γn, γ†

c = γc; γ2
c = 1 ; {γi, γc} = 0 (4.33)

4.B.1. Numerical implementation of Majoranas

Now we would like to generate the two dots from Clifford algebra {Γi}. We will
consider the simple case when N1 = N2 so N = 2N1 = 4K1, which would be
easy to extend to a system of asymmetric dots. The Clifford algebra {Γi} can be
written in terms of subsystem algebra {γi}:

γi ∈H1, dimH1 = 2K1 (4.34a)
Γi =γi ⊗ 1, i ∈ {1, 2, . . . N1} (4.34b)

ΓN1+j =γc ⊗ γj , j ∈ {1, 2, . . . N2} (4.34c)

The Majorana operators are obtained by renormalizing {Γi}:

Γ1,Γ2 . . .ΓN (4.35a)

ψi = 1√
2

Γi = 1√
2
γi ⊗ 1 ≡ ψ̃i ⊗ 1, i ∈ {1, 2, . . . N1} (4.35b)

χj = 1√
2

ΓN1+j = 1√
2
γc ⊗ γj ≡ γc ⊗ χ̃j , j ∈ {1, 2, . . . N2}. (4.35c)

The noteworthy part is the appearance of the matrix γc that ensures anticommu-
tation between the Majoranas in the two dots:

{ψi, ψj} =1
2{γi, γj} ⊗ 1 = δij1⊗ 1 (4.36a)

{χi, χj} =1
2γ

2
c ⊗ {γi, γj} ≡

1
21⊗ {γi, γj} = δij1⊗ 1 (4.36b)

{ψi, χj} =1
2{γi, γc} ⊗ γj = 0 (4.36c)
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In this basis, before the quench, the two Hamiltonians are manifestly decoupled :

H1 =−
∑

i1,...i4

Ji1...i4ψi1ψi2ψi3ψi4

=−
∑

i1,...i4

Ji1...i4 ψ̃i1 ψ̃i2 ψ̃i3 ψ̃i4 ⊗ 14 = h1 ⊗ 1
(4.37a)

H2 =−
∑

l1,...l4

Jl1...l4χl1χl2χl3χl4

=− γ4
c ⊗

∑
l1,...l4

Jl1...l4 χ̃l1 χ̃i2 χ̃i3 χ̃i4 ⊗ 14 = 1⊗ h2
(4.37b)

Hint =i
∑
xy

λxyψxχy =
∑
xy

λxyψ̃xγc ⊗ χ̃y (4.37c)

4.C. Operators relations

In this appendix we gather some useful relations needed for coefficients derivation
in the early time expansion.

4.C.1. General relations

[AB,C] =[A,C]B +A[B,C] (4.38a)
{AB,C} =A[B,C] + {A,C}B (4.38b)

[ρ1 ⊗ ρ2, ÔX ⊗ ÔY ] =ρ1ÔX ⊗ ρ2ÔY − ÔXρ1 ⊗ ÔY ρ2 (4.38c)

Tr
(

[Â, B̂]
)

= Tr
(
ÂB̂
)
− Tr

(
B̂Â
)

= 0 (4.39a)

Tr2

(
[α̂⊗ β̂, ÔX ⊗ ÔY ]

)
=α̂ÔX ⊗ Tr

(
β̂ÔY

)
− ÔX α̂⊗ Tr

(
ÔY β̂

)
=

=[α̂, ÔX ] Tr
(
β̂ÔY

) (4.39b)

Tr
(
[A,B]C

)
= Tr (ABC −BAC) = Tr (ABC −ACB) =

= Tr
{
A[B,C]

}
= Tr

{
[C,A]B

} (4.40a)

Tr
(
[[[[R,A1], A2], · · · ], An−1]An

)
= Tr

(
R, [A1, [A2, [· · · , [An−1, An]]]]

)
(4.40b)
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4.C.2. Majoranas

General Majoranas —

Here, we consider a system with N Majoranas, forming a d = dim(H) = 2N/2 di-
mensional Hilbert space H, and we use the same normalization for the Majoranas
as in the numerical code.

{ψi, ψj} =δij ; {ψc, ψj} = 0 ; ψ2
i = 1

21d ; γ2
c = 1 ; (ψiγc)2 = −1

2
(4.41a)

[ψi, ψj ] =2ψiψj − δij = −2ψjψi + δij ; [ψiγc, ψj ] = −{ψi, ψj}γc = −δijγc

(4.41b)

Next, we present some common commutators of Majorana strings, but first, we
introduce a notation for such strings that will help us write more compact expres-
sions, especially for large q SYKs.

Ψ(q)
I =ψi1ψi2 . . . ψiq

(4.42a)

Ψ(q−1)
Iσ

=ψi1 . . . ψiσ−1ψiσ+1 . . . ψiq
(4.42b)

The easiest is to start with four Majoranas Strings (q = 4):

[ψα,Ψ(4)
I ] =[ψα, ψi1ψi2ψi3ψi4 ]

= (δi1αψi2ψi3ψi4 − δi2αψi1ψi3ψi4 + δi3αψi1ψi2ψi4 − δi4αψi1ψi2ψi3)

=
4∑

σ=1
δαiσ

(−1)σ+1Ψ(3)
Iσ

(4.43a)

[ψαγc,Ψ(4)
I ] =[ψαγc, ψi1ψi2ψi3ψi4 ]

=− (δi1αγcψi2ψi3ψi4 + δi2αψi1γcψi3ψi4 + δi3αψi1ψi2γcψi4 + δi4αψi1ψi2ψi3γc)

=− γc

4∑
σ=1

δαiσ (−1)σ+1Ψ(3)
Iσ

(4.43b)

Then, those results can be generalized for an arbitrarily sized string with (q = 2p):

[ψα,Ψ(q)
I ] =

q∑
σ=1

δαiσ
(−1)σ+1Ψ(q−1)

Iσ
(4.44a)

[ψαγc,Ψ(q)
I ] =− γc

q∑
σ=1

δαiσ
(−1)σ+1Ψ(q−1)

Iσ
(4.44b)
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SYK like interaction —

Relations obtained in the previous paragraph can be used for commutators of
an SYK Hamiltonian with a string of Majoranas. Initially we’re interested in a
(q = 4) SYK Hamiltonians (4.9) :

[ψα, H
(4)] =i2

N∑
i1···i4=1

Ji1i2i3i4 [ψα, ψi1ψi2ψi3ψi4 ]

=− 4i2
N∑

i1i2i3=1
Ji1i2i3αψi1ψi2ψi3 ,

(4.45a)

[ψαγc, H
(4)] =i2

N∑
i1···i4=1

Ji1i2i3i4 [ψαγc, ψi1ψi2ψi3ψi4 ]

=4i2
N∑

i1i2i3=1
Ji1i2i3αγcψi1ψi2ψi3 .

(4.45b)

Same as before, those commutators can be easily generalized to (q = 2p) SYK
Hamiltonians:

[ψα, H
(q)] =iq/2

N∑
I=1

JI [ψα,Ψ(q)
I ] = −qiq/2

N∑
i1···iq−1=1

Ji1···iq−1αΨ(q−1)
Iq

, (4.46a)

[ψαγc, H
(q)] =iq/2

N∑
I=1

JI [ψαγc,Ψ(q)
I ] = qiq/2

N∑
i1···iq−1=1

Ji1···iq−1αγcΨ(q−1)
Iq

.

(4.46b)

When analyzing the time evolution of operators similar expressions to (4.46) ap-
pear with an additional sum over the Majorana field (ψα):

N∑
α=1

ψα[ψα, H
(q)] =− qiq/2

N∑
i1···iq−1=1

N∑
α=1

Ji1···iq−1αψαΨ(q−1)
Iq

=qiq/2
N∑

i1···iq−1=1

N∑
α=1

Ji1···iq−1αΨ(q−1)
Iq

ψα = qH(q)

(4.47a)

N∑
α=1

ψαγc[ψαγc, H
(q)] =qiq/2

N∑
i1···iq−1=1

N∑
α=1

Ji1···iq−1αψαγ
2
c Ψ(q−1)

Iq

=− qiq/2
N∑

i1···iq−1=1

N∑
α=1

Ji1···iq−1αΨ(q−1)
Iq

ψα = −qH(q),

(4.47b)
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N∑
α=1

[ψα, H
(q)]ψα =− qH(q), (4.48a)

N∑
α=1

[ψαγc, H
(q)]ψαγc =qH(q), (4.48b)

where we have used (γ2
c = 1) and the fact that the interaction constant (Ji1···iq−1α)

vanishes in the case of at least two identical indices, hence permuting (ψα) past
the other Majoranas results only in an additional minus sign since

(
(−1)q−1 =

(−1)2p−1 = −1
)
.

Other related expressions are:

N∑
α=1

[ψα, [ψα, H
(q)]] = 2qH(q), (4.49a)

N∑
α=1

[ψαγc[ψαγc, H
(q)]] = −2qH(q). (4.49b)

N∑
α=1

[ψαγc, [H(q), [ψαγc, H
(q)]]] =

=
N∑

α=1

(
2ψαγcH

(q)ψαγcH
(q) − 2H(q)ψαγcH

(q)ψαγc − (ψαγc)2(H(q))2+

+ (ψαγc)(H(q))2(ψαγc)− (ψαγc)(H(q))2(ψαγc) + (H(q))2(ψαγc)2)
=2

N∑
α=1

(
ψαγcH

(q)ψαγcH
(q) −H(q)ψαγcH

(q)ψαγc

)
=2

N∑
α=1

[ψαγc, H
(q)ψαγcH

(q)]

=2
N∑

α=1

(
[ψαγc, H

(q)]ψαγcH
(q) +H(q)ψαγc[ψαγc, H

(q)]
)

= 0

(4.50)
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4.C.3. Pauli

General Pauli matrices - Single site —

Note that the following (anti)commutation relations are for same site operators.
Operators on different sites act on different spin states, so they commute.

X ≡ σx =
(

0 1
1 0

)
; Y ≡ σy =

(
0 −i
i 0

)
; Z ≡ σz =

(
1 0
0 −1

)
(4.51)

σα† = σα ; σα2 = 1d ; α, β, γ ∈ {x, y, z} (4.52a)
{σα, σβ} = 2δαβ1d ; [σα, σβ ] = 2iϵαβγσ

γ (4.52b)

From the Pauli matrices ladder operators can be formed

σ+ ≡ X + iY =
(

0 2
0 0

)
; σ− ≡ X − iY =

(
0 0
2 0

)
(4.53)

σ±† = σ∓ ; σ±σ± = 0 ; σ±σ∓ = 2 (1± Z)
[σ±, X] = ±2Z ; [σ±, Y ] = ∓2iZ ; [σ±, Z] = ∓2σ± ; [σ+, σ−] = 4Z
{σ±, X} = 21 ; {σ±, Y } = ±i1 ; {σ±, Z} = 0 ; {σ+, σ−} = 41

Mixed Field Ising with position-dependent fields (hx
i , h

z
i ) —

Here we present commutator/anti-commutator relations for the most generic
Mixed Field Ising with position-dependent couplings (4.55). Setting the couplings
to the same constant at each site one recovers the standard MFI.

HMF I1 = −J
N−1+pf∑

i=1
ẐiẐi+1 −

N∑
i=1

hx
i X̂i −

N∑
i=1

hz
i Ẑi (4.55)

[σ̂−
N , ĤMF I1] =− 2J

(
ẐN−1σ̂

−
N + pf σ̂

−
N Ẑ1

)
+ 2hx

N ẐN − 2hz
N σ̂

−
N (4.56a)

[σ̂+
N , ĤMF I1] =− 2J

(
−ZN−1σ̂

+
N − pf σ̂

+
NZ1

)
− 2hx

NZN + 2hz
N σ̂

+
N (4.56b)

[σ̂+
N , [σ̂

−
N , ĤMF I1]] = −8J

(
ẐN−1ẐN + pf ẐN Ẑ1

)
− 4hx

N σ̂
+
N − 8hz

N ẐN (4.57a)
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[σ̂−
N , [σ̂

+
N , ĤMF I1]] = −8J

(
ẐN−1ẐN + pf ẐN Ẑ1

)
− 4hx

N σ̂
−
N − 8hz

N ẐN (4.57b)

[σ̂−
N , [σ̂

+
N , ĤMF I1]] + [σ̂+

N , [σ̂
−
N , ĤMF I1]] =

= −16J
(
ẐN−1ẐN + pf ẐN Ẑ1

)
− 8hx

N X̂N − 16hz
N ẐN

(4.57c)

{σ̂+
N , [σ̂

−
N , ĤMF I1]} = −8J

(
ẐN−1 + pf Ẑ1

)
− 8hz

N (4.58a)

{σ̂−
N , [σ̂

+
N , ĤMF I1]} = 8J

(
ẐN−1 + pf Ẑ1

)
+ 8hz

N (4.58b)

{σ̂−
N , [σ̂

+
N , ĤMF I1]} − {σ̂+

N , [σ̂
−
N , ĤMF I1]} = 16J

(
ẐN−1 + pf Ẑ1

)
+ 16hz

N

(4.58c)
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5 Quantum tunneling in a
fermionic Sachdev-Ye-Kitaev
model

5.1. Introduction

Non-equilibrium dynamics of the celebrated Sachdev-Ye-Kitaev (SYK) model [40,
39] – dual to a black hole in a two-dimensional anti-de Sitter space – instanta-
neously coupled to a larger cold media has been recently scrutinized [15, 13]
intending to mimic black hole evaporation [116, 117, 118, 94, 64] in a compact
quantum mechanical setup. Alongside, several platforms have been proposed for
experimental realization of the SYK model: as a low-energy effective description of
a topological insulator/superconductor interface with an irregular opening [119],
Majorana wires coupled through a disordered quantum dot [120], ultracold atoms
trapped in optical lattices [121, 122], graphene flake with a random boundary
[123], and digital quantum simulation [124, 125, 126]. In this context, opening
up the system to an outer environment arises naturally as the “black-hole chip”
[119] is necessarily in contact with a substrate and probes.

Once the system is opened due to quench-coupling, it starts to equilibrate with
the external reservoir. Of particular interest is how the initial shock and the
subsequent equilibration affects the initial SYK state and transport observables.
The SYK model describes strongly interacting fermions in (0 + 1)-dimensions.
As such, it can be considered as a quantum dot that is usually characterized via
tunneling current. In this manuscript, we consider the complex SYK model [46,
47] abruptly coupled to a zero temperature bath. We input the initial electro-
chemical potential in the SYK subsystem to enable quantum charge tunneling
apart from the temperature drop between the SYK dot and the reservoir [15, 13].
Unlike equilibrium transport in the SYK quantum dot coupled to metallic leads
[127, 128, 129, 130, 131], we are focused on the time evolution of both spectral
properties and the tunneling current.

It was indicated earlier that right after the quench the SYK subsystem surpris-
ingly heats up despite coupling to the colder bath [15, 13] and cools down later
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equilibrating with the reservoir’s temperature. In the holographic picture this
initial heating is aligned with the increase of the subsystem energy that accom-
panies the information carried by the quench-induced shock-wave falling into the
black hole [94]. We recover this result in the absence of a potential difference and
confirm that the applied quench protocol cools down the SYK dot preserving an
exotic SYK non-Fermi liquid phase after the relaxation. Proceeding to transport,
we analyze the tunneling current evolution at low temperatures. We observe nu-
merically that the current half-life – the time required for current to relax back
to half its maximum value – grows linearly with the initial temperature of the
SYK quantum dot. In contrast, replacing the SYK subsystem with a disordered
Fermi liquid leads to a quadratic temperature increment of the current’s half-life.
This enables one to distinguish the SYK non-Fermi liquid from a more common
disordered phase by means of the quench-tunneling protocol.

5.2. The model

We begin our analysis with the SYK model in thermal equilibrium (chemical
potential µ, temperature T ) coupled to a reservoir at zero chemical potential and
zero temperature via tunneling term at time t = 0. The Hamiltonian reads

H = HSYK +Hres + θ(t)Htun, (5.1)

HSYK = 1
(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
i c

†
jckcl − µ

N∑
i=1

c†
i ci, (5.2)

Hres = 1√
M

M∑
α,β=1

ξαβψ
†
αψβ + h.c., (5.3)

Htun = 1
(NM)1/4

N∑
i=1

M∑
α=1

λiαc
†
iψα + h.c., (5.4)

where Jij;kl = J∗
kl;ij = −Jji;kl = −Jij;lk, ξαβ , and λiα are Gaussian random

variables with finite variances |Jij;kl|2 = J2, |ξαβ |2 = ξ2, |λiα|2 = λ2 and zero
means. Below we assume the reservoir much larger than the SYK subsystem,
which imposes M ≫ N for the modes numbers. The charging energy [129, 131,
132, 133] is supposed to be negligible comparing to the SYK band-width J .

The conventional way to address non-equilibrium dynamics of a quantum many-
body system is solving Kadanoff-Baym (KB) equations for the two-point functions
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5.2. The model

G≷(t, t′) = −iN−1
N∑

i=1
⟨ci(t∓)c̄i(t′±)⟩, where ± denotes the top/bottom branches

of the Keldysh time contour [134]. Inasmuch as Schwinger-Keldysh formalism has
been widely applied to the SYK model in both thermalization [57, 135, 13, 15,
136, 137] and transport [138, 127, 128] context, we leave the detailed derivation
for Appendix 5.A and proceed straight to the Kadanoff-Baym equations that hold
in the large N,M limit:

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(

ΣR(t, u)G≷(u, t′)

+ Σ≷(t, u)GA(u, t′)
)
, (5.5)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′)

+G≷(t, u)ΣA(u, t′)
)
, (5.6)

The self-energy

Σ≷(t, t′) =J2G≷(t, t′)2G≶(t′, t)
+√p λ2θ(t)θ(t′)Q≷(t, t′) (5.7)

includes the contribution of the cool-bath as a time dependent background

Q≷(t, t′) = −
H1
(
2ξ(t− t′)

)
± iJ1

(
2ξ(t− t′)

)
2ξ(t− t′) (5.8)

expressed through Struve H1 and Bessel J1 functions [139]; see Appendix 5.A.
Here we introduce the ratio p = M/N and limit ourselves to the large reservoir
case p≫ 1. Below we assume ξ = J for brevity.

The initial state of the system is settled by the thermal state of the bare SYK
model (5.2) in absence of coupling to the reservoir. At the moment of quench
the SYK subsystem (5.2) begins to deviate from the initial thermal state until it
finally thermalizes at late times. Characterizing thermalization dynamics requires
notion of the retarded, advanced, and Keldysh Green’s functions

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
, (5.9)

GA(t, t′) = −θ(t′− t)
(
G>(t, t′)−G<(t, t′)

)
, (5.10)

GK(t, t′) = G>(t, t′) +G<(t, t′) (5.11)
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

expressed above in terms of the “greater” and “lesser” components. The same
rules (5.9–5.11) apply to the self-energy (5.7).

The Green’s functions are found numerically from the KB equations (5.5,5.6)
with the self-energies (5.7,5.8). At first, we calculate the equilibrium Green’s
functions of the bare SYK model using an iterative approach [140, 141]. We
apply an extra constraint manifesting the fluctuation-dissipation relation at initial
temperature and chemical potential 1. The equilibrium Green’s functions set
the initial condition for the Kadanoff-Baym equations and evolve as follows: the
integrals in the KB equations are computed with the trapezoidal rule and the
remaining differential equations are solved by the predictor-corrector scheme. The
corrector adjusts self-consistently at every iteration [57, 135]. For the spectral
properties we use the two-dimensional time grid with a step δt = 0.02 and n ∼ 104

points in each direction, while for the transport calculations the numerical grid is
more refined δt = 0.005 but has a smaller size n ∼ 103.

5.3. Relaxation after the quench

In a while after the quench the system relaxes and approaches a thermal state.
To demonstrate that, we rotate the time frame t, t′ in the numerically computed
Green’s functions towards τ = t− t′, T = (t+ t′)/2 and make a Fourier transform
along τ . Indeed, the system returns to a nearly-thermal state if the extended
fluctuation dissipation relation

iGK(ω, T )
A(ω, T ) = tanh ω − µ̃(T )

2T̃ (T )
(5.12)

is fulfilled at frequencies in the vicinity of µ̃, where A(ω, T ) = −2ImGR(ω, T )
is the SYK spectral function. In contrast to the equilibrium case, the extended
fluctuation dissipation relation (5.12) is manifestly time dependent via the “centre
of mass” coordinate T which enters the effective temperature T̃ and chemical
potential µ̃. Overall, the ratio (5.12) determines the effective distribution function
of the SYK fermions in a quasi-equilibrium state, since tanh ω−µ̃

2T̃
= 1− 2nF(ω −

µ̃, T ), where nF is the Fermi distribution function.

The effective temperature can be extracted from the fluctuation dissipation rela-
tion (5.12) by an inverse slope of the Green’s functions ratio

T̃ (T ) =
(

∂

∂ω

2iGK(ω, T )
A(ω, T )

∣∣∣∣
ω=µ̃

)−1

(5.13)

1In thermal equilibrium the fluctuation dissipation relation states [134]: GK(ω) =
2i ImGR(ω) tanh

ω − µ

2T
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5.3. Relaxation after the quench

Figure 5.1. [Top] Deviation of the SYK subsystem from the initial thermal state: ratio
between the Keldysh Green’s function and the spectral function of the SYK model
at charge neutrality (Left panel) and at finite chemical potential (Right panel). The
equilibrium distribution functions at the initial temperature are profiled with the dashed
lines. The oscillations noticeable in the orange curves have a numerical origin, viz. the
quality of the computation depends on the size and refinement of the time grid. The
time grid is designated in the t, t′ space, while Fourier transform is done along diagonal
τ = t − t′. Ergo, the τ -lattices differ by length for separate slices of T . Extension and
refinement of the time grid suppress the oscillations. [Bottom] Spectral function of the
SYK model as a function of frequency at charge neutrality (Left panel) and at finite
chemical potential (Right panel). The dashed/dash-dot lines show the equilibrium SYK
spectral function in the infrared regime for different parameters.

at ω = µ̃. Following the top panel of Fig. 5.1, which shows the ratio (5.12),
one notices the effective temperature increase around T = 0, in spite of coupling
to a colder reservoir. The initial effective temperature increment is followed by
the subsequent temperature decay to the reservoir’s temperature T = 0. This
behavior was revealed earlier for the SYK model with Majorana zero-modes [15,

89



5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

Figure 5.2. Effective chemical potential in the SYK quantum dot coupled to a large
reservoir with Tres = 0 and µres = 0.

13], however, as we show in a follow-up work [72, 102], this doesn’t result in
an increase of the actual temperature of the system unless there is a second
decoupling quench. At late times JT ≃ 17.8, the system clearly relaxes after
the quench since the ratio (5.12) corresponds to the Fermi distribution at low
temperature.

