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Abstract

Insight into the development of treatment resistance can support the optimization
of anti-cancer treatments. This study aims to characterize the tumor dynamics and
development of drug resistance in non-small cell lung cancer (NSCLC) patients
treated with erlotinib, and investigate the relationship between baseline circulating
tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis
included 1) intensively sampled erlotinib concentrations from 29 patients from two
previous pharmacokinetic (PK) studies, and 2) tumor sizes, ctDNA measurements,
and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI
study. A two-compartment population PK model was first developed which well
described the PK data. The PK model was subsequently applied to investigate the
exposure-tumor dynamics relationship. To characterize the tumor dynamics, models
accounting for intra-tumor heterogeneity and acquired resistance with or without
primary resistance were investigated. Eventually, the model assumed acquired
resistance only resulted in an adequate fit. Additionally, models with or without
exposure-dependent treatment effect were explored, and no significant exposure-
response relationship for erlotinib was identified within the observed exposure range.
Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants
with tumor dynamics parameters was explored. The analysis indicated that higher
baseline plasma EGFR mutation levels correlated with increased tumor growth rates,
and the inclusion of ctDNA measurements improved model fit. This result suggests
that quantitative ctDNA measurements at baseline have the potential to be a predictor
of anti-cancer treatment response. The developed model can potentially be applied

to design optimal treatment regimens that better overcome resistance.

Keywords: oncology, quantitative modeling, intra-tumor heterogeneity, tumor
dynamics, resistance development, non-small cell lung cancer, circulating tumor
DNA



Tumor dynamics and resistance development in NSCLC patients

1. Introduction

The occurrence of anticancer treatment resistance due to intra-tumor heterogeneity and
evolving adaptation of tumor cells to the treatment can limit the long-lasting efficacy of
targeted anticancer treatment [1, 2]. In order to improve the anti-cancer treatment outcome,
it is important to have detailed insight into the tumor progression during treatment since

it enables designing of alternative treatment strategies.

In patients with non-small cell lung cancer (NSCLC), erlotinib, a tyrosine kinase inhibitor
(TKI), is one of the effective treatment options especially for patients with EGFR exon 19
deletions or exon 21 mutations [3-5]. However, the occurrence of acquired drug resistance,
which is most frequently due to the acquisition of the EGFR p.T790M mutation, and the
possible presence of drug-resistant component pre-treatment (primary resistance) can
limit its efficacy and result in relapse [3-6]. Thus, understanding the evolving progression
of NSCLC during the treatment and identifying predictive biomarkers would be beneficial
to optimize the treatment of NSCLC.

Pharmacometric modeling allows quantitative characterization and prediction of pharma-
cokinetic (PK) - pharmacodynamic (PD) profiles of drugs and thus facilitates treatment
design [7-9]. With the help of a model-based approach, studies on evolving tumor progres-
sion can be conducted based on available data on tumor sizes and genetic biomarkers, and
optimal treatment designs can be evaluated. Our previous study has proven such a concept
based on data from metastatic colorectal cancer patients as well as from NSCLC patients
[10]. Further incorporating the exposure of therapeutic agents in the model can support
the investigation and understanding of exposure-tumor inhibition relationship and the

evolutionary tumor dynamics in relation to drug exposure during anti-cancer treatment.

Circulating tumor DNA (ctDNA), which are DNA fragments in the circulation (circulating
free DNA (cfDNA)) that are of tumor origin, is a clinically available and emerging genetic
biomarker [11]. It has shown to be able to provide detailed insight into the molecular
alterations and evolving progression of tumor under treatment [4, 5, 11]. In patients with
NSCLC, numerous studies have shown that a decrease in mutant gene levels in ctDNA
correlates to the therapeutic response of TKIs [5]. In another model-based study, the relative
change of concentrations of driver mutation in ctDNA from the estimated baseline was
shown to be predictive to disease progression of NSCLC patients [12]. Further research
on the correlation between ctDNA measurements and tumor size dynamics would be
beneficial to understanding the evolutionary development of treatment resistance and
the value of ctDNA.
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In the current study, we aimed to develop a model to understand and characterize tumor
dynamics and the development of drug resistance in NSCLC patients treated with erlotinib.
First, a population PK model of erlotinib was developed and thereafter applied to inves-
tigate the exposure-tumor inhibition relationship of erlotinib. Tumor dynamics models
accounting for tumor heterogeneity, with or without a pre-existing resistance component,
and drug exposure-dependent treatment effects, were evaluated. Subsequently, we aimed
to explore the correlation of the extent of somatic driver mutation in ctDNA at baseline

with the tumor dynamics in NSCLC patients.

2. Method

2.1 Patients and data

2.1.1 Intensively sampled PK data

The study included intensively sampled erlotinib concentration-time curves from two
previous PK studies in patients with NSCLC who were treated with erlotinib for an
activating EGFR mutation [13, 14]. Erlotinib was administrated orally once daily with a
dosage of 50-150 mg. PK samples were collected before drug intake and at 0.5, 1, 1.5, 2,
25,3, 3.5, 4, 6, 8, 12, and 24 hours after drug administration at steady state. The studies
were performed at the Erasmus MC Cancer Institute in Rotterdam, the Netherlands, and
the details of the studies’ design can be found in previous publications [13, 14]. For the
current study, only the data in the control arms that were sampled after receiving erlotinib
with water and without concomitant esomeprazole were included, which aimed to be

consistent with real world patients.

Patients’ demographic information, including age, sex, weight, height, and additional
laboratory test results, including creatinine, estimated glomerular filtration rate (eGFR),
albumin, total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT