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Abstract

Background: High-dose methotrexate (HD-MTX) based polychemotherapy is 
widely used for patients with central nervous system (CNS) lymphoma. The phar-
macokinetic (PK) variability and unpredictable occurrence of toxicity remain major 
concerns in HD-MTX treatment. 

Objectives: This study aimed to characterize the population PK of HD-MTX in 
patients with CNS lymphoma and to identify baseline predictors and exposure 
thresholds that predict a high risk of renal and hepatotoxicity. 

Methods: Routinely monitored serum MTX concentrations after intravenous 
infusion of HD-MTX and MTX dosing information were collected retrospectively. 
Acute event of toxicity was defined according to the Common Terminology Criteria 
for Adverse Events (CTCAE) version 5.0. A population PK model was developed 
in NONMEM. Toxicity data were analyzed using a logistic regression model and 
potential baseline and exposure-related predictors were investigated. 

Results: In total 1584 MTX concentrations from 110 patients were available for the 
analysis. A two-compartment population PK model adequately described the data. 
Estimated glomerular filtration rate (eGFR), treatment regimen, albumin, alkaline 
phosphatase, and body weight were identified as significant covariates that explain 
PK variability of HD-MTX. Baseline eGFR and sex were identified as significant 
predictors for renal toxicity, and MTX dose (mg/m2) was the strongest predictor for 
hepatotoxicity. The MTX area under the concentration-time curve (AUC24-∞) and 
concentration at 24 hours (C24h) showed to correlate with renal toxicity only, and 
AUC24-∞ > 109.5 μmol/L*h and C24h > 8.64 μmol/L were potential exposure thresholds 
predicting a high risk. 

Conclusion: A population PK model was developed for HD-MTX in patients 
with CNS lymphoma. The toxicity analysis showed that low baseline eGFR and 
male sex, and high MTX dose are associated with increased risk of acute renal and 
hepatotoxicity, respectively. AUC24-∞ > 109.5 μmol/L*h and C24h > 8.64 μmol/L were 
potential exposure thresholds predicting a high risk of renal toxicity. The models 
hold the potential to guide HD-MTX dosage individualization and better prevent 
acute toxicity.
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1.  Introduction

High-dose methotrexate (HD-MTX)-based polychemotherapy is the standard therapy for 
patients with primary central nervous system (CNS) lymphoma [1, 2]. It is also widely used 
for patients with secondary CNS involvement of diffuse large B-cell lymphoma (DLBCL), 
mainly for those who are naive for HD-MTX [3].   

The standard dose of HD-MTX for patients with CNS lymphoma is 3 g/m2 and is admin-
istrated by intravenous infusion. Methotrexate (MTX) has approximately 50% protein 
binding and is eliminated primarily unchanged by renal excretion (> 80%) while a small 
fraction is eliminated as an metabolite 7-hydroxymethotrexate [4, 5]. 

In routine HD-MTX treatment, MTX concentrations are monitored after each admin-
istration until they reach a safe target (< 0.2 µM). Although HD-MTX dose is based on 
patients’ body surface area (BSA), significant inter- and intra-individual variability in its 
pharmacokinetics (PK) is observed [6-8]. Delayed elimination of MTX due to impaired 
renal function or extravascular fluid collections can occur which will result in a prolonged 
period of MTX exposure and a higher risk of toxicity [4, 7, 8]. Furthermore, the unpredict-
able occurrence of acute toxicity during HD-MTX treatment, including kidney dysfunc-
tion and hepatotoxicity, may result in treatment interruption or delay which could cause 
unfavorable treatment outcome [6, 7]. To improve the outcomes of HD-MTX therapy, 
further individualizing HD-MTX dosage and identifying factors that predict a high risk 
of HD-MTX induced toxicity are desired.  

The risk factors that have been identified for HD-MTX induced renal toxicity in patients 
with lymphoid or hematological malignancy are mostly dose- or exposure-related: doses 
≥ 6 g/m2, area under the concentration-time curve (AUC) in the first administration cycle, 
and dose-normalized concentration at 24 and 48 hours [9-11]. For HD-MTX induced 
hepatotoxicity, studies on risk factors are limited but one study suggested that AUC of 
HD-MTX is associated with hepatotoxicity [12]. Yet, an exposure threshold for toxicity 
which would facilitate better supportive care and treatment individualization for HD-MTX 
is still missing. Moreover, the predictors at baseline for HD-MTX induced toxicities are less 
studied. One study showed that baseline lactate dehydrogenase and albumin correlated with 
the risk of acute kidney injury [13]. Further exploration of potential risk factors at baseline 
for both renal and hepatotoxicity would therefore be beneficial to guide HD-MTX therapy.

Population PK-pharmacodynamic (PD) modeling with mixed-effect models enables to 
quantitatively characterize as well as predict drug PK, response, or toxicity profiles and 
their relationships in both population and individual levels. This approach also enables 
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identification of covariates that explain the observed inter- and intra-individual variabilities 
[14]. Combined with simulations, the developed model can be applied to guide treatment 
rationally [15]. Until now, several population PK models of HD-MTX in patients with 
lymphoid malignancy have been published but many were not specifically focused on 
patients with CNS lymphoma [8, 10, 12, 16-21]. Subsequent toxicity analysis of HD-MTX 
for patients with CNS lymphoma with a model-based approach is still lacking.    

In the current study, based on retrospectively collected data, we performed a population PK 
analysis to characterize HD-MTX PK in patients with CNS lymphoma who received various 
treatment regimens, and explored covariates that explain the variability. Subsequently, the 
occurrence of acute renal and hepatotoxicity were analyzed with a model-based approach 
which aims to identify baseline predictors and exposure threshold that predict a high risk 
of toxicity for each HD-MTX administration cycle.   

2.  Method

2.1  Patients and data
Patients who were diagnosed with CNS lymphoma, treated with HD-MTX based 
polychemotherapy with available dosing information and MTX concentrations in the 
period ranging from 2010 to March 2021 from the Leiden University Medical Center 
(LUMC), Erasmus Medical Center (EMC), and University Medical Center Groningen 
(UMCG) were included. Patients received HD-MTX by intravenous infusion and were 
dosed per body surface area (BSA). All medications that have potential drug-drug 
interaction with MTX (e.g. benzimidazoles and nonsteroidal anti-inflammatory drugs 
(NSAIDs)) were stopped 72 hours prior to the use of HD-MTX.  

The routinely monitored MTX concentrations were retrospectively collected from the labora-
tory information system (LIS). MTX concentrations were analyzed with ARKTM assay [22] 
with a lower limit of quantification (LLOQ) of 18.2 μg/L (0.04 μmol/L) in the LUMC and the 
EMC and 15 μg/L in the UMCG. If the detected MTX was above 50 μmol/L at 24 hours, or 
above 5 μmol/L at 48 hours, or above 0.2 μmol/L at 72 hours after administration of HD-MTX, 
it was defined as delayed elimination [4]. Patients’ demographic characteristics, drug dosing 
information (i.e. treatment regimen, infusion hours, and dose), and laboratory results (i.e. 
serum creatinine (SCr), alkaline phosphatase (ALP), aspartate aminotransferase (ASAT), 
alanine aminotransferase (ALAT), albumin, bilirubin) were collected from patients’ electronic 
health care records. Based on the available data, estimated glomerular filtration rate (eGFR) 
was also estimated with the CKD-EPI creatinine equation and included in the analysis [23].   
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This study is approved by the local Ethical Committee of each institute (number G20.126), 
and did not fall within the scope of the WMO (Medical Scientific Research Act). A waiver 
for informed consent was granted. All performed procedures were in accordance with the 
ethical standards of the institutional medical ethical committee and the 1964 Declaration 
of Helsinki and its later amendments. 

2.2  Population PK modeling
A population PK model was developed based on the available MTX PK data. The unit of 
MTX concentrations was unified to μg/L by multiplying the data reported in μmol/L by 
the molar mass of MTX (454.44 g/mol). The data that were below LLOQ were omitted 
from the analysis due to the small proportion (< 10%) [24]. 

One-, two- and three-compartment models with first-order elimination were explored as 
the structural model. Parameters were assumed to be log-normally distributed and inter-
individual variability (IIV) was quantified. Inter-occasion variability (IOV) was incorpo-
rated on the PK parameter clearance (CL) to account for the intra-individual variability, 
and each administration cycle was defined as an occasion. A combined proportional and 
additive error model was applied to characterize the residual errors. The residual errors of 
data from different medical centers were set to follow the same distribution. The structural 
model was selected based on goodness-of-fit (GOF), objective function value (OFV) and 
the stability of the model.

Subsequently, the covariate effects of patients’ demographic information, treatment 
regimen, time-varying laboratory results on CL, and body size related characteristics 
on volumes of distribution were investigated. The stepwise covariate modelling (SCM) 
function was applied with assistance of Perl-speaks NONMEM (version 4.9) [25]. Model 
selection was based on a reduction in OFV assuming a χ2 distribution, a reduction in IIV 
or IOV, and physiological plausibility. Both a forward inclusion (p < 0.05, ΔOFV < -3.84, 
degrees freedom = 1) and a backward elimination process (p < 0.01, ΔOFV > 6.64, degrees 
freedom = 1) were performed to identify significant covariates. 

2.3  Toxicity analysis 
At each HD-MTX administration cycle, the renal and hepatotoxicity were graded based 
on monitored SCr and ALAT results according to the NCI Common Terminology Criteria 
for Adverse Events (CTCAE) version 5.0, respectively [26]. The ≥ grade 1 toxicity was 
defined as a toxicity event. The data were analyzed with a logistic regression model where 
the probability of having toxicity was estimated. The logit function is shown in Eqs. 7.1–7.3, 
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where base represents baseline logit score, θ is the typical population probability operator, 
ηi represents the random IIV which was assumed to be normally distributed with mean 
of 0 and variance of ω2.

Individual PK parameters obtained from the final PK model were applied to simulate and 
estimate the MTX exposure metrics of interest: AUC between 24 hours after drug admin-
istration to infinity (AUC24- ∞) and MTX concentration at 24 hours (C24h). The AUC24-∞ 
were estimated by integrating the individual concentration-time curves from 24 hours to 
last sample time plus AUC from the last sample time to infinity which was approximated 
as last concentration divided by terminal elimination rate constant (β). 

The baseline predictors and exposure-related predictors were investigated by being 
included linearly into the logit function (Eq. 7.4). The evaluated baseline factors include 
patients’ demographic information, baseline eGFR, ALAT, ASAT, and albumin of each 
administration cycle, dose amount, treatment regimen, dose divided by baseline CL as 
an AUC approximation (AUCbase) of each administration cycle, AUC24-∞ from previous 
administration course (pAUC24-∞), and C24h from previous administration course (pC24h). 
The toxicity status in the previous administration course was also evaluated as a potential 
predictive factor. The inclusion of covariates was based on the reduction in OFV and 
physiological plausibility. A forward inclusion process was performed when investigating 
baseline predictors. Factors that result in a ΔOFV < -3.84 were considered to be significant 
(p < 0.05, degrees freedom = 1). 

