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Abstract

Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that

inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable

similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of

intracellular membranes to establish replication organelles (so-called “replication factories”),

which provide a protected environment for the replicase complex, consisting of the viral

genome and proteins necessary for viral RNA synthesis. In the current study, we investigate

pan-viral similarities and virus-specific differences in the life cycle of this highly relevant

group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious

virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackie-

virus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations

by an intrinsic immune response. Based on these measurements, we developed a detailed

mathematical model of the replication of HCV, DENV, and CVB3 and showed that only

small virus-specific changes in the model were necessary to describe the in vitro dynamics

of the different viruses. Our model correctly predicted virus-specific mechanisms such as

host cell translation shut off and different kinetics of replication organelles. Further, our

model suggests that the ability to suppress or shut down host cell mRNA translation may be

a key factor for in vitro replication efficiency, which may determine acute self-limited or

chronic infection. We further analyzed potential broad-spectrum antiviral treatment options

in silico and found that targeting viral RNA translation, such as polyprotein cleavage and

viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses.

Moreover, we found that targeting only the formation of replicase complexes did not stop the
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in vitro viral replication early in infection, while inhibiting intracellular trafficking processes

may even lead to amplified viral growth.

Author summary

Plus-strand RNA viruses comprise a large group of related and medically relevant viruses.

The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the

constant spread of diseases such as dengue and chikungunya fever show the necessity of a

comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA

viruses share similarities in their life cycle. To understand their within-host replication strate-

gies, we developed a mathematical model that studies pan-viral similarities and virus-specific

differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus.

By fitting our model to in vitro data, we found that only small virus-specific variations in the

model were required to describe the dynamics of all three viruses. Furthermore, our model

predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-

strand RNA replication efficiency, which may determine acute or chronic infection out-

comes. Furthermore, our in-silico drug treatment analysis suggested that targeting viral pro-

teases involved in polyprotein cleavage, in combination with viral RNA replication may

represent promising drug targets with broad-spectrum antiviral activity.

Introduction

Plus-strand RNA viruses are the largest group of human pathogens that cause re-emerging epi-

demics, as seen with dengue, chikungunya, and Zika virus, as well as global pandemics of

acute and chronic infectious diseases such as hepatitis C and the common cold. The current

global SARS-coronavirus-2 (SARS-CoV-2) pandemic shows how our lives can become affected

by a rapidly spreading plus-strand RNA virus. As of May 2022, more than 500 million cases of

SARS-CoV-2 infections have been reported, with over 6 million confirmed deaths [1,2]. While

a global pandemic of the current scale clearly causes exceptional socio-economic burdens [3],

various other plus-strand RNA viruses also cause significant burdens. For example, in 2013,

symptomatic dengue cases in 141 countries caused socio-economic costs of US$ 8.9 billion [4],

while the costs of the latest Zika outbreak have been estimated to be US$ 7–18 billion in Latin

America and the Caribbean from 2015 to 2017 [5]. Furthermore, between 2014 and 2018, the

USA spent around US$ 60 billion on hepatitis C medication, with around US$ 80,000 per

patient [6,7].

Treatment options are limited for the majority of plus-strand RNA viruses. While vaccines

and vaccine candidates are available for a few viruses, approved direct-acting antiviral drugs

are only available against hepatitis C and SARS-CoV-2 [8,9]. Given the high disease burden

and socio-economic cost caused by infections with plus-strand RNA viruses, there is an urgent

need for broadly acting antiviral drugs. For their development, it is important to study the life

cycles and host restriction and dependency factors in detail, not only at the level of each virus

individually but also across a group of related viruses, to gain pan-viral insights. The current

study investigated the life cycle of plus-strand RNA viruses. The ultimate goal was to reveal

commonly effective antiviral strategies and potential therapeutic target processes in the viral

life cycle. To do so, we chose three representatives of plus-strand RNA viruses, hepatitis C,

dengue, and coxsackievirus B3 (compare Table 1).
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The enveloped blood-borne hepatitis C virus (HCV) is a Hepacivirus of the family Flaviviri-
dae that causes acute and chronic hepatitis C. An acute infection is typically mild, but once

chronic and untreated, may cause life-threatening conditions, including liver cirrhosis and

hepatocellular carcinoma. Approximately 70 million people worldwide live with chronic

Table 1. Feature comparison of plus-strand RNA viruses. DMV: double-membrane vesicles, ER: endoplasmic reticulum, NS: non-structural, S: structural.

HCV DENV CVB3

Virus characteristics
Family Flaviviridae [20] Flaviviridae [20] Picornaviridae [20]

Genus Hepacivirus [20] Flavivirus [20] Enterovirus [20]

Transmission Human-to-human [20] Mosquito-to-human [32] Human-to-human [15]

Tropism Hepatocytes [33] Dendritic cells, monocytes, macrophages [32] Brain/neuron, cardiac tissue, hepatocytes

[15,34,35]

Genome size 9.6 kb [33] 10.7 kb [32] 7.5 kb [15]

Number of genes/

encoded proteins

10 (3 S and 7 NS proteins) [33] 10 (3 S and 7 NS proteins) [32] 11 (4 S and 7 NS proteins) [15]

Replication organelle

(RO)

DMV derived from ER [20] Invaginated vesicles derived from ER [20] DMV derived from Golgi and ER [20]

Enveloped Yes [20] Yes [20] No [20]

Host shut-off of RNA

translation

No [24] Partially [23] Yes [22]

Disease characteristics
Infection outcome Acute and chronic [36] Acute [37] Primary acute (ability of virus persistence)

[15,38]

Basic reproductive

number (R0)

1–3 (strain dependent) [39] 5 [40] 2.5 to 5.5 (range for different enteroviruses

[41,42])

Incubation period 2 weeks to 6 months [36] 4 to 10 days [37] 5 days [38]

Exponential growth

rate

Measured in human blood: 2.2 per

day (doubling time 7.6 hours) [43]

Primary infection measured in human blood: 4.0 per

day (doubling time 4.2 hours) [approximated from

[44]]

Measured in mouse blood: 4.5 per day

(doubling time 3.7 hours) [approximated

from [38]]

Measured in chimpanzees:

1st phase:

1.4 per day (doubling time 12 hours)

[45]

2nd phase:

0.1 per day (doubling time 7.5 days)

[45]

Secondary infection measured in human blood:

4.6 per day (doubling time 3.6 hours) [approximated

from [44]]

Measured in mouse heart:

14.5 per day (doubling time 1.1 hours)

[approximated from [38]]

Time to reach peak Measured in human blood:

21 days [43]

Measured in human blood:

7 days [44]

Measured in mouse blood and heart:

3 days [38]

Peak viral load Measured in human and chimpanzee

blood:

106 to 107 RNA per mL [43,45,46]

Measured in human blood:

109 to 1010 RNA per mL [44]

In mouse blood:

106 RNA per mL [38]

Measured in human liver:

108 RNA per g [43]

In mouse heart:

1011 to 1012 RNA per g [38]

RNA clearance Individuals with spontaneous

clearance:

4.3 per day (RNA half-life 4 hours)

[approximated from [47]]

Primary infection measured in human blood:

2.8 per day (RNA half-life 6 hours)

[approximated from [44]]

Measured in mouse blood:

0.7 per day (RNA half-life 24 hours)

[approximated from [38]]

Otherwise:

persistent RNA [47]

Secondary infection measured in human blood:

4.0 per day (RNA half-life 4.2 hours) [approximated

from [44]]

Measured in mouse heart:

1st phase:

1.2 per day (RNA half-life 13.4 hours)

[approximated from [38]]

2nd phase:

0.05 per day (RNA half-life 14 days)

[approximated from [38]]

Infection duration Months to Years [36] 2 to 3 weeks [44] 2 weeks [48]

https://doi.org/10.1371/journal.pcbi.1010423.t001
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hepatitis C, with 400,000 related deaths annually [10]. Notably, hepatitis C can be cured in

more than 95% of cases with direct-acting antivirals that inhibit viral replication [10].

The re-emerging dengue virus (DENV) is a Flavivirus and belongs, similarly to HCV, to the

family Flaviviridae. Annually, DENV infects 390 million people worldwide, with around 96

million becoming symptomatic. Unlike HCV, DENV is vector-borne and is spread mainly by

the mosquitoes of the Aedes species. Infection with DENV causes flu-like illness, occasionally

with severe complications primarily associated with heterotypic secondary infections (e.g.,

hemorrhagic fever and shock syndrome) [11]. The clinical manifestation of a DENV infection

is closely related to infections with the mosquito-borne chikungunya and Zika virus, leading

to frequent misdiagnosis [12].

Coxsackieviruses are members of the genus Enterovirus of the family Picornaviridae. This

genus includes important human pathogens such as poliovirus, enterovirus-A71 (EV-A71),

EV-D68, coxsackievirus, and rhinovirus. Enteroviruses cause 10 to 15 million infections every

year and therefore belong to the most prevalent pathogens [13]. Enteroviruses cause various

diseases, including hand-foot-and-mouth disease, encephalitis, meningitis, and paralysis [14].

Coxsackie B viruses are also known to infect cardiac tissue, leading to viral myocarditis, which

can develop into congestive heart failure [15]. In this study, we focus on coxsackievirus B3

(CVB3).

Despite their broad range of clinical manifestations, transmission routes, and tropism

(Table 1), plus-strand RNA viruses share remarkable similarities in their replication strategy. By

definition, the genome of plus-strand RNA viruses has the polarity of cellular mRNAs. Therefore,

after delivery into cells, the genome is translated, giving rise to a polyprotein that must subse-

quently be cleaved into viral proteins. These proteins induce host cell membrane rearrangements

forming replication organelles (ROs). Either within those ROs or on its outer membrane facing

the cytosol, viral RNAs are amplified by the viral replicase complex comprising, amongst others,

the RNA-dependent RNA polymerase (RdRp). These ROs are thought to hide viral RNAs from

the host immune response, thus protecting them from degradation. In addition, the membranous

compartment allows the coordinated coupling of the different steps of the viral replication cycle,

i.e., RNA translation, RNA replication, and virion assembly [16–19].

However, there are striking differences in the viral life cycles of the three studied viruses.

For example, the morphology of the ROs in which the replication takes place differs consider-

ably. While HCV forms double-membrane vesicles (DMV), DENV induces invaginations of

host cellular membranes [20]. CVB3 infection first results in single-membrane tubular struc-

tures that subsequently transform into DMVs and multilamellar vesicles [21]. Additionally,

HCV and DENV, as representatives of Flaviviridae, remodel membranes of the rough endo-

plasmic reticulum (rER), however, the Picornaviridae CVB3 uses the ER and Golgi apparatus

for its RO formation [20]. Another interesting feature of CVB3 is its ability to trigger a so-

called host translational shut-off, leading to increased viral over host RNA translation [22].

Repressed host RNA translation has also been reported for DENV [23]. However, a host shut-

off has not been reported for HCV, which instead shows a parallel translation of viral and host

cell RNAs, consistent with the predominantly chronic infection caused by this virus [24].

To identify an efficient, broadly active treatment strategy against viral infectious diseases, a

comprehensive knowledge of viruses, as well as their exploitive interaction with the host, is of

major importance. Mathematical modeling has proven to be a powerful tool to study viral

pathogenesis, transmission, and disease progression and has increased our knowledge about

therapeutic intervention and vaccination as well as the involvement of the immune system for

viruses such as the human immunodeficiency virus (HIV), HCV, influenza A virus, DENV,

Zika virus, and SARS-CoV-2 [25–31]. One of the major strengths of mathematical models is

their ability to describe and analyze viral replication in a quantitative, dynamic (time-resolved)
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framework and to characterize the influence individual parameters have on the ensuing

dynamics. These models thus permit much more profound insights into viral replication and

antiviral strategies than static, often more qualitative snapshots of host-pathogen interactions.

In the current study, we reproduced the dynamics of the initial post-infection phase of the

life cycle of three representative plus-strand RNA viruses, namely HCV, DENV, and CVB3,

with one common mathematical model. Using the model, we identified pan-viral similarities

and virus-specific differences in the life cycle of plus-strand RNA viruses that are represented

by a unique set of model parameters. The inter-viral differences among the plus-strand RNA

viruses under investigation have been further analyzed to study how these differences might be

related to clinical disease manifestation, particularly with regard to chronic versus acute infec-

tions. Our model suggests that the number of ribosomes available for viral RNA translation

may be crucial for either acute or chronic infection outcomes. Furthermore, we studied broad-

spectrum antiviral treatment options and found that inhibiting viral proteases involved in

polyprotein cleavage and RNA synthesis are promising drug targets.

Methods

Kinetic experiments and infectivity titers

HCV infections. 2x105 Lunet-CD81high [49] cells per 6-well were seeded in 2 mL 16 hours

prior to infection. To ensure simultaneous infection of all cells, cells were kept at 4˚C for 30

min before medium aspiration and inoculation with pre-cooled PEG-precipitated HCVcc (Jc1)

[50] at an MOI of 1 at 4˚C for one hour (1 mL per 6-well). The inoculum was removed and

cells were covered with 1 ml per well pre-warmed (37˚C) medium and incubated for one hour

at 37˚C. Medium was aspirated and cells were treated with an acid wash protocol to remove

extracellular vesicles and unbound virus particles: cells were washed with an acidic solution

(0.14 M NaCl, 50 mM Glycine/HCl, pH 3.0, 670 μL per 6-well) for three minutes at 37˚C

before neutralization with neutralization buffer (0.14 M NaCl, 0.5 M HEPES, pH 7.5, 320 μL

per 6-well) and one wash with pre-warmed medium. After that, fresh medium was added.

After indicated time-points, total cellular RNA was extracted by phenol-chloroform extraction.

Infected cells were washed prior to lysis according to the acid wash protocol described above.

After three washing steps with cold 1x PBS, cells were lysed in GITC buffer (700 μL per 6 well)

and RNA was extracted as described [51]. A strand-specific RT-qPCR protocol was used to

quantify numbers of (+)- and (-)-strand RNA per cell [52]. TCID50 of supernatants was mea-

sured and calculated as described previously [50] and converted to PFU/mL.

CVB3 infections. CVB3 wild-type (wt) and CVB3-Rluc, which carries Renilla luciferase
upstream of the P1 region, were generated as described previously [53]. Subconfluent mono-

layers of HuH7 cells, provided by Prof. R. Bartenschlager, were infected with CVB3 wt or

CVB3-Rluc at an MOI of 1 for 45 minutes. After removal of the viral inoculum, cells were

washed once with PBS and fresh medium (DMEM supplemented with 10% FBS and penicillin

and streptomycin) was added. Every hour up to 9 hours post-infection, cells were collected

and subjected to various assays. Each assay was performed on three biological replicates. Cells

were either frozen together with the medium, after which progeny virus titers were determined

by endpoint titration by the method of Reed and Muench and converted to PFU/mL. Another

set of cells were lysed in buffer to determine the luciferase activity as a measure of viral protein

translation as described previously [53]. Lastly, cells frozen after aspiration of the medium

were used for total RNA isolation and quantification of the amount of viral RNA copies per

cell with quantitative PCR as described previously [54].

DENV infections. DENV kinetic measurements of intracellular plus-strand RNA and

luciferase activity, as well as extracellular infectious virus titers, have been taken from [55]
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(raw data provided by the authors). In brief, 2x105 Huh7 cells were infected with DENV

reporter virus expressing Renilla luciferase [56] at an MOI of 10. RNA extraction, qRT-PCR,

and Renilla luciferase activity were analyzed from cell lysates. RNA was normalized to the 2 h

value. Infectivity titers (TCID50/mL) were measured from viral supernatant by limited dilu-

tion assays and converted to PFU/mL; supernatants were subsequently supplemented [55].

Plus-strand RNA virus replication model

We developed a mechanistic model using ordinary differential equations (ODEs) and mass

action kinetics to analyze pan-viral similarities and virus-specific differences within the plus-

strand RNA virus life cycle. Our published models on two plus-strand RNA viruses, HCV and

DENV, served as a basis for the pan-viral plus-strand RNA virus replication model [19,55,57].

However, in our previous published models, we studied host dependency factors responsible

for cell line permissiveness and restriction factors such as the innate immune response. There-

fore, those models were modified to reflect merely the plus-strand RNA life cycle from virus

entry to release of all viruses considered here.

The resulting model of plus-strand RNA virus replication is composed of four main pro-

cesses: Entry of plus-strand RNA virus via receptor-mediated endocytosis and release of the

viral genome (Fig 1 steps① and②), its subsequent translation into viral proteins (Fig 1 steps

③ to⑤), viral RNA replication within the replication organelle (Fig 1 steps⑥ to⑨), and fur-

ther replication (Fig 1 step⑩) or RNA export out of the replication organelle (Fig 1 step⑪)

or virus packaging and release from the cell with subsequent reinfection of the same cell or

infection of naïve cells (Fig 1 steps⑫ and⑬).

The virus infection process (Eqs 1 and 2), i.e., receptor-mediated virus entry, fusion, and

release of the viral genome into the cytoplasm, as well as reinfection of the same cell or further

infection of naïve cells (Eq 14) are represented by extracellular virus V, virus within endosomes

VE, and newly produced virus released from infected cells VR and are given by the equations

dV
dt
¼ � kieV þ kreVR � m

i
VV ð1Þ

and

dVE

dt
¼ kieV � kif VE � mVEVE: ð2Þ

Extracellular virus V enters a single cell via receptor-mediated endocytosis with rate con-

stant kie or degrades with constant rate miV . Note that virus-specific parameters are marked with

superscripted i with i2{HCV, DENV, CVB3}. The virus within endosomes VE either degrades

with rate constant μVE or undergoes conformational changes of its nucleocapsid resulting in

the release of the viral genome RP with rate constant kif . Note that extracellular virus is also

replenished by the release of virus from the cell at rate kre.
Viral RNA translation and replication (Eqs 3 to 13) are modeled based on our published

HCV and DENV models [19,55]. In brief, our model describes the translation-associated pro-

cesses in the cytoplasm (Eqs 3 to 8) starting with free viral RNA RP in the cytoplasm, an inter-

mediate translation initiation complex TC, as well as the translated polyprotein PP which is

cleaved into structural and non-structural viral proteins, PS and PN, respectively. Note that a

firefly luciferase gene has been integrated into the viral genomes. The luciferase activity L was

measured from cell lysates as a marker for translation activity (see Methods) reflecting protein

concentration and has been introduced into the model. Translation and polyprotein process-

ing are modeled with the following ODEs, where Riboitot and RCMAX are the total number of
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ribosomes and maximal number of replicase complexes in a cell (see below for details), respec-

tively:

dRP

dt
¼ kif VE � k1RP Riboitot � TC

� �
þ ki

2
TCþ kiPoutR

RO
P � m

i
RPRP; ð3Þ

dTC
dt
¼ k1RP Riboitot � TC

� �
� ki

2
TC � kiPin 1 �

RC
RCMAX

� �

PNTC � m
i
TCTC; ð4Þ

dPP

dt
¼ ki

2
TC � kcPP; ð5Þ

Fig 1. Schematic illustration of the plus-strand RNA life cycle.① Virus (V) enters the cell via receptor-mediated endocytosis (ke).② The viral genome (RP)

is released (kf). Virus within the endosome (VE) degrades with rate constant μVE.③ Ribosomes (Ribo) bind at the viral genome and form (k1) a translation

initiation complex (TC) that degrades with rate constant μTC.④ The viral genome (RP) is translated (k2) into a polyprotein (PP) that⑤ is subsequently cleaved