In comparison to the previous studies [13, 15], the new ingredient here is a charge
imbalance between the SYK quantum dot and the cool-bath. Thereby, we track
the electrochemical potential in the SYK subsystem which changes substantially
once the quench is on. The effective chemical potential µ̃(T ) is set by the fre-
quency where the ratio (5.12) turns to zero, as shown in Fig. 5.1 (top right).
We plot the SYK chemical potential in Fig. 5.2, where µ̃ originates from the
initial value µ = 0.1J in the SYK quantum dot for T → −∞ and adjusts to the
reservoir’s µres = 0 at late times T → +∞. As noted in Fig. 5.2, the chemical
potential responds to the quench with a non-monotonic behavior as a function of
time T , akin to the effective temperature. Note that the “centre of mass” time
coordinate T and the actual time are not equivalent unless in a long-time limit.
This explains why the chemical potential can already rise at small negative T .

Since the tunneling between the SYK quantum dot and the reservoir turns on not
adiabatically, of importance is whether the SYK non-Fermi liquid phase survives
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5.3. Relaxation after the quench

Figure 5.3. Spectral of the SYK quantum dot after the quench as a function of fre-
quency. The blue dots show the result of the saddle-point numerics done for the evolution
of the SYK subsystem with the initial temperature T = 0.1J connected to a zero tem-
perature reservoir with a coupling strength √

pλ2/J2 = 0.2. The red dash-dot curve is
the equilibrium saddle-point numerics for the bare SYK model at low temperatures, the
black dashed line is the infrared (IR) solution of the bare SYK model (5.14), and the
green line is the spectral function of the disordered Fermi liquid (dFl). The energy scale
δω = pλ4/J3 indicates the region where the SYK nFl crosses over to a Fermi liquid.

the quench. We compare the SYK spectral function A(ω, T ) a while after the
quench to the equilibrium spectral function of the bare SYK model AIR(ω) =
−2ImGIR

R (ω) in the infrared regime J/N ≪ ω, T ≪ J , where

GIR
R (ω) = −iC(θ)e−iθ

√
2πJT

Γ
( 1

4 − i
ω

2πT + iE
)

Γ
( 3

4 − i
ω

2πT + iE
) , (5.14)

e2πE =
sin
(

π
4 + θ

)
sin
(

π
4 − θ

) , C(θ) =
(

π

cos 2θ

)1/4
. (5.15)

The low-frequency asymptotic (5.14), known as the conformal Green’s function
of the SYK model, does not explicitly depend on chemical potential. Instead, it
depends on the independent parameter – the spectral asymmetry angle [46, 47].
The asymmetry angle θ [142] is nonzero away from charge neutrality (µ ̸= 0) and
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5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

related to the charge per site on the SYK quantum dot

⟨Q⟩ = 1
N

N∑
i=1
⟨c†

i ci⟩ −
1
2 = − θ

π
− sin 2θ

4 , (5.16)

where ⟨Q⟩ ∈ (−1/2, 1/2) and θ ∈ (−π/4, π/4) [46, 47].

As mentioned earlier, the system relaxes to the low-temperature Fermi distribu-
tion at JT ≃ 17.8 (see Fig. 5.1 (top left)). In Fig. 5.3 we plot the spectral
function of the SYK quantum dot in this regime. The spectral function after the
quench is well aligned with the bare SYK spectral function at low temperatures.
The SYK nFl state is known to break down in the presence of a Fermi liquid [143,
144]. Here we can estimate the timescale of the crossover to a Fermi liquid from
the self-energy (5.7) comparing the SYK nFl and the reservoir’s contributions.
Indeed, substitution of the Green’s functions G(t) ∝ 1/

√
Jt and Q(t) ∝ 1/(Jt)

to the self-energy (5.7) shows that the crossover to a Fermi liquid happens for
tF L ≳ 1/δω, where δω = pλ4/J3. This implies that after relaxation from the
quench the SYK nFl behavior can be read out from the spectral function for

δω ≲ ω ≪ J. (5.17)

The lower bound in inequality (5.17) can be suppressed as √pλ2/J ≪ J in the
weak tunneling limit. This observation agrees with the long timescale of the SYK
nFl/Fermi liquid crossover found earlier in equilibrium studies [138, 145, 143,
129].

In Figs. 5.1 (top right), 5.2 we demonstrate that the system at finite initial µ
tends to zero chemical potential in the long time limit. This is aligned with
the discharging of the SYK quantum dot coupled to the large reservoir, which is
kept at charge neutrality. At the level of the equilibrium SYK Green’s function
(5.14), this naively implies θ ≈ 0. However, the spectral function in Fig. 5.1
(bottom right) at long times is close enough to the conformal one with non-zero
asymmetry angle θ. We plot the conformal spectral function with θ = 0.2 as a
reference. The origin of this mismatch may be that the asymmetry parameter θ is
usually related to ∂µ/∂T but not to the equilibrium value of the chemical potential
[46]. In its turn, the temperature-independent part of the chemical potential in
the SYK model is not a monotonic function of the asymmetry parameter [146].
Additionally, the SYK subsystem after the quench suffers the particle leak, that
may require to account not only for a self-energy shift by the real-valued µ [46],
but also an extra imaginary contribution to the self-energy. This issue could lead
to the renormalization of θ in the final state, which is beyond the scope of this
paper.
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5.4. Tunneling current

5.4. Tunneling current

Having discussed the SYK subsystem inner properties we proceed to transport.
Specifically, we focus on the tunneling current:

Q̇= i[H,Q]=− i

N

θ(t)
(NM)1/4

N∑
i=1

M∑
α=1

λiαc
†
iψα + h.c. (5.18)

The current’s expectation value in the SYK quantum dot/cool-bath system is
found from the generating functional lnZ[χ] [127]

I = 1
tm

∫ tm

0
dt⟨Q̇(t)⟩ = 1

tm

∂

∂(iχ) lnZ[χ]
∣∣∣∣
χ=0

, (5.19)

Z[χ] =
〈

TCe
−i
∫

C
dtH(χ)

〉
=
∫
D[c̄, c]D[ψ̄, ψ]eiS[χ], (5.20)

where TC is the time ordering along the Keldysh contour, tm is the measurement
time, and S[χ] is the effective action of the model with a counting field χ [147,
148]. The counting field χ transforms the tunneling Hamiltonian

H(χ) = HSYK +Hres + θ(t)Htun(χ), (5.21)

Htun(χ) = 1
(NM)1/4

N∑
i=1

M∑
α=1

λiαe
iχ(t)

2N c†
iψα + h.c., (5.22)

so that

χ(t) =
{
χ for 0 < t < tm

0 otherwise
, (5.23)

The factor of two in the coupling phase in the tunneling term (5.22) accounts
for the doubling due to the forward and backward branches of the Keldysh time
contour.

One notices that the Hamiltonian transformation (5.22) is equivalent to a simple
rotation of the coupling constants λiα → λiαe

iχ(t)
2N in the original theory (5.1).

Thus, the Kadanoff-Baym equations (5.5,5.6) describe the valid saddle-point for
the partition function (5.20) up to the redefinition of the coupling constants λi.
Indeed, the current can be deduced from the tunneling part of the effective ac-
tion

Stun(χ) =i
√
NMλ2

∑
ss′=±

∫ +∞

0
dtdt′ss′e

i(sχ(t)−s′χ(t′))
2N

×Gss′(t, t′)Qs′s(t′, t). (5.24)

93



5. Quantum tunneling in a fermionic Sachdev-Ye-Kitaev model

Figure 5.4. Tunneling current as a function of time normalized on its maximum
value. The insets show time dependence of the current in log-log and log scales for√

pλ2/J2 = 0.3. The log-log plot reveals the initial power law increase of the tunneling
current, while the log plot is consistent with the exponential decay. We illustrate the
current’s half-life t1/2 for √

pλ2/J2 = 0.4.

