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Quantitative modeling with mixed-effect models has been increasingly applied in phar-
maceutical research. It allows quantitative description and prediction of pharmacokinetics 
(PK) and pharmacodynamics (PD) of therapeutic agents, as well as to quantify and explain 
inter- and intra- individual variability. In oncology research, the model-based approach can 
be applied to make use of longitudinal data to learn about the interaction between drug 
treatment and the human body, as well as cancer progression. The developed model can 
subsequently support the identification of the optimal regimen and facilitate individual-
ized treatment. 

In cancer treatment, the occurrence of treatment resistance is one of the major causes of 
treatment failure in patients. An insight into the inter- and intra-tumor heterogeneity and 
evolutionary dynamics of tumors, and subsequent use of this knowledge for designing 
treatment strategies would be beneficial for optimizing targeted anti-cancer treatment. In 
Section I of this thesis, we applied the model-based approach to specifically interpret tumor 
size dynamics and evolutionary resistance development during treatment, and explored 
optimal regimens that can better suppress the development of resistance. 

In order to identify opportunities and challenges of quantitatively characterizing anti-
cancer treatment response accounting for tumor dynamics and evolutionary resistance 
development, an overview of currently available model structures is needed. In chapter 
2, we performed a systematic search and comprehensively summarized the mathematical 
models that have been used to describe and predict tumor growth (inhibition) dynamics 
and evolutionary resistance development. We particularly focused on models that are 
applicable to clinical data. In this review, tumor dynamic models displayed by ordinary 
differential equations, algebraic equations, and partial differential equations were identified 
and summarized. Tumor proliferation, regression due to treatment, tumor heterogeneity 
and treatment resistance are key elements that are commonly considered in those models. 
The dynamics of biomarkers can also be incorporated which enables better understanding 
and prediction of tumor progression. As for models for evolutionary tumor resistance, 
stochastic and deterministic models were identified and summarized. The required data 
and knowledge as well as the applicability of the models to different cancer types and 
treatment options were also summarized. The results of this review may facilitate a novel 
model-based analysis of anti-cancer treatment response and the occurrence of resistance, 
which incorporates both tumor dynamics and evolutionary resistance development.   

Among the studies included in this review, detailed data regarding evolutionary resistance 
has not yet been incorporated in tumor size-based modeling of anti-cancer treatment 
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response. Given that genetic biomarkers, such as circulating tumor DNA (ctDNA), become 
increasingly available, there is an opportunity to make use of such data to support the 
development of a tumor dynamics model that accounts for evolutionary resistance for 
cancer patients. The developed model could subsequently support the optimization and 
personalization of anti-cancer therapy with simulations. 

In order to test this concept, in chapter 3, a mathematical model incorporating various 
clonal populations and evolving cancer resistance was developed to characterize tumor size 
dynamics and resistance development under treatment. With parameter values fitted to the 
data or informed by literature data, the model well captured previously reported tumor sizes 
and mutant KRAS levels in ctDNA of patients with metastatic colorectal cancer (mCRC) 
treated with panitumumab. Subsequently, we evaluated anti-cancer treatment schedules 
the design of which considered the evolving progression of tumor and demonstrated the 
use of ctDNA as a marker to guide adaptive treatment. The simulation results indicated 
that compared with a conventional continuous treatment schedule, intermittent schedules 
with treatment holidays and adaptive schedules guided by ctDNA could better suppress the 
evolving cancer resistance. Intermittent and adaptive schedules were also predicted to result 
in improved clinical outcomes, i.e. the predicted median progression-free survival (PFS) 
and time period in which the tumor size stayed below the baseline level were prolonged. 
With the sensitivity analysis, we identified parameters of which the accurate estimation is 
important for the model to capture the observed dynamics of tumor sizes and mutation 
concentrations. Nevertheless, the intermittent and adaptive treatment still provided better 
treatment outcomes when parameter values varied. 

In chapter 4, we further characterized the tumor dynamics considering intra-tumor hetero-
geneity and explored the correlation between ctDNA measurements and tumor dynamics 
parameters based on data from non-small cell lung cancer (NSCLC) patients treated with 
erlotinib. The study included intensively sampled erlotinib PK curves from 29 patients, and 
tumor sizes, ctDNA measurements, and sparsely sampled erlotinib concentrations from 18 
patients from the START-TKI study. A population PK model of erlotinib was first developed 
and subsequently applied to investigate the exposure-tumor dynamics relationship. To 
characterize the tumor dynamics, models accounting for intra-tumor heterogeneity and 
acquired resistance with or without a pre-existing resistance component were investigated. 
Eventually, a model with acquired resistance only resulted in an adequate fit to the data. 
Additionally, no significant exposure-response relationship for erlotinib was identified 
within the observed exposure range. Subsequently, the correlation of baseline ctDNA 
measurements on EGFR and TP53 variants with tumor dynamics parameters was explored. 
The analysis indicated that higher baseline plasma EGFR mutation levels correlated with 
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increased tumor growth rates, and the inclusion of ctDNA data improved model fit. This 
result suggests that quantitative ctDNA measurements have the potential to be a predictor 
of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker. 

