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Introduction 

Although anti-cancer treatments have significantly advanced over the past decades, 
obstacles to accomplishing successful treatment still exist. The occurrence of treatment 
resistance is one of the major factors that limit the long-lasting efficacy of anti-cancer 
therapies [1, 2]. Evolutionary mechanisms are increasingly acknowledged as key factors that 
contribute to the occurrence of treatment resistance [2-5]. A better characterization and 
understanding of evolutionary tumor progression, and subsequent use of this knowledge 
to design new treatment regimens would increase the chance to suppress the develop-
ment of cancer treatment resistance. Another important factor that challenges successful 
treatment is the substantial variability in pharmacokinetics (PK) / pharmacodynamics (PD) 
of anti-cancer drugs, which is especially frequently observed in real-world patients. This 
can result in suboptimal treatment outcomes for part of the patients especially when the 
therapeutic window is narrow [6, 7]. Moreover, the typically applied maximum tolerated 
dose (MTD) paradigm in cancer treatment may not be optimal for real-world patients due 
to high risk of toxicity [8]. These factors highlight the need to gain more insight into the 
PK/PD profiles and variability of anti-cancer drugs in real-world patients, and to further 
develop optimized and individualized treatment regimens. 

Quantitative modeling with mixed-effect models is widely applied in pharmaceutical 
research which enables quantitative characterization and prediction of the PK and PD 
of therapeutic agents. It also allows quantifying inter- and intra-individual variability 
and identify covariates that explain the variability [9, 10]. With a Bayesian framework, 
individual parameters can be obtained based on prior knowledge from the model and 
patient characteristics and data, which can be used to capture and predict individual PK/
PD characteristics [7]. In oncology research, the model-based approach is a helpful tool 
to make use of longitudinal data, such as drug concentrations, tumor burden, and other 
PD biomarkers, to gain knowledge about the interaction between drug treatment and 
the human body, as well as cancer progression. This knowledge and developed models 
can subsequently support the identification of optimal therapeutic regimens and guide 
individualized treatment rationally (model-informed precision dosing, MIPD) [7, 11, 12].    

The studies presented in this thesis applied quantitative modeling approaches to charac-
terize the evolutionary tumor progression and PK/PD of anti-cancer drugs. The developed 
models were subsequently applied to evaluate and develop optimal and individualized 
regimens for oncology patients.
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Better understanding of evolutionary tumor progression      

Intra-tumor heterogeneity 
Intra-tumor heterogeneity, which suggests distinct cells exist in the same tumor, is 
considered to be one of the main factors that drive the evolving adaptation of cancer to 
treatment. Capturing intra-tumor heterogeneity is therefore of importance for a better 
understanding of evolutionary treatment resistance. As summarized in chapter 2, various 
kinds of quantitative models have been applied to describe and predict tumor dynamics 
and resistance evolution in cancer patients. Among the reported tumor dynamics models, 
intra-tumor heterogeneity has been considered when describing tumor regrowth by 
separating the tumor into components consisting of cells that are sensitive or resistant to 
therapy. The interaction between sensitive and resistant cells is also the cornerstone for 
the models that characterize the evolutionary development of drug resistance.

In the studies in section I, intra-tumor heterogeneity has served as a key element in the 
applied models to support the understanding of evolving tumor progression. The presence 
of pre-existing resistant components (primary resistance) and/or acquired resistance and 
their interaction have also been frequently discussed. In chapter 3, a model that accounted 
for various clonal populations was developed and it well captured the tumor sizes and 
mutant KRAS levels in circulating tumor DNA (ctDNA) versus time curves from patients 
with metastatic colorectal cancer (mCRC). In addition to the clonal populations that are 
sensitive or resistant to the original treatment, a hypothetical third clonal population was 
also introduced in the model to describe tumor response to multiple treatments. The 
same structure was also applied to characterize the dynamics of tumor sizes and ctDNA 
measurements in non-small cell lung cancer (NSCLC) patients. The inclusion of primary 
or acquired resistance in this study was supported by the detected mutation in ctDNA, 
which was suggested to be a mediator of acquired resistance [13, 14]. The model therefore 
included acquired resistance, and primary resistance was only considered for patients with 
detectable KRAS mutation pre-treatment. The developed model allowed us to capture 
not only the dynamics of total tumor size but also that of sub-clones in the tumor, which 
reflects the evolutionary progression of the tumor.  

The study presented in chapter 4 further characterized the tumor dynamics in NSCLC 
patients treated with erlotinib while considering tumor heterogeneity. In this study, we 
explored models with or without primary resistance while including an acquired resist-
ance for both. The results indicated that the model assuming no primary resistance could 
adequately fit the obtained data, and estimating primary resistance did not improve the 
model fit. This might indicate that for NSCLC patients with an activating EGFR mutation, 



General discussion   

225

8

it is mainly the acquired resistance, which was due to the acquisition of EGFR p.T790M 
mutation or other mechanisms, that limits the treatment response. Among previously 
reported model-based studies on tumor size dynamics in NSCLC patients treated with 
erlotinib, one study also considered tumor heterogeneity [15]. Their results also showed 
that the models with or without primary resistance could describe the data equally well 
even though erlotinib was used as a second-line treatment in their study [15]. 

In fact, studies on the probability of having resistance at the start of treatment have been 
performed. They demonstrated that such probability increased as tumor burden increased 
and it could reach up to > 90% [16, 17]. The study that provided the original data for 
chapter 3 also suggested that drug resistance is likely to be present prior to the initiation 
of anti-cancer drug treatment [13]. Yet, the estimated baseline size of the resistance clonal 
population only accounted for a small part of the total tumor cell population [13]. In 
chapter 4, the estimated baseline size of primary resistance accounted for a small propor-
tion (5.9%) of the baseline tumor size. Therefore, although resistance may be present prior 
to the treatment, considering the small proportion and the complexity of the model, the 
primary resistance has been omitted in the models used in our studies. In addition, the 
data of genetic biomarkers is believed to be viable evidence to support the differentiation 
of heterogeneous components in the tumor when modeling tumor dynamics considering 
tumor-heterogeneity [18]. 

Interaction among clonal populations and treatment  	   
In addition to intra-tumor heterogeneity, capturing the interaction among clonal 
populations in the tumor and anti-cancer drug treatment is also a cornerstone when 
describing evolving development of resistance in tumor. We have addressed such interaction 
by accounting for the differences in proliferation rates of tumor cells, the response of 
tumor cells to the therapy, and the transition between sensitive and resistant tumor cells 
in response to treatment. 

In order to obtain resistance to treatment, tumor may give up some proliferation capability, 
which is represented by a fitness cost [19]. Due to this fitness cost, the proliferation rate of 
the resistant clonal population can be lower than that of the sensitive clonal population [19, 
20]. In chapter 3, we adopted this concept and assumed that the growth rate of resistant 
cells was 70% of the sensitive cells. In chapter 4, we have also estimated separate growth 
rates for different cell populations during model development. The estimated growth 
rate of sensitive cells was 2.19 fold higher than that of the resistant cells. However, the 
high relative standard error (RES) (104%) indicated a high uncertainty in the estimation. 
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Therefore, the growth rates of treatment sensitive and resistant clonal populations were 
eventually set to be the same in this study. This lack of identifiability of separate growth 
rates is considered to be caused by the limited amount of data. 

The response of tumor cells to the therapy has been mainly addressed by adding a regres-
sion term on drug susceptible tumor cells. In chapter 3, we have included treatment effect 
with a drug-dependent regression term. This is due to the lack of data on drug exposure 
or dose in this study. In the meantime, the trough concentrations of the used monoclonal 
antibody therapy have shown to be able to reach above 90% of the saturation levels at 
standard treatment regimens, suggesting almost a maximum effect in all patients [21]. 
However, for other molecules the exposure of which correlates to response, such as tyrosine 
kinase inhibitors (TKIs), drug levels are important to be included in the analysis. This 
would be beneficial for the understanding the exposure-response relationship and how 
drug exposure is driving the evolutionary progression of tumor. Therefore, we explored a 
model that incorporated exposure-dependent treatment effect in chapter 4. However, we 
did not identify a clear exposure-tumor inhibition relationship within the studied concen-
tration range (the median predicted drug concentrations at the tumor size monitoring time 
points was 992 ng/ml (range of 284–1554 ng/mL)). A dose-tumor inhibition relationship 
was also not identified. This lack of relationship between erlotinib exposure and responses, 
which may be because of the saturated treatment effect, is in line with previous findings 
[6, 22-24]. Although the influence of drug exposure on the evolving tumor progression 
could not be investigated in this case, the results may suggest a potential option to decrease 
the dose of erlotinib to target a lower concentration that still ensures sufficient efficacy 
but can be better tolerated, especially since a significant proportion of erlotinib-treated 
patients can have severe toxicity [25].    

Because of the selection pressure of anti-cancer drug treatment, our studies in chapter 
3 and 4 assumed that mutations were able to be acquired which resulted in a transition 
from sensitive to resistant cell population. A back transfer process from drug resistant to 
sensitive clonal population was also introduced in chapter 3 during the treatment inter-
ruption periods. This assumption allowed capturing the recovery of sensitivity to the 
treatment upon withdrawal of treatment, which was supported by in vitro observations 
[26]. This process could also describe the phenomenon that in the absence of the drug, 
susceptible tumor cells have the benefit of growing back again at the expense of resistant 
tumor cells. When the back transfer process was removed, the simulation outcomes of 
evaluated regimens were only slightly affected but the decline of ctDNA upon withdrawal 
of treatment, which has been observed in mCRC patients [26, 27], could not be captured 
anymore. It was also observed that under this circumstance, the remaining susceptible 
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tumor cells had no growth advantage over the resistant tumor cells during the withdrawal 
of treatment, hence the tumor would not regain susceptibility. Therefore, the introduction 
of a transition between clonal populations in this study allowed the description of the 
dynamics of and the competition among different clonal populations based on current 
available data. More data under intermittent therapy would be valuable to better charac-
terize this dynamic process, and to better estimate parameters. 

Insight provided by ctDNA
Clinically available genetic biomarkers such as ctDNA have been shown to be able to 
provide insight into tumor heterogeneity and evolution of resistance, and also correlate 
with tumor burden [18]. Studies have already utilized the available ctDNA data to 
support the estimation of parameters that are required in the tumor evolution model or 
to evaluate the simulation results of the models [13, 28, 29]. Thus, we see opportunities to 
incorporate the ctDNA measurements in model-based tumor dynamics studies to enable 
better understanding and prediction on the tumor progression and dynamics of tumor 
sub-clones. Such models would be of help in investigating treatment regimens that increase 
the chance of overcoming treatment resistance. The model developed in chapter 3 enabled 
the characterization of the time-curves of both tumor sizes and ctDNA measurements in 
patients with mCRC. The link between the generation of genetic variants in ctDNA and 
tumor burden was accounted by a sub-clonal tumor-size dependent shedding rate which 
was expressed with Hill equations with tumor size as the independent variable. This model 
allowed us to describe the delayed emergence of genetic variants in ctDNA indicating 
treatment resistance as well as the earlier emergence of detectable mutation than disease 
progression, which was observed in the original studies [13, 30]. The ctDNA measurements 
also informed the inclusion of primary or acquired resistance. 

The study in chapter 4 demonstrated that in NSCLC patients treated with erlotinib, the 
baseline ctDNA measurements on variant allele frequency (VAF) of mutant EGFR and the 
presence of a TP53 mutation have a potential correlation with the estimated parameters 
related to tumor dynamics (mainly the growth rate constant kg and mutation rate constant 
km), especially that higher baseline EGFR VAF was significantly correlated with increased 
growth rate constant kg. This indicates that patients with higher EGFR VAF at baseline 
may have a worse response to the treatment, which is in line with the clinical findings 
from an EGFR cohort in the START-TKI study, i.e. patients without detectable ctDNA at 
baseline had a lower rate of radiological progression [25]. An explanation could be the 
association between ctDNA levels and tumor burden [18, 31]. Our result also supports 
previous findings suggesting that baseline concomitant TP53 mutations may relate to 
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worse clinical outcomes in patients with NSCLC [25]. After incorporating baseline ctDNA 
measurements, the developed tumor dynamics model could better predict the tumor size 
dynamics in response to erlotinib treatment in NSCLC patients. This finding also demon-
strates the potential to use ctDNA as an early biomarker to support decision making for 
the treatment of NSCLC patients [32]. 

Design treatment to overcome resistance

Designing treatment with gained knowledge on treatment resistance evolution and applying 
personalized treatment would increase the chance of overcoming cancer treatment resist-
ance [2, 33]. Based on this concept, adaptive treatments where drug selection is guided 
by the mutation detected in ctDNA, and intermittent treatment which utilizes the fitness 
advantage of sensitive cells during the withdrawal of treatment to regain sensitivity to 
treatment have been suggested for better treating cancer patients [18, 33, 34]. This also 
brings forward opportunities to treat cancer as a chronic disease and has been increas-
ingly studied in the oncology field. Traditional approaches of anti-cancer therapy have not 
exploited these theoretical advantages. Current protocols typically apply treatment agents 
at the MTD until evidence of progression [33]. 

The study presented in chapter 3 evaluated different designs of adaptive and intermittent 
treatment regimens with simulations based on the developed model. These regimens 
aim to prolong the duration of suppressing treatment resistance and thereby overcoming 
treatment resistance. The adaptive schedules also enabled the personalized design of 
therapy since the switch of drugs was guided by individual ctDNA measurements. The 
results of this study showed that the adaptive and intermittent treatment regimens, with 
appropriate designs, outperformed the conventional continuous treatment. The simulated 
intermittent regimen which consisted of an 8-week treatment and a 4-week suspension 
prolonged median progression-free survival (PFS) of the simulated population from 36 
weeks to 44 weeks. The simulated adaptive regimens were shown to further prolong median 
PFS to 56–64 weeks. 