Here the Green’s functions Gss′ and Qss′ describe the saddle-point of the SYK-
bath system and are found from the equations (5.5-5.8), where s = ± denotes the
forward and backward branch of the Keldysh contour. Accordingly, the counting
field χ is defined on the Keldysh contour as χs(t) = sχ(t). Leaving the detailed
derivation of the full effective action of the SYK-bath coupled system for the
Appendix 5.A, we proceed to the tunneling current

Applying the prescription (5.19), we derive the expectation value of current as a
function of the measurement time tm:

I =−
√
pλ2

2tm

∑
ss′

∫ tm

0
dt

∫ +∞

0
dt′
(
Gss′(t, t′)s′Qs′s(t′, t)

−Qs′s(t, t′)sGss′(t′, t)
)

=−
√
pλ2

2tm

∫ tm

0
dt

∫ +∞

0
dt′ tr

(
σxĜ(t, t′)Q̂(t′, t)

− σxQ̂(t, t′)Ĝ(t′, t)
)
, (5.25)
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Figure 5.5. Half-life of the tunneling current as a function of the initial temperature.
In the left panel, we compare the half-lives for the SYK model connected to a cool-bath
for different coupling strengths. Meanwhile in the right panel, we show the difference
between SYK4 (SYK non-Fermi liquid initial state) and SYK2 (disordered Fermi liquid
initial state) behavior as a tested subsystem; the curves are shifted to the same origin
for better visual comparison. The initial temperature changes from T = 0.1J to T = J
with a step δT = 0.01J . The dashed/dashdot lines stand for the linear/quadratic fits
made for the temperature interval T ∈ [0.1J, 0.2J ].

where

Ĝ =
(
GR GK

0 GA

)
, Q̂ =

(
QR QK

0 QA

)
(5.26)

are the Green’s functions of the SYK quantum dot and the cool-bath set by the
equations (5.5-5.8) and transformed to the R,A,K basis according to the rules
(5.9-5.11) 2. From here, the dynamics of the tunneling current is given by

⟨Q̇(t)⟩ =−
√
pλ2

2 θ(t)
∫ t

0
dt′J (t, t′), (5.27)

J (t, t′) =GR(t, t′)QK(t′, t)−QK(t, t′)GA(t′, t)
−QR(t, t′)GK(t′, t) +GK(t, t′)QA(t′, t). (5.28)

Time dependence of the tunneling current is shown in Fig. 5.4. The current grows
initially as a power law, reaches the maximum value, and decays exponentially

2In equilibrium the fluctuation dissipation relation holds GK(ω) = −2πi(1 −
2nSYK(ω))νSYK(ω), QK(ω) = −2πi(1 − 2nres(ω))νres(ω), where nSYK and nres are the
Fermi distribution functions and νSYK = − 1

π
ImGR and νres = − 1

π
ImQR are the densities

of states. Substituting those to Eq. (5.25), one gets a familiar Fermi golden rule formula for
the tunneling current [134]:
I = 2π

√
pλ2
∫

dω νSYK(ω)νres(ω)(nSYK(ω) − nres(ω)).
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to zero consistently with the discharging process of the SYK quantum dot. With
intention to mark the lifetime of the effect we extract the half-life – the time in
which the current is decreased in half of its maximum value. Varying the initial
temperature T of the SYK quantum dot, we show the current’s half-life for several
coupling strengths in Fig. 5.5 (left). The stronger the coupling, the shorter the
half-life of the tunneling current. Oppositely, the half-life increases with the initial
temperature rise. For the temperatures T ≲ 0.4J the tunneling current half-life
grows linearly in T .

To check if the T -linear current’s half-life is specific for the SYK state, we substi-
tute the SYK model with the one-body random Hamiltonian (5.3), often referred
to as the SYK2 model, the same that describes the reservoir. This model has a
typical Fermi liquid Green’s function GR(t) ∝ 1/t in the long time limit Jt≫ 1,
which makes it legitimate to build the SYK nFl/Fermi liquid comparison. Match-
ing the tunneling current half-life for the SYK vs SYK2 model in Fig. 5.5 (right),
we ascertain that their temperature dependencies are drastically different. The
current’s half-life in the system of the SYK2 quantum dot coupled to the cold
bath increases as T 2 at low temperatures, which discerns it from the SYK model
cooling protocol displaying the linearin temperature increase.

The duration of the tunneling event in our system is defined by the tunneling
contact resistance, similarly to an exponentially relaxing capacitor discharge. As
such, our results resemble the prominent resistivity predictions for strange metals
ρSM ∼ T [149, 138, 145] and Fermi liquid ρF L ∼ T 2.

5.5. Conclusion

The Sachdev-Ye-Kitaev model quench-coupled with a cold bath has been a sub-
ject of close attention aiming to simulate evaporation of a black hole [15, 13]. At
the same time, both connecting the system to the environment and its further
characterization are inherent for realization proposals of the SYK model in con-
densed matter systems [119, 123, 120, 121, 122]. In this manuscript, we consider
a quantum dot described by the complex SYK model at finite temperature in-
stantaneously coupled to a zero temperature reservoir. Analyzing the dynamical
spectral function of the SYK quantum dot at charge neutrality, we show that the
considered quench protocol preserves the SYK non-Fermi liquid state for the en-
ergies δω ≪ ω ≪ J . Here the lower bound δω is suppressed in the weak tunneling
limit. Further, we put an initial electrochemical potential in the quantum dot
and compute the tunneling current dynamics due to the discharging of the dot.
The tunneling current half-life shows distinct temperature dependencies for dif-
ferent systems that are being cooled down. In case of the SYK quantum dot, the
half-life increases linearly in the initial temperature T , while for the Fermi liquid
the increase is ∝ T 2. Therefore, this temperature dependence of the tunneling
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5.5. Conclusion

current half-life provides a distinguishing feature for the disordered quantum dot
exhibiting the SYK nFl phase against more common Fermi liquid behavior.
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5.A. Derivation of the Kadanoff-Baym equations
from the SYK saddle-point

Here we derive the Kadanoff-Baym equations for the SYK quantum dot coupled
to a cool-bath by a quench.

5.A.1. Saddle-point equations

We perform the disorder average of with the Hamiltonian (5.1), pursuing [138,
128]. The effective action can be written in terms of bilocal fields Gs′s(t′, t) =
iN−1∑

i c̄is(t)cis(t′), Qs′s(t′, t) = iM−1∑
α ψ̄αs(t)ψαs(t′) and Σss′(t, t′), Πss′(t, t′)

as the corresponding Lagrange multipliers

S =− iNtrln
[
σz

ss′δ(t− t′) (i∂t + µ)− Σss′(t, t′)
]
−

− iN
∑
ss′

∫
dtdt′

(
Σss′(t, t′)Gs′s(t′, t)− ss′J2

4 Gss′(t, t′)2Gs′s(t′, t)2

)
−

− iMtrln
[
σz

ss′δ(t− t′) i∂t −Πss′(t, t′)
]
−

− iM
∑
ss′

∫
dtdt′

(
Πss′(t, t′)Qs′s(t′, t)− ss′ξ2

2 Qss′(t, t′)Qs′s(t′, t)
)

+

+ i
√
NM

∑
ss′

∫
dtdt′ss′λ2θ(t)θ(t′)Gss′(t, t′)Qs′s(t′, t). (5.29)

where s = ± denotes forward and backward branches of the Keldysh time contour
[134]. In the large N , M limit, the saddle-point equations are

Σss′(t, t′) = J2Gss′(t, t′)2Gs′s(t′, t) +√p λ2θ(t)θ(t′)Qss′(t, t′), (5.30)

Πss′(t, t′) = ξ2Qss′(t, t′) + λ2
√
p
θ(t)θ(t′)Gss′(t, t′), (5.31)

∑
r

∫ +∞

−∞
du
(
σz

srδ(t− u) (i∂t + µ)− srΣsr(t, u)
)
Grs′(u, t′) = δss′δ(t− t′),

(5.32)∑
r

∫ +∞

−∞
du
(
σz

srδ(t− u)i∂t − srΠsr(t, u)
)
Qrs′(u, t′) = δss′δ(t− t′), (5.33)

where p = M/N is the mode ratio.
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Following Ref. [57], we derive the self-consistent Kadanoff-Baym equations con-
sidering s, s′ = ±,∓ components of Eqs. (5.32, 5.33):

