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Abstract

We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most
likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves
and host galaxy information of 4779 spectroscopically classified transients. We find that for transients with a
probability of being a TDE, P(TDE)> 0.5, we can successfully recover TDEs with ≈40% completeness and
≈30% purity when using their first 20 days of photometry or a similar completeness and ≈50% purity when
including 40 days of photometry, an improvement of almost 2 orders of magnitude compared to random selection.
Alternatively, we can recover TDEs with a maximum purity of ≈80% and a completeness of ≈30% when
considering only transients with P(TDE)> 0.8. We explore the use of FLEET for future time-domain surveys such
as the Legacy Survey of Space and Time on the Vera C. Rubin Observatory (Rubin) and the Nancy Grace Roman
Space Telescope (Roman). We estimate that ∼104 well-observed TDEs could be discovered every year by Rubin
and ∼200 TDEs by Roman. Finally, we run FLEET on the TDEs from our Rubin survey simulation and find that
we can recover ∼30% of them at redshift z< 0.5 with P(TDE)> 0.5, or ∼3000 TDEs yr–1 that FLEET could
uncover from the Rubin stream. We have demonstrated that we will be able to run FLEET on Rubin photometry as
soon as this survey begins. FLEET is provided as an open source package on GitHub:https://github.com/
gmzsebastian/FLEET.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Supernovae (1668); Surveys (1671)

1. Introduction

Tidal disruption events (TDEs) occur when a star gets too
close to a supermassive black hole and is subsequently torn
apart by the tidal forces of the black hole (Hills 1975;
Rees 1988). Following this disruption, about half the stellar
debris is expected to return toward the black hole and
circularize into an accretion disk, beginning a phase of
accretion when a bright optical transient can be observed
(Gezari et al. 2009; Guillochon et al. 2009). To date, about 70
TDEs have been discovered across the electromagnetic
spectrum, with a wide variety of observational features
(Auchettl et al. 2017; Mockler et al. 2019; van Velzen et al.
2020; Gezari 2021; van Velzen et al. 2021; Hammerstein et al.
2023; Nicholl et al. 2022). Some optically discovered TDEs
exhibit hydrogen and helium emission, others show only
helium (Gezari et al. 2012; Arcavi et al. 2014), and some
additionally have nitrogen and oxygen lines (Blagorodnova
et al. 2019; Leloudas et al. 2019). Van Velzen et al. (2021)
defined three classes of TDEs: TDE-H (hydrogen only), TDE-

He (helium only), and TDE-H+He (Bowen lines in combina-
tion with H and/or He). There is at least one TDE that evolved
from TDE-H+He to TDE-He (Nicholl et al. 2019). While some
TDEs show X-ray emission in excess of their optical
luminosity, some are X-ray dim (Holoien et al. 2016; Auchettl
et al. 2017), and others alternate between these two states
(Gezari et al. 2017). Additionally, radio observations suggest
that some TDEs produce fast outflows, including relativistic
jets, while others do not (Zauderer et al. 2011; Bower et al.
2013; van Velzen et al. 2013; Alexander et al. 2016; van
Velzen et al. 2016; Alexander et al. 2020; Cendes et al. 2022).
Finding more TDEs rapidly and efficiently will lead to a

better understanding of their nature, origin, and evolution. The
challenge is that these are rare transients, representing only
∼0.5% of all spectroscopically classified transients from
magnitude-limited surveys (e.g., Fremling et al. 2020). Never-
theless, the field of time-domain astronomy is growing at an
increasing rate, with surveys such as the Zwicky Transient
Facility (ZTF) discovering thousands of transients a month
(Bellm et al. 2019). With existing resources, it is only possible
to spectroscopically classify ∼10% of all optical transients
discovered. This will become even more challenging when the
Legacy Survey of Space and Time on the Vera C. Rubin
Observatory (Rubin) commences in 2024 and increases the
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transient discovery rate by ∼2 orders of magnitude (Ivezić
et al. 2019).

Machine-learning (ML) algorithms can be used to select
promising TDE candidates for spectroscopic follow-up. Some
general-purpose ML classifiers that attempt to predict the
classes of optical transients already exist, but none are trained
to classify TDEs using real observational data. For example,
SuperRAENN (Villar et al. 2020) and Superphot (Villar
et al. 2019; Hosseinzadeh et al. 2020) have been trained on real
data from the Pan-STARRS1 Medium Deep Survey (PS1
MDS) and use either a recurrent autoencoder neural network or
a random forest (RF) algorithm, respectively, to predict the
classes of five types of supernovae (SNe Ia, Ibc, II, IIn, and
SLSN-I). However, TDEs are not one of the supported classes
in these classifiers, since the PS1 MDS training set only
included two spectroscopically classified TDEs. The RAPID
(Muthukrishna et al. 2019) and Avocado (Boone 2019)
classifiers, on the other hand, are trained to distinguish among
at least 12 different transient classes, including TDEs, but were
trained on simulated data from the Photometric LSST
Astronomical Time-series Classification project (Kessler
et al. 2019), and their effectiveness on real data is yet to be
verified. Lastly, the Automatic Learning for the Rapid
Classification of Events (ALeRCE) broker (Sánchez-Sáez
et al. 2021) uses a two-stage RF algorithm that first classifies
the general nature of the transient as either an active galactic
nucleus (AGN), SN, variable star, asteroid, or bogus and then
proceeds to refine the class into 15 different types of transients,
but TDEs are not one of these classes.

Given the absence of robust TDE photometric classifiers, we
present a new version of Finding Luminous and Exotic
Extragalactic Transients (FLEET), an ML algorithm originally
developed to target follow-up of likely Type I superluminous
SNe (SLSNe) based on their predicted probability of being
SLSNe (Gomez et al. 2020a). Over the past 2 yr of operations,
we have proven the efficacy of FLEET in finding SLSNe and
surpassed our expectations of performance. We managed to
achieve a peak purity of ≈80% and discovered 21 of the 50
SLSNe found worldwide since we deployed FLEET in 2019
November (Gomez et al. 2022). Here we implement a similar
approach and use the light curve and host galaxy information of
a given transient to target likely TDEs without focusing on the
classification of other transient classes. Since the goal of
FLEET is to help make the most efficient use of telescope time,
we choose to optimize for purity as opposed to completeness,
in order to yield the purest possible sample of TDEs.

