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ABSTRACT: The wide production and use of metallic nanoma-
terials (MNMs) leads to increased emissions into the aquatic
environments and induces high potential risks. Experimentally
evaluating the (eco)toxicity of MNMs is time-consuming and
expensive due to the multiple environmental factors, the
complexity of material properties, and the species diversity.
Machine learning (ML) models provide an option to deal with
heterogeneous data sets and complex relationships. The present
study established an in silico model based on a machine learning
properties-environmental conditions-multi species-toxicity predic-
tion model (ML-PEMST) that can be applied to predict the
toxicity of different MNMs toward multiple aquatic species.
Feature importance and interaction analysis based on the random
forest method indicated that exposure duration, illumination, primary size, and hydrodynamic diameter were the main factors
affecting the ecotoxicity of MNMs to a variety of aquatic organisms. Illumination was demonstrated to have the most interaction
with the other features. Moreover, incorporating additional detailed information on the ecological traits of the test species will allow
us to further optimize and improve the predictive performance of the model. This study provides a new approach for ecotoxicity
predictions for organisms in the aquatic environment and will help us to further explore exposure pathways and the risk assessment
of MNMs.
KEYWORDS: nanomaterials, toxicity, machine learning, prediction, exposure conditions, aquatic organisms

■ INTRODUCTION
Metallic nanomaterials (MNMs) are widely used in many
fields because of their outstanding physical and chemical
properties.1 The increasing applications of MNMs in industries
and society have caused a rapid growth of the production
volume of NMs,2 of which 80% are metals or metal oxides with
an annual production of approximately 242,000 tons.2,3 MNMs
released into the aquatic environment will pose risks to aquatic
organisms like fish, crustacean, algae, bacteria.4,5 The exposure
to MNMs has been proved to cause the growth inhibition of
algae,6 the immobilization and genotoxic effect of Daphnia
magna (D. magna),7 and the cytotoxicity of fish cells.8

Numerous studies proved that the toxicity varies with
properties such as size,9 shape,10 surface area, and surface
composition.11 Moreover, due to the complex properties of
different MNMs, a slight change in shape and size may
significantly affect their toxic effect in aquatic environment.12,13

Given the complexity of the aquatic environment and the
sophisticated properties of MNMs, laboratory experiments take
a long time and each tested condition can give different
response results,14,15 making process-based predictions chal-
lenging to the plethora of organisms present.16−18 It is essential

to develop in silico models to prioritize experimental testing
efforts to understand exposure and process-based toxicity as
well as to identify the main descriptors for toxicity which allow
for scenario modeling to predict MNMs toxicity for a variety of
organisms and environmental settings.

As a computational in silico modeling method, nano-
quantitative structure−activity relationships (nano-QSARs)
provide us with an insight of the relationships between
physicochemical properties of MNMs and their toxicity profile.
In the study of Mu et al.,3 relationships between 26
physicochemical properties of 51 metal oxide nanoparticles
(MeONPs) and their cytotoxic effects in Escherichia coli (E.
coli) were tested. The study showed that enthalpy of formation
of a gaseous cation (ΔHme+) and polarization force (Z/r) were

Special Issue: Data Science for Advancing Environ-
mental Science, Engineering, and Technology

Received: September 25, 2022
Revised: January 20, 2023
Accepted: January 20, 2023
Published: February 2, 2023

Articlepubs.acs.org/est

© 2023 American Chemical Society
17786

https://doi.org/10.1021/acs.est.2c07039
Environ. Sci. Technol. 2023, 57, 17786−17795

D
ow

nl
oa

de
d 

vi
a 

L
E

ID
E

N
 U

N
IV

 o
n 

Ja
nu

ar
y 

10
, 2

02
4 

at
 1

1:
19

:2
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yunchi+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Willie+Peijnenburg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martina+G.+Vijver"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Surendra+Balraadjsing"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenhong+Fan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenhong+Fan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.2c07039&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c07039?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c07039?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c07039?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c07039?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c07039?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.2c07039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf


important modulators to the toxicity of MeONPs. In another
study, nano-QSARs models were used to predict the
cytotoxicity of 17 MeONPs to E. coli. Linear regression
models were created and the R2-value reached 0.86 for the test
set.9 However, nano-QSARs models focused only on the
physicochemical properties of materials, ignoring other
significant factors that contribute to the toxicity mecha-
nism.19,20

Most importantly, the models built in previous studies
mainly focused on a single organism. Large ecological
differences between species result in significantly different
toxic effects following exposure to different substances. Ye et
al.21 reported that zinc oxide nanoparticles (ZnO NPs) were
less toxic to algae than to daphnids, and the EC50 values of
Danio rerio were more than 2 orders of magnitude higher than
the EC50 values of daphnids. This finding showed species at the
highest trophic level are among the least sensitive species.21

However, in another study, the acute toxicity of ZnO NPs to
various invertebrates and fish has been reported from 40 μg/L
to 58 mg/L. Therefore, it is necessary to reveal the sensitivity
of different species to MNMs in order to obtain a broader view
on species sensitivity to metallic nanomaterials. The main
challenge of developing a multispecies model lies in the
difficulty to find features which can describe the differences
between organisms, while at the same time being easy to be
encoded.

The coupled influence of multiple factors on nanotoxicity
calls for new in silico methods. As a newly developing robust
nonparametric approach, machine learning (ML) methods
provide an alternative to experimental approaches, especially as
ML methods are efficient in dealing with heterogeneous data
and in finding relationships between different complex
factors.22 ML methods can also be applied to follow the 3R
principles (Replacement, Reduction, Refinement).23,24 More-
over, with the help of analytical tools, important features and
their interaction with each other can be identified, thus giving
solid support to the risk assessment of MNMs.

The objective of this study was to develop a regression
model for aquatic toxicity prediction that takes into account
physicochemical properties of MNMs, environmental factors,
and different organisms with their own traits and exposure
conditions covering different trophic levels. To achieve this, we
(1) built a model of 14 different MNMs against 51 species
based on published data sets,25−27 (2) collected recently
published literature for the external validation, and (3)
analyzed the importance and interaction between physico-
chemical properties, environmental factors and species. The
model developed has the acronym ML-PEMST for a
properties−environmental conditions−multispecies-toxicity
prediction model. Based on the results of this study, we
outline the role of environmental factors and physicochemical
properties of MNMs on the toxicity. This in silico method is
proved to be effective for multi species toxicity prediction in
the aquatic environment and to provide guidance for risk
assessment of MNMs.

■ MATERIALS AND METHODS
Data Sets. Toxicity data of various species were collected

from three available databases, including Nano E-Tox25

(https://cfpub.epa.gov/ecotox/), the database reported by
Chen et al.,26 and the database reported by Bunmahotama et
al.27 Quantitative information on the toxicity of MNMs (these
include MeONPs) is collected in these databases from

published articles up to 16 September 2020. Given that the
descriptors are not identical for three databases, a selection of
the descriptors was performed to merge the data from different
sources (Text S1, Figure S1). The effective concentration
affecting 50% of individuals (EC50, in mg/L) was selected as
the acute toxicity endpoint, which was chosen as the label of
the model.

Four kinds of independent variables were collected to derive
the ML models: (1) seven nanospecific physicochemical
properties, i.e., primary size, hydrodynamic diameter, shape,
surface area, purity, dissolution (yes/no) and presence of
coating (yes/no); (2) the information on the species tested,
i.e., group of species and trophic level; (3) four characteristics
of the exposure conditions used during toxicity testing, i.e., zeta
potential, exposure duration, illumination and media; and (4)
seven molecular descriptors of MNMs, as proposed by Kar et
al.,28 i.e., molecular weight (MW), the number of metal atoms
of each molecular (Nmetal), the number of oxygen atoms of
each molecular (Moxygen) (for example, the Nmetal of Al2O3 is
two, and the Moxygen of Al2O3 is three), metal electronegativity
(χ), sum of metal electronegativity for an individual metal
oxide (∑χ), the charge of the metal cation (χox), and the sum
of metal electronegativity for an individual metal oxide divided
by the number of oxygen atoms present in a particular metal
oxide (∑χ/nO). These properties are simple to calculate but
critical for characterization of MNMs (Table S1).
Preprocessing Data. A series of data cleaning and

preprocessing tasks were performed to make our data set
suitable for modeling.