���� � �� � 𝜃𝜃
� � 𝜃𝜃� 
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2.4  Model evaluation
The final PK model was evaluated with GOF plots, prediction-corrected visual predictive 
check (pcVPC), and a bootstrap based on 1000 runs of replicated datasets sampled from 
original dataset with replacement. 
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The pcVPC plot was generated based on 1000 times of simulation. MTX concentrations 
were commonly monitored at 24 hours, 48 hours, and 72 hours, and thereafter every 24 
hours after the start of infusion until the concentration was below a threshold. Consequently, 
patients with delayed elimination had a longer follow-up and more samples per patient. 
The same sampling strategy was applied when performing simulations for the pcVPC plot, 
i.e., if the simulated concentration after day 3 fell below 0.1 μmol/L, the next data point 
would not be sampled. The set threshold of 0.1 μmol/L is the median of the second last 
monitored concentration of the collected data after day 3.  

The adequacy of the toxicity model was evaluated with a visual predictive check (VPC). 
The original dataset was simulated 500 times to derive the 90% prediction interval of the 
proportion of patients having toxicity at each administration cycle and over a range of 
covariate values. The prediction interval was compared with the observed results. 

2.5  Software and estimation method
The population modelling analysis was performed with NONMEM (version 7.4.4, ICON 
Development Solutions, Ellicott City, MD, USA) aided with Perl-speaks-NONMEM 
(PsN)  (version 4.9, Uppsala University, Uppsala, Sweden) [27]. Parameters of the 
population PK model were estimated using the first order conditional estimation method 
with interaction (FOCEI). Conditional Laplacian method was used to approximate the 
marginal likelihood in the toxicity analysis. Data management and plots generation were 
performed with R statistics software (version 4.2.1, R Foundation for Statistical Computing, 
Vienna, Austria). 

3.  Results 

3.1  Patients and PK data
In total 110 patients with CNS lymphoma (56 males and 54 females) were included from 
the LUMC (n = 75), the UMCG (n = 17), and the EMC (n = 18). Among the included 
patients, 80 patients (73%) were diagnosed with primary CNS lymphoma, 11 patients (10%) 
were diagnosed with secondary CNS lymphoma, and 11 patients (10%) had secondary 
CNS involvement of systemic DLBCL. The baseline characteristics of the included patients 
from 3 medical centers are shown in Table 7.1. 

In total, 1584 monitored MTX concentrations from 412 administration cycles were 
collected, of which 124 (7.8%) were below the LLOQ and were omitted from the analysis. 
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Table 7.1: Baseline characteristics of the patients included in the current study 

Item N (%) / Median (Range)

Center LUMC UMCG EMC
Number of patients 75 17 18
Age (year) 66 (22–83) 66 (52–73) 67 (51–76)
Sex

Male 42 (56%) 6 (35%) 8 (44%)
Female 33 (44%) 11 (65%) 10 (56%)

Body weight (kg) 78 (53.4–115) 76.5 (46.4–108) 70.1 (49.5–96.3)
Height (cm) 176 (155–195) 169 (158–192) 168 (148–186)
Body mass index (kg/m2) 25.0 (17.6–38.0) 25.0 (17.9–35.4) 23.7 (18.9–34.5)
Body surface area (m2) 1.94 (1.58–2.34) 1.94 (1.44–2.40) 1.8 (1.41–2.05)
ASAT (IU/L) 20 (9–100) 20.3 (10–53) 22.5 (14–58)
ALAT (IU/L) 30.5 (9–286) 43 (16–213) 41 (13–215)
SCr (μmol/L) 64 (37–125) 66 (43–94) 65 (45–98)
eGFR (ml/(min*1.73 m2)) a 93.8 (52.9–159) 89.3 (54–113) 90.3 (66.9–115)
Albumin (g/L) 38.5 (28–49) 37.5 (32.5–45.4) 40 (34–49)
ALP (U/L) 67 (25–297) 60 (44–82) 62.5 (28–118)
Bilirubin (μmol/L) 8 (3–23) 7.7 (3–25.3) 8 (4–19)
Disease type

PCNSL 45 (60%) 17 (100%) 18 (100%)
SCNSL 11 (14.7%) 0 0 
Stage IV DLBCL with CNS involvement 11 (14.7%) 0 0 
Other lymphoma with CNS 
involvement b

8 (10.7%) 0 0

Number of administration cycles per 
patient 

4 (1–8) 4 (3–4) 4 (1–8)

Dose of MTX (mg/m2) 3000 (1500–8000) 3000 (1950–3000) 3000 (1500–3200)
Treatment regimens c

RMP 35 (46.7%) 0 0
MATRIX 40 (53.3%) 0 0
MBVP 0 17 (100%) 18 (100%)

ALAT, alanine aminotransferase; ALP, alkaline phosphatase; ASAT, aspartate aminotransferase; CNS, central 
nervous system; DLBCL, diffuse large B-cell lymphoma; eGFR, estimated glomerular filtration rate; MTX, 
methotrexate; PCNSL, primary CNS lymphoma; SCNSL, secondary CNS lymphoma; SCr, serum creatinine.
a eGFR was estimated with the CKD-EPI creatinine equation.
b Including T cell lymphoma, Follicular lymphoma, and Burkitt lymphoma
c RMP, contains high-dose MTX (HD-MTX), rituximab and procarbazine; MATRIX, contains HD-MTX, high-
dose cytarabine (HD-AraC), thiotepa, and rituximab; MBVP, contains HD-MTX, teniposide, carmustine, 
prednisolone, with or without rituximab or HD-AraC. Details can be found in Online Resource, Table S7.1.