Since high PK/PD variabilities of anti-cancer drugs are present in real-world patients 
which may result in unfavorable treatment outcomes, a better understanding of such 
variabilities would be beneficial to improve anti-cancer therapy for individual patients. In 
Section II of this thesis, we demonstrated the application of pharmacometric modeling in 
characterizing the PK/PD profiles and variabilities of anti-cancer drugs, and in supporting 
precision treatment for real-world patients. We first introduced model-informed precision 
dosing (MIPD) and the current application and benefit of MIPD in supporting optimal 
and precision anti-cancer treatment in chapter 5. MIPD adopts pharmacometric models 
to guide precision dose selection aiming for improved therapeutic target attainment and 
optimal treatment outcome. MIPD can be applied to rationally guide initial dose selection 
and dose adaptation during anti-cancer treatment, as well as therapeutic drug monitoring 
(TDM). The advantage of MIPD over conventional strategies in cancer treatment has 
been demonstrated in many research and clinical trials. However, challenges still have to 
be overcome to implement MIPD of cancer therapies in clinical practice. We highlighted 
a few challenges and provided future perspectives regarding optimal target identification, 
suitable model selection, available programs, and the necessity of prospective clinical trials. 

In chapter 6, we performed a population PK analysis to characterize and predict mitotane 
PK in patients with adrenocortical carcinoma (ACC). Additionally, we explored and 
quantified the potential effect of pharmacogenetic variations on mitotane clearance for 
the first time to better explain the PK variability of mitotane. A two-compartment PK 
model was developed based on retrospectively collected data from 48 patients. For each 
patient, the genotyping results of 172 SNPs from the DMETTM platform were included in 
the analysis. The exploratory analysis identified 11 SNPs that were potentially related to 
mitotane clearance. The final stepwise covariate analysis identified the lean body weight 
(LBW), genotypes of CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358), and 
SLCO1B1 571T>C (rs4149057) as significant covariates on mitotane clearance (CL/F). 
This suggests that enzyme CYP2C19 and transporter SLCO1B1 and SLCO1B3 may play 
roles in mitotane disposition but further external or in vitro evaluation is warranted to 
confirm the results. Based on the developed model, various dosing regimens and the TDM 
process were simulated to investigate optimal and individualized mitotane regimens for 
patients with ACC. The results indicated that determining the starting dose individually 
with the developed model is beneficial to shorten the period for mitotane to reach the 
therapeutic target and limit the risk of toxicity. Regimens that can effectively maintain 
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mitotane concentration within its therapeutic range, i.e., 14–20 mg/L, were established. 
One optimal regimen was then built in a Shiny app to elucidate an option of providing 
treatment advice for a new patient based on the model.  

In chapter 7, we performed a population PK analysis on high-dose methotrexate (HD-MTX) 
in patients with central nervous system (CNS) lymphoma. Data from 110 patients from 3 
medical centers were available in this study. A two-compartment population PK model was 
developed and shown to adequately describe the PK data. Estimated glomerular filtration 
rate (eGFR), treatment schedule, albumin, alkaline phosphatase, and body weight were 
identified as significant covariates. The results suggest that adjusting the HD-MTX dose 
with a model-based approach may be more rational to further reduce PK variability than 
dosing only based on body surface area (BSA). Subsequently, a (exposure-)toxicity analysis 
was performed to identify predictive factors for acute renal and liver toxicity. eGFR and 
sex were identified to be significant baseline predictors for renal toxicity, and HD-MTX 
dose (mg/m2) was the strongest baseline predictor of liver toxicity. Simulation results 
suggest that starting HD-MTX when eGFR > 66.6 mL/min/1.73m2 is recommended for 
patients with CNS lymphoma, and a dose higher than 3500 mg/m2 predicted a high risk of 
liver toxicity. The exposure metrics of methotrexate (MTX) including the area under the 
concentration-time curve (AUC24-∞) and concentration at 24 hours (C24h) were identified 
to correlate with renal toxicity but not with liver toxicity. AUC24-∞ > 109.5 μmol/L*h and 
C24h > 8.64 μmol/L were suggested to be potential exposure thresholds that predict a high 
risk of toxicity. These findings would be beneficial for further individualizing HD-MTX 
dosage and preventing acute organ toxicity, which can improve HD-MTX therapy in CNS 
lymphoma patients. 

Finally, in chapter 8, we discussed the results of this thesis and potential challenges and 
perspectives for future studies. We have shown that with the quantitative models, the 
evolutionary progression of tumor can be characterized and predicted, accounting for 
interactions among heterogeneous tumor cells and supported by mutant gene variants 
detected in ctDNA. In addition, population PK/PD modeling allows for a quantitative 
description of the PK and PD of anti-cancer drugs at both population and individual 
levels. The developed model can further facilitate the identification of optimal treatment 
designs and guide individualized treatment rationally for oncology patients. However, 
challenges still remain for data collection (especially for ctDNA data), model develop-
ment and validation, and results implementation (including suggested regimens and the 
models). Further research is warranted to validate the findings and support better practice 
of personalized treatment.