First, data with more than 33% missing values (that means
the data space is blank, or recorded as “#N/A”) were
eliminated because of their poor information content. Second,
for the numerical descriptors (diameter, size, surface area,
purity, zeta potential), values noted by range and possibilities
were replaced by mean values, and missing values of each
feature were filled by the corresponding mean value. Third, for
the characteristic values (i.e., dissolution, coating, shape,
media, species, illumination), digitization was performed to
make the data recognizable for the ML software. One-hot
encoding, a general encoding method that converts categorical
variables into binary vectors, was applied in order to convert
these features into numerical values. The data for illumination
were converted into the percentage of light during 24 h (Table
1). Finally, for the species, one-hot encoding is not suitable as
there are 51 different species, which together with the diversity
of NMs types will cause an unnecessary increase of data
dimension. Therefore, a biological grade index based on
trophic level was created as the indicator to classify different
species, as the trophic level often represents the relationship of
different species in the food chain and the accumulations of
NMs in highly trophic-grade organisms often increases by
feeding. Besides, unlike for fish, whose trophic levels are
measured precisely by experiments and available in “Fish-
base”,29 species like bacteria are grouped as primary producers
or consumers because they are at the bottom of food chain.
Therefore, the classification of bacteria is based on whether
they are autotrophic or heterotrophic.

Furthermore, in order to prevent the overcontribution and
biases, the normalization method was applied to certain
features before modeling (i.e., diameter, size, surface area,
purity, zeta potential) (eq 1)
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where xi is the ith feature value, μi is the mean value of the ith
feature, and σi is the standard deviation (SD) of the ith feature,
xi′ is the ith feature value after normalization.
Development of the Multispecies-Toxicity Prediction

Model Based on Machine Learning (ML-PEMST). Three
different supervised machine learning algorithms were applied
in the present study: random forest (RF), support vector
machine (SVM), and artificial neural network (ANN). Each of
these three algorithms has been shown to possess strong
abilities in classification and regression, and researchers often
use them for in silico pollutant toxicity prediction research.16,30

The RF algorithm shows good performance in classification
and regression tasks by constructing a multitude of decision
trees. In fact, it is widely used in silico modeling due to its
outstanding ability to deal with heterogeneous data and
resistance toward overfitting. The RF algorithm was applied to
study the cytotoxicity of MeONPs and showed good specificity
(75% for the training set) and accuracy.31 In the present study,
the RF model used 500 random decision trees, and at each
node five random features were selected.

SVM is good at handling high-dimensional problems; it
projects data as points into a high-dimensional space and then
searches for the hyperplane that can best separate the data
according to our needs.32 SVM has been used for the building
of a regression model for prediction of cytotoxicity of ZnO and
TiO2 nanoparticles.33 By choosing the appropriate kernel
function, SVM shows a high accuracy and also a resistance to
overfitting.34 In our research, the radial basis function (RBF)
was chosen as the kernel because it has a localized and finite
response along the entire x-axis.

ANN is a group of nodes which are interconnected and
divided by multiple layers (e.g., input layers, hidden layers), the

node of each layer works by receiving and processing signals
and sends the signals to the next layer. ANN is known for its
ability to process large and complex data; it has been used for
building QSAR models to predict the cytotoxicity of metal
oxide nanoparticles to Escherichia coli (E. coli).35

However, it is also worth noting that ANN is memory
intensive and easy to get overfitted, whereas the interpretability
of the results is also a shortcoming of ANN. In our model, 25%
of the data in the training set were split randomly as validation
data. “Adam” was used as the optimizer, the learning rate was
set to 0.1, 38 units in the hidden layers were adopted, and the
decay of learning rate was set as 0 to prevent overfitting during
the training.