Unlike existing algorithms, FLEET is trained on real data
and makes use of both light-curve information and contextual
host galaxy parameters to predict the likelihood of a transient
being a TDE without the need to know its redshift. FLEET is
designed to be fast and capable of classifying thousands of
transients within a few hours on a personal computer. Such ML
algorithms as FLEET will prove not only useful but necessary
as more transient surveys come online. We estimate the
expected number of TDEs that could be detected by both Rubin
and the Nancy Grace Roman Space Telescope (Roman; Spergel
et al. 2015) and explore the possibility of using FLEET to
target transients from these surveys and maximize our
efficiency in recovering TDEs.

The structure of the paper is as follows. In Section 2, we
outline the sources of the data used for training FLEET; in
Section 3, we describe the underlying algorithm; in Section 4,

we explore possible selection effects in FLEET; in Section 5,
we describe the use of FLEET in the ZTF, Rubin, and Roman
time-domain surveys; and finally, we conclude in Section 6.
FLEET is provided as a Python package on GitHub11 and
Zenodo (Gomez et al. 2020b), as well as included in the Python
Package Index under the name fleet-pipe.

2. Data Sources

To build a training sample for FLEET, we gathered a list of
all spectroscopically classified transients from the Transient
Name Server (TNS).12 We restrict the sample to only include
transients from the ZTF (Bellm et al. 2019) that have at least
two g-band and two r-band detections. These are the minimum
data required to be able to fit a model to their light curves. We
further restrict the sample to only include transients that lie
within the footprint of the Pan-STARRS1 3π (PS1/3π) survey
(Chambers & Pan-STARRS Team 2018), for the purpose of
identifying their host galaxies. The resulting sample is
composed of 4779 transients, with the following distinct labels
from the TNS: 2983 SNe Ia, 749 SNe II, 187 SLSNe-I, 157
SNe IIn, 143 CVs, 105 SNe Ic, 89 SNe IIP, 80 SNe Ib, 68
SNe IIb, 52 SLSNe-II, 45 TDEs, 35 SNe Ic-BL, 26 SNe Ibc, 23
AGNs, 19 SNe Ibn, and 18 variable stars. We provide a list of
the 45 TDEs used for this training sample in Table 2.
The light curves of all of the transients used for training

come from ZTF and were obtained from the ALeRCE broker
(Förster et al. 2021). While we only require four detections for
a transient to be included in the training set, 90% of them have
at least eight detections, and 50% have at least 22 detections in
either the g or r band. We also query a ¢1 region around each
transient in the PS1/3π (Chambers & Pan-STARRS
Team 2018) and Sloan Digital Sky Survey (SDSS) catalogs
(Alam et al. 2015; Ahumada et al. 2020) and include the
photometry, radii, and separations to all of the nearby objects to
the transient. Finally, we correct all photometry for Galactic
extinction using the Schlafly & Finkbeiner (2011) estimates of
E(B− V ) and the Barbary (2016) implementation of the
Cardelli et al. (1989) extinction law.

3. FLEET Algorithm

FLEET was originally designed to target SLSNe from
transient alert streams. Here we expand the capabilities of
FLEET and train it to find TDEs. We provide a short
description of the processing steps included in FLEET, but
for a full description of the algorithm, see Gomez et al. (2020a).

3.1. Host Galaxy

TDEs are known to happen in the nuclei of galaxies (e.g.,
Gezari 2021), as is the case for all of the TDEs in our training
sample. Additionally, the presence of TDEs is known to be
correlated with galaxy type, since TDEs appear to be
significantly overrepresented in poststarburst galaxies (e.g.,
French et al. 2016; Graur et al. 2018). Moreover, the presence
of TDEs is therefore correlated with galaxy color, which
largely tends to reside in the “green valley” of the color–
magnitude diagram of galaxies (e.g., Hammerstein et al.
2021c). For these reasons, we test how well the relative
separation, g- and r-band magnitudes, and half-light radius of a

11 https://github.com/gmzsebastian/FLEET
12 https://www.wis-tns.org/
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galaxy serve to discriminate likely TDEs from other types of
transients.

In order to obtain the properties of a host, we first need to
associate a given transient with its most likely host galaxy. To
do this, we query a ¢1 region of the PS1 and SDSS catalogs
around each transient to identify its most likely host galaxy.
First, we assign a probability of being a galaxy to every object
in the field to rule out stars. We estimate this probability using a
custom k nearest-neighbors algorithm trained on data from the
Canada–France–Hawaii Telescope Legacy Survey (Hudelot
et al. 2012), which uses the CLASS_STAR classifier flag in
SExtractor to separate stars from galaxies, relying
on a multilayer feed-forward neural network (Bertin &
Arnouts 1996). Then, we calculate the probability of chance
coincidence, Pcc, of every galaxy using the method of Bloom
et al. (2002) described in Berger (2010) and select the galaxy
with the lowest Pcc as the host galaxy of the transient. This
method is computationally fast and accurate for ∼95% of the
associated transients, determined from manual vetting of the
training set in Gomez et al. (2020a). This is slightly lower than
more complex algorithms, for example, the success rate of
∼99% reported by the DELIGHT algorithm (Förster et al.
2022) and ∼97% from the GHOST classifier (Gagliano et al.
2021). The issue of host galaxy association is less ambiguous
for TDEs, which, thanks to their nuclear nature, have a mean
Pcc∼ 10−3, and their host association is therefore effectively
always successful, correctly identifying 100% of the hosts for
the TDEs in our training sample. Compare this to the full
population of transients in our training set, which have a mean
Pcc∼ 2.5× 10−3, a less confident value but one that still
implies a very high likelihood of association.

3.2. Light Curve

In addition to host galaxy information, we use the light
curves of transients to predict which are the most likely to be
TDEs. TDEs are known to be relatively blue at early times,
have broad long-lasting light curves, and fade without showing
significant changes in their color (e.g., Mockler et al. 2019; van
Velzen et al. 2021; Hammerstein et al. 2023; Nicholl et al.
2022). Therefore, deriving parameters from their light curves
should provide critical information to separate TDEs from other
transients.

We are motivated to classify TDEs early, which will allow
us to trigger multiwavelength follow-up observations to both be
able to robustly model their light curves and search for the
early-time UV or X-ray emission found in some TDEs (e.g.,
Chornock et al. 2014; Wevers et al. 2019). Additionally, we
aim for FLEET to be computationally efficient, and able to fit
the light curves of thousands of transients at a time. Therefore,
we fit the light curves of the transients with a simple,
computationally efficient model,

f= - ´ - +f-m e A W t m , 1W t
0( ) ( )( )

whereW is the effective width of the light curve, A modifies the
decline time relative to the rise time, m0 is the peak magnitude,
and f is a phase offset relative to the time of the first
observation. We provide two versions of the model. One is
aimed at finding TDEs at early times using only the first 20
days of data after discovery and has a fixed value of A= 0.6.
We chose this value for A because it is the mean value for all
transients with full light curves, with a mean standard deviation

of 0.18. Specifically for TDEs, the value of A and its standard
deviation is A= 0.55± 0.17, similar to the value for the full
population of transients. The second model uses the first 40
days of data and includes A as a free parameter. This model is
able to more confidently predict a transient class but at the
expense of triggering follow-up at a later phase. In Figure 1, we
show an example of both models fit to a TDE light curve, with
independent fits to the g- and r-band light curves.

3.3. Feature Optimization

FLEET uses the RF implementation from the scikit-
learn Python package (Pedregosa et al. 2011) to predict the
probability of a transient being a TDE, P(TDE). Our training
set used to train this classifier is made of 4779 spectro-
scopically classified transients, described in Section 2. We
obtain the host galaxy and light-curve information described in
Sections 3.1 and 3.2 for each transient and optimize which
features have the most predictive accuracy.
The training set of all classified transients is unbalanced,

meaning not every class of transient has the same number of
events. To prevent the classifier from being biased toward
predicting the more common classes and to improve predictive
accuracy, we oversample all transients to have a population
size equal to that of the largest transient class (i.e., 2983 SNe
Ia) using the Synthetic Minority Over-sampling Technique
(Chawla et al. 2002). This algorithm generates random samples
of new features drawn along vectors joining every pair of
existing objects in feature space until the desired number of
samples has been reached. In Gomez et al. (2020a), we
determined the optimal grouping of transient classes to be
nuclear, SLSN-I, SLSN-II, SN II, SN IIb, SN IIn, SN Ia, SN
Ibc, and star. The only difference in the class labels between the
TDE classifier and the original SLSN classifier is that the
former “nuclear” class has been split into distinct “AGN” and
“TDE” classes. Allowing the classifier to group transients into
these distinct classes improves its overall accuracy. Never-
theless, we are not concerned with the individual classifications
of other transients, since they are eventually compressed into a
binary “TDE” versus “non-TDE” classification. The uncertain-
ties for all predictions from the RF algorithm presented here

Figure 1. Light curves of the TDE AT 2019ehz fit with the model described in
Equation (1). The dashed lines show the fit using only data up to 20 days after
detection (with a fixed value of A = 0.6), while the solid lines are the result of
fitting the data up to 40 days after detection (with A as a free parameter). The
former is part of our rapid classifier, while the latter is part of our late-time
classifier. The absolute magnitudes are calculated based on the known TDE
redshift of z = 0.074.
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represent the 1σ scatter of 25 different realizations of each
model, generated using a different initial random seed.

FLEET is able to classify thousands of transients within a
few hours on a personal computer. Classifying a new transient
takes on the order of 10–20 s. Once the required catalog data
and an image of the host galaxy from PS1/3π have been
downloaded (∼100 KB each), the required time to reclassify a
transient is about 5–10 s.

We optimize several hyperparameters of the RF classifier,
including the number of days of photometry to consider, the
features to be included in each model, and the depth of the RF
trees, each one optimized using a grid search described in more
detail in this section. The two metrics we optimize for are
“completeness” and “purity.” Completeness is defined as the
total number of true-positive TDEs divided by the total number
of TDEs, and purity is the total number of true-positive TDEs
divided by the sum of true-positive TDEs and false-
positive TDEs.

Our predictive accuracy improves as a transient evolves and
more light-curve data are used but at the expense of identifying
the transient at a later phase. We optimize the number of days
of photometry to include, in both the rapid and late-time
classifiers, testing the performance of FLEET using a grid of
10–80 days of photometry in steps of 5 days for up to 50 days,
then steps of 10 for the longer timescales (Figure 2). We find
that for the rapid classifier, including 20 days of photometry is
the minimum required to produce reasonable results, since
including only 15 days of photometry reduces the purity and
completeness by about half. Conversely, we find that including
40 days of photometry in the late-time classifier significantly
increases the completeness from ≈35% to ≈50% compared to
using only 35 days. These thresholds are reasonable when we
compare to the typical rise times of the transients in our training
set, 95% of which peak 30 days after discovery. Due to the
nature of the ZTF survey, some transients will have multiple
observations in a single day in a specific band. Therefore, a
measure of the number of data points included is not as
constraining as the days of photometry included. We find that
including more than 40 days of photometry does not
significantly improve either the purity or completeness.
Including more than ∼70 days of photometry begins to

degrade our metrics, since these late-time data might be of
lower quality with higher scatter or include phenomena such as
flattening or light-curve bumps that are not accounted for in our
model.
Additionally, we optimize the set of features to include in the

classifier and determine the optimal set that yields the highest
purity. We list this optimal set of features below, where we use
one W, A, and Δm for each g and r band.

1. W: width parameter of the light curve.
2. A: multiplicative modifier for the decline rate of the light

curve (only used for late-time model).
3. Rn: transient–host separation normalized by half-light

radius of the host.
4. Δt: time of peak brightness minus time of discovery.
5. Δm: host magnitude minus peak observed transient

magnitude.
6. (g− r)P: light-curve color at peak.
7. (g− r)L: late-time light-curve color 40 days after peak.

The half-light radius in the r band of the host galaxy is
obtained from the SDSS catalog or from the PS1/3π catalog if
the object is not in SDSS. The g− r color is measured from the
light-curve fits, as opposed to the photometry, since we found
this to be a more uniform method that allows us to measure an
estimate for the color even for transients with sparse data
coverage. We tested the effects of including other features in
the classifier, including the photometric redshift of the host
galaxy from SDSS, the g− r color measured from the brightest
observed photometry data points, the host separation, the host
radius, a χ2 estimate for the goodness of fit of the model, and
the probability of chance coincidence Pcc. We found that
including these features either hurt or did not improve our
metrics. The optimal set of features was performed by drawing
200 random selections of features of random size from the full
sample of 13 features. We then selected the best five sets and
added or removed each individual feature to fine-tune the
optimization and reach the final selection listed above.
The importance of each included feature is not defined

independently of other features; if two features are correlated,
then their relative importance could be affected. We use the
permutation importance method described in Breiman (2001)
to calculate the correlated importance of each feature and show
the results for the late-time classifier in the top panel of
Figure 3. In the bottom panel of Figure 3, we show the
correlation between features and find that, with the exception of
a strong correlation between Δmg and Δmr, the individual
features are mostly independent. We find the most important
features to be Rn and (g− r)P for both the rapid and late-time
classifiers, as well as (g− r)L for the late-time classifier.
In Figure 4, we plot the phase space of our most important

features that distinguish TDEs from the other transients used
for training. The figures show how Rn and (g− r)P can help
separate TDEs from other transients. A low Rn value is
obviously a good discriminant, since TDEs happen in the
nuclei of galaxies. The (g− r)P can help separate TDEs from
AGNs and SNe, since TDEs tend to be bluer. Lastly, (g− r)L
becomes important when selecting TDEs, since their colors
tend to remain fairly constant as they evolve, unlike other
transients (e.g., van Velzen et al. 2021; Hammerstein et al.
2023; Nicholl et al. 2022).
Finally, we fit for the optimal depth of the RF trees. We

optimize the tree depth by running a grid search from a depth of

Figure 2. Purity and completeness as a function of days of photometry
included in the models. The dashed lines represent completeness, while the
solid lines represent purity. The rapid model is shown in red, while the late-
time model is shown in teal.
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5–20 in steps of 3, then selecting the three values with the
highest purity and repeating the same test using a finer grid
with steps of 1. We find an optimal depth of 14 for the rapid
classifier and 17 for the late-time classifier.

For completeness, we test how a classifier that only uses
light-curve information would perform. We find that using
light-curve information alone reduces the peak purity of the
late-time classifier to a relatively reasonable ≈25% at a
completeness of ≈15%. On the other hand, using light-curve
information alone reduces the purity and completeness of the
rapid classifier to very low values, below ≈10%.

3.4. Validation

For validation of the algorithm, we implement a leave-one-
out cross-validation method. This method trains the classifier
using every transient except one, predicts the classification of
the one transient, and then repeats this process, cycling through
all transients. This allows us to robustly test our classifier
without having to divide the data set into training and test sets,
which would compromise the already small sample of TDEs.
We use three different methods to evaluate the performance of
our classifier: a confusion matrix, a purity curve, and a
completeness curve. Since we are not concerned with the

classification of transients other than TDEs, we collapse the
individual transient classification categories listed in Section 3
into a binary “TDE” versus “non-TDE” classification. To

Figure 3. Top: correlated importance for the features used in the late-time
version of the classifier. We find that the host separation Rn and transient colors
(g − r)P and (g − r)L appear to be the most important features for predictive
accuracy. Bottom: correlation matrix for the same features. Except forΔmg and
Δmr, most features show a low correlation.

Figure 4. Phase space of the most relevant features used for the classifier,
showing the various classes of transients in different colors/markers. Top:
normalized host separation (Rn) vs. color of the transient during peak (g − r)P.
Transients without a detected host are not included in this plot. Middle: width
of the light curve in the g band (Wg) compared to the time to peak (Δt).
Bottom: color of the transient during peak (g − r)P compared to the (g − r)L
color 40 days after peak.
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calculate the non-TDE probability for each transient, we sum
the probabilities of all other transient classes.

The purity of the classifier increases and the completeness
declines as we restrict the sample to events with progressively
higher values of classification confidence (Figure 5). For P
(TDE)> 0.5, the purity is ≈45% for the late-time classifier and
≈30% for the rapid classifier at a corresponding completeness
of ≈50% and ≈40%, respectively. This represents a factor of
∼60 improvement over a random selection of transients, which
would yield an ≈0.5% success rate in a magnitude-limited
survey (Villar et al. 2019; Fremling et al. 2020). To estimate
the uncertainty in our measurements, we run each RF model 25
times with different initial random seeds to create the
uncertainty regions shown in Figure 5.

In Figure 6, we show the confusion matrices, namely, the
label predicted by our classifier compared to the true label of
the transient, normalized in terms of both purity and
completeness. We impose a confidence cut of P> 0.75 for
either the TDE or non-TDE classes, corresponding to the peak
classifier purity. We find that 64% (N= 17) and 45% (N= 8)
of true TDEs in this subsample of transients with P> 0.75 were
predicted to be TDEs by the late-time and rapid classifiers,
respectively. The matrices also show that 81% (N= 17) and
62% (N= 8) of all transients predicted to be TDEs were true
TDEs for the late-time and rapid classifiers, respectively.

In Figure 7, we show how the rapid and late-time classifiers
perform at classifying TDEs and not misclassifying other
objects as a function of classification confidence level, P(TDE).
We find that half of the correctly identified TDEs have a P
(TDE)  0.6, but some true TDEs are still misclassified with a
low P(TDE)  0.1. Some of the misclassified TDEs include
AT 2018jbv, AT 2020ddv, AT 2020opy, and AT 2020riz,
which were instead classified as likely SLSNe due to their
relatively high Δm, and AT 2019gte and AT 2020neh, which
were classified as likely SNe Ia due to their relatively fast light
curves and lack of late-time photometry.

As an additional point of comparison, we test how the
performance of FLEET compares to the performance of a more
classical approach of targeting TDEs by imposing basic
selection cuts on their observational parameters (e.g., van
Velzen et al. 2021). We test the effectiveness of using selection
cuts on the two most important parameters, (g− r)P and Rn. We

find that imposing a cut and only selecting targets with
(g− r)P < −0.5 mag yields the highest purity of ∼5% at a
corresponding completeness of ∼10%. Alternatively, imposing
a cut of (g− r)P < 0 mag yields a much higher completeness of
∼85% but with an even lower purity of ∼3%. Similarly, we
determine Rn< 0.14 to be the optimal threshold that yields the
highest purity of ∼7% at a corresponding completeness of
∼60%. The purity obtained from either a cut on (g− r)P or Rn

is well below the ≈50% purity we can obtain from FLEET,
even with the rapid classifier. We further attempt to optimize
the purity of these selection cuts by implementing them in
conjunction. We find that a combined threshold of (g− r)P
< −0.5 mag and Rn< 0.12 would yield the highest possible
purity of ∼38%. This purity is much closer to the estimates
from FLEET but comes at the expense of an ∼6% complete-
ness, much lower than the ≈50% completeness that FLEET can
achieve at the same purity level. Therefore, we have shown that
FLEET is expected to perform much better than imposing basic
selection cuts.