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(

ΣR(t, u)G≷(u, t′) + Σ≷(t, u)GA(u, t′)
)
, (5.34)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′) +G≷(t, u)ΣA(u, t′)

)
, (5.35)

i∂tQ
≷(t, t′) =

∫ +∞

−∞
du
(

ΠR(t, u)Q≷(u, t′) + Π≷(t, u)QA(u, t′)
)
, (5.36)

−i∂t′Q≷(t, t′) =
∫ +∞

−∞
du
(
QR(t, u)Π≷(u, t′) +Q≷(t, u)ΠA(u, t′)

)
, (5.37)

where the self-energies are

Σ≷(t, t′) = J2G≷(t, t′)2G≶(t′, t) +√p λ2θ(t)θ(t′)Q≷(t, t′), (5.38)

Π≷(t, t′) = ξ2Q≷(t, t′) + λ2
√
p
θ(t)θ(t′)G≷(t, t′). (5.39)

5.A.2. Reservoir as an external potential

Since we assume the reservoir to be large enough p ≫ 1, it can be considered as
a closed dynamic background to the SYK subsystem∫ +∞

−∞
du
(
δ(t− u)i∂t − ξ2Q̂(t, u)

)
Q̂(u, t′) = δ(t− t′) (5.40)

describing a decoupled random free fermion in equilibrium. Here we perform a
rotation towards retarded, advanced, and Keldysh basis

Q̂ =
(
QR QK

0 QA

)
= Lσz

(
Q++ Q+−
Q−+ Q−−

)
L†, L = 1√

2

(
1 −1
1 1

)
.

The retarded Green’s function is found from

(
ω − ξ2QR(ω)

)
QR(ω) = 1 ⇒ QR(ω) = ω

2ξ2 −
i

ξ

√
1− ω2

4ξ2 =

= 2

ω + 2iξ
√

1−
(
ω/2ξ

)2
,
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where the spectral function obeys the semicircle law ρ(ω) = −2 ImQR(ω) =
2
ξ

Re

√
1− ω2

4ξ2 . Let’s derive the time representation of QR:

QR(t, t′) = QA(t′, t)∗ =
∫ +∞

−∞

dω

2π e
−iω(t−t′)QR(ω) =

=− lim
δ→0+

∫ +∞

−∞

dω

2π e
−iω(t−t′)eδ(t−t′) 1

2ξ2

√
(ω + iδ)2 − 4ξ2.

(5.41)

Here the branch cut is in the lower half plane, so we close the contour corre-
spondingly for t − t′ > 0. Since there are no poles in the lower half plane, we
shrink the contour to the anticlockwise traverse around the branch cut. Note
that an additional phase is acquired when crossing the branch cut

√
ω2 − 4ξ2 →

e
1
2 ln(ω2+4ξ2)+iπ = eiπ

√
ω2 − 4ξ2. Therefore, we get

QR(t, t′) =− θ(t− t′)1− eiπ

4πξ2

∫ 2ξ

−2ξ

dω e−iω(t−t′)
√
ω2 − 4ξ2 =

=− iθ(t− t′)
J1
(
2ξ(t− t′)

)
ξ(t− t′) ,

(5.42)

where J1 is the first Bessel function of the first kind. The Keldysh component at
zero temperature is

QK(t, t′) =
∫ +∞

−∞

dω

2π e
−iω(t−t′)QK(ω) =

∫ +∞

−∞

dω

2π e
−iω(t−t′)2i sgn(ω)ImQR(ω)

=− i

2πξ2

∫ 2ξ

−2ξ

dω e−iω(t−t′) sgn(ω)
√

4ξ2 − ω2 = −
H1
(
2ξ(t− t′)

)
ξ(t− t′) ,

(5.43)

where H1 is the first Struve function.

5.A.3. Dynamics of the SYK subsystem

In the large p limit, the dynamics of the SYK subsystem is described by Eqs.
(5.34,5.35,5.38), where the reservoir Green’s function Q(t − t′) enters the SYK
self-energy (5.38) as the external potential derived in Section 5.A.2. Thereby, the
Kadanoff-Baym equations simplify to

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(

ΣR(t, u)G≷(u, t′) + Σ≷(t, u)GA(u, t′)
)
, (5.44)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′) +G≷(t, u)ΣA(u, t′)

)
, (5.45)
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5.A. Derivation of the Kadanoff-Baym equations from the SYK saddle-point

with the self-energy (5.30)

Σ≷(t, t′) = J2G≷(t, t′)2G≶(t′, t) +√p λ2θ(t)θ(t′)Q≷(t, t′), (5.46)

Q≷(t, t′) = − 1
2ξ(t− t′)

(
H1
(
2ξ(t− t′)

)
± iJ1

(
2ξ(t− t′)

) )
. (5.47)

Here we introduced [134] G>(t, t′) ≡ G−+(t, t′), G<(t, t′) ≡ G+−(t, t′), Σ>(t, t′) ≡
Σ−+(t, t′), Σ<(t, t′) ≡ Σ+−(t, t′) and account for

G++(t, t′) = θ(t− t′)G>(t, t′) + θ(t′− t)G<(t, t′), (5.48)
G−−(t, t′) = θ(t′− t)G>(t, t′) + θ(t− t′)G<(t, t′), (5.49)
Σ++(t, t′) = θ(t− t′)Σ>(t, t′) + θ(t′− t)Σ<(t, t′), (5.50)
Σ−−(t, t′) = θ(t′− t)Σ>(t, t′) + θ(t− t′)Σ<(t, t′). (5.51)

The retarded, advanced, and Keldysh components are expressed in terms of >
and < as

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
, (5.52)

GA(t, t′) = −θ(t′− t)
(
G>(t, t′)−G<(t, t′)

)
, (5.53)

GK(t, t′) = G>(t, t′) +G<(t, t′), (5.54)

ΣR(t, t′) = θ(t− t′)
(

Σ>(t, t′)− Σ<(t, t′)
)
, (5.55)

ΣA(t, t′) = −θ(t′− t)
(

Σ>(t, t′)− Σ<(t, t′)
)
, (5.56)

ΣK(t, t′) = Σ>(t, t′) + Σ<(t, t′). (5.57)
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[26] Aurelio Romero-Bermúdez, Koenraad Schalm, and Vincenzo Scopelliti. “Regu-
larization dependence of the OTOC. Which Lyapunov spectrum is the physical
one?” In: Journal of High Energy Physics 2019.7 (July 2019). doi: 10.1007/
jhep07(2019)107.

[27] M.L. Mehta and M. Gaudin. “On the density of Eigenvalues of a random matrix”.
In: Nuclear Physics 18 (1960), pp. 420–427. issn: 0029-5582. doi: https://doi.
org/10.1016/0029-5582(60)90414-4.

104

https://doi.org/10.1103/PhysRevB.100.245104
https://arxiv.org/abs/1912.03276
https://arxiv.org/abs/1912.04912
https://doi.org/10.1007/jhep06(2016)004
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/physrevb.108.125145
https://doi.org/10.1103/physrevlett.121.187001
https://doi.org/10.1073/pnas.2003179117
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1088/2053-2571/ab21c6
https://doi.org/10.1088/2053-2571/ab21c6
https://doi.org/10.1103/PhysRevA.88.052319
https://doi.org/10.1103/PhysRevA.88.052319
https://doi.org/10.1007/jhep08(2016)106
https://doi.org/10.1007/jhep07(2019)107
https://doi.org/10.1007/jhep07(2019)107
https://doi.org/https://doi.org/10.1016/0029-5582(60)90414-4
https://doi.org/https://doi.org/10.1016/0029-5582(60)90414-4


Bibliography

[28] Thomas Guhr, Axel Müller–Groeling, and Hans A. Weidenmüller. “Random-
matrix theories in quantum physics: common concepts”. In: Physics Reports
299.4-6 (June 1998), pp. 189–425. doi: 10.1016/s0370-1573(97)00088-4.