(kc) into structural and non-structural viral proteins, PS and PN, respectively. To measure translation activity, luciferase (L) is integrated into the viral genome

and produced with RNA translation. Viral proteins degrade with rate constant μP; luciferase degrades with rate constant μL.⑥Non-structural proteins and

freshly translated viral RNA form (kPin) replicase complexes (RC) that are associated with replication organelles (ROs) and⑦ serve as a template for the minus-

strand synthesis (k4m) leading to double-stranded RNA (RDS).⑧ Viral non-structural proteins, such as the RdRp, within the replication organelle (PRO
N ) bind to

double-stranded RNA, forming (k5) a minus-strand replication intermediate complex (RIDS) that⑨ initiates the plus-strand RNA synthesis (k4p) giving rise to

multiple copies of viral plus-strand RNA (RRO
P ). All species within the replication organelle degrade with the same rate constant μRO.⑩ The viral genome can

remain within the replication organelle, where it undergoes multiple rounds of genome replication (k3),⑪ it can be exported (kPout) out of the replication

organelle into the cytoplasm starting with the translation cycle again, or⑫ the plus-strand RNA genome (RRO
P ) is packaged together with structural proteins

(PS) into virions (VR) that are released from the cell (kp) and⑬may re-infect the same cell or infect naïve cells (kre). Extracellular infectious viral species (V and

VR) degrade with rate constant μV.

https://doi.org/10.1371/journal.pcbi.1010423.g001
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dL
dt
¼ ki

2
TC � mLL; ð6Þ

dPS

dt
¼ kcPP � m

i
PPs � Ni

PS
vp; ð7Þ

dPN

dt
¼ kcPP � kiPin 1 �

RC
RCMAX

� �

PNTC � m
i
PPN : ð8Þ

With rate constant k1, free host ribosomes form a translation complex TC with the viral

plus-strand RNA genome RP. The total number of ribosomes (Riboitot) available for viral RNA

translation was assumed constant, and Ribo ¼ Riboitot � TC gives the number of free ribo-

somes. Note that Riboitot is only a fraction of the total cellular ribosome number. Translation of

the viral plus-strand RNA genome generates the viral polyprotein PP and luciferase L with rate

constant ki
2
. The viral polyprotein PP is subsequently cleaved with rate constant kc into struc-

tural and non-structural viral proteins, PS and PN, respectively. The translation complex TC
decays with rate constant miTC, while luciferase and viral proteins degrade with rate constants

μL and miP, respectively. Note that for simplicity, we assume structural and non-structural pro-

teins degrade with the same rate constant, which has been summarized as one virus-specific

viral protein degradation rate miP.

The subsequent processes of viral RNA synthesis in the replication organelle (RO) are mod-

eled by Eqs 9 to 13, representing the replicase complex RC, double-stranded RNA RDS, a dou-

ble-stranded RNA intermediate complex RIDS, newly synthesized viral plus-strand RNA in the

RO RRO
P , and non-structural proteins within the RO PRO

N , as follows:

dRC
dt
¼ kiPinð1 �

RC
RCMAX

ÞPNTC � ki
4mRC þ k3R

RO
P PRO

N � mRORC; ð9Þ

dRDS

dt
¼ ki

4mRC � k5RDSP
RO
N þ ki

4pRIDS � mRORDS; ð10Þ

dRIDS

dt
¼ k5RDSP

RO
N � ki

4pRIDS � mRORIDS; ð11Þ

dPRO
N

dt
¼ ki

4mRC � k3R
RO
P PRO

N � k5RDSP
RO
N þ ki

4pRIDS � mROP
RO
N ; ð12Þ

dRRO
P

dt
¼ ki

4pRIDS � k3R
RO
P PRO

N � kiPoutR
RO
P � vp � mROR

RO
P : ð13Þ

Viral non-structural proteins recruit the viral RNA after translation to the replicase com-

plex [58]. Hence, for viral RNA synthesis, we require translated viral RNA, i.e., the translation

complex TC instead of free cytosolic viral RNA RP, to interact with the non-structural proteins.

Thus, the translation complex TC and a subset of non-structural proteins PN are imported into

the RO, leading to the formation of a replicase complex RC with rate constant kiPin. Following

successful replicase complex formation, ribosomes dissociate from the complex as is accounted

for in Eq (4). We furthermore assume that there is a limitation in the number of replicase

PLOS COMPUTATIONAL BIOLOGY Modeling plus-strand RNA virus replication

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010423 April 4, 2023 8 / 38

https://doi.org/10.1371/journal.pcbi.1010423


complexes formed within a cell. To do so, we extend kiPin by 1 � RC
RCMAX

� �
with the carrying

capacity for replicase complexes RCMAX [57,59].

Within the RO, minus-strand RNA synthesis occurs from the replicase complex with rate

constant ki
4m, leading to the formation of double-stranded RNA RDS, which along with the

non-structural proteins, are released from the RC, PRO
N . Subsequently, the double-stranded

RNA binds again to PRO
N with rate constant k5 to form a double-stranded intermediate replicase

complex RIDS, initiating plus-strand RNA synthesis with rate constant ki
4p. For simplicity, we

assume that minus and plus-strand RNA synthesis occur with the same rate constant

ki
4m ¼ ki

4p. The newly synthesized plus-strand RNA genomes RRO
P either remain within the RO

to make additional replicase complexes with rate constant k3, are exported out of the RO into

the cytoplasm for further RNA translation with export rate kiPout, or are packaged together with

structural proteins into virions VR and are subsequently released from the cell. Assembly and

release of virus particles is represented by a Michaelis-Menten type function vp described

below (Eq 15, compare [55,60]). The RNA and protein species within the RO (RC, RDS, RIDS,
RRO
P ; P

RO
N ) are assumed to degrade with the same decay rate μRO and represent the decay of the

entire replication organelle.

The released virus VR may re-infect the same cell or infect new cells with rate constant kre,
or degrade with rate constant miV , resulting in the equation

dVR

dt
¼ vp � kreVR � m

i
VVR: ð14Þ

Assembly of newly synthesized viral plus-strand RNA genome RRO
P and viral structural pro-

teins PS into viral particles and their subsequent release from the host cell are described using a

Michaelis-Menten type function, with rate

vp ¼ kpR
RO
P

PS

Ki
DNi

PS
þ PS

; ð15Þ

where kp is the virion assembly and release rate, and kpRRO
P is the maximum release rate limited

by viral resources. Let Ni
PS

be the number of structural proteins in a virus of type i, then to pro-

duce virus at rate vp will require a large number of proteins Ki
DN

i
PS

, where Ki
D is a scaling con-

stant and Ki
DN

i
PS

is the number that corresponds to the half-maximal release rate [see

[55,60,61] for more details].

Pan-viral and virus-specific model parameters

To complete the plus-strand RNA virus model, we need to specify model parameters. To pre-

vent overfitting and parameter uncertainty, we fixed many parameter values to either experi-

mentally determined values or values estimated in other modeling studies. In some cases, we

could calculate velocities directly, such as for viral RNA translation and synthesis, which could

thus be fixed as described in S1 Text. An overview of all parameter values is given in Table 2.

Parameter estimation, model selection, and model analysis

Our model has 61 parameters; 30 of them were fixed, while 31 were estimated by fitting the

model to the experimental data. As the fixed parameter values were experimentally measured,

calculated, or taken from literature, we had information about which were virus-specific (S1

Text and Table 2). To determine which of the remaining model parameters are conserved

across the different viruses considered (pan-viral) and which parameters are virus-specific, we
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performed several rounds of model evaluation using the Akaike information criterion (AIC)

and model identifiability analysis (profile likelihood estimation). See S2 Text for a description

of the model selection process.

We simultaneously fit the plus-strand RNA virus replication model to the virus-specific

data sets for HCV, DENV, and CVB3. To fit the mathematical model to the experimental data,

we calculated the total plus-strand RNA Rtot
P ¼ ðVE þ RP þ TCþ RC þ RDS þ RIDS þ RRO

P Þ,

total minus-strand RNA Rtot
M ¼ ðRDS þ RIDSÞ, luciferase L, and total infectious virus Vtot = (V

+VR). Note that our model accounts for infectious virus since infectious titers were measured

for all three viruses. Further note that for the infectious virus measurements for HCV, Vtot =

VR, since measuring infectious virus started 20 h pi. We introduced three scale factors fL, fRM ,

and fRP to re-scale experimental measurements acquired in relative measurements (plus-strand

Table 2. Parameter values and 95% confidence intervals in (). Note that parameter values marked with * were fixed due to previous assumptions and calculations. Fur-

thermore, confidence intervals marked with + hit the set estimation boundary; ± calculated from the data; # experimentally measured for Zika virus; ǂ experimentally mea-

sured for poliovirus.

Parameter Description HCV DENV CVB3 Unit

kie Virus entry rate 10 (1.9, 10+) 0.31 (0.28, 0.34) 1.3 (0.9, 1.7) 1/h

kif RNA release rate 10 (1.7, 10+) 0.008 (0.006,

0.01)

0.016 (0.006,

0.04)

1/h

k1 Formation rate of the translation complex 1000 (840, 1000+) mL/molecule /h

ki2 Virus RNA translation rate 180 [65] 100 [55] 300 ǂ [66] 1/h

kc Polyprotein cleavage rate 2.24 (1.18, 7.4) 1/h

k3 Formation of additional replicase complexes within the replication

organelle

42 (5.5, 525) mL/molecule /h

ki4m ¼ ki
4p

Minus- and plus-strand RNA synthesis rate 1.1 [65] 1.0 [55] 50 ǂ [66] 1/h

kiPin Formation rate of the replicase complex 4.4 (2.4, 7.5) 0.45 (0.29, 0.74) 1.4 (0.52, 4.09) mL/molecule /h

k5 Formation rate of the replication intermediate complex 6018 (1549, 68401) mL/molecule /h

kiPout Export rate of viral RNA out of the replication organelle 33 (0.8, 1477) 53 (16, 432) 0.23 (0.16, 0.43) 1/h

kp Assembly and release rate 158 (47, 1000+) mL/molecule /h

kre Reinfection rate 0.01 (0.01+, 0.038) 1/h

μi
RP Degradation rate of cytosolic viral RNA 0.26 [65] 0.23 [67] 0.15 ǂ [68] 1/h

μi
TC Degradation rate of the translation complex 0.13 * 0.115 * 0.075 * 1/h

μRO Degradation rate of viral RNA and protein within the replication organelle 0.0842 [19] 1/h

μi
P Degradation rate of viral protein 0.08 [19] 0.46 [67] 0.43 [69] 1/h

μL Degradation rate of luciferase 0.35 [19] 1/h

μi
V Degradation rate of extracellular infectious virus 0.1 [57] 0.13 [70] 0.08 [71,72] 1/h

μVE Degradation rate of intracellular virus within the endosome 0.23 # [73] 1/h

Vi
0 Initial virus concentration 0.2 (0.16, 0.25) 1 (0.8, 1.3) 1 (0.4, 2.2) molecules/mL

Riboi
tot Total ribosome concentration 0.005 (0.004,

0.007)

0.48 (0.41, 0.55) 6.7 (5.0, 9.1) molecules

RCMAX Maximum number of replicase complexes 0.46 (0.34, 0.64) molecules/mL

Ki
D Scaling constant for virus 0.04 ± 1.8 ± 40 ± virions

Ni
PS

Number of structural proteins needed to produce 1 virion 180 [65,74] 180 [55,74] 60 [15] molecules/

virion

f iRP
Scale factor for plus-strand RNA 394 (274, 524) 0.76 (0.58, 1.0) 550 (245,1366)

f iRM
Scale factor for minus-strand RNA 1377 (945, 1872) - -

f iL Scale factor for luciferase - 0.41 (0.33, 0.5) 0.08 (0.06, 0.1)

https://doi.org/10.1371/journal.pcbi.1010423.t002
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RNA for DENV), molecules per cell (plus- and minus-strand RNA measurements for HCV

and plus-strand RNA for CVB3), and relative light unit (luciferase for DENV and CVB3).

We implemented the model in MATLAB (The MathWorks) 2016 using the Data2Dy-

namics toolbox [62]. We assessed model identifiability using the profile likelihood estimation

method implemented in Data2Dynamics [62,63]. In Data2Dynamics, a parameter is identifi-

able if its 95% confidence interval is finite [62,63]. Note that an estimated model parameter

may hit a predefined upper or lower parameter boundary which hampers the calculation of

the 95% confidence interval. In such cases, a one-sided 95% confidence interval has been cal-

culated starting from the estimated model parameter and thus with its upper or lower bound-

ary marked with + in Table 2. Details about the model fitting and model selection process are

in S2 Text.

We performed a global sensitivity analysis in MATLAB using the extended Fourier

Amplitude Sensitivity Test (eFAST) [64]. We calculated sensitivities with regard to the total

plus-strand RNA (Rtot
P ) concentrations throughout the course of infection. We studied

hypothetical drug interventions by including the effects of direct-acting antivirals (DAA)

into the model. For this purpose, we simulated putative drugs targeting (1) viral entry and

internalization ke, (2) release of the viral RNA genome kf, (3) formation of the translation

initiation complex k1, (4) viral RNA translation k2, (5) polyprotein cleavage kc, (6) replicase

complex formation kPin, (7) minus- and plus-RNA synthesis k4m and k4p, as well as (8) virus

particle production and release (vp). To introduce drug effects into the model, we assumed a

drug efficacy parameter 0�ε�1, and multiplied the parameters above by (1−ε) to simulate

drug treatment. Similar to our previously published DENV model, we calculated the average

virus particle concentration released from the cell upon drug administration (ε 6¼ 0) until 5

days post-drug administration, i.e., a drug treatment observation window of 120 h. The

average virus particle concentration with treatment (ε 6¼ 0) has been normalized to the aver-

age virus concentration without drug treatment (ε = 0). Note that we studied two different

time points of drug administration: at the very beginning of the infection, 0 h pi, and when

the system is in steady state, 100 h pi.

Results

As shown on the left in Fig 2, the model replicates the experimental data for all three viruses.

Virus-specific characteristics are revealed by comparing the dynamics of the three viruses and

their plus-strand RNA genomes. CVB3 is a fast-replicating virus with a life cycle duration of

about 8 hours (depending on the cell type), after which the infected cells begin to die. Similarly,

DENV is cytopathic but seems to be slower replicating and thus has a longer life cycle than

CVB3, with DENV starting to produce virus about 16 h pi [56]. In contrast, HCV is non-cyto-

pathic with a consequently longer life cycle. In our experimental measurements, the CVB3

viral load peaked at the end of its life cycle with 193 PFU/mL/cell. The HCV viral load peaked

at 0.06 PFU/mL/cell around 44 h pi, while the DENV viral load reached its maximum with

approximately 8 PFU/mL/cell around 10 hours earlier at 30 to 34 h pi (Fig 2A, 2B, and 2C).

We calculated the corresponding average virus concentration per measurement time point for

HCV, DENV, and CVB3 per cell as 0.04 PFU/mL/cell, 1.8 PFU/mL/cell, and 40 PFU/mL/cell,

respectively. Thus, the average infectious HCV viral load was only 4% of the average DENV

viral load and only 0.3% of the average CVB3 viral load. Similarly, CVB3 reached a peak of

almost 500,000 plus-strand RNA copies per cell at 8 h pi, while HCV produced only 10,000

copies per cell at 70 h pi, i.e., 98% less than CVB3. Note that both, CVB3 infectious virus and

plus-strand RNA, increased several 1000-fold in time.
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Fig 2. Best fit of the model to the data with standard deviation (left panel) and model prediction of plus-strand RNA allocation between the cytoplasm and

replication organelle (RO) (right panel). For parameter values, see Table 2. [LEFT: green: (+)RNA = Rtot
P ¼ ðVE þ RP þ TCþ RCþ RDS þ RIDS þ RRO

P Þ, red: (-)

RNA = Rtot
M ¼ ðRDS þ RIDSÞ, blue: A) Virus = Vtot = VR, B) and C) Virus = Vtot = (V+VR), yellow: Luc = L; RIGHT: yellow: RNA in cytoplasm = ðRP þ TCÞ=Rtot

P ,

purple: RNA within replication organelle (RO) = RCþ RDS þ RIDS þ RRO
P Þ=R

tot
P ; Infectious virus was measured in PFU/mL, (+) and (-)RNA were measured in

molecules/mL or relative RNA concentration, luciferase was measured in relative light unit (RLU)].

https://doi.org/10.1371/journal.pcbi.1010423.g002
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Model selection and uncertainty

The intracellular model structure has been taken from our previously published HCV model

[19], upon which we built with our recently published DENV model [55]. However, a striking

difference from our previous HCV and DENV models is the absence of host factors involved

in replicase complex formation and virus assembly and release. We have previously shown

that host factors are recruited by the virus and seem beneficial for host cell permissiveness and

virus replication efficiency [19,55]. Instead, here we describe intra-viral replication differences

with virus-specific parameter sets based on model evaluation by AIC and profile likelihood

estimation (see Methods, S1 and S2 Texts).

Considering the maximal number of replicase complexes (RCMAX) improved the basic

model AIC from 3025 to 1982 and thus served as a starting point for the virus-specific model

selection process (see S2 Text). After several rounds of model selection by comparing AICs

and taking model identifiability into account, we added five virus-specific processes into our

basic model (from a total of 13 considered processes): (1) the total number of ribosomes

Riboitot available for viral RNA translation, (2) virus entry kie, (3) viral genome release kif , (4) for-

mation of the replicase complex kiPin, and (5) export of viral RNA from the RO into the cyto-

plasm kiPout. Note that based on literature data and previous assumptions, we fixed some virus-

specific and pan-viral processes and degradation rates (see S1 Text and Table 2). The best-fit

model showed high similarity to the virus-specific experimental measurements and a high

degree of model identifiability (see Fig 2 for best fit, Fig 3 for the parameter profiles based on

the profile likelihood estimation, and Table 2 for parameter values with 95% confidence

intervals).

RNA allocation

As predicted by our model, the allocation of plus-strand RNA in the cytoplasm and within the

RO shows interesting virus-specific differences (Fig 2 right panel). Compared to the total

amount of viral RNA, HCV has most of the RNA allocated to the cytoplasm and is thus avail-

able for viral RNA translation at any given time. In DENV, our model predicted that the allo-

cation strategy changes throughout the viral life cycle, with most plus-strand RNA within the

RO initially. At around 25 h pi, viral RNAs are equally distributed between the two compart-

ments, while at the end of the DENV life cycle, the majority of viral RNA is in the cytoplasm.

Interestingly, in steady state, the predicted allocation of both HCV and DENV is the same,

with 25% of RNA allocated to the RO and 75% to the cytoplasm. In contrast, the predicted

viral RNA allocation is the opposite for CVB3. CVB3 has the majority of RNA available within

the RO, contributing to the 2- to 3-log higher viral load.

Virus-specificity

For a successful virus infection, the first hurdles to overcome are virus entry and the release of

the viral genome into the cytoplasm. The rate constants for virus entry kie and vRNA release kif
had the highest estimated values for HCV. However, both values were practically non-identifi-

able, suggesting a limitation in the amount of data. Hence, we could only estimate the lower

boundary of the 95% confidence intervals, which suggests kHCVe � 1:9 h� 1 and kHCVf � 1:7 h� 1.

CVB3 seems slightly better adapted to the cell line with a 4-times higher entry rate and 2-times

higher vRNA release rates than DENV. According to our model selection process, the degrada-

tion rate of the internalized virus within endosomes μVE was pan-viral, suggesting neither an

advantage nor disadvantage for the studied viruses.
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Fig 3. Uncertainty analysis of the best-fit model. For parameter values and 95% confidence intervals, see Table 2. The best fit is shown in Fig 2.

https://doi.org/10.1371/journal.pcbi.1010423.g003
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The following processes in the viral life cycle are vRNA translation and polyprotein process-

ing with parameters k1 for the formation of the translation initiation complex, ki
2

vRNA trans-

lation, and kc polyprotein cleavage. Models including virus-specific k1 or kc either did not

improve the quality of the model fit (no AIC improvement) or were non-identifiable when

tested as virus-specific and thus have been selected as pan-viral (see S2 Text). However, the

viral RNA translation rate ki
2

was calculated based on genome size and ribosome density and

set as virus-specific (see S1 Text). In the vRNA translation and polyprotein processing step,

our model selected the total number of ribosomes Riboitot as the only virus-specific parameter.