Our results are in line with the evolutionary principle, and evidence that supports the 
feasibility of suggested regimens is present. An example of the adaptive therapy can be 
seen from the treatments of NSCLC patients. Acquisition of T790M mutation is the main 
mechanism of acquired resistance upon treatment of erlotinib/gefitinib in NSCLC patients, 
and osimertinib can be selected for T790M-positive patients [35]. In the study, we intro-
duced a second hypothetical treatment targeting the resistant population that harbors KRAS 
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mutation. Lately, the U.S. Food and Drug Administration (FDA) also granted accelerated 
approval to the first KRAS-blocking drug [36]. This indicates the potential feasibility of 
successfully implementing the suggested adaptive treatment. 

As for the intermittent treatment, the advantage has been seen from some clinical obser-
vations. A study has shown that adaptive intermittent treatment of abiraterone based on 
prostate-specific antigen (PSA) levels resulted in a better clinical outcome than the typical 
continuous treatment [34], although the study design may need to be refined [37]. Another 
retrospective analysis demonstrated that intermittent use of enzalutamide in metastatic 
castration-resistant prostate cancer patients prolonged the time to PSA failure and improved 
overall survival [38]. In patients with colorectal cancer, a re-challenge of EGFR blockade 
has shown to be efficient again [26]. Yet, several clinical studies failed to show improved 
outcomes in patients undergoing intermittent therapy and the underlined mechanism 
remains unclear [39-44]. We believe that, in this case, a model-based approach may be 
helpful for understanding these conflicting results and support identification of the optimal 
designs. For example, a previous in silico study indicated that an intermittent abiraterone 
followed by a lead-in period was not beneficial for prostate cancer patients, while the 
adaptive intermittent treatment guided by PSA was the best option [34]. Moreover, the 
results derived from our study also raised attention to the length of the treatment holiday 
if improved treatment outcome is desired, as extending the treatment holiday can result 
in inferior results. 

Model-informed precision dosing (MIPD)

Quantify variabilities and identify covariates 
Our studies in section II demonstrated that with the population modeling approach, the 
variabilities in PK/PD of a therapeutic agent as well as the influence of relevant covariates 
can be quantified. This would be of great importance to guide dose tailoring for an 
individual patient prior to the start of treatment to achieve personalized therapy. In chapter 
6, we have developed a two-compartment population PK model which well described 
the PK of mitotane in patients with ACC. The covariates that significantly correlate 
with mitotane PK have been identified, which explained 35.8% and 30.7% of random 
inter-individual variabilities (IIV) on apparent clearance (CL/F) and central distribution 
volume (Vc/F), respectively. In this study, we were able to investigate separate effects of lean 
body weight (LBW) and fat amount (total body weight – LBW) on mitotane distribution 
volumes, as they are more physiologically plausible covariates [45, 46]. Furthermore, the 
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inter-occasion variability (IOV) on CL/F was also incorporated to capture the intra-subject 
variability. The estimates of IOV indicate an overall increasing clearance during the first 
500 days followed by a decrease thereafter. This dynamic indicates that a self-induction in 
mitotane clearance, which has been suggested previously [45], may exist temporarily. This 
study also for the first time explored and quantified the potential effect of pharmacogenetic 
variation on mitotane clearance. Eventually, three SNPs, i.e. CYP2C19*2 (rs4244285), 
SLCO1B3 699A>G (rs7311358), and SLCO1B1 571T>C (rs4149057), were included in 
the final model. The model estimated that carrying ‘A’ variant in CYP2C19*2 reduced the 
mitotane CL/F by 44.9%. This is in line with the fact that the ‘A’ variant of CYP2C19*2 is a 
nonfunctioning variant and has been demonstrated to decrease the activity of CYP2C19 
[47, 48]. The power of pharmacogenetic analysis may be influenced by the small number 
of included patients and the exploratory characteristic of this analysis. However, as the 
dataset enabled differentiation between IIV and IOV, the certainty of the possible genotype 
effect on clearance, which is more likely to be covered by IIV, was increased. Our result 
suggests that enzyme CYP2C19 and transporters SLCO1B3 and SLCO1B1 for drug uptake 
in the liver might be involved in mitotane PK pathways, and their polymorphisms should 
be considered for mitotane dose selection, but further validation is required to translate 
the findings into an implementable clinical recommendation.      

The study in chapter 7 performed a population PK analysis for high-dose methotrexate 
(HD-MTX) in patients with central nervous system (CNS) lymphoma based on data from 
3 medical centers. In addition to the impact of patients’ demographics and physiological 
condition on HD-MTX PK, the study also enabled an investigation on the variation among 
patients from different medical centers receiving different treatment regimens. The results 
show that the identified covariates on clearance (CL) of MTX are in accordance with 
the known PK characteristics of MTX [49, 50]. Moreover, the CL of MTX also showed 
to vary among treatment regimens, and the difference in CL was able to be quantified. 
This might suggest a need to alter the dose when targeting to the same level of exposure. 
The possible factors that contributed to this result could be the differences in infusion 
duration / rate of HD-MTX, patients’ status, and the combined medications among these 
treatment groups. However, the impact of those factors cannot be distinguished as they 
highly overlapped with each other. The included covariates in the final model explained 
46.9% of the variability on CL between and within patients. Additionally, body weight was 
identified as a significant covariate on distribution volume of central comparment which 
reduced random IIV significantly. Currently, HD-MTX is dosed per body surface area 
(BSA) in CNS lymphoma patients. However, our study demonstrated that the influence 
of BSA on MTX PK is less significant, although BSA has been identified as a covariate in 
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previous PK studies [51, 52]. A few previous studies have also pointed out that BSA is not 
the most predictive factor to MTX PK, and BSA-guided dosing should be reconsidered 
especially for overweight patients [53-55]. In our study population, an increasing trend of 
the estimated MTX area under the concentration-time curve (AUC) from 24 hours after 
drug administration to infinity (AUC24-∞) and MTX concentration at 24 hours (C24h) over 
BSA has also been observed. Additionally, a dose reduction for HD-MTX has already 
been suggested for patients with reduced renal function [56, 57]. Taking these facts into 
account, a potential to dose HD-MTX with a model-based approach that involves multiple 
covariates including renal function is implied. This is considered to be more rational and 
accurate than BSA-guided dosing, and can help to further reduce PK variability.  

Better prediction of toxicity 
Toxicity can cause unfavorable outcomes in the treatment of cancer patients. Because of 
this, studies on risk factors and thresholds that predict high toxicity are of great importance. 
In chapter 7, the baseline predictors as well as exposure thresholds that predict a high risk 
of renal and hepatotoxicity in patients with CNS lymphoma treated with HD-MTX were 
identified with the model-based approach. Based on the modeling and simulation results, 
we recommended a baseline eGFR target of > 66.6 mL/min/1.73 m2 for patients with CNS 
lymphoma to use HD-MTX in order to lower the probability of renal toxicity. This is in 
accordance with a previous review which indicated that renal function is a key prognostic 
factor for the tolerance of HD-MTX [57]. Additionally, a higher risk for hepatotoxicity in 
CNS lymphoma patients is foreseeable if the administrated dose of HD-MTX is higher than 
3500 mg/m2. The study also identified correlations between MTX exposure metrics and 
renal toxicity. In addition to the AUC of MTX, C24h was also investigated as an exposure 
metric, as a threshold on C24h is valuable for early identification of patients at risk and 
early application of rescue treatment. The modeling results provided potential exposure 
thresholds that correlate with a high risk of renal toxicity in patients with CNS lymphoma 
(> 60%). The threshold of C24h (8.66 μmol/L) is also in line with what was found in a 
previous study (10 μmol/L) [56]. For patients with a higher risk of toxicity that still need 
HD-MTX treatment, they should be carefully monitored and rescue therapy with high 
dose folate or, in severe cases, glucarpidase could be considered [58-60]. In addition, due 
to the feature of mixed-effect modeling, once patients’ toxicity results of the first cycle 
are known, the model can also be applied to provide individual threshold that predicts 
high toxicity. In this circumstance, we believe our study holds great potential for further 
individualizing HD-MTX dosage and preventing acute organ toxicity, which can improve 
HD-MTX therapy in CNS lymphoma patients.
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Guide individualized treatment 
Based on the identified covariates and pre-defined therapeutic targets, coupled with 
Bayesian forecasting, MIPD can be applied to guide optimal initial dose selection and 
dose adaptation for cancer patients. The optimal therapeutic drug monitoring (TDM) 
strategies can also be explored. The study presented in chapter 6 designed and evaluated 
several mitotane dosing strategies, given that TDM was performed, by simulating with 
the final population PK model. The results indicated that determining the starting dose 
with the developed model considering included covariates is most beneficial in terms of 
shortening the time to reach the therapeutic target, compared with starting with the fixed 
dose for all patients. This design can also limit the risk of toxicity to a relatively low level, 
together with the designed TDM strategies. Under the setting of individualized starting 
dose, the regimens with stepwise increasing dose at the start required less time to reach 
the therapeutic target, while the one with constant starting dose demonstrated the lowest 
risk of having toxicity. However, due to the fact that a shorter time to reach the therapeutic 
target is normally paired with a higher probability of toxicity, it is suggested to consider 
patients’ condition on whether the increased risk of having toxicity can be tolerated in 
order to gain the benefit of reaching the therapeutic target quicker when selecting a dosing 
regimen. A regimen with a loading dose followed by a maintenance dose would also be 
desired to allow a fast target attainment. However, we didn’t consider this regimen in our 
study as it requires a high dosage which is not tolerable for most patients. When one (or 
more) TDM result becomes available, individual parameters could be estimated with the 
population PK model. The dose amount for subsequent drug administrations can then 
be determined according. This approach is also demonstrated to be a promising strategy 
which was predicted to further decrease the risk of toxicity while providing a satisfactory 
target reaching time. Only that patients’ tolerance to the high level of dose increase 
needs to be considered when applying this strategy. Potentially, with the individual PK 
parameters, an adequate dose for maintaining a steady drug concentration level after 
reaching the therapeutic window can be estimated so that the frequency of dose adaptation 
can be decreased. In chapter 7, our findings imply that dosing HD-MTX with a model-
based approach would potentially be more rational for further reducing PK variability. 
In addition, on the basis of our results on toxicity analysis, further investigation on the 
exposure-response relationship of MTX would be of interest for establishing a therapeutic 
range for HD-MTX for future model-based personalized dosing.
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Challenges and future perspectives

Addressing treatment resistance considering evolutionary resistance development and 
applying precision treatment would be beneficial to improve the treatment outcome for 
oncology patients. The results presented in this thesis show that with the quantitative 
models, the evolutionary tumor progression and PK/PD of anti-cancer drugs can be char-
acterized and predicted, thereby optimal treatment strategies can be designed and evaluated 
for oncology patients. However, beyond what has been demonstrated and discussed, 
challenges still remain regarding data availability, model development, and validation and 
implementation of the results. Further research and collaborations are needed to overcome 
the challenges and facilitate better implementation of the findings in the clinic. 

Section I

Knowledge and data availability	    
In order to make use of genetic biomarkers to understand the dynamics of tumor sub-clones, 
previous knowledge of the genetic variants that reflect treatment sensitivity is required. 
Available data is also essential for developing models to characterize the correlation between 
anti-cancer treatment responses and biomarkers, and to support decision making. As for 
ctDNA, although its value in oncology treatment has now been increasingly acknowledged, 
ctDNA monitoring has not yet been widely applied in routine clinical practice and the 
availability and collection of longitudinal ctDNA data are limited [31, 32, 61]. Whether 
patients had metastatic disease and the available sequencing assay and gene panel can also 
impact the availability of ctDNA data. In chapter 3, detectable mutant KRAS concentrations 
were only available from 9 patients out of 25 mCRC patients. In chapter 4, detectable mutant 
EGFR VAFs were available in 13 out of 18 NSCLC patients. The limited capability to develop 
a ctDNA dynamics model and adequately estimate all parameters. The missing data, such as 
the missing baseline ctDNA measurements in chapter 4, may also affect the interpretation 
of the results. Therefore, more and more detailed data is desired to validate our findings. 
Since ctDNA is being increasingly studied and the analysis method is improving, together 
with active collaborations, we see opportunities in the future to gain sufficient knowledge 
and data on longitudinal ctDNA measurements. This will better support the development 
of models capturing ctDNA dynamics and the incorporation of ctDNA time curves in the 
tumor dynamics model, which would benefit the in-depth study on evolutionary resistance 
development. In addition, once an adequate model is developed, sparsely sampled data 
can also be well utilized and missing data can be imputed rationally. Currently, effort is 
being made to establish standards and best practices to better systematize the evaluation 
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of ctDNA kinetics [31]. Moreover, if sequencing data of multiple variants are available, 
efforts need to be made to handle these data in a quantitative manner and a selection of 
variants to be included in the analysis may be required.  

Model development for evolutionary tumor progression     
When modeling tumor dynamics in our studies, the sum of the longest diameters (SLD) of 
all target lesions has been the observation of interest. Nevertheless, the dynamics of each 
separate lesion would also be suitable for supporting the investigation of the progression 
of heterogeneous tumors, especially when differences can be observed between primary 
and metastatic lesions. Thus, further investigation on the dynamics of separate lesions 
and comparing the findings with what is presented in this thesis can be of interest for 
future studies. 

In addition to what are proposed in this thesis, other modeling strategies that characterize 
evolutionary tumor dynamics are also available, which can be applied in studies having 
different focuses. One example would be game theory models which have a stronger focus 
on the interaction and payoff matrix among different cell populations. The changes in the 
fitness of cells (fitness cost or benefit) when interacting with therapy and other types of cells 
are accounted for in game theory models [19, 34]. Another commonly applied modeling 
strategy is stochastic models which allow describing the stochastic process of proliferation, 
death, and mutation of tumor cells in the tumor, although the expected outcome can be 
comparable to those that are derived from ordinary differential equations [62]. In addition, 
the studies presented in this thesis assumed tumor cells accumulate one mutation that 
leads to resistance to one drug each time. The possibility of acquiring multiple mutations 
at a time which leads to multi-drug resistance has not been included in the analysis. This 
can also be a point of consideration for future studies.   

In terms of modelling the time-curves of ctDNA measurements, our study presented in 
chapter 3 proposed a concept model for capturing ctDNA dynamics which consists of 
a sub-clonal tumor-size dependent generation and a first-order elimination. The model 
considered the correlation between tumor size and ctDNA amount and well characterized 
the data from mCRC and NSCLC patients. We have also seen recent studies applying models 
that are classically used to capture tumor size to describe ctDNA time course dynamics. 
One study characterized the time-curves of mutant EGFR in ctDNA in NSCLC patients 
with a model with zero-order increase, first-order decay, and time-dependent regrowth, 
and tumor size dynamic was not incorporated [63]. Another study successfully modeled 
the ctDNA time course using a bi-exponential model (first-order increase and first-order 
decay) [64]. The correlation between tumor shrinkage and ctDNA drop has been observed 
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and described by linking the decay rates of tumor sizes and ctDNA data [64]. These studies 
provide more simple model options with fewer parameters for future pharmacometric 
studies. However, the underlying biology and tumor heterogeneity were not considered 
[64]. Moreover, in addition to characterizing the observed data, the prediction of newly 
acquired mutation which has not yet occurred in the data would also be interesting to be 
further explored.  

Validation and extrapolation of the proposed model and treatment design
The studies in section I illustrated how quantitative models can support the study on 
evolving tumor progression and treatment optimization so that anti-cancer resistance 
can be better overcome. However, due to the characteristics of being based on limited 
data, further validation with external datasets is required to confirm the performance 
of the model and the added value of the suggested schedules. In addition, prospective 
clinical studies are warranted before the application of the suggested treatment designs. 
The validation should concern not only the predictability on the observed time-curves 
of data, but also on the treatment outcome such as PFS. Regarding clinical trials, several 
clinical studies on intermittent therapies have been reported, which however failed to 
show improved outcomes and the underlined mechanism remains unclear [39-44]. The 
need for clinical trials on adaptive therapy guided by ctDNA is however not met yet [31]. 
Currently, our group is carrying out a clinical study on intermittent enzalutamide therapy in 
prostate cancer patients (NCT05393791). The findings would be of great value to evaluate 
the concept proved in our study.   

In addition, our studies were mainly performed in mCRC and NSCLC patients treated with 
anti-EGFR therapies, and focused explicitly on the use of tumor size measurements and 
ctDNA data. It would be of interest for future studies to extrapolate the concept models 
and findings to other targeted treatments and cancer types. Moreover, other oncologic 
biomarkers would in principle also be valuable to provide insight into the evolutionary 
dynamics of tumor and guide treatment. A previous study has demonstrated the value of 
PSA in guiding the intermittent treatment of prostate cancer patients [34]. 

Furthermore, to support further research and enable the achievement of the ultimate goal 
of optimizing and personalizing anti-cancer treatment, a multidisciplinary collaboration 
is essential. This is due to the requirement of in-depth knowledge about tumor and clonal 
dynamics as well as skills needed for complex modeling and simulation.
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Implementation of proposed treatment design 
Challenges also remain to apply the proposed novel treatment strategies in chapter 3 
that could better overcome resistance in clinical practice. First of all, our study indicated 
that intermittent therapy may only work for the responders to certain targeted treatment. 
Thus, for patients who had detectable resistance mutation pre-treatment, a better option 
would be to choose another treatment from start. Moreover, despite that the intermittent 
regimens were predicted to provide better treatment outcome than the continuous 
regimen in a population level, opposite results can be seen when looking at simulated 
subjects individually, same as when comparing adaptive and intermittent regimens. This 
indicates that variability between individuals can affect the choice of regimen. Thus, the 
idea of individual intermittent treatment, the concept of which has been proposed in the 
treatment of prostate cancer patients [34], could be further investigated.   

Furthermore, in order to apply adaptive treatment guided by ctDNA measurements, the 
mutations indicating sensitivity to treatment need to be acknowledged beforehand. If 
multiple mutations have been reported, a selection may be required based on the strength 
of evidence and capability of the quantification technique, such as the gene panel in the 
assay and the number of mutations that can be detected simultaneously. To strengthen 
clinical implementation of ctDNA in the future, the turnaround times of the sequencing 
assays should also be short. In chapter 3, the study focused on the most representative 
mutation that is associated with resistance. However, not all patients developed detect-
able KRAS mutation during the course of treatment. This indicates that in order to better 
implement adaptive treatment, multiple relevant mutations may need to be considered. 
In addition, our study demonstrated that the frequency of monitoring ctDNA and the 
thresholds of adjusting treatment also matters when implementing adaptive treatment 
to improve treatment outcome. We have evaluated frequencies of once every 4–12 weeks 
which has been shown to be feasible [13, 65], but there is no clear validated optimal time 
point for ctDNA analysis [31]. The sampling frequency can also depend on the disease, 
therapy, sequencing assays, financial burden, and burden on the patients. After validation, 
the proposed computational model can be of help to inform the best practice on monitoring 
ctDNA and guide optimized treatment accordingly [31].  
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Section II

Implementation of MIPD
As discussed in chapter 5, to facilitate the implementation of MIPD in clinical practice, 
efforts are still required to overcome several challenges, such as to evaluate the model and 
to translate the research findings into user-friendly MIPD software [7]. Currently, multiple 
programs have been developed and are already in use for model-informed TDM [7, 66]. 
In chapter 6, we have also developed a Shiny app to elucidate how precision dosing advice 
of mitotane for ACC patients can be informed by the developed population PK model. We 
have implemented the final PK model and an optimized individualized dosing regimen 
into this app. With this program, based on the input of the characteristics of a certain 
patient, an individualized starting dose can be determined by the model and be visualized 
together with the predicted mitotane concentration-time curves for this patient. Currently, 
the build-in algorithm only allows the determination of the starting dose according to the 
input information corresponding to the included covariates. As a R package that supports 
empirical Bayesian estimation is now available [67], we see a potential to implement the 
regimen where a more precise dose amount can be determined according to individual 
parameters estimated based on available TDM results. Nevertheless, this app is currently 
intended for research purpose only. Validation in hospital settings is still needed for its 
application in clinic or transferring the model to a commercial platform. 

Moreover, given that programs are available for model-informed TDM, the developed 
models in our studies are believed to be able to be further applied to support model-based 
TDM of mitotane and high-dose MTX. 

Further PK/PD analysis for precision dosing
In addition to PK, variabilities in PD should also be taken into consideration when 
implementing precision treatment. FDA recently proposed the Project Optimus which 
encourages improving dose selection and optimization for oncology drugs by accounting 
for both efficacy and tolerability rather than automatically selecting the MTD [8, 68]. In 
chapter 7, we have developed a toxicity model which allows quantifying the probability 
of having renal or hepatotoxicity in patients with CNS lymphoma treated with HD-MTX 
given the value of risk factors. The identified exposure thresholds on C24h can also be 
applied to guide the early use of rescue therapy. Nevertheless, in order to better guide 
personalized treatment, further PK/PD analyses are still warranted. Firstly, in addition to 
already investigated factors, the impact of pharmacogenetic polymorphisms on the PK 
and toxicity probability in patients with CNS lymphoma treated with HD-MTX would 
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be of interest to future studies. Previous studies have demonstrated the influence of 
ABCC2 polymorphisms on the PK of HD-MTX in patients with lymphoid malignancy 
[69, 70]. Gene MTHFR, SLC19A1, and ABCB1 were reported to potentially associate 
with an increased risk for hepatic toxicity [71]. Exploring the impact of pharmacogenetic 
polymorphisms has the potential to better explain inter-patient variability. Additionally, 
studies on the penetration of MTX to the CNS would also be of interest as CNS is the target 
site of MTX and neurotoxicity is also a major problem for patients receiving HD-MTX 
treatment. This goal can be achieved by applying physiologically based pharmacokinetic 
modelling (PBPK) approach [72]. Furthermore, although high drug exposure can result 
in toxicity, sufficient exposure is still essential to guarantee the efficacy. In our study, 
an exposure-efficacy relationship was not investigated. A previous study suggested that 
AUC0-∞ > 1100 μmol/L*h is associated with a favorable treatment outcome [73]. Due to 
an identified correlation of AUC0-∞ with C24h, the same group recommended a C24h target 
of 4–5 μmol/L [74]. Nonetheless, the direct relationship between C24h and the efficacy has 
not been reported. Therefore, further investigation is warranted to explore the possibility 
of establishing a therapeutic range for HD-MTX, which could better facilitate future 
personalized dosing. 

Conclusion

Addressing treatment resistance considering evolutionary resistance development and 
applying personalized drug treatment would be beneficial to improve the treatment 
outcome for oncology patients. This thesis has applied the quantitative modeling approach 
to characterize the evolutionary tumor dynamics and ctDNA dynamics and quantify PK/
PD variabilities for anti-cancer drugs. The developed model can facilitate the identifica-
tion of optimal treatment designs and guide individualized treatment rationally, although 
challenges remain for the results implementation and further research and more data is 
warranted to validate the findings and support better practice of personalized treatment.  
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