[29] Freeman J. Dyson. “Statistical Theory of the Energy Levels of Complex Systems.
I”. In: Journal of Mathematical Physics 3.1 (Dec. 2004), pp. 140–156. issn: 0022-
2488. doi: 10.1063/1.1703773. eprint: https://pubs.aip.org/aip/jmp/
article-pdf/3/1/140/8157927/140\_1\_online.pdf.

[30] Freeman J. Dyson. “Statistical Theory of the Energy Levels of Complex Systems.
II”. In: Journal of Mathematical Physics 3.1 (Dec. 2004), pp. 157–165. issn: 0022-
2488. doi: 10.1063/1.1703774. eprint: https://pubs.aip.org/aip/jmp/
article-pdf/3/1/157/8158003/157\_1\_online.pdf.

[31] Freeman J. Dyson. “Statistical Theory of the Energy Levels of Complex Systems.
III”. In: Journal of Mathematical Physics 3.1 (Dec. 2004), pp. 166–175. issn:
0022-2488. doi: 10.1063/1.1703775. eprint: https://pubs.aip.org/aip/jmp/
article-pdf/3/1/166/8157965/166\_1\_online.pdf.

[32] Michel Gaudin. “Sur la loi limite de l’espacement des valeurs propres d’une ma-
trice ale´atoire”. In: Nuclear Physics 25 (1961), pp. 447–458. issn: 0029-5582.
doi: https://doi.org/10.1016/0029-5582(61)90176-6.

[33] O. Bohigas, M. J. Giannoni, and C. Schmit. “Characterization of Chaotic Quan-
tum Spectra and Universality of Level Fluctuation Laws”. In: Phys. Rev. Lett.
52 (1 Jan. 1984), pp. 1–4. doi: 10.1103/PhysRevLett.52.1.

[34] Lea F. Santos and Marcos Rigol. “Onset of quantum chaos in one-dimensional
bosonic and fermionic systems and its relation to thermalization”. In: Physical
Review E 81.3 (Mar. 2010). doi: 10.1103/physreve.81.036206.

[35] Ranjan Modak and Subroto Mukerjee. “Finite size scaling in crossover among dif-
ferent random matrix ensembles in microscopic lattice models”. In: New Journal
of Physics 16.9 (Sept. 2014), p. 093016. doi: 10.1088/1367-2630/16/9/093016.

[36] M. V. Berry and M. Tabor. “Level Clustering in the Regular Spectrum”. In:
Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 356.1686 (1977), pp. 375–394. issn: 00804630.

[37] Ahmed A. Elkamshishy and Chris H. Greene. “Observation of Wigner-Dyson
level statistics in a classically integrable system”. In: Physical Review E 103.6
(June 2021). doi: 10.1103/physreve.103.062211.

[38] Y. Alhassid. “The statistical theory of quantum dots”. In: Rev. Mod. Phys. 72 (4
Oct. 2000), pp. 895–968. doi: 10.1103/RevModPhys.72.895.

[39] Subir Sachdev and Jinwu Ye. “Gapless spin-fluid ground state in a random quan-
tum Heisenberg magnet”. In: Phys. Rev. Lett. 70 (21 May 1993), pp. 3339–3342.
doi: 10.1103/PhysRevLett.70.3339.

[40] A. Kitaev. A simple model of quantum holography. KITP Program: Entanglement
in Strongly-Correlated Quantum Matter, 2015.

[41] Julian Sonner and Manuel Vielma. “Eigenstate thermalization in the Sachdev-
Ye-Kitaev model”. In: JHEP 11 (2017), p. 149. doi: 10.1007/JHEP11(2017)149.
arXiv: 1707.08013 [hep-th].

[42] Ahmed Almheiri and Joseph Polchinski. Models of AdS2 Backreaction and Holog-
raphy. 2014. doi: 10.48550/ARXIV.1402.6334.

105

https://doi.org/10.1016/s0370-1573(97)00088-4
https://doi.org/10.1063/1.1703773
https://pubs.aip.org/aip/jmp/article-pdf/3/1/140/8157927/140\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/3/1/140/8157927/140\_1\_online.pdf
https://doi.org/10.1063/1.1703774
https://pubs.aip.org/aip/jmp/article-pdf/3/1/157/8158003/157\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/3/1/157/8158003/157\_1\_online.pdf
https://doi.org/10.1063/1.1703775
https://pubs.aip.org/aip/jmp/article-pdf/3/1/166/8157965/166\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/3/1/166/8157965/166\_1\_online.pdf
https://doi.org/https://doi.org/10.1016/0029-5582(61)90176-6
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/physreve.81.036206
https://doi.org/10.1088/1367-2630/16/9/093016
https://doi.org/10.1103/physreve.103.062211
https://doi.org/10.1103/RevModPhys.72.895
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1007/JHEP11(2017)149
https://arxiv.org/abs/1707.08013
https://doi.org/10.48550/ARXIV.1402.6334


Bibliography

[43] Kristan Jensen. “Chaos in AdS2 Holography”. In: Physical Review Letters 117.11
(Sept. 2016). doi: 10.1103/physrevlett.117.111601.
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Summary

Thermodynamics is one of the founding scientific pillars that has helped us bet-
ter understand heat engines, biology, ecosystems, and even black holes. While it
fundamentally describes large systems by examining the bulk behavior of their
constituents, it is anchored in the statistical equivalence of equilibrium configura-
tions of a formally infinite number of microscopic constituents. A question of its
validity arises when one scales down to small quantum systems. Here, we have
derived dynamic non-equilibrium relations that surprisingly resemble the classical
thermodynamics laws, with a mix of quantum features that encode the dynam-
ics of quantum information. Understanding the relation between post-quench
dynamics of finite-size quantum systems and their initial thermodynamic state
might have been a purely academic exercise fifteen years ago. But now, thanks
to ultra-cold atomic quantum simulators and progress in quantum computers,
the thermodynamics of finite-size quantum systems has practical implications
too. The findings of this thesis contribute to understanding quantum many-body
systems, particularly in the context of entanglement, non-equilibrium dynamics,
thermalization, and charge transport.

Chapter 2 focuses on the out-of-equilibrium dynamics of two initially thermal and
independent reservoirs of Fermi gas that are quench-coupled and, after a short
time, decoupled again. Those quenches lead to an energy gain in both systems,
regardless of the initial temperature imbalance, and the quenches’ work is pro-
portional to the mutual correlations of the systems, expressed through their von
Neumann entropies. Based on this finding, in a follow-up paper, we showed that
on the timescale of the Fermi time, the von Neumann entropies grow faster than
the thermal transport between the systems. In the same work, we proved that the
time-frame and temperature regime of this phenomenon are experimentally ac-
cessible in ultracold atoms, providing a platform for the measurement of quantum
correlations.

Then, in Chapter 3, we studied the post-quench dynamics of two other classes of
systems. Firstly, we analyzed the Sachdev-Ye-Kitaev (SYK) model, a toy system
for strong quantum correlations, and proved that the same early-time energy in-
crease appears for any temperature and system size, however, there is no thermal
flux from the colder to the hotter system. Through the relative entropy, we were
able to show that the initial thermal state is not immediately destroyed, which
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refuted a previous claim that such a quench can heat a system with a colder bath.
Then we studied a quench between two Mixed Field Isings (MFI) and demon-
strated that the initial energy increase appears for all temperatures only when
the systems are tuned to the quantum critical point, otherwise, we discovered
a transition temperature above which the energy of the hotter system decreases
right after the quench, re-establishing our classical intuition. Additionally, we
have shown that in the thermodynamic limit, the energy increase persists only for
highly entangled systems, like the SYK or MFI at the critical point, but is absent
for generic quantum systems. This proves that the early-time quantum behavior
does not contradict the late-time classical evaporation.