The concentrations were monitored daily after the start of MTX infusion until the concen-
trations fell to a level below 0.2 μmol/L or the LLOQ. The median number of concentra-
tions contributed by each patient to the analysis was 12, ranging from 2 to 35. The delayed 
elimination was observed in 47 (31.3%) patients and the longest follow-up time during one 
administration cycle was 454 hours. Five patients had a treatment interruption of more 
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than 2.5 months and their data before and after the interruption were treated as data from 
two separate subjects. This resulted in 115 subjects in the dataset eventually. The time-
course of all collected MTX concentrations is shown in Online Resource 7.1, Figure S7.1. 

The treatment regimen differs among medical centers (Table 7.1, Online Resource 7.1, 
Table S7.1). The LUMC patients were separated into 2 treatment groups. Older and/or less 
fit patients received HD-MTX with rituximab and procarbazine (RMP). For younger and 
fit patients (< 70 years old), HD-MTX was given with high-dose cytarabine (HD-AraC), 
thiotepa, and rituximab (MATRIX). As for the UMCG and the EMC patients, HD-MTX 
was administered with teniposide, carmustine, prednisolone, with or without rituximab 
or HD-AraC (MBVP). Details about the treatment regimens including infusion durations 
can be found in Online Resource 7.1, Table S7.1. 

3.2  Population PK model
A two-compartment population PK model with first-order elimination provided the best 
fit to the obtained data in HD-MTX in patients with CNS lymphoma. Compared with the 
one-compartment model, the objective function value (OFV) of the two-compartment 
model was 1843.772 units lower (p < 0.01, degree of freedom = 4). Although the three-
compartment model showed to further improve the model fit, the estimated relative 
standard errors (RSEs) of parameters indicated unreliable parameter estimates. Therefore, 
the two-compartment model was selected as the structural model. 

The covariate analysis identified eGFR, treatment regimen, albumin, and ALP are signifi-
cant covariates on CL of MTX (p < 0.01). Body weight was a significant covariate on the 
volume of distribution of the central compartment (V1). The RSEs indicate an acceptable 
precision (< 40%) of most parameters except for the coefficient of ALP effect (Table 7.2). 
The typical MTX CL in patients in the RMP group was estimated to be 16.0 % lower than 
that in the MATRIX group, while the CL differences between the MATRIX and MBVP 
groups were not significant (Table 7.2, Online Resource 7.1, Figure S7.2). The coefficient 
of variation (CV%) of random IIV and IOV for CL decreased from 29.2% and 23.1% to 
15.5% and 12.3%, respectively, after covariate inclusions. The inclusion of IIV on V1 became 
insignificant after covariate inclusions and was therefore fixed to zero (OFV increased by 
2.265). The estimated standard deviation (SD) of the additive residual error approached 
zero and was therefore fixed to 0.0001 μg/L.

The GOF plots in both normal and logarithmic scale showed that the model predictions 
were generally in good accordance with the observations, while the population predictions 
underpredicted the observations at lower concentrations (Figure 7.1). The deviations 
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between model predictions and observations were also observed when the concentrations 
were above 20,000 μg/L. However, when it was explored to remove these data points, the 
new parameter estimates were still within the estimated 95% confidence interval (CI) 
of the current parameter estimates. The conditional weighted residual errors (CWRES) 
were distributed around zero without obvious trends over time, but trends over popula-
tion predictions at lower concentrations can be observed (Figure 7.1). The pcVPC plot 
demonstrated an adequate predictability of the model (Figure 7.2). The final parameter 
estimates were in good agreement with the bootstrap results (Table 7.2).  

Table 7.2: Parameter estimates of the final population PK model of HD-MTX in patients with CNS lym-
phoma

Estimate (RSE)
IIV (CV%) (RSE%) 
[shrinkage]

IOV (CV%) 
(RSE%)

Bootstrap

Median 95% CI

CL (L/h) 21.2 (13%) 15.5 (8%) [10%] 12.3 (6%) 21.4 [17.2, 27.2]
θeGFR 0.0104 (5%) - 0.0104 [0.0093, 0.011]
θTREAT

MATRIX 1 - - -
RMP 0.840 (4%) - 0.839 [0.772, 0.913]
MBVP 1.03 (3%) - 1.03 [0.952, 1.11]

θALB 0.225 (28%) - 0.225 [0.0715, 0.369]
θALP -0.0624 (41%) - -0.0656 [-0.115, -0.0186]

V1 (L) 125 (16%) 0 FIX 126.4 [98.1, 172]
θWT 0.00370 (34%) - 0.00369 [0.00127, 0.00629]

V2 (L) 36.7 (27%) 55.7 (11%) [13%] 38.1 [23.9, 62.4]
Q (L/h) 0.593 (21%) 30.2 (15%) [15%] 0.605 [0.418 0.920]
Residual errors

Prop. (CV%) 25.2% (4%) [18%]a 25.0% [23.0%, 26.9%]
Add. (SD, µg/L) 0.0001 FIX - 0.0001 FIX -

Add., additive residual error; ALB, albumin; ALP, alkaline phosphatase; CI, confidence interval; CL, clearance; 
CV, coefficient of variation; eGFR, estimated glomerular filtration rate; IIV, inter-individual variability; IOV, 
inter-occasion variability; Prop., proportional residual error; Q, distribution clearance; RSE, relative standard 
error; SD, standard deviation; V1, distribution volume of the central compartment; V2, distribution volume 
of the peripheral compartment; WT, weight; MATRIX, RMP, and MBVP, three different treatment regimens.
a Epsilon shrinkage.

𝑉𝑉�� � ���� ∗ �� � ��� ∗ ��� � ������ ∗ ���  

𝐶𝐶𝐶𝐶� � �1.� ∗ �1 � 𝜃𝜃���� ∗ �𝑒𝑒��� � 8�.�3�� ∗ � 𝐴𝐴𝐴𝐴𝐴𝐴37.31�
����

∗ � 𝐴𝐴𝐴𝐴𝐴𝐴73.81�
����

∗ 𝜃𝜃����� ∗ 𝑒𝑒��  
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Figure 7.1:  Goodness-of-fit plots of the developed population PK model, including observations versus 
individual predictions in both normal (a) and logarithmic scale (c), observations versus population 
predictions in both normal (b) and logarithmic scale (d), and conditional weighted residual errors (CWRES) 
versus populations predictions (e) and time after last dose (f ). The red dashed lines represent y = x (a, b, c, 
d) and y = 0 (e, f ). Black dashed lines represent corresponding loess regressions.

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Individual prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

a

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Population prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

b

1

10

100

1000

10000

1 10 100 1000 10000
Individual prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

c

1

10

100

1000

10000

1 10 100 1000 10000
Population prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

d

−8

−4

0

4

8

1 10 100 1000 10000
Population prediction ( µg/L)

C
W

R
ES

e

−8

−4

0

4

8

0 1000 2000 3000
Time (hrs)

C
W

R
ES

f

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Individual prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

a

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Population prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

b

1

10

100

1000

10000

1 10 100 1000 10000
Individual prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

c

1

10

100

1000

10000

1 10 100 1000 10000
Population prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

d

−8

−4

0

4

8

1 10 100 1000 10000
Population prediction ( µg/L)

C
W

R
ES

e

−8

−4

0

4

8

0 1000 2000 3000
Time (hrs)

C
W

R
ES

f

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Individual prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

a

0

10000

20000

30000

40000

0 10000 20000 30000 40000
Population prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

b

1

10

100

1000

10000

1 10 100 1000 10000
Individual prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

c

1

10

100

1000

10000

1 10 100 1000 10000
Population prediction ( µg/L)

O
bs

er
va

tio
ns

 ( 
µg

/L
)

d

−8

−4

0

4

8

1 10 100 1000 10000
Population prediction ( µg/L)

C
W

R
ES

e

−8

−4

0

4

8

0 1000 2000 3000
Time (hrs)

C
W

R
ES

f



Chapter 7

204

3.3  Toxicity analysis
Among the 115 subjects, 51 (44.3%) and 76 (66.1%) subjects developed acute renal and 
hepatotoxicity during at least one administration cycle, respectively. The majority of subjects 
received ≤ 4 courses of treatment (98/115, 85.2%). The observed proportion of patients 
having each grade of renal or hepatotoxicity during each administration cycle were shown 
in Online Resource 7.1, Figure S7.3. The dose was reduced in 13 subjects after they had 
either renal or hepatotoxicity or both. 

The modelling analysis of renal toxicity showed that among the investigated baseline 
factors, the inclusion of age, sex, dose in mg/m2, AUCbase, pC24h, pAUC24-∞, or eGFR resulted 
in a significant decrease in OFV in the univariable covariate analysis, among which the 
baseline eGFR was the most significant predictor (ΔOFV = -52.8). The inclusion of toxicity 
status of the previous administration course did not result in a significant decrease in OFV. 
The treatment regimen itself was also not identified to affect the toxicity probability. The 
final model of renal toxicity included baseline eGFR (range: 40.2–158.7 mL/min/1.73m2, 
maximum predicted probability change (maxΔP) = -0.929) and sex (for female, ΔP = 
-0.103) as significant covariates. 

As for the hepatotoxicity model, AUCbase, dose in mg, and dose in mg/m2 resulted in 
significant decreases in OFV in the univariable covariate analysis, among which dose 

Figure 7.2:  Prediction-corrected visual predictive check (pcVPC) of the final HD-MTX pharmacokinetic 
model. Black points represent observations, black dashed lines represent 95th and 5th percentile of 
the observations, red dashed line represents the 50th percentile of the observations, grey shaded areas 
represent 95% confidence interval of the 95th and 5th percentiles of the simulations, and red shaded area 
represents 95% confidence interval of the 50th percentile of the simulations.
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in mg/m2 showed to be the most significant predictor (ΔOFV = -14.7). The inclusion of 
toxicity status of the previous administration cycle did not decrease OFV significantly. No 
additional covariates were significant after the inclusion of dose in mg/m2, i.e. the final 
model of hepatotoxicity only included dose in mg/m2 (range 1500–8000 mg/m2, maxΔP 
= 0.86) as the most significant covariate. 

The parameter estimates of the base and final toxicity models are shown in Table 7.3. The 
RSE of all parameters are < 40% indicating acceptable precision. The inclusion of covariates 
largely reduced the variance of the random IIV in both models. The VPC plots demon-
strated an adequate model predictability for the probability of having renal toxicity, while 
the decreasing trend of hepatotoxicity over treatment courses was not well captured (Online 
Resource 7.1, Figure S7.4). The wider 90% prediction interval after the 4th administration 
cycle was due to the relatively small sample size at those cycles. Figure 7.3 demonstrated 
the change of observed and predicted renal and hepatotoxicity probability as predictor 
values change. The simulation results showed that the median predicted probability of 
having renal toxicity decreased to less than 25% when baseline eGFR was higher than 66.6 
mL/min/1.73m2, and the median predicted probability of having hepatotoxicity increase 
to above 38.5% when dose raised above 3500 mg/m2.