The R2 value and root-mean-square error (RMSE) were
collected as the criteria for the goodness-of-fit of the model, as
a high R2 value and a small RMSE value indicate a credible
result. RF, SVM, and ANN modeling used in the present study
were all performed by Python 4.0, mainly using scikit-learn and
Keras packages.
Internal Validation. As a common tool of model

evaluation, the k-fold cross validation was used in order to
avoid the overfitting and to evaluate the performance of
model.36 In the present study, 10-fold cross validation was used
for internal validation of models, which means that 90% of the
samples in each subset were chosen as the training set and 10%
as the test set.11 20, 40, 60, 80, and 100% of the label values in
the training set were replaced by random values within the
original label range during each process of 10-fold cross-
validation. The corresponding cross-validation coefficients
(Q2) were used as indexes to see whether the model is
overfitted (eq 2)

= =

=
Q

y y

y y
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i
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(2)

where yi is the observed label value, ŷ is the predicted label
value, and y̅ is the average of the observed label values.

The permutation test, a method that uses the random
arrangement of sample data to make statistical inference, was
performed 10 times for each ratio, with 5 ratios in 10-fold
giving 500 Q2 values. Linear regressions were then performed
on the Q2 values and the correlation coefficients between the
original labels and the permutation labels. We can infer from
the intercept of the regression result on the y axis, i.e., if the
intercept is less than 0.05, that proves the model is not
overfitting.37

External Validation. A robust and reliable prediction
ability is based on good results of internal and external
validation.38 The validation set did not participate in the
construction of the model in order to ensure that the model
did not learn from these data. In order to further test the
performance of the model, an additional data set was collected
from recent published articles from 1 January 2020 to the
present using Web of Science, Pubmed, and Scopus’s advanced
search, with the search keywords: Nano AND Toxicity AND
Metal. The acquired articles were filtered by the following
rules: (I) the topic should relate to toxic effects of NMs on
aquatic species; (II) the materials should be metal or metal
oxide, and the basic material information needed to be
available; (III) the endpoint of toxicity should be EC50; (IV)
no duplicate data were allowed to be present in the test data
set and in the external validation data set. The feature selection
and data processing remain the same with the training and test

Table 1. Data Pretreatment Method

Feature Treatment method
Detailed

information

Missing
values

treatment

Diameter Normalization Z-score Mean value
filling

Size Normalization Z-score Mean value
filling

Surface area Normalization Z-score Mean value
filling

Purity Normalization Z-score Mean value
filling

Zeta potential Normalization Z-score Mean value
filling

Dissolution One-hot coding Soluble (1), not
soluble (0)

Filled by 2

Coating One-hot coding With coating (1),
without coating
(0)

Filled by 2

Shape One-hot coding Spherical shape
(1), other shape
(0)

Filled by 2

Media One-hot coding Seawater (1),
freshwater (0)

Filled by 2

Illumination Numericalization Proportion of light
during 24 h

Species (fish) Classified by
trophic levels

Data according to
“Fishbase”

Species (plants,
crustacean, bacteria
and others)

Classified by
feeding types

Autotrophic (1),
heterotrophic
(2)
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data set. The external validation data set is visualized and
arranged in descending order of size in Figure S2.

The externally validated determination coefficient (Qext
2 ) and

the root mean square error of prediction (RMSEext) were used
to evaluate the model performance (eq 3), and a small value of
RMSEext indicates a good performance of model in external
validation39

= = y y

m
RMSE

( )
ext

i
m

i1
2

(3)

where yi is the observed label value, ŷ is the predicted label
value, and m is the amount of data in the validation set.
Feature Selection and Importance Analysis. To fully

understand the model and improve its interpretability, feature
analysis is an indispensable step to find which features have a
bigger influence on the toxicity of MNMs. The importance of
features is usually evaluated by importance ranking in the RF
model.40 In the present study, a combination of four indicators,
including mean minimal depth, P value, node purity increase,
and MSE increase, were adopted to avoid the bias caused by a
single indicator. The mean minimal depth focuses on the
structure of the random forest. During training, at each node
the feature which contributed the most to the overall split
among the five was retained at the node. This means that a
smaller depth represents more importance.41 The P value is
based on the one-sided binomial test to evaluate the
significance of feature importance, and a small value of P
indicates that it is less likely to observe an extreme value under
the null hypothesis.42 Node purity increase looks at the
changes in node purity after splits on the variable,43 while the
MSE increase is based on the decrease in predictive accuracy of
the forest after perturbation of the variable.44 If all the four
indicators show that a feature is important, then we recognize
the importance of that feature. The feature importance analysis
was conducted by R 4.1.2, with the help of the “randomForest”
and “randomForestExplainer” packages. The model and the
analysis of the result are based on the software proposed by Yu
et al.11

■ RESULTS AND DISCUSSION
Description and Pretreatment of Data. After selection

and screening, we obtained a total of 684 samples for 14
different MNMs including nine metal oxide nanoparticles and
five metallic nanoparticles. The set contained 19 features for
four classes; i.e., nanospecific physicochemical properties,
information on the species tested, exposure conditions,
molecular descriptors, and corresponding toxicity data were
obtained (Table 2). Overall, this comprehensively covers the
main information in the toxicity analysis.

The distribution of 13 numeric variables was described by
mathematical statistics (mean, SD, median, and distribution
range), while the six characteristic variables (type, coating,
media, species, shape, and dissolution) were described by the
reported frequency, which was visualized and arranged in
descending order of size in Figure 1A. As we can infer from
Figure 1A, the heterogeneity of the toxicity analysis data set
was mainly caused by MNMs diversity and species tested. The
primary size of the particles ranges from 1 to 300 nm, and the
surface area ranges from 4 to 325 m2/g. Among the
characteristic variables, “coating”, “shape”, and “dissolution”
have the most missing values, which may allow the model to
misestimate their importance. For example, for the coating,
61% of the MNMs were noted as value missed. Therefore, one-
hot encoding of these discrete NMs types was performed to
reduce biases caused by their imbalance.

Fifty-one species were included in our data set. Among
them, bacteria account for 19%, algae and plant accounted for
15%, fish accounted for 6%, and other species accounted for
7%. The database included 53% crustacean data, of which D.
magna accounted for 43% of the full data set. Their results in
toxicity varied from 0.2 μg/L to (note of authors almost
unrealistic high) 5000 mg/L in our data set (Figure 1B). From
the perspective of MNMs, it is noticed that titanium dioxide
nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs)
accounted for 24.7% and 29.6% of the data in the toxicity data
set. The range of EC50 values for TiO2NPs and AgNPs with
different properties to different species varies from 0.01 mg/L
to 5000 mg/L and 0.02 μg/L to 571 mg/L, respectively.

The toxicity distribution of species for different MNMs is
visualized in Figure 1C, and the AgNPs showed in general the
lowest EC50 values for species marked by 2 and ≥3, which
indicates that AgNPs are more toxic for aquatic organisms than
other MNMs. The reason for the high toxicity of AgNPs is
closely related to its surface oxidation, release of silver ions,
and interaction with biological macromolecules.45 The Fe
shows low toxicity for species marked by 2; it is unusual
because Fe is very reactive in the water. The reason could be
attributed to the change of morphology of Fe in the water.
Generally, the toxicity thresholds for species marked by 1
(algae) and 2 (mainly crustacean and bacteria) are less than for
other species, which means that these species are more
sensitive to MNMs in the aquatic environment. Various
reasons can be found for this; e.g., it is likely that these
organisms adsorb relatively a lot because of their large
membrane surface area compared to their body volume and/
or the fact that bacteria and algae have a worst case exposure
because they are mixed with the NMs in a shaking exposure
setting in the lab,46 and thus stochastic exposure will give them
higher uptake for a daphnia that is swimming but with a static
exposure in the lab.47 In addition, the AgNPs, TiO2NPs, and
ZnONPs showed the largest variation in EC50 values; the
reason is not only their large proportion in the data set but also
the impact of environmental factors, different species, and
materials.
Development of ML-PEMST Models. Three ML models

were used all with assumptions that they take all features into
consideration and search for several important features for
various MNMs at the same time. The (PEMST) prediction
model of MNMs was developed using RF, SVM, and ANN
methods, respectively. The results of all models show a good fit
to the data (all values of R2 > 0.7, Figure 2A). RF has a better
performance (R2 = 0.82 ± 0.04) than SVM (R2 = 0.75 ± 0.05)