Since the ribosome number has been selected in the first round of model selection (see S2

Text), it emphasizes the importance of this host factor, with CVB3 showing the highest esti-

mated ribosome number available for RNA translation. In contrast, HCV and DENV use only

0.07% and 7% of the ribosomes CVB3 uses, respectively. Interestingly, increasing the number

of ribosomes in the HCV life cycle to those of CVB3 (from RiboHCVtot ¼ 0:005 to RiboHCVtot ¼ 6:7

molecules per mL) increases the infectious virus load by three orders of magnitude (Fig 4A).

In the same way, decreasing the number of ribosomes in the CVB3 life cycle to those of HCV

(from RiboCVB3
tot ¼ 6:7 to RiboCVB3

tot ¼ 0:005 molecules per mL) decreases the CVB3 virus load

by three orders of magnitude (Fig 4B). In contrast, when increasing the viral RNA synthesis

rates of HCV to those of CVB3 (from kHCV
4m ¼ kHCV

4p ¼ 1:1 to kHCV
4m ¼ kHCV

4p ¼ 50 h� 1), the viral

load did not increase. However, decreasing the viral RNA synthesis rates of CVB3 to those of

HCV (from kCVB3
4m ¼ kCVB3

4p ¼ 50 to kCVB3
4m ¼ kCVB3

4p ¼ 1:1 h� 1) decreased the viral load by one

order of magnitude. This suggests an important role of ribosomes as key players in the produc-

tion of structural and non-structural proteins necessary for efficient vRNA replication and

virus production.

The subsequent processes of the vRNA replication depend on successful viral protein pro-

duction. Viral non-structural proteins are crucial for forming the replicase complex and its

formation rate kiPin, which has been selected as virus-specific. Here, HCV seems to be more effi-

cient and better adapted to the Huh7 cell line, showing a 10- and 4-times faster formation rate

compared to DENV and CVB3, respectively. Furthermore, our estimated replicase complex

formation rates suggest that the formation of double-membrane vesicles may be more efficient

(HCV and CVB3) compared to the formation of invaginations (DENV). However, the maxi-

mum number of replicase complexes RCMAX and the degradation of species within the RO

(μRO) were not selected as virus-specific, especially since the viral RNA synthesis rates were ini-

tially set as virus-specific (Table 2). Interestingly, even though being a pan-viral model parame-

ter, not all viruses reached the maximal number of replicase complexes RCMAX (the carrying

capacity). The dynamics of replicase complexes show a clear separation between DENV and

CVB3 versus HCV (Fig 5A and 5B). CVB3 reached the estimated carrying capacity of around

5 h pi, while DENV reached 98% of the possible carrying capacity of around 25 h pi. Strikingly,

the replicase complex formation for HCV reached its maximum at a 74% lower level of the

pan viral carrying capacity, even though our model estimated the fastest RC formation rate for

HCV.

The export of viral RNA from the RO to the site of RNA translation kiPout has also been

selected as virus-specific, where HCV and DENV seem more efficient than CVB3, which

showed an almost 190 times slower trafficking process.

Following the production of viral proteins and RNA genomes, the single components

assemble into virions and are released from the cell. Here, the virus assembly and release rate

kp and the reinfection rate kre have been selected as pan-viral. Note that the scaling constant

Ki
D and the number of structural proteins necessary per virion Ni

PS
, were calculated from the

data or taken from the literature, respectively, and thus set as virus-specific (Table 2).
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Sensitivity analysis and drug intervention

Having a detailed model of the intracellular replication of plus-strand RNA viruses, we next

addressed the question of which processes shared across all viruses showed the highest sensi-

tivity index to potential drug interventions (Fig 6). Our sensitivity analysis suggests that model

parameters associated with vRNA translation (ki
2
) and synthesis within the RO (ki

4m and ki
4p)

are highly sensitive for all viruses. Furthermore, all viruses were sensitive to the formation of

replicase complexes kiPin and its maximum number RCMAX.

Interestingly, DENV and CVB3 showed a time-dependent sensitivity pattern over the

course of infection, beginning with viral entry (kie) being sensitive, followed by the release of

the viral genome (kif ). However, both model parameters were not sensitive to HCV, possibly

due to practical non-identifiability (see above). Moreover, vRNA translation and replication

seem to start around 5 or 20 h pi in CVB3 and DENV, respectively, suggesting viral entry as a

rate-limiting process.

There are also some interesting differences between the three viruses. While the formation

of the translation initiation complex (k1) showed a higher sensitivity in HCV, vRNA transla-

tion (ki
2
) was more sensitive for CVB3 and DENV. Furthermore, for HCV, the number of ribo-

somes available for HCV RNA translation was one of the most sensitive parameters while

having negligible sensitivity for CVB3 and DENV. This may reflect the strength of the internal

ribosome entry site, IRES, (CVB3) or the 5’ UTR/Cap (for DENV), where a strong IRES may

require fewer ribosomes for robust recruitment to initiate vRNA translation. However, for

CVB3, viral RNA export kiPout is among the most sensitive processes, while being not sensitive

for HCV and DENV. Interestingly, the degradation of virus in endosomes (μVE) showed the

highest sensitivity among the degradation rates for DENV early in infection (around 10 to 25

Fig 4. Infectious virus concentration with parameter adjustments. A) HCV concentration with estimated parameters (solid), the number of ribosomes taken from

CVB3 (dashed), and the RNA synthesis rate taken from CVB3 (dotted). B) CVB3 concentration with estimated parameters (solid), the number of ribosomes taken

from HCV (dashed), and the RNA synthesis rate taken from HCV (dotted).

https://doi.org/10.1371/journal.pcbi.1010423.g004
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h pi). In contrast, the degradation of cytosolic vRNA (μRP) seems highly sensitive towards the

end of infection for both DENV and CVB3.

As a next step, we aimed to analyze if any processes can be targeted, leading to a 99% reduc-

tion in extracellular virus upon inhibition. We, therefore, studied the effects of inhibiting core

processes of the viral life cycle (Fig 7). We then simulated in silico the administration of a

hypothetical drug at two different time points using our mathematical model: at the beginning

of the infection (0 h pi) or in steady state (100 h pi). The drug administration at the beginning

of infection (0 h pi) will give insights into infection prevention. The drug administration in a

steady state (100 h pi) has the advantage of studying the system in the equilibrium of vRNA

replication/virus production and vRNA degradation/virus clearance and, thus, how to treat an

established infection. Therefore, we can ignore a potential bias of the drug effect when the

vRNA translation and replication machinery must be established or host cellular and viral

resources are exhausted, leading to inefficient viral RNA replication and, ultimately, virus pro-

duction. Even though DENV and CVB3 are viruses that cause acute infections, cleared after a

couple of weeks, studying both viruses in a steady state is important to gain insights about a

possible drug effect during maintained virus production.

Fig 5. Replicase complexes over time. Dynamics of replicase complexes for A) hepatitis C and dengue virus, B)

coxsackievirus B3. The dashed grey line represents the carrying capacity or the maximum number of formed replicase

complexes.

https://doi.org/10.1371/journal.pcbi.1010423.g005
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For all viruses and drug administration time points, we determined the critical drug effi-

cacy, ε, where the viral life cycle is successfully inhibited and the in-silico infection is cleared.

Note that we define a virus infection as cleared if the extracellular virus is reduced by more

than 99%. By testing both drug administration time points, we found that at the beginning of

infection (0 h pi), inhibiting any process led to eradicating the virus (Fig 7). Since the viral rep-

lication machinery is not established, viral entry and vRNA release may be possible drug tar-

gets. However, an almost 100% inhibition (ε~1) was necessary to block the infection process

(S1 Table). Obviously, in-silico drugs targeting virus entry and vRNA release at a time point

after an established viral infection cannot reduce the viral load. However, for both drug admin-

istration time points, targeting vRNA translation and vRNA synthesis showed the most potent

effect and, thus, are the most promising drug targets (S1 Table). Interestingly, targeting the for-

mation of the replicase complexes could not clear (or even reduce) CVB3 infection with a drug

administration given in steady state (S1 Table). Moreover, in the case of DENV, targeting

vRNA export from the RO into the cytoplasm in steady state led to a 6% increase in virus with

incomplete inhibition. Only a 100% inhibition and thus a drug efficacy of 1 could clear the

virus by 99%.

Since most DAAs are highly efficient in combination, we determined the critical drug effi-

cacy of individual drugs inhibiting either translation complex formation, vRNA translation, or

polyprotein cleavage used in combination with drugs that inhibit vRNA synthesis or formation

Fig 6. Global sensitivity profile for the model species plus-strand RNA throughout infection (CVB3 = 10 hours, HCV = DENV = 72 hours).

https://doi.org/10.1371/journal.pcbi.1010423.g006
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of the replicase complex in steady state (Figs 8, 9, S1, and S2 and S1 Table). Here, we identified

the “sweet spot” for efficient viral eradication (by more than 99%). Our model predicted that

HCV and DENV showed a comparable pattern of viral clearance to a combination of two

drugs. In contrast, for the clearance of CVB3, higher drug efficacies were necessary to clear the

infection. Inhibiting vRNA synthesis and either vRNA translation or polyprotein cleavage by

more than 90% was an efficient combination for HCV and DENV (Figs 8B, 8C, and S2A and S1

Table). However, to clear the infection in all viruses, vRNA synthesis and either translation or

polyprotein cleavage must be inhibited by more than 99% or 98%, respectively (Fig 9B and 9C).

Fig 7. Effects of drug interventions applied to two different time points: at infection beginning (left) and in steady state (right). A successful drug treatment leads

to more than 99% viral eradication (light yellow), while an ineffective drug treatment leads to 100% remaining virus (black).

https://doi.org/10.1371/journal.pcbi.1010423.g007
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Interestingly, inhibiting vRNA synthesis and translation complex formation by more than 76%

showed the overall lowest critical drug efficacy to clear the infection in HCV. Nevertheless, for

CVB3, the vRNA synthesis and translation complex inhibition need to be higher than 99.3% to

clear the infection with an almost 10 hours time-delayed viral clearance (Figs 8A and 9A and S1

Table). Overall, we found the lowest pan-viral critical drug efficacy was for the combined inhibi-

tion of vRNA synthesis and polyprotein clearance with a required 98% effectiveness for each

drug (Figs 8C and 9C and S1 Table). Note that we also tested in silico the combination therapy

of inhibiting translation complex formation, vRNA translation, and polyprotein cleavage

together with replicase complex formation. However, higher critical drug efficacy constants

were needed to clear the infection (S1 and S2 Figs and S1 Table).