3.5. Classifier Summary

Using our rapid classifier, trained using host galaxy
information and the first 20 days of photometry of 45 TDEs,
we predict that we can recover TDEs with ≈50% purity at
≈30% completeness for P(TDE)> 0.7. With our late-time
classifier, trained instead on 40 days of photometry, we can
recover TDEs with a purity of ≈70% and a corresponding
completeness of ≈40% for the same P(TDE)> 0.7 threshold.
Currently, time-domain surveys report ∼20,000 transients

yr–1, and we expect ∼0.5% of them to be TDEs given current
observational rates, corresponding to ∼100 TDEs that could be
discovered every year. Given our predictions for purity and
completeness, using FLEET would result in ∼15–28 TDEs
discovered per year, depending on the classifier used. This is
about twice as many as the 8–16 TDEs classified each year
since 2019.

4. Selection Effects

We explore possible selection effects that might result from
using FLEET for target selection. For testing, we classify the
32 TDEs presented in Nicholl et al. (2022) using the late-time

Figure 5. Left: completeness as a function of classification confidence for the rapid and late-time classifiers. Right: purity as a function of classification confidence for
the rapid and late-time classifiers. The shaded regions represent 1σ uncertainties, calculated by generating each model using 25 different random seeds. We find that
the completeness decreases monotonically until P(TDE) ∼ 0.8, after which it decreases at a faster rate due to the small sample size of TDEs with P(TDE) above this
value. For the same reason, the uncertainty in the purity increases significantly for values above P(TDE) ∼ 0.8.
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FLEET classifier and compare the observational parameters of
the TDEs with P(TDE)> 0.5 with those of all TDEs. To
quantify if the parameter distributions are different, we
implement a two-sample Kolmogorov–Smirnov (K-S), where
a K-S metric of D= 0 indicates that the two samples are drawn
from the same distribution, and D= 1 means there is no
overlap between the distributions. In Figure 8, we show how
the two populations compare and find no obvious bias against
most parameters. We determine K-S metrics (and p values) of
0.14 (0.93) for redshift, 0.12 (0.98) for apparent magnitude,
0.21 (0.52) for Rn, 0.21 (0.52) for Δm, 0.16 (0.85) for (g− r)P,
0.11 (0.99) for Wg and Wr, and 0.19 (0.64) for (g− r)L,
meaning that the two populations differ at the ∼10%–20%
level. Additionally, we implement an Anderson–Darling test
(Scholz & Stephens 1987) but are unable to reject the null
hypothesis that any pair of parameter samples are drawn from
the same distribution with a p value <0.25.

For completeness, we determine the corresponding K-S
metrics for the parameters obtained using the rapid classifier.
We find K-S metrics of 0.12 (0.97) for apparent magnitude,
0.18 (0.75) forΔm, 0.21 (0.52) for (g− r)P, 0.07 (0.99) forWg,

0.11 (0.99) for Wr, and 0.14 (0.93) for (g− r)L, showing that
these metrics are comparable to the results obtained from the
late-time classifier. We do not include the host-dependent
features, since they do not depend on the classifier used.
Most of the parameters shown in Figure 8 show little

difference between the full population of TDEs and the
population of recovered TDEs with P(TDE)> 0.5. The biggest
difference is for Rn, where TDEs with Rn 0.3 do not tend to
be selected by FLEET. This is not to say that transients with
Rn> 0.3 are not nuclear but simply that the uncertainty in their
coordinates is high but still consistent with being nuclear. This
uncertainty is dominated by the typical scatter in ZTF
coordinates, which can be up to ∼0 5. We find that TDEs
with Δm 0 or Wg −0.1 are also less likely to be selected
as TDEs.
Similarly, we explore the difference in physical parameters

for the recovered TDEs compared to the full TDE sample. For
the exploration of physical parameters, we use the TDE models
from Nicholl et al. (2022), who fit the light curves of 32 TDEs
using MOSFiT (Guillochon et al. 2018). We explore the
differences in the impact parameter b, black hole mass MBH,

Figure 6. Using a sample of only transients with a classification probability of P(TDE) > 0.75 or P(non-TDEs) > 0.75, we produce a confusion matrix that indicates a
purity of 62% for the rapid classifier and 81% for the late-time classifier. The corresponding completeness values for the same classifiers are 45% and 64%. These
values represent the raw number of TDEs used in the classifier and are not weighted by the number of samples in each class.
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stellar mass M*, and viscous timescale TV and find no obvious
selection effects. We find a K-S metric (and p value) of 0.12
(0.94) for b, 0.12 (0.99) for MBH, 0.18 (0.67) for M*, and 0.12
(0.97) for TV, indicating that the parameter distributions for the
full TDE sample and the sample of recovered TDEs with P
(TDE)> 0.5 are very similar and only differ at the ∼10% level.

In conclusion, we find that even if FLEET selects events
with certain observational properties, these do not translate to
selection effects in physical parameters. In other words, FLEET
does not appear to produce biases against physical or
observational parameters not included as features in the
classifier. Of course, this is in relation to the known sample
of TDEs; finding anomalous TDEs not found in the current
known sample, such as off-nuclear or white dwarf TDEs, will
likely require larger samples from systematic surveys such as
Rubin or Roman.

5. Implementation of FLEET for Time-domain Surveys

5.1. ZTF

The ZTF is the survey that currently reports the most
transients to the TNS, but ∼90% of them remain spectro-
scopically unclassified. Here we use the late-time FLEET
classifier to obtain a P(TDE) estimate for all ZTF transients
reported to the TNS with the aim of recovering TDEs that were
previously missed.

At the time of writing, there were a total of 95,729 transients
reported to the TNS. Since we are using the late-time classifier, we
exclude transients that are too young, discovered after 2022
March 1. Additionally, FLEET only works for transients within
the PS1/3π footprint and with at least two g-band and two r-band
points. After applying these cuts, we run FLEET on a final list of
31,892 transients and list 39 likely TDE candidates with P(TDE)
� 0.5 obtained from this experiment in Table 1. Follow-up and
analysis of these targets will be presented in future work.

Given their individual probabilities of being TDEs, if we
were to spectroscopically classify these 39 TDE candidates, we
would expect ∼28 of them to be confirmed as TDEs, which
would represent a factor of ∼50% increase in the current
population of TDEs. These tools will be more powerful for

larger data sets like the ones Roman or Rubin will produce,
allowing us to generate large photometrically selected samples
of TDEs and analyze their statistical demographics without the
need for spectra.
One limitation that ZTF has compared to future surveys is its

relatively shallow depth of r∼ 20.5 mag. In Figure 9, we show
the fraction of spectroscopically classified TDEs correctly
identified as TDEs with P(TDE) � 0.5 as a function of redshift.
We find that the increasingly poor data quality from ZTF
makes it challenging to accurately classify TDEs at z 0.15.
Future deeper surveys will be able to discover TDEs at much
further redshifts.