Table 2. Selected Features for Model Building in Order of
Importance

Categories Features

Nanospecific
physicochemical
properties

Size, surface area, shape, coating, purity

Species information Biological index based on trophic level
Exposure condition Duration, hydrodynamic diameter, illumination,

zeta potential, dissolution, media
Molecular descriptor χ, ∑χ/nO, χox, MW, Moxygen, ∑χ, Nmetal
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and ANN (R2 = 0.74 ± 0.06). In addition, the predictive
performance of the RF model indicates that the difference
between the observed value and the predicted value is small, as
most of the data lie in the range of ± RMSE (Figure 2B).

The good performance of RF in nanotoxicity prediction is
not an isolated phenomenon. The RF model also achieved
better performance than CORAL models in the prediction of
in vitro cytotoxicity of silica nanoparticles.48 Moreover, Mirzaei

Figure 1. Descriptive statistics of the modeling data set. (A) Visualization of the distribution of the raw data set using the “tabplot” package in R
software. (B) Distribution of species in the data set using the “highcharts” platform (https://www.hcharts.cn). (C) Toxicity distribution of
biological indexes for different MNMs, in which the biological indexes (1, 2, and 3) mean the trophic level of test organisms in the data set.

Figure 2. ML-PEMST modeling. (A) R2 distribution of the RF, SVM and ANN regression (10-fold ShuffleSplit cross-validation). (B) Prediction
performance of toxicity concentration using RF models. The slope of the solid lines is 1, and the dotted lines represent the intercepts ± RMSE.
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et al.49 also reported in their study that an RF model exhibited
the lowest error and the highest R2 score compared to other
methods (i.e., SVM, Elastic Net Regression, Ridge Regression).
The reason might be that the RF method is better at
determining nonlinear relationships and at handling numeric
and categorical data simultaneously. Therefore, RF could be
considered as a better approach when dealing with similar
problems in the future.

A reliable prediction can be generated only from models that
have been validated internally and externally.38 Cross-
validation and value shuffling were performed as internal
validation to clarify that the model did not overfit and that the
features provided useful information. The result of permuta-
tion test showed that the intercept of the regression result on
the y axis was less than 0.05 (Figure 3A), meaning that the
model did not overfit.50 Furthermore, the performance after
feature values shuffling indicated that the prediction was totally
disturbed, which proved the credibility of the model (Figure
3B). Aside from internal validation, a new external validation
data set was built to evaluate the accuracy and robustness of
the model. The results indicated that the RF model achieved a
great performance on the external validation set (Qext

2 = 0.87,
RMSEext = 0.3). 95% of the difference between observed and
measured values was within 1 order of magnitude (Figure 3C).
The results of internal and external validation illustrated that
the RF-based PEMST model is robust and sufficiently reliable
to be used for further toxicity data prediction studies of aquatic
species.
Features Importance Analysis. Based on the results of

the RF model, multiple indicators, including MSE increase,

node purity increase, P value and mean minimal depth, were
applied together to evaluate the importance of features in order
to avoid the biases (Figure 4). The result given by the MSE
increase in Figure 4A shows that test duration, particle
diameter, electronegativity, and size make up the first echelon.

The physicochemical properties of MNMs have been proven
to be crucial to the toxicity mechanism, which is in line with
previous research findings.49,51, Notably, in our study the
hydrodynamic diameter and primary size of MNMs show
similar higher importance for different indicators.52 The
hydrodynamic diameter was found to be more important
than primary size, as it reflects the actual size of MNMs in the
media when they interact with a test organism.53

Figure 4B suggests that environmental factors may have a
significant impact in MNM toxicity prediction. The primary
role of duration seems to be reasonable, as a longer exposure
time will definitely cause more damage to a test organism at
the same chemical concentration. Moreover, the importance of
exposure duration was already confirmed by Choi et al.16 In
fact, exposure duration has been demonstrated to correlate
directly with toxicity, such as Connell et al.54 have proposed by
means of the Reduced Life Expectancy (RLE) model, which
describes a negative correlation between exposure duration and
LC50. With regard to the environmental factors, it is worth
noting that the illumination appeared most frequently near the
roots of the model than any of the other features. There are
several research projects that have investigated the relation
between illumination and toxicity of MNMs. For example,
Yang et al.17 have reported that the LC50 of TiO2 NPs to
zebrafish was lower under simulated sunlight illumination than

Figure 3. Validation of the RF model. (A) Permutation test for overfitting. The X-axis represents the correlation coefficients of the raw label values
and the permutated label values, and the Y-axis represents the Q2 values. The permutation test results showed that the model did not overfitting
(intercept less than 0.05). (B) Feature value shuffling. The model loses its ability of prediction after feature value shuffling. (C) Prediction
performance of the model on external validation set. The slope of the solid line is 1, and the dotted lines represent the intercepts ± RMSE.
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in the dark. Mittelman et al.18 have proven that the exposure to
ultraviolet (UV) light will significantly enhance AgNPs
retention and dissolution, which is crucial to the toxicity
activities of AgNPs. Souza et al.55 have also reported that
visible light will increase the aggregation of uncoated AgNPs
and polyvinylpyrrolidone (PVP) coated AgNPs, thus reducing
their toxicity. The reason could be the UV irradiation
disturbed electrons at the surface of AgNPs, in turn driving
dipole−dipole interactions and the formation of aggregates,
these same surface energy phenomena also disturb the
equilibrium of silver in the oxide layer, leading to enhanced
silver dissolution.18

The electronegativity was considered to be important
according to the MSE increase and the node purity increase.
However, electronegativity was not found to be the main factor
in the toxicity models since its P value exceeds 0.1, meaning
that its importance was not statistically significant (Figure 4C),
which is consistent with our previous study.56 Moreover,
combining different indicators together overcomes the biases
caused by a single indicator and identifies that the
physicochemical properties of MNMs and the exposure
conditions are both important for the toxicity assessment.
These features are thus of crucial importance for experimen-
talists when they report their findings.

It is noticeable that dissolution is not considered as very
important in the results, given that we know the most toxic
MNMs are those that release ions. The reason can be
attributed to the quality of the original data set and the binary

representation: the large amount of missing data makes the
model underestimate the importance of dissolution. Also, the
method for noting dissolution data is mixed by percentage and
mass/volume, making it difficult to unify them. Therefore,
binary was applied to convert dissolution, which may cause a
loss of information. For the coating, the problem is similar; the
missing value and binary make the model unable to recognize
the importance of coating correctly. A better approach for
dealing these data, such as unifying the record of dissolution,
and classifying the different coatings by their functions, is
needed for data preprocessing in the future.

The aquatic test species in our model was found not to be
crucial for prediction of MNM toxicity. This was surprising
(and unexpected) to us, and we try to unravel here some
reasoning for this finding. First of all, compared to the trophic
levels, it is more difficult to know what the organisms eat and
their feeding behavior, which does make the trophic levels not
descriptive enough to explain the exposure pathway. Second,
the single feature does not fully reveal the difference between
species. It has been proved that the responses of micro-
crustaceans to MNMs also rely on their morphology (body size
and shape), ecological traits (feeding mechanisms, life cycles),
and intrinsic sentitivities.57

Although the method of coding species information can still
be optimized here, but it does reveal the difference of
sensitivity between different trophic levels. To confirm this
conclusion, there are still work to do in further research. For
example, more detailed trait information, such as surface area-

Figure 4. Feature importance analysis of model. (A) Importance rank of different descriptors. The X-axis represents the importance coefficients
measured by MSE increase, and the Y-axis displays the model features. (B) Distribution of the features’ mean minimal depth, in which illumination,
exposure duration, and primary size are closer to the rood of the trees than other features. (C) Multiway feature importance analysis of model,
combining the MSE increase, node purity increase, and P values of the features.
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to-body length, body size and weight, life-span, cell
membranes, mode of internalizing the MNMs, etc., which
have been proven to be linked with species sensitivity,58 need
to be collected and considered. In addition, the development
of new descriptors that can fully reveal the difference between
species with regard to toxicity mechanism is urgently needed
for multispecies modeling work.

Finally, the unbalanced structure of the data set may weaken
its representativeness, as 77% of the species are marked by two,
within which D. magna makes a large contribution (accounted
for 43% of the whole data set). To optimize the predictive
power of models and make them representative for a larger
variety of organisms, we look for more experimental data that
fits the trait category “1” and “3”.
Feature Interaction analysis. Understanding how the

features in our models interact with each other is critical for
identifying the toxicity mechanisms of MNMs. The conditional
minimal depth was applied to further explore the order of the
interaction strength between features (Figure S3). The
strongest four feature interaction relationships occur between
those that are already important; i.e., illumination interacts
with exposure duration, hydrodynamic diameter, primary size,
and zeta potential. These four relationships are displayed by a
double-variable partial dependence analysis (Figure S4). The
results indicated that environmental factors change the
morphology of MNMs present in water. Although the specific
effects of illumination on MNMs toxicity still need a case-by-
case investigation, Yang et al. have reported that the increase of
illumination time will enhance the toxicity of TiO2NPs.17 The
mechanism of this relationship can be attributed to the
production of ROS by photoinduced electron hole pairs: the
holes lead to abstraction of electrons from water and hydroxyl
anions to form hydroxyl radicals (•OH) whereas the electrons
react with molecular oxygen to produce superoxide anions
(O2

•−).59 Moreover, the interaction between zeta potential and
illumination is also worth noting in future toxicity assessments,
as Mittelman et al. reported a 10−15 mV increase in zeta
potential and a 5-fold increase in diameter of Ag particles after
a 3-day UV exposure.18 The mechanism could be that the UV
irradiation disturbed electrons at the particle surface, thus
driving dipole−dipole interaction,60 and the zeta potential’s
variation will further affect the toxicity. As reported by
Nedyalkova et al. there is a negative correlation between zeta
potential and its toxicity for AgNPs in an aquatic environ-
ment.61

Implications and Future Recommendations. In this
study, three ML regression models, i.e., RF, SVM, and ANN
models, were built to investigate the ecotoxicity of MNMs to
various species in the aquatic environment. During the
selection of features, we tried to strike a balance between the
selection of representative features and the feasibility of
modeling. The RF model gives results which are consistent
with the experiments, further improves the interpretability of
ML, and discovers hidden feature interactions that are difficult
to discover by means of other ML methods (e.g., SVM and
ANN). However, when we apply multiple ML approaches, the
consensus prediction is worth trying because it overcomes the
limit caused by one single algorithm and provides more
accurate prediction results. The exposure duration and the
hydrodynamic diameter of the particles were considered to
play a critical role, and the specific role of illumination was also
discussed. It was concluded that parameters related to
exposure pathway are important to consider; more detailed

traits of the parameters on how organisms deal with
internalized MNMs were not accounted for because of a lack
of data and scientific knowledge on that. It is, however, most
likely that behavior of MNMs within organism’s bodies,
biodistribution dynamics, and effect targets will be information
that allows optimization on predictive power for those models.

It is important to acknowledge that the different experiments
reported in the database follow different guidelines, resulting in
inconsistent and incomplete data, as reflected in the model by
a large amount of missing data. Therefore, better approaches
should be developed to deal with missing data, such as the k-
nearest neighbors (KNN) approach. Also, the unbalanced
structure of the data set affects the accuracy of prediction. For
example, TiO2NPs and AgNPs accounted for more than half of
the data set in our data set, and all these particles are sensitive
to the light conditions. The importance of illumination could
thus be overestimated, and a more balanced data set is needed
to make the model more representative.

The last consideration is the applicability domain (AD),
which defines the ranges within which the model can make
reliable predictions.62,63 In our model, 14 different metal/metal
oxide were studied against 51 different species. According to
the results of external validation, when the model meets new
material and/or new species, it cannot make reliable
predictions. Therefore, a well-defined AD is needed to make
the model predictions more reliable.

Nonetheless, in general, the ML-PEMST model provides a
new approach to handle the problem of multiple species and
take environmental factors into account. This will help us to
further explore the mechanisms of ecotoxicity of MNMs in the
aquatic environment and to provide guidance for their risk
assessment.
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