Fig 8. Combined drug effect on A) vRNA synthesis and formation of translation complex (TC), B) vRNA synthesis and translation, and C) viral RNA

synthesis and polyprotein cleavage. Initiation of treatment was in steady state (100 h pi). A successful drug treatment leads to more than 99% viral eradication

(light yellow), while an ineffective drug treatment leads to 100% remaining virus (black).

https://doi.org/10.1371/journal.pcbi.1010423.g008
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Fig 9. Relative virus decay under combination therapy that clears HCV, DENV, and CVB3 infections. A combined drug effect on A) vRNA synthesis and

formation of translation complex (TC), B) vRNA synthesis and translation, and C) viral RNA synthesis and polyprotein cleavage. Initiation of treatment was in
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Discussion

Mathematical modeling of viral dynamics has a long history and has been applied to various

viral infectious diseases [25]. Population-based models considering susceptible and infected

cell populations, especially studying virus-host interactions and treatment opportunities for

HIV, HCV, and influenza, represent the most prominent mathematical models in the field

[25,75–78]. However, mathematical models considering intracellular viral replication mecha-

nisms in detail are still limited and are usually developed for one specific virus such as HCV

[19,57,59,79,80], DENV [55], CVB3 [81], HIV [82], or influenza A virus [60,61,83–88]. Fur-

thermore, those virus-specific models are usually developed to study a particular aspect of the

viral life cycle, such as cell-line-specific HCV RNA replication efficiency [19] or the life cycles

of DENV or CVB3 in the presence of the immune response [55,81]. Recently, Chhajer et al.

(2021) studied the viral life cycles of the plus-strand RNA viruses HCV, Japanese encephalitis

virus, and poliovirus with a simplified mathematical model. The authors mainly focused on

the slow and delayed kinetics of the intracellular formation of replication organelles, which

may predict infection outcomes [89].

To our best knowledge, we present here the first mathematical model that simultaneously

studies the complexity of intracellular viral replication kinetics for three different representa-

tives of plus-strand RNA viruses, namely HCV, DENV, and CVB3, measured in the same cell

line–Huh7. Hepatocyte-derived cells, such as Huh7, support the viral replication of many

viruses, such as DENV [90–92], chikungunya [93], Zika [94–96], poliovirus [97], SARS-CoV-2

[98], and other respiratory viruses [99]. The Huh7 cell line can study the viral replication with-

out perturbations of the host cellular immune response due to its defective RIG-I signaling

[100]. As we have previously shown that different cell lines lead to different replication kinetics

due to a cell-line specific gene expression [19,50,55], our aim was a standardized experimental

design, where using the same cell line for all viruses may have the advantage of a mostly shared

gene expression and, thus, host factor equality.

The basis for our present study were our previously published intracellular models for

HCV [19,57] and DENV [55], which we generalized and adapted to reflect the intracellular

replication mechanisms of plus-strand RNA viruses more broadly, as well as the underlying

experimental conditions. We compare viral replication mechanisms, pan-viral similarities and

virus-specific differences, which may help to understand acute or chronic infection outcomes

that may be an initial step toward developing broad-spectrum antiviral treatment strategies.

Our best-fitting model showed high similarity with the virus-specific data and a high degree

of parameter identifiability. However, it showed one shortcoming in capturing the dynamics

of the experimental measurements of virus in DENV: the viral peak and subsequent drop of

the extracellular DENV concentration around 32 h pi. However, our previously published

DENV model showed that the dynamics of extracellular infectious virus was dependent on

host factors that were packaged into the virions [55]. Since we did not include host factors in

the current model, except for ribosomes, we aimed to describe the average extracellular virus

dynamics for the first 25 h pi. In the final model, we estimated 31 parameters, of which 27

were identifiable. The 95% confidence intervals of four parameter values hit the upper or

lower boundary of estimation, where changing the parameter boundaries by up to 1000-fold

did not improve the model fit or improved identifiability.

steady state (100 h pi). The drug efficacy constant (εA and εB) were chosen as minimal efficacies to clear all three viruses. For comparability, virus-specific

concentrations in steady state have been normalized to their virus-specific pre-treatment steady-state concentration. A successful drug treatment leads to more

than 99% viral eradication (light yellow), while an ineffective drug treatment leads to 100% remaining virus (black).

https://doi.org/10.1371/journal.pcbi.1010423.g009
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The non-identifiable rate constant of the naïve cell infection kre may be explained by the

fact that reinfection in our culture system may not occur for each virus. However, the process

remained in the final model because of different MOI infection experiments, where a lower

MOI (MOI of 1, as in the case of CVB3 and HCV) may account for multiple rounds of infec-

tion. The formation rate of the translation initiation complex k1 seems to be a non-identifiable

process in the model structure, as it was also non-identifiable in our previous DENV model

[55]. Further, virus entry and vRNA genome release, ke and kf, were practically non-identifi-

able for HCV. An explanation for both processes being non-identifiable may be insufficient

experimental measurements for HCV to uniquely estimate both rate constants, e.g., the lack of

intracellular protein concentration measurements for HCV. However, since both parameters

were identifiable for CVB3 and DENV and both processes were selected as virus-specific, kHCVe

and kHCVf , they remained in the final model as virus-specific. For a detailed comparison of the

plus-strand RNA model with our previously published HCV and DENV models, see S3 Text.

Virus-specific differences and pan-viral similarities

Studying similarities and differences in the viral RNA translation and replication strategies of

different viruses is experimentally challenging. Our mathematical model may shed light on

this topic by studying 25 processes, from cell infection to releasing newly packaged infectious

virions. Five processes within the viral life cycle were determined to be virus-specific: (i) virus

entry, (ii) release of vRNA genome, (iii) the number of ribosomes available for vRNA transla-

tion, (iv) formation of replicase complexes, and (v) trafficking of newly produced viral

genomes from the RO into the cytoplasm.

Virus internalization and genome release. The three viruses we studied each have differ-

ent internalization processes mediated by differences in attachment/entry versus uncoating

receptors [101]. HCV replicates in vivo in hepatocytes and, consequently, showed the most

efficient internalization and genome release processes in our studied hepatocyte-derived Huh7

cells. In vitro, HCV replicates most efficiently in Huh7 cells and its closely related sub-clones,

while the infection of other cell lines has been challenging [102]. However, both DENV and

CVB3 have a broad tropism. DENV infects monocytes, macrophages, and dendritic cells,

while CVB3 infects the brain, cardiac tissue, and hepatocytes [15,35,103–105]. Thus, the faster

internalization and genome release of CVB3 compared to DENV, and thus its ability to repli-

cate very well in Huh7 cells, is not surprising due to its broader cellular tropism. Nevertheless,

DENV RNA has been isolated from various organs and tissues, including the liver (see [106]

and references within). However, whether DENV replicates in hepatocytes is under debate

[107–109].

Viral RNA translation. Among the plus-strand RNA viruses we studied, CVB3 represents

the fastest replicating virus with a life cycle of around 8 to 10 hours. Newly synthesized CVB3

RNA is detectable at two h pi in the Golgi apparatus, the site of ROs and thus vRNA synthesis.

Levels of viral RNA increase rapidly and peak four h pi [110]. One key feature of successful

CVB3 RNA replication is its ability to shut off host mRNA translation, carried out by the virus

by degrading eukaryotic initiation factor eIF4G important for the cellular cap-dependent

translation complex formation. The result is not only the rapid availability of non-structural

proteins required for replicase complex formation [111] but also a lower level of components

of the cell’s intrinsic immune response. Interestingly, we found the highest total ribosome

availability for CVB3, in agreement with its ability to shut off the translation of the host’s

mRNA while keeping vRNA translation high due to a very efficient IRES. According to our

calculated viral RNA translation rate constants, translation is 2 to 3 times faster than HCV and

DENV, respectively. It has been shown that the polysome size–the number of ribosomes
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bound to a single CVB3 RNA molecule, which translate the viral genome at the same time–is

around 30 ribosomes per polysome but changes throughout the CVB3 life cycle; 40 ribosomes

per polysome at the beginning of the CVB3 life cycle and 20 ribosomes later in infection

[66,112]. Furthermore, Boersma et al. (2020) found that CVB3 translation rates were indepen-

dent of the host translation shutdown. However, the authors speculated that a host translation

shutdown might boost the CVB3 translation at the end of its life cycle, where host cell

resources may be limited [113]. Conversely, for DENV, it has been shown that the DENV

RNA template is only sparsely loaded with ribosomes and showed a low translation efficiency

[114]. Nevertheless, Roth et al. (2017) found that the host’s mRNA translation decreases dur-

ing DENV infection, suggesting that DENV also can repress the host mRNA translation,

although not as efficiently as CVB3 [23]. A partial host cell RNA translation shut-off and, con-

sequently, a higher number of ribosomes available for DENV RNA translation is predicted by

our model, with DENV having the second-highest predicted ribosome concentration. Interest-

ingly, even though DENV can partially shut down the host’s mRNA translation, this suppres-

sion seems less efficient compared to the complete CVB3 host shut-off.

Formation of the replicase complex. Our model suggests a faster formation of double-

membrane vesicles than invaginations, i.e., HCV and CVB3 showed faster replicase complex

formation compared to DENV. Compared to DENV and CVB3, HCV showed a 10- and

4-times faster rate of replicase complex formation, respectively. A possible reason may be cell

tropism, with hepatocellular-derived Huh7 cells being the cell line of choice for studying

HCV. Interestingly, the host mRNA translation shut-off of CVB3 was not associated with a

faster supply of non-structural proteins (RdRp) and, thus, faster replicase complex formation.