5.2. Roman

Roman is an infrared wide-field survey telescope planned to
commence observations in 2027 (Spergel et al. 2015). Major
components of the Roman mission are the community surveys,
large programs that will occupy a large fraction of the mission
and are meant to provide data useful for the community at
large. One such survey is the High Latitude Time Domain
Survey (HLTDS), which focuses on the study of extragalactic
transients (Rose et al. 2021). Here we estimate the number of
TDEs that could be found by the Roman HLTDS and explore
the possibility of using FLEET to find them.
The final survey parameters of the HLTDS have not been

defined, but we simulate a Roman HLTDS observation
sequence based on the parameters suggested in Rose et al.
(2021). We exclude the other two community surveys from our
simulation, since the Galactic Bulge Time Domain Survey will
be heavily crowded by stars and affected by Galactic
extinction, and the High Latitude Wide Area Survey has no
time-domain component. We run a simulation that consists of
146 visits of a patch of sky located at R.A.= 25°, decl.=−53°
with a cadence of 5 days. Each visit has a wide and a narrow
component. The wide component covers an area of 15.6 deg2 in
56 pointings with filters (and 5σ limits) F062 (26.4), F087
(25.6), F106 (25.5), and F129 (25.4), while the narrow
component covers an overlapping area of 5.6 deg2 in 20
pointings with filters (and 5σ limits) F106 (26.7), F129 (26.6),
F158 (26.5), and F184 (26.7).13

We use the TDE MOSFiT models from Nicholl et al. (2022)
to generate a sample of 240,000 TDEs distributed uniformly
across space (R.A., decl., and comoving distance) and time
(throughout the 2 yr duration of the HLTDS). Each TDE
sample is generated from observations of a real TDE, which
allows us to simply adopt the properties of existing TDEs
without introducing additional parameter assumptions. MOS-
FiT generates a blackbody spectral energy distribution (SED)
at each epoch of a TDE’s evolution, allowing us to convolve
this SED with the Roman passbands and measure their
corresponding IR magnitudes. We then compare these
magnitudes to the nominal 5σ limits of the HLTDS to quantify
how many TDEs would be detected.
In Figure 10, we show the total number of TDEs per year

expected to be found with at least four detections as part of the
HLTDS. We adopt the volumetric TDE rate estimate from van
Velzen (2018), which is defined as a function of TDE
peak g-band luminosity as N L L a

0 0( ) , where =N0
 ´ - - -1.9 0.7 10 Mpc yr7 3 1( ) and a= −1.6± 0.2 for

Figure 7. Cumulative distribution as a function of classification confidence P
(TDE) for transients that are true TDEs (blue) or non-TDEs (red). We find that
most non-TDEs are correctly identified as such, while half of the true TDEs
have a P(TDE)  0.6. The rapid and late-time classifier lines for non-TDEs
appear indistinguishable from each other in the plot.

13 For a definition of the Roman filters, see https://roman.gsfc.nasa.gov/
science/WFI_technical.html.
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L0= 1043 erg s−1. Most TDEs in our sample have peak g-band
luminosities of ∼1042–1043 erg s−1, which translates to a rate of
∼10−6

–10−7 TDEs Mpc−3 yr−1. Using these estimates, we
predict that the Roman HLTDS could find ∼300 TDEs yr−1

out to a redshift of z∼ 7 with at least four detections each, or
∼200 “well-observed” TDEs with at least 20 detections
spanning a minimum 70 day baseline between the first and
last detection. It is also evident from Figure 10 that the
distribution of TDEs found by the HLDTS peaks around a
redshift of z∼ 1–2.

We find that out of all TDEs injected into our simulation,
∼35% of the ones at z< 0.2 were detected with at least four
data points in either the deep or wide components of the
HLTDS. If we only consider the deep component of the
HLTDS, we find that ∼81% of TDEs at z< 0.2 are detected
with at least four data points. In the top panels of Figure 11, we
show some example light curves of TDEs detected by our
simulation of the Roman HLTDS. It is clear that while Roman
will find TDEs at high redshifts, the most distant ones at z∼ 6
will have poor coverage and are only detectable by the deep

Figure 8. The gray data points show the physical and observational parameters from a sample of TDEs obtained from Nicholl et al. (2022). The green data points are
TDEs that were recovered by FLEET with P(TDE) > 0.5. Top left: black hole mass and impact parameter. Top right: stellar mass and viscous timescale. Middle left:
redshift and apparent peak r-band magnitude. Middle right: Δm compared to the (g − r)P color at peak. Bottom left: late-time color (g − r)L compared to the
normalized host separation Rn. Bottom right: width of the light curve in the g and r bands. We include the K-S metric for each parameter in the upper right corner of
each panel. We find no obvious bias against physical or observational parameters that are not already features of the classifier.
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component of the HLTDS, which would make their character-
ization challenging. The wide component of the HLTDS can
only detect TDEs out to a redshift of z∼ 4. Finding TDEs at

redshifts this high will allow us to test different theories
regarding the evolution of the TDE rate. For example,
Kochanek (2016) predicted that the rate of TDEs is expected
to decrease at higher redshifts.
Given that Roman does not have g- or r-band observations,

we cannot directly run FLEET on the simulated Roman light
curves. Nevertheless, we can adopt the most frequent Roman
bands (F106 and F129) as proxies for g and r and run the late-
time FLEET classifier on these. We show the fraction of TDEs
recovered with P(TDE)> 0.5 as a function of redshift in
Figure 13. We determine that FLEET can recover with P
(TDE)> 0.5 about 10% of Roman TDEs at z< 3.0 or about
20% of TDEs at z< 0.5. This translates to ∼20 TDEs that
FLEET could uncover every year out to a redshift of z= 0.5 or
∼40 TDEs out to a redshift of z= 3.0. We caution that these
estimates assume that FLEET would perform equally well on
Roman and ZTF data. Eventually, we will be able to retrain
FLEET using Roman data, including the host galaxy images
from the Wide Area Survey, the light curves from the HLTDS,
and the spectroscopic classifications for the ∼10% of detected
transients that are expected to be produced by the Roman
slitless spectrograph (Rose et al. 2021). But currently, our
approximation depends on a number of factors. First, the
difference in optical versus IR filters is likely to have a negative
effect only for the closest TDEs at z< 0.3; since TDEs appear
blue at early times, they will be harder to distinguish from
nuclear SNe in IR wavelengths. Nevertheless, this will likely
not be a problem for the majority of TDEs discovered by
Roman, since most TDEs are expected to be detected at
z∼ 1–2, which, for the F129 and F158 filters, approximately
corresponds to the rest-frame g and r bands. The fact that we
extrapolate a blackbody SED to calculate the magnitudes of the
TDEs in the IR bands is possibly a conservative estimate given
that Lu & Bonnerot (2020) predicted TDEs to be brighter in
the IR than what a simple blackbody predicts. At least three of
the TDEs in our sample (AT 2018iih, AT 2018zr, and
AT 2018hyz) have been shown to have late-time IR emission
from dust formation. Additionally, Roman will observe these
transients with at least four filters, likely improving our
selection criteria thanks to the doubling in bands available.
Moreover, we do not account for the higher angular resolution
of Roman, which will likely increase our purity, as it will allow
us to better discern whether a transient is nuclear compared to
what we can currently do with ZTF. Lastly, we do not account
for intrinsic host galaxy extinction of the transients from
Roman, which would only be different for the nearby TDEs
observed in the rest-frame IR. In conclusion, our algorithms are