Table 7.3: Parameter estimates of the base and final logistic regression model of renal and hepatotoxicity

Base model Final model

Estimate RSE (%) / [Shrinkage (%)] Estimate RSE (%) / [Shrinkage (%)]

Renal toxicity model
θ 0.112 29% 0.0595 26%

θeGFR - - -3.06 9%

θSEX -1.32 32%

IIV (ω2) 3.29 43% [35%] 1.11 61% [50%]

Hepatotoxicity model

θ 0.289 11% 0.118 15%

θDOSE - - 2.25 38%

IIV (ω2) 0.922 48% [41%] 0.708 52% [45%]

BSA, body surface area; IIV, inter-individual variability; RSE, relative standard error; eGFR, estimated 
glomerular filtration rate.

The exposure metrics C24h and AUC24-∞ were identified to correlate with renal toxicity 
(ΔOFV = -75.3 and -85.6, respectively) in the univariable covariate analysis but not for 
hepatotoxicity. The parameter estimates can be found in Online Resource 7.1, Table S7.2. 
The observed proportion of patients with renal toxicity was 61% when C24h > 8.64 μmol/L 
and 68.3% when AUC24-∞ > 109.5 μmol/L*h. According to the model simulations, the 
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Figure 7.3:  Visual predictive check of the model for renal toxicity probability over estimated glomerular 
filtration rate (eGFR) (a) and hepatotoxicity probability over dose (mg/m2) (b). Black points represent the 
observations and shaded areas are the 90% prediction interval of the final models where binning was done 
based on the number of observations
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predicted median proportions of renal toxicity decreased from 61% to < 29.3% when C24h 
decreased to ≤ 8.64 μmol/L, and from 61% to < 26.8% when AUC24-∞ decreased to ≤ 109.5 
μmol/L*h, respectively. The distribution of estimated AUC24-∞ and C24h of all treatment 
cycles and observed and predicted probability of renal toxicity over AUC24-∞ and C24h were 
shown in Figure 7.4. 

4.  Discussion   

In this study, a population PK model was developed for HD-MTX in patients with CNS 
lymphoma and covariates that explains HD-MTX PK variability were identified. Toxicity 
analysis identified baseline predictors for renal and hepatotoxicity, and the models allow to 
estimate the toxicity probability before each administration cycle. Additionally, potential 
exposure thresholds of AUC24-∞ and C24h that indicate a high risk of renal toxicity were 
suggested to support better HD-MTX treatment. 

The identified covariates on CL of MTX in the final model includes albumin and indicators 
of renal function, which are in accordance with the known PK characteristics of MTX [4, 5]. 
In addition, the CL of MTX also showed to vary among treatment regimens, which might 
suggest a need to alter the dose when targeting to the same level of exposure. The possible 
explanations for this finding could be the differences in infusion duration / rate of HD-MTX, 
patients’ status, and the combined medications among these treatment groups. However, the 
impact of those factors cannot be distinguished as they highly overlapped with each other. A 
potential correlation between infusion duration/rate and MTX clearance has been mentioned 
previously. In those studies, higher CL or lower AUC has been observed in patients receiving 
HD-MTX with long infusion durations (24 hours) compared to short infusion durations 
(2–6 hours) [10, 28, 29]. In our study, high CL estimates under 24-hour infusion were also 
observed. In addition, a 4-hour infusion showed to correlate with low CL estimates compared 
with 1- or 3.25-hour infusion in our results (Online Resource 7.1, Figure S7.2). However, 
a clear physiological explanation for this observed phenomenon could not be found, and 
therefore dose alterations based on infusion duration specifically are not recommended.   

Currently HD-MTX was dosed per BSA in CNS lymphoma patients. However, our study 
demonstrated that the influence of BSA on MTX PK is less significant than that of body 
weight, although these two factors are highly correlated and BSA has been identified as 
a covariate in previous PK studies [17, 20]. The estimated MTX AUC24-∞ and C24h in our 
study population also showed an increasing trend over BSA (Online Resource 7.1, Figure 
S7.5). A few other studies have also pointed out that BSA is not the most predictive factor 
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to MTX PK, and BSA-guided dosing should be reconsidered especially for overweight 
patients [10, 30, 31]. Moreover, a dose reduction for HD-MTX has been suggested for 
patients with reduced renal function [7, 32]. Taking these facts into account, adjusting 
the MTX dose with the developed PK model which involves multiple covariates including 
renal function is considered to be more rational and accurate than BSA-guided dosing, 
and can help to further reduce PK variability.  

The GOF plot of the final PK model showed that the population predictions underpredicted 
the lower concentrations (data points collected after 200 hours after last drug intake) while 
the individual predictions fitted well to the observations. These underpredicted concen-
trations all came from the treatment cycles where delayed elimination was observed. 
This suggests that the model structure could still be improved to better characterize the 
concentration-time curves in case of a delayed elimination. For example, an interac-
tion between renal function and MTX PK, which may result in a time dependent MTX 
elimination, and non-linear elimination at low concentrations can be considered [33, 34]. 
A three-compartment model could also slightly better capture the delayed elimination. 
However, a reliable and stable three-compartment model could not be identified based 
on the current dataset. Since the individual fit of our model is considered to be adequate, 
a more complicated model was eventually not applied. 

The toxicity analysis identified baseline predictors for HD-MTX-induced renal and hepa-
totoxicity which allow estimation of the toxicity probability before administration cycle. 
eGFR and sex were identified as significant baseline predictors for renal toxicity probability. 
Dose (mg/m2) and age were also identified as significant predictors in the univariable 
analysis, which is consistent with previous findings [11, 13]. However, their influence did 
not remain significant after including eGFR in the model. Our findings suggest that to lower 
the probability of renal toxicity, the use of HD-MTX for patients with CNS lymphoma is 
recommended when eGFR > 66.6 mL/min/1.73m2. This is in accordance with a previous 
review which indicated that renal function is a key prognostic factor for the tolerance of 
HD-MTX [32]. Accurately estimating the renal function of the patients before HD-MTX 
treatment may therefore be key in preventing toxicity during HD-MTX treatment. In 
patients with relatively low muscle mass, other eGFR measurement techniques such as a 
iohexol eGFR test could be applied [35]. Patients with a higher risk of toxicity that still 
need HD-MTX treatment should be carefully monitored and rescue therapy with high 
dose folate or in severe cases glucarpidase could be considered [36-38]. 

The dose of HD-MTX (mg/m2) was identified to be the strongest predictor of hepatotoxicity. 
The results suggest that a high risk for hepatotoxicity in patients with CNS lymphoma is 
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foreseeable if the administrated dose of HD-MTX is higher than 3500 mg/m2. In addition, 
the probability of hepatotoxicity appeared to decrease over treatment cycles which was not 
fully captured by the model. A possible explanation could be that patients tend to tolerate 
MTX better when treated for a longer period of time. Drop out due to toxicity is considered 
to be a less possible reason since less than 50% of subjects who stopped treatment after 
the first to third treatment courses had hepatotoxicity. Since the information on reason of 
drop out was not available, it was not considered in the analysis.      

MTX exposure metrics was only identified to correlate with renal toxicity in patients with 
CNS lymphoma. To avoid the impact of possible inaccurate prediction of peak concen-
trations, AUC24-∞ was estimated and included in the analysis instead of AUC0-∞. We also 
investigated the correlation between C24h and toxicity as a threshold on C24h is valuable 
for early identification of patients at risk and early application of rescue treatment. Our 
results show that AUC24-∞ > 109.5 μmol/L*h or C24h > 8.66 μmol/L correlate with high risk 
of renal toxicity in CNS lymphoma patients (> 60%). The threshold of C24h is also in line 
with what was found in a previous study (10 μmol/L) [7].     

Although high MTX exposure can result in toxicity, sufficient exposure is still essential to 
guarantee the efficacy. To better apply our findings to facilitate the individualization and 
optimization of HD-MTX therapy in patients with CNS lymphoma, an investigation on 
exposure-efficacy relationship is still needed. A previous study suggested that AUC0-∞ > 
1100 μmol/L*h is associated with a favorable treatment outcome [12]. Due to an identified 
correlation of AUC0-∞ with C24h, the same group recommend a C24h target of 4–5 μmol/L 
[16]. Nonetheless, the direct relationship between C24h or AUC24-∞ and the efficacy has not 
been reported. Thus, a further investigation on the relationship between C24h or AUC24-∞ 
and efficacy would be beneficial to establish a therapeutic range for HD-MTX to support 
the individualization of HD-MTX dosage.

The current study has some limitations. First of all, due to the lack of data sampled in the 
first 12 hours after the start of MTX infusion, the developed model may not be able to well 
capture peak concentrations and provide a precise estimate of AUC0-∞. Nevertheless, our 
study demonstrated that AUC24-∞ and C24h estimated with the model are also predictive to 
HD-MTX induced renal toxicity. Secondly, since this study was based on real-world data, 
the possibility of data not being recorded adequately enough may impact our analysis. 
Nevertheless, our findings may be more representative of real-world patients and are more 
translatable to clinical practice. Finally, although identified predictors have explained a 
large proportion of variability in HD-MTX induced toxicities, the unexplained variability 
remains large. Identifying covariates for the remained variability would be beneficial to 
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further improve the prediction. Previous studies have reported the influence of ABCC2 on 
PK of HD-MTX and the potential association of gene MTHFR, SLC19A1 and ABCB1 with 
MTX-induced hepatic toxicity [8, 21, 39]. Thus, the potential impact of pharmacogenetic 
polymorphisms would be of interest for future studies. 

5.  Conclusion

A population PK model was developed which adequately characterized the PK profile of 
HD-MTX in patients with CNS lymphoma. eGFR, treatment regimen, albumin, ALP, and 
body weight were identified as significant covariates that explain inter- and intra-individual 
variabilities in PK of HD-MTX. The toxicity analysis identified lower eGFR and male 
sex, and higher MTX dose (mg/m2) as baseline predictors that are associated with higher 
risk of acute renal and hepatotoxicity, respectively. AUC24-∞ > 109.5 μmol/L*h and C24h > 
8.64 μmol/L were suggested to be potential exposure thresholds that predict a high risk 
of renal toxicity. These results hold a great potential for further individualizing HD-MTX 
dosage and preventing acute organ toxicity, which can improve HD-MTX therapy in CNS 
lymphoma patients. 

Key points

•	 A population pharmacokinetic (PK) model was developed for high-dose methotrexate 
(HD-MTX) based on data collected from patients with central nervous system (CNS) 
lymphoma and subsequently used for exposure-toxicity analysis.

•	 Lower baseline eGFR and male sex are associated with increased risk of acute renal 
toxicity (grade ≥ 1). Higher MTX dose (mg/m2) is associated with increased risk of 
acute hepatotoxicity (grade ≥ 1).

•	 The analysis identified that the MTX exposure metrics correlate with renal toxicity 
only, and area under the concentration-time curve from 24h to infinite (AUC24-∞) > 
109.5 μmol/L*h and concentration at 24 hours (C24h) > 8.64 μmol/L predicted a high 
risk of renal toxicity. 
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Online Resource 7.1: Supplementary figures and tables

Figure S7.1:  The collected methotrexate concentration-time curves in patients with CNS lymphoma on 
semi-logarithmic scale (n = 110 patients).
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Figure S7.3:  Observed percentage of renal (a) and liver (b) toxicity under each treatment cycle separated 
by the toxicity grade.

0

10

20

30

1 N=115 2 N=102 3 N=88 4 N=76 5 N=17 6 N=13
Administration cycles (n)

Pe
rc

en
ta

ge
 o

f r
en

al
 to

xi
ci

ty
 (%

)

Grade
1
2
3

a

0

10

20

30

1 N=115 2 N=102 3 N=88 4 N=76 5 N=17 6 N=13
Administration cycles (n)

Pe
rc

en
ta

ge
 o

f l
iv

er
 to

xi
ci

ty
 (%

)

Grade
1
2
3

b



Population PK and toxicity analysis of HD-MTX

217

7

Fi
gu

re
 S

7.
4:

 V
is

ua
l p

re
di

ct
iv

e 
ch

ec
k 

of
 m

od
el

 fo
r 

re
na

l t
ox

ic
ity

 p
ro

ba
bi

lit
y 

(a
) a

nd
 h

ep
at

ot
ox

ic
ity

 p
ro

ba
bi

lit
y 

(b
) 

by
 t

re
at

m
en

t 
re

gi
m

en
s. 

Bl
ac

k 
po

in
ts

 r
ep

re
se

nt
 t

he
 

ob
se

rv
at

io
ns

 a
nd

 s
ha

de
d 

ar
ea

s 
ar

e 
th

e 
90

%
 p

re
di

ct
io

n 
in

te
rv

al
 o

f t
he

 fi
na

l m
od

el
.

025507510
0

1
2

3
4

5
6

7
Ad

m
in

is
tra

tio
n 

cy
cl

es
 (n

)

Proportion (Renal toxicity) (%)

R
M

P

025507510
0

1
2

3
4

Ad
m

in
is

tra
tio

n 
cy

cl
es

 (n
)

Proportion (Renal toxicity) (%)

M
AT

R
IX

025507510
0

1
2

3
4

5
Ad

m
in

is
tra

tio
n 

cy
cl

es
 (n

)

Proportion (Renal toxicity) (%)

M
BV

P
a

025507510
0

1
2

3
4

5
6

7
Ad

m
in

is
tra

tio
n 

cy
cl

es
 (n

)

Proportion (Hepatotoxicity) (%)

R
M

P

025507510
0

1
2

3
4

Ad
m

in
is

tra
tio

n 
cy

cl
es

 (n
)

Proportion (Hepatotoxicity) (%)

M
AT

R
IX

025507510
0

1
2

3
4

5
Ad

m
in

is
tra

tio
n 

cy
cl

es
 (n

)

Proportion (Hepatotoxicity) (%)

M
BV

P
b



Chapter 7

218

Figure S7.5:  Estimated area under the concentration-time curve between 24 hours after drug 
administration to infinity (AUC24-∞) (a) and concentration at 24 hours (b) versus body surface area of the 
included patients.
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Table S7.1: Characteristics of the HD-MTX treatment regimens of the included patients

N of administrations (%) / Median (Range)

Treatment regimen RMP MATRIX MBVP
Age of patients (years) 72 (28–83) 58.5 (22–67) 66 (51–76)
Infusion duration 

a.	 4 hours 133 (93.7%) 6 (4.5%) 0
b.	 14–25% dose 15 mins, and the 

rest 3 hours
9 (6.3%) 126 (94.0%) 0

c.	 10% dose 1 hour, and the rest 
23 hours

0 2 (1.5%) 0

d.	 1 hour 0 0 136 (100%)
Infusion rate (mg/m2/h) 750 (375–1077) 1076 (125–2000) 3000 (1500–3200)
Dose of MTX (mg/m2) 3000 (1500–3650) 3500 (1750–8000) 3000 (1500–3200)
Dose intensity (days) 14.0 (12.9–54.1) 23.0 (11.0–66.9) 15.0 (6–45)
Co-medications rituximab and 

procarbazine
high-dose 
cytarabine, 
thiotepa, and 
rituximab

teniposide, 
carmustine, 
prednisolone 
with/without 
rituximab or high 
dose cytarabine

Table S7.2: Parameter estimates of the logistic regression model of renal toxicity with exposure metrics 
included as predictors

Estimate RSE (%) / [Shrinkage (%)]

Renal toxicity model with AUC24-∞ 

θ 0.0135 61%
θAUC24-∞ 0.746 11%

IIV (ω2) 5.69 55% [38%]
Renal toxicity model with C24h

θ 0.0132 64%
θC24h

0.851 10%

IIV (ω2) 6.04 55% [37%]

IIV, inter-individual variability; RSE, relative standard error; AUC24- ∞, area under the concentration-time 
curve between 24 hours after drug administration to infinity; C24h, MTX concentration at 24 hours after 
drug administration. 
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