However, host cell translation shut-off may be associated with higher availability and more

efficient utilization of viral resources for the formation of replicase complexes, as suggested by

our model. CVB3 reached the maximal number of replicase complexes after around 5 h pi,

while HCV used 76% less of the possible cell’s carrying capacity. However, cell tropism and,

thus, a specific set of host factors involved in the process of replication organelle and replicase

complex formation may be the crucial factors in this process, as we have shown previously for

HCV and DENV [19,55].

Viral RNA export from the RO into the cytoplasm. A striking difference between Flavi-
viridae (HCV and DENV) and Picornaviridae (CVB3) concerns the parameter values and

model sensitivity against changes of the trafficking of newly synthesized vRNA from the RO to

the site of translation. For CVB3, our model suggests intra-compartment trafficking is two

orders of magnitude slower than HCV and DENV, with a highly significant sensitivity of this

parameter against changes. A possible explanation may lie in the involvement of different

compartments or cell organelles in vRNA translation and replication. All viruses need proxim-

ity to the rough endoplasmic reticulum and its ribosomes for successful vRNA translation;

however, they use different cytoplasmic membranes and, thus, different sites for forming their

ROs and thus for vRNA synthesis. Flaviviridae remodel the rough endoplasmic reticulum,

using membrane vesicles or invagination as the site for vRNA translation and synthesis with-

out being exposed to the (possibly damaging) cytoplasmic environment. Melia et al. (2019)

found that CVB3 uses the rough endoplasmic reticulum first and the Golgi later in infection,

suggesting a high degree of flexibility and adaptation of CVB3 to its environment. To what

extent viral replication occurs on either membrane is unknown. However, other studies sug-

gest that Golgi-derived membranes are the primary origin of viral replication [110,115,116].

During CVB3 infection, the Golgi collapsed and was not detectable anymore, suggesting that

ROs were Golgi-derived [117]. Regarding efficient viral protein production for virion packag-

ing, CVB3 is not enveloped. It may only need a fraction of the structural proteins that DENV

and HCV need for assembly (see S1 Text for details), implying that CVB3 developed strategies
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to overcome longer trafficking distances. However, another explanation may be a possible reg-

ulation and competition of vRNA translation and virion packaging. Early in infection, vRNA

may be used for translation, while later in infection, vRNA may be packaged into virions and

thus not available for vRNA translation.

Hypothetical mechanisms behind acute and chronic infections

The plus-strand RNA viruses studied here share the major steps in their life cycle and replica-

tion strategy, but despite these similarities, they show very different clinical manifestations.

While HCV has a relatively mild symptomatic phase, it can establish a chronic infection with

low-level viral replication over decades that goes mostly undetected by the host’s immune

response. In contrast, DENV causes a vigorous acute self-limited infection that can become

life-threatening. Similarly, CVB3 usually causes an acute infection with flu-like symptoms but

can become chronic. The underlying mechanisms for the development of chronic infections

are unclear. Our plus-strand RNA virus replication model might help to reveal the differences

in the viral dynamics leading to different clinical manifestations.

DENV/Zika virus and CVB3 produce a higher ratio of plus- to minus-strand RNA (20:1)

compared to HCV, with a plus- to minus-strand RNA ratio of 3:1 (measured in our data) up to

10:1 (reported in the literature [113,118–124]), which may be HCV-strain or cell line-specific.

One may speculate that a higher viral RNA synthesis rate may be responsible for the higher

plus- to minus-strand RNA ratio in viruses causing acute infections. However, our calculated

vRNA synthesis rates were comparable for HCV and DENV but 50 times lower compared to

the CVB3 RNA synthesis rate, possibly due to faster vRNA copying or faster de novo initiation

of vRNA synthesis. In HCV, studies found an RNA synthesis rate of 150 to 180 nt/min

[125,126]. However, the rate of RNA synthesis in DENV is, to our knowledge, unknown. Nev-

ertheless, Tan et al. (1996) found low in vitro polymerase activity for DENV NS5, which is in

line with the polymerase activities for West Nile and Kunjin viruses, suggesting that this is a

conserved feature of flavivirus polymerases [127] and possibly Flaviviridae including HCV.

As for CVB3, it has been shown that the closely related poliovirus synthesizes a single RNA

template in 45 to 100 sec [66]. Additionally, it is estimated that between 3 and 10 RdRps are

bound to one single PV RNA genome. However, our plus-strand RNA model did not consider

the RdRp density bound to one single viral RNA template due to a lack of data for HCV and

DENV. According to our model predictions, critical processes for a faster viral life cycle may

be a combination of (1) faster viral RNA translation and synthesis rates and/or faster vRNA

synthesis initiation, (2) host cell translation shut-off and thus higher ribosome availability for

viral RNA translation and at the same time lower ribosome availability for antiviral protein

production, (3) and shorter RNA half-lives for intracellular viral RNA (more important in cell

lines with intrinsic immune responses or in vivo). Interestingly, the potential role of these key

processes is in line with the global sensitivity analysis results: All CVB3 replication process

rates within the RO show highly significant sensitivities, suggesting that CVB3 strongly

depends on an efficient replicative cycle within the RO. Additionally, global sensitivities of

vRNA degradation rates in the cytoplasm or within the RO seem rather negligible.

Our model predicted that an optimal usage of viral resources to form replicase complexes

within a cell was only realized by DENV and CVB3. Strikingly, HCV only reached 26% of the

cell’s replicase complex carrying capacity. A possible reason may be a limitation in viral

resources to form replicase complexes such as viral RNA or non-structural proteins. Both may

be again related to the lower availability of ribosomes for viral protein production in HCV. In

contrast, DENV and CVB3 have the advantage of a partial or complete host cell translation

shut-off, respectively. However, virus-specific ribosome availability and translation activity
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may be related to different translation mechanisms. While HCV and CVB3 have IRESes, i.e.,

the RNA translation is cap-independent, DENV’s translation mechanism is cap-dependent.

Furthermore, different IRES types have variations in their structural elements and recruit host

factors as regulatory elements, which affects the translation initiation complex and viral RNA

translation. Therefore, a higher ribosome availability for vRNA translation may be associated

with different translation mechanisms, such as secondary structures and host factors assisting

in ribosome binding [128–131]. Furthermore, a higher number of ribosomes available for

vRNA translation may be directly associated with a higher production of viral proteins. How-

ever, the more ribosomes available for cellular mRNA translation and thus the production of

proteins of the immune response, the higher the intracellular degradation of viral components

may be, resulting in a limitation in viral resources. Ribosome availability and its control may

thus be crucial for viral replication efficiency.

To analyze this aspect further, we asked whether we could make virus production in HCV

more efficient or CVB3 less efficient. Increasing the in-silico ribosome availability in HCV to

that of CVB3 increased the viral load by three orders of magnitude. In contrast, a 50-fold

increase in the HCV RNA synthesis rate had no effect on the viral load in steady state due to a

limited availability of the viral RNA polymerase in the replication organelle [19]. In contrast,

using only 0.07% of ribosomes for CVB3 RNA translation, thus setting the ribosome level to

the number of ribosomes used in HCV, decreased the CVB3 viral load by three orders of mag-

nitude. Interestingly, the coronaviruses’ non-structural proteins, including those of SARS-

CoV-2, target multiple processes in the cellular mRNA translation, causing a host cell transla-

tion shut off similar to CVB3 and DENV [132,133]. Therefore, a repression or complete shut-

off of the host mRNA translation machinery may be a key feature of acute viral infections.

Comparing in vivo viral dynamics with those of in vitro experiments is challenging. Neverthe-

less, we found a comparable pattern of viral dynamics: reported in vivo and in our in vitro experi-

ments. In vivo, HCV showed an exponential growth rate of 2.2 per day [134], while DENV and

CVB3 grow twice as fast with a rate of 4.3 and 4.5 per day in human and murine blood, respec-

tively (approximated from [38,44]). However, in murine cardiac tissue, the in vivo CVB3 expo-

nential growth rate increases to approximately 14.5 per day [38]. Furthermore, the different

exponential growth rates are associated with variations in the peak viral load. At its peak, HCV

produces 108 RNA copies per g liver tissue [43], DENV produces 1 to 2 orders of magnitude

more virus (109 to 1010 RNA copies per mL blood) [44], and CVB3 produces 3 to 4 orders of

magnitude more virus (1011 to 1012 RNA copies per g cardiac tissue) compared to HCV [38]. We

found a similar pattern in our data, with HCV producing the least amount of virus at its peak (~1

PFU/mL/cell), followed by DENV (~10 PFU/mL/cell) and CVB3 (~200 PFU/mL/cell). Consider-

ing the RNA synthesis rates, CVB3 replicates 50- times faster than HCV and DENV.

Broad-spectrum antivirals?

DAAs are highly specific drugs usually designed to inhibit the function of one specific viral

protein. Developing broad-spectrum antiviral drugs is challenging. Nevertheless, we were

interested in the possibility of a pan-viral drug treatment option. We, therefore, studied the

core processes in the life cycles of our three representatives of plus-strand RNA viruses and

administered in-silico drugs in mono or combination therapy to identify single drug targets or

combinations of drug targets that yield an efficient inhibition of all three viruses.

Direct-acting antivirals against HCV. Several DAAs have been developed and approved

for HCV and can cure chronic hepatitis C in most patients [135]. DAAs are developed to target

one specific protein such as HCV NS3/4A (e.g., first-generation telaprevir or boceprevir and

second-/third generation glecaprevir, voxilaprevir and grazoprevir), HCV NS5A (e.g.,
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daclatasvir, velpatasvir, ledipasvir), and HCV NS5B (e.g., sofosbuvir and dasabuvir) [136].

Therefore, the DAAs’ modes of action and efficacies may be used here to validate the results of

our in-silico drug intervention study. While DAAs block HCV NS3/4A and intervene with the

polyprotein cleavage, HCV NS5A and HCV NS5B inhibitors target the RO formation and

vRNA synthesis, respectively [9,59,137]. Our sensitivity and in-silico drug analysis suggested

high sensitivities for processes associated with HCV RNA replication, which led to an efficient

viral reduction by more than 99% with a more than 90% inhibition of the vRNA synthesis rate.