Table 1
Likely TDEs from ZTF

Name P(TDE) Name P(TDE) Name P(TDE) Name P(TDE)

2021crk 0.97 2021ldl 0.80 2020kri 0.67 2020aexc 0.58
2019gtm 0.97 2020ygl 0.80 2021pqg 0.66 2021qbh 0.57
2021aees 0.91 2019zbt 0.80 2018jil 0.66 2020afap 0.57
2021aeuf 0.90 2021zvy 0.72 2021uhs 0.64 2019aamf 0.57
2021lsi 0.86 2021ony 0.71 2021xbz 0.63 2021abkx 0.56
2020bgf 0.86 2020qfm 0.71 2021acqt 0.63 2019enj 0.56
2021kqp 0.85 2019phf 0.71 2019aami 0.62 2021aux 0.52
2021wdh 0.82 2021icq 0.70 2021nhq 0.61 2020qmx 0.51
2021iqs 0.82 2019qdh 0.70 2019saj 0.60 2020aawn 0.50
2020dxw 0.81 2019wlv 0.69 2020nmc 0.58

Note. List of 39 unclassified ZTF transients with a high likelihood of being a TDE, ordered by P(TDE).

Figure 9. Fraction of TDEs with P(TDE) � 0.5 as a function of redshift with
both the rapid and late-time classifiers. The decreasing quality of ZTF data for
TDEs with z  0.15 makes it increasingly challenging to classify them.

Figure 10. Number of TDEs expected to be found by the Roman HLTDS per
year per redshift bin. The black dashed line shows the total number of TDEs
with at least four detections spanning at least a 1 day baseline, while the green
solid line shows only the “well-observed” TDEs with at least 20 detections
over a 70 day baseline. The blue line shows the TDEs recovered by FLEET
with P(TDE) > 0.5.
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likely to perform similarly well for high-redshift TDEs, but it is
uncertain how well they will perform for the closest TDEs with
rest-frame IR observations. Obtaining a more realistic estimate
of the number of TDEs that will be found by Roman will
require simulations of the Roman survey, noise properties,
images, template subtraction capabilities and artifacts, and
eventually real data from Roman on which to train the
FLEET algorithm, including the spectroscopic data for ∼10%
of detected transients that are expected to be produced by the
Roman slitless spectrograph (Rose et al. 2021).

Finally, we note that real-time follow-up of TDEs from
Roman will completely rely on the availability of real-time
transient alerts. Therefore, we urge the implementation of a
real-time transient alert system to be part of the Roman survey.

5.3. Rubin

We estimate the number of TDEs that could be found by
Rubin (LSST Science Collaboration et al. 2017) following the
methods outlined in Villar et al. (2018). Here we inject 30,000
TDE light curves into the 10 yr Rubin baseline simulation
(baseline_v2.2_10yrs.db) using the same methods for
generating and injecting light curves outlined in Section 5.2.
Fewer random draws are used for Rubin due to the
computational limitations imposed by the more complex Rubin
survey simulation.

In Figure 12, we show the number of TDEs expected to be
found by Rubin assuming the same volumetric rate from van
Velzen (2018) described in Section 5.2. We find that the

Figure 11. Representative model light curves of TDEs from the Roman HLTDS (top) and Rubin (bottom) simulated surveys. We show three light curves for each
survey at three different redshifts.

Figure 12. Number of TDEs expected to be found by Rubin per year per
redshift bin. The black dashed line shows the total number of TDEs with at
least four detections spanning at least a 1 day baseline, while the green solid
line shows only the “well-observed” TDEs with at least 20 detections over a
70 day baseline. The blue line shows the TDEs recovered by FLEET with P
(TDE) > 0.5.
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number of TDEs detected by Rubin does not extend past z∼ 4.
We determine that ∼105 TDEs could be detected by Rubin
every year with at least four data points each or ∼104 “well-
observed” TDEs per year with at least 20 detections spanning a
minimum 70 day baseline. This is comparable to the highest
value of ∼8000 TDEs yr–1 that Bricman & Gomboc (2020)
estimated would be discovered by Rubin, which the authors
calculated based on theoretical models of TDEs drawn from
uniformly sampled impact factors and black hole masses using
a fixed rate of 10−5 TDEs per galaxy per year. Alternatively,
French & Zabludoff (2018) proposed targeting TDEs based on
the colors of their hosts. The authors generated a sample of
∼68,000 galaxies that are likely to host TDEs and predicted
that 119–248 TDEs yr–1 can be detected with LSST with a
purity of 73%.

Since Rubin includes g- and r-band observations, we can
directly run FLEET on the light curves of the simulated TDEs
that were detected by the survey. We run the late-time FLEET
classifier on all of the TDEs detected by the Rubin simulation
and show the fraction of TDEs with P(TDE)> 0.5 as a
function of redshift in Figure 13. We find that with P
(TDE)> 0.5, FLEET can recover about 10% of the TDEs
detected by Rubin at redshift z< 1.5 or about 30% of TDEs at
redshift z< 0.5. This translates to ∼2000 TDEs that FLEET
could uncover every year out to a redshift of z= 0.5 or ∼3000
TDEs out to a redshift of z= 1.5. We show sample light curves
of well-observed TDEs from the Rubin simulation located at
redshifts of z= 0.1, 0.5, and 1.5 in the bottom row of
Figure 11. We note that these estimates come from running the
current version of FLEET, trained on ZTF data, on Rubin data.
Optimizing the algorithm with Rubin data is only expected to
improve these estimates. Training the algorithm on the u band
will be particularly useful, since TDEs are known to separate
well from other transients in this band (van Velzen et al. 2020).