In Chapter 4, we analyzed the time evolution of the energies and how it relates to
the before-quench state of the systems. By expanding the density matrix in a time
series, we showed that when systems start from a thermal state, the early time
evolution of the SYK is purely determined by the thermodynamics state. The
situation is more complicated when the systems under consideration are Mixed
Field Isings, whose energy evolution additionally depends on particular correla-
tions within the individual systems. This provided an analytical explanation of
the results presented in Chapter 3 and a better understanding of the appearance of
a system-dependent transition temperature, above which the energy of the hotter
MFI does not have a post-quench increase.

Chapter 5 turns the attention to charged SYK systems and explores the applica-
bility of the same quench protocol in the experimental detection of a laboratory
realization of an SYK. We found that the dynamics of the discharging process of
the SYK quantum dot reveal a distinctive characteristic of the SYK non-Fermi
liquid state. For example, when analyzing the quench-induced tunneling current
between a charged SYK and a neutral reservoir, there is a temperature-dependent
contribution to the current’s half-life, which, at low temperatures, scales as T for
the SYK and as T 2 for Fermi liquids. This provides an experimental feature for
differentiating an SYK state from a conventional charged system. Additionally,
we link this feature of the SYK current to the prominent observation of a linear
in T resistivity of strange metals, which aligns with other reported results on
conductivity in SYK chains.
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Thermodynamica is één van de fundamentele wetenschappelijke grondslagen die
ons heeft geholpen om warmtemotoren, biologie, ecosystemen en zelfs zwarte gaten
beter te begrijpen. Hoewel het fundamenteel macroscopische, i.e. grote, systemen
beschrijft door het bulkgedrag van hun bestanddelen te onderzoeken, is het ve-
rankerd in de statistische gelijkwaardigheid van evenwichtsconfiguraties van een
formeel oneindig aantal microscopische bestanddelen. De vraag van zijn geldigheid
komt naar boven, wanneer men zich toespitst op kleine kwantumsystemen. In
dit proefschrift hebben we dynamische niet-evenwichtsrelaties afgeleid voor zulk
soort systemen die verrassend veel lijken op de klassieke wetten van de thermody-
namica, met een mix van kwantumkenmerken die de dynamiek van kwantumin-
formatie coderen. Het begrijpen van de relatie tussen de post-quench-dynamics
van kwantumsystemen met een eindige omvang en hun initiële thermodynamische
toestand zou vijftien jaar geleden een puur academische exercitie kunnen zijn ge-
weest. Maar dankzij ultrakoude atomaire kwantumsimulators en de vooruitgang
op het gebied van kwantumcomputers heeft de thermodynamica van kwantumsys-
temen van eindige omvang nu ook praktische implicaties. De bevindingen van dit
proefschrift dragen bij aan het begrip van kwantum-veeldeeltjessystemen, vooral
in de context van verstrengeling, niet-evenwichtsdynamica, thermalisatie en lad-
ingstransport.

Hoofdstuk 2 richt zich op de niet-evenwichtsdynamiek van twee aanvankelijk ther-
mische en onafhankelijke reservoirs van Fermi-gassen die aan elkaar worden gekop-
peld en na korte tijd weer worden ontkoppeld. Deze “quenches” leiden tot een
energiewinst in beide systemen, ongeacht de aanvankelijke ongelijkheid van de
temperatuur, en het werk verricht door de quench is evenredig aan de onderlinge
correlaties van de systemen, uitgedrukt in hun Von Neumann-entropieën. Op
basis van deze bevinding hebben we in een vervolgartikel aangetoond dat op de
tijdschaal van de Fermi-tijd de von Neumann-entropieën sneller groeien dan het
thermische transport tussen de systemen. In hetzelfde werk hebben we bewezen
dat het tijdsbestek en het temperatuurregime van dit fenomeen experimenteel
toegankelijk zijn in ultrakoude atomen, wat een platform biedt voor het meten
van kwantumcorrelaties.

Vervolgens hebben we in hoofdstuk 3 de post-quench-dynamiek van twee andere
klassen van systemen bestudeerd. Ten eerste hebben we het Sachdev-Ye-Kitaev
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(SYK)-model geanalyseerd — een simpel systeem voor sterke kwantumcorrelaties
— en bewezen dat dezelfde initiële energietoename optreedt voor elke temper-
atuur en systeemomvang, maar er is geen thermische flux van het koudere naar
het hetere systeem. Door de relatieve entropie konden we aantonen dat de initiële
thermische toestand niet onmiddellijk wordt vernietigd, wat een eerdere bewering
weerlegde dat een dergelijke quench een systeem door middel van een kouder bad
kan verwarmen. Vervolgens bestudeerden we een quench tussen twee Mixed Field
Ising (MFI) modellen en toonden aan dat de initiële energietoename alleen voor
alle temperaturen optreedt als de systemen zijn afgestemd op het kwantumkri-
tische punt. Voor andere afstellingen ontdekten we een overgangstemperatuur
waarboven de energie van de hetere temperaturen afneemt direct na de quench,
waardoor onze klassieke intüıtie wordt hersteld. Bovendien hebben we aangetoond
dat de energietoename binnen de thermodynamische limiet alleen aanhoudt voor
sterk verstrengelde systemen, zoals de SYK of MFI op het kritieke punt, maar
afwezig is voor generieke kwantumsystemen. Dit bewijst dat het kwantumge-
drag in de eerste momenten niet in tegenspraak is met de klassieke koeling en
verdamping op latere tijden.

In hoofdstuk 4 analyseerden we de tijdsevolutie van de energieën en hoe deze
zich verhoudt tot de toestand vóór de quench van de systemen. Door de dicht-
heidsmatrix in een tijdreeks te expanderen, hebben we aangetoond dat wanneer
systemen vanuit een thermische toestand beginnen, de vroege tijdsevolutie van
de SYK puur wordt bepaald door de thermodynamische toestand. De situatie is
ingewikkelder wanneer de onderzochte systemen Mixed Field Isings zijn, waarvan
de energie-evolutie ook afhangt van bepaalde correlaties binnen de individuele sys-
temen. Dit leverde een analytische verklaring op van de resultaten gepresenteerd
in hoofdstuk 3 en een beter begrip van het optreden van een systeemafhankelijk-
heid transitietemperatuur, waarboven de energie van de hetere MFI geen toename
post-quench meer kent.

Hoofdstuk 5 richt de aandacht op geladen SYK-systemen en onderzoekt de toepas-
baarheid van hetzelfde quenchprotocol bij de experimentele detectie van een lab-
oratoriumrealisatie van een SYK. We ontdekten dat de dynamiek van het ontla-
dingsproces van de SYK-quantum dot een onderscheidend kenmerk van de niet-
Fermi-vloeistof toestand van SYK onthult. Bij het analyseren van de door de
quench gëınduceerde tunnelstroom tussen een geladen SYK en een neutraal reser-
voir is er bijvoorbeeld een temperatuurafhankelijke bijdrage aan de halfwaardetijd
van de stroom, die bij lage temperaturen schaalt als T voor de SYK en als T 2

voor Fermi-vloeistoffen. Dit biedt een experimentele mogelijkheid om een SYK-
toestand te onderscheiden van een conventioneel geladen systeem. Bovendien
koppelen we dit kenmerk van de SYK-stroom aan de prominente observatie van
een lineair in T -weerstand van vreemde metalen, wat overeenkomt met andere
gerapporteerde resultaten over de geleidbaarheid in SYK-ketens.
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grable systems, CFTs, holography, and string theory and graduated with a thesis
on ”Bootstrapping of meromorphic conformal field theories”. During a gap year,
after obtaining my Master’s degree, I continued working on holographic theories
and then took an internship at the Institute for Particle Physics and Astrophysics
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