Furthermore, our in-silico drug analysis predicted that complete HCV NS3/4A inhibition

(more than 99.5% polyprotein cleavage inhibition) was necessary to clear the viral load. Com-

bined with inhibiting vRNA synthesis, a combinatory inhibition of more than 90% led to HCV

clearance, where viral clearance was mainly driven by inhibiting vRNA synthesis. Our results

are in line with current HCV treatment recommendations that focus on a regimen based on a

combination of targeting vRNA synthesis alone by inhibiting HCV NS5A and/or NS5B or in

combination with HCV NS3/4A with the inhibition of NS5A as the backbone of an efficient

HCV treatment regimen, e.g., the combinations of elbasvir (NS5A inhibitor) and grazoprevir

(NS3/4A inhibitor), glecaprevir (NS3/4A inhibitor) and pibrentasvir (NS5A inhibitor) or

sofosbuvir (NS5B inhibitor) plus velpatasvir (NS5A inhibitor) [138]. Interestingly, the combi-

natory inhibition of vRNA synthesis and polyprotein cleavage showed pan-viral clearance with

the lowest critical efficacies of 0.98, i.e., a 98% inhibition of both processes.

Broad-spectrum antivirals and host-directed therapy. The cure of a chronic hepatitis C

infection represents a success story for DAAs. However, a subset of HCV patients report treat-

ment failure, severe side effects that impede treatment success, or drug resistance [139]. No

successful treatment has been approved for DENV, the most prevalent mosquito-borne viral

disease. Furthermore, the vaccine is only recommended for seropositive individuals due to its

increased risk of severe disease in seronegative individuals [140]. Moreover, for enteroviruses,

such as myocarditis causing CVB3, no antiviral treatment exists to date. Several DAAs target-

ing CVB3 have been tested in clinical trials but are often associated with the emergence of

resistance and, thus, are not recommended [141,142].

Targeting cellular components crucial for successful and efficient viral replication (so-called

host dependency factors) may offer a potential treatment option with a high resistance barrier.

Additionally, plus-strand RNA viruses still represent a major health concern infecting millions

of people worldwide, including the viruses in this current study–HCV, DENV, and CVB3 –

and other plus-strand RNA viruses such as chikungunya, Zika, West Nile, Yellow fever, hepati-

tis A virus as well as the current global pandemic causing SARS-CoV-2. Even though identify-

ing pan-serotype antiviral agents is challenging, a DENV inhibitor has been identified, which

has shown high efficacy and pan-serotype activity against all known DENV genotypes and

serotypes [143]. Our model may serve as a basis for the development of further virus-specific

models as well as pan-viral broad-spectrum antiviral treatment strategies.

Our sensitivity and drug analysis showed that inhibiting translation complex formation,

vRNA translation or polyprotein cleavage, and vRNA synthesis represent the most promising

pan-viral drug targets. As in the case of HCV, targeting vRNA replication and polyprotein

cleavage has been highly successful, however, directly targeting the HCV RNA translation

(e.g., the HCV IRES RNA structure) or its complex formation is mainly experimental. Another

treatment strategy may be targeting host factors hijacked by the virus and involved in almost

every process of the viral life cycle [144]. A limited number of available ribosomes may be a

key feature limiting efficient virus production due to suppressed host mRNA translation or

complete host cell translation shut-off. However, targeting and thus inhibiting the biological

function of ribosomes will be challenging and not beneficial for the host. Nevertheless, two

proteins were found to interact with vRNA translation: RACK1 and RPS25. Both proteins may
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be hijacked by DENV and promote DENV-mediated cap-independent RNA translation [145].

Additionally, in HCV RACK1 has been shown to inhibit IRES-mediated viral RNA translation

and viral replication; in the latter case RACK1 binds to HCV NS5A, which induces the forma-

tion of ROs [146,147]. Similar to HCV, CVB3 RNA translation is mediated through an IRES

and, thus, RACK1 may be a potential drug target. Furthermore, studying interactions of

SARS-CoV-2 proteins with host mRNA identified RACK1 as a binding partner and thus may

represent a pan-viral host dependency factor [148].

Interestingly, the very early processes in the viral life cycle, virus entry as well as fusion and

release of the vRNA genome, showed significant sensitivities in DENV and CVB3 but were

rather negligible in HCV. Further, the release of the viral RNA genome from endosomes

showed a higher significant sensitivity compared to viral entry and internalization. Interest-

ingly, cyclophilin A is a host factor involved in the enterovirus A71 (family Picornaviridae)
fusion/uncoating process and, thus, vRNA release [149,150]. Furthermore, cyclophilin A

inhibitors block or successfully decrease viral replication in several plus-strand RNA viruses

such as HCV, DENV, West Nile, yellow fever, enteroviral A71, and coronavirus [142,151].

Considering that it is involved in both processes that showed the highest sensitivities, cyclophi-

lin A may represent a promising pan-viral target [142].

The formation of the replicase complexes represented another sensitive pan-viral process.

Replicase complexes are associated with membranes of the ROs either within or outside the

RO facing the cytosol [152]. Several studies have shown the significance of host factors in RO

formation being associated with cell permissiveness and vRNA replication efficiency

[17,101,133,144]. For example, Tabata et al. (2021) have shown that the RO biogenesis in HCV

and SARS-CoV-2 critically depends on the lipid phosphatidic acid synthesis since inhibiting

associated pathways led to an impaired HCV and SARS-CoV-2 RNA replication [153]. How-

ever, even though successful in clearing HCV and DENV, in an established infection of a fast-

replicating virus such as CVB3, the formation of replicase complexes may not represent an effi-

cient drug target. In steady state, CVB3 replicase complexes are already formed, and the virus

cannot be cleared even with a 100% inhibition given for 5 days. Similar results have been

found by targeting host factors involved in the formation of replicase complexes of other picor-

naviruses. Two tested compounds targeting RO formation could not block viral replication,

suggesting that viral replication continues if ROs are already formed [154]. Furthermore, tar-

geting host factors involved in RO formation showed lethal cytotoxicity, as in the case of

PI4KIIIβ and HCV [155]. Interestingly, inhibiting the host factor PI4KB showed that CVB3

RO formation was delayed and CVB3 RNA replication occurred at the Golgi apparatus [116].

Interestingly, incomplete inhibition of some processes may promote viral growth. Our

model predicted that targeting viral export from the RO into the cytoplasm in the DENV life

cycle led to a 6% increase in virus. Therefore, low-efficacy drugs may lead to the opposite of

the desired outcome. Thus, host-directed therapy may have an enormous potential on the one

hand but may result in substantial side effects on the other hand. Identifying host factors with

pan-viral activity without lethal toxicity represents a challenge for future research.

Limitations and outlook

In the current study, we developed the first mathematical model for the intracellular replica-

tion of a group of related plus-strand RNA viruses. Even though our model allowed a high

degree of parameter identifiability, fit the in vitro kinetic data, and is consistent with the cur-

rent biological knowledge of our studied viruses, there are some weaknesses to consider.

First, our model focuses on a single cell and does not include viral spread. Especially in

acute infections with rapidly replicating viruses, viral transmission within organs may be
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highly relevant to consider. However, since our model was developed for a single-step growth

curve, we neglected viral spread and focused mainly on intracellular replication processes.

Virus-specific mechanisms of viral spread from infected to susceptible cells may be interesting

to study in the future.

Second, our experiments were performed in the immuno-compromised Huh7 cell line, and

we did not consider an intrinsic immune response here. In the future, considering an intrinsic

immune response may be an important addition.

Third, even though plus-strand RNA viruses share remarkable similarities in their replica-

tion strategy, our model does not consider viruses with more than one open reading frame

and ribosomal frameshift. The difference between viruses with one and more open reading

frames is the presence of sub-genomic RNA, as in the case of coronaviruses. However, the life

cycle of coronaviruses, and in particular SARS-CoV-2, differs from our model by producing

non-structural proteins first, followed by viral RNA and sub-genomic RNA synthesis [156].

The sub-genomic RNA is later translated into structural proteins. However, since the core pro-

cesses of viral non-structural protein production (necessary for vRNA synthesis) and vRNA

synthesis are common, we do not think that the presence of sub-genomic RNA would consid-

erably impact our presented results. Adaptation of the model to coronaviruses is an ongoing

topic being followed up on in our group.

Fourth, in vitro experiments are not a reliable system for an in vivo application. Especially

our drug treatment study needs experimental validation. However, our model and in silico
drug analysis showed a high degree of similarity with the knowledge and efficacy of DAAs

available for HCV.

Fifth, our model has been developed for a one-step growth experiment and, consequently, a

single cycle of virus growth. Thus, our model predictions are short-term and do not study

long-term effects.

In summary, in the present study, we measured the in vitro kinetics of three representatives

of plus-strand RNA viruses: HCV, DENV, and CVB3. We developed a mathematical model of

the intracellular plus-strand RNA virus life cycle based on these experimental measurements.

In order to study pan-viral similarities and virus-specific differences, the model was fit simulta-

neously to the in vitro measurements, where the best-fit model was selected based on the AIC

and model parameter identifiability. According to our model, the viral life cycles of our three

plus-strand RNA representatives differ mainly in processes of viral entry and genome release,

the availability of ribosomes involved in viral RNA translation, the formation of the replicase

complex, and the viral trafficking of newly produced viral RNA. Furthermore, our model pre-

dicted that the availability of ribosomes involved in viral RNA translation and, thus, the degree

of the host cell translation shut-off may play a key role in acute infection outcome. Interest-

ingly, our modeling predicted that increasing the number of ribosomes available for HCV

RNA translation remarkably enhanced the HCV RNA replication efficiency and increased the

HCV viral load by three orders of magnitude, a feature we could not achieve by increasing the

HCV RNA synthesis rate. Furthermore, our in-silico drug analysis found that targeting pro-

cesses associated with vRNA translation, especially polyprotein cleavage and viral RNA repli-

cation, substantially decreased viral load and may represent promising drug targets with

broad-spectrum antiviral activity.
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