Despite the fact that Rubin is expected to find a larger total
number of TDEs than Roman, the fraction of TDEs recovered
by Rubin with 20 data points is an order of magnitude lower
than the fraction of TDEs recovered with four data points. This
means that Rubin is likely to find many TDEs that will go
unclassified due to their poor light-curve coverage. This is not
the case for the Roman HLTDS, for which the fraction of TDEs
recovered with four data points is almost the same as the

fraction of TDEs recovered with 20 data points, as a
consequence of the small footprint, cadence, and depth of the
Roman HLTDS.

6. Conclusions

We have presented a new version of FLEET, a machine-
learning classifier designed specifically to rapidly identify
TDEs with a high purity and without the need for redshift
information. We trained this classifier on a sample of 4779
spectroscopically classified transients, including 45 TDEs. We
provide two classifiers, a rapid one trained on 20 days of
photometry meant to be used for real-time classification and a
late-time classifier trained on 40 days of data meant to be used
for more robust estimates even if a transient has begun to fade.
Both classifiers use light-curve and contextual host galaxy
information to calculate the probability of a transient being a
TDE, P(TDE). Our key findings are as follows.

1. The most important features for distinguishing TDEs
from other transients are the normalized host separation
Rn and the light-curve color during peak (g− r)P.

2. We can recover TDEs with a purity of ≈30% using the
rapid classifier for events with P(TDE)> 0.5. This is a
factor of ∼60 improvement compared to random
selection. The corresponding completeness for this
threshold is ≈40%, or about five times better than using
simple selection cuts.

3. We find that a peak purity of ≈50% can be achieved with
the rapid classifier for transients with P(TDE)> 0.8,
corresponding to a completeness of ≈20%.

4. The late-time classifier trained on 40 days of data
performs similarly, with a completeness of ≈30% for
transients with P(TDE)> 0.8 but a higher peak purity
of ≈90%.

Additionally, we explore the application of FLEET to
current and future time-domain surveys. We present a list of
39 TDE candidates with P(TDE)> 0.5 that were found by
ZTF but remain currently unclassified. We inject TDE light
curves into simulations of the Roman and Rubin time-
domain surveys to estimate how many TDEs can be
recovered given their current survey designs. We find that,
using FLEET, we can recover ∼30 TDEs yr–1 with the
Roman HLTDS out to a redshift of z∼ 7 and ∼3000 TDEs
yr–1 with Rubin out to a redshift of z∼ 3. Tools like FLEET
will be not only useful but necessary in the era of big data
and large time-domain surveys. Given the successful
performance of FLEET to date, the predictions for detecting
TDEs with Rubin, and the lack of strong biases against
physical parameters, we are confident we can begin running
FLEET on Rubin data and discovering interesting transients
as soon as the survey begins.
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Appendix

In Table 2, we list the TDEs used to train the FLEET
classifier. Only TDEs with at least two g-band and two r-band
points are included. We exclude AT 2019eve from our
classifier because even though it was originally classified as a
TDE (van Velzen et al. 2021), the classification has since been
retracted due to the uncertainty in its spectral features
(Hammerstein et al. 2023). Similarly, we exclude AT 2018dyk,
since it was reclassified from a TDE to a changing-look AGN
by Frederick et al. (2019).

Table 2
TDEs Used for Training FLEET

Name Redshift Reference Name Redshift Reference Name Redshift Reference

AT 2018bsi 0.0510 [1, 2] AT 2019meg 0.1520 [1, 3] AT 2020vwl 0.0350 [7]
AT 2018hco 0.0900 [1, 3] AT 2019mha 0.1480 [1, 3] AT 2020wey 0.0273 [1]
AT 2018hyz 0.0458 [1, 3, 19, 20] AT 2019qiz 0.0151 [1, 3, 23, 25] AT 2020ysg 0.2770 [1]
AT 2018iih 0.2120 [1, 3, 26] AT 2019teq 0.0878 [1] AT 2020zso 0.0610 [1, 24]
AT 2018jbv 0.3400 [1] AT 2019vcb 0.0890 [1] AT 2021ack 0.1330 [8]
AT 2018lna 0.0910 [1, 3] AT 2020ddv 0.1600 [1] AT 2021axu 0.1900 [9]
AT 2018lni 0.1380 [1] AT 2020mbq 0.0930 [1] AT 2021ehb 0.0170 [10]
AT 2018zr 0.0710 [1, 3, 26] AT 2020mot 0.0700 [1] AT 2021gje 0.3580 [11]
AT 2019azh 0.0223 [1, 3, 21] AT 2020neh 0.0620 [5] AT 2021jjm 0.1530 [12]
AT 2019bhf 0.1206 [1, 3] AT 2020nov 0.0840 [6] AT 2021jsg 0.1260 [13]
AT 2019cho 0.1930 [1, 3] AT 2020ocn 0.0700 [1] AT 2021mhg 0.0730 [14]
AT 2019dsg 0.0512 [1, 3, 22] AT 2020opy 0.1590 [1] AT 2021nwa 0.0470 [15]
AT 2019ehz 0.0740 [1, 3] AT 2020pj 0.0680 [1] AT 2021sdu 0.0590 [16]
AT 2019gte 0.0860 [4] AT 2020qhs 0.3450 [1] AT 2021uqv 0.1060 [17]
AT 2019lwu 0.1170 [1, 3] AT 2020riz 0.4350 [1] AT 2021yte 0.0530 [18]

Note. All TDEs used to train our classifiers, listed alphabetically. 1: Hammerstein et al. (2023); 2: van Velzen et al. (2021); 3: Nicholl et al. (2022); 4: Swann et al.
(2019); 5: Dahiwale & Fremling (2020a); 6: Dahiwale & Fremling (2020b); 7: Hammerstein et al. (2021d); 8: Hammerstein et al. (2021a); 9: Hammerstein et al.
(2021e); 10: Yao (2021a); 11: Hammerstein et al. (2021b); 12: Yao et al. (2021d); 13: Yao et al. (2021c); 14: Chu et al. (2021a); 15: Yao et al. (2021b); 16: Chu et al.
(2021b); 17: Yao (2021b); 18: Yao et al. (2021a); 19: Short et al. (2020); 20: Gomez et al. (2020c); 21: Liu et al. (2022); 22: Cannizzaro et al. (2021); 23: Hung et al.
(2021); 24: Wevers et al. (2022); 25: Nicholl et al. (2020), 26: Cao et al. (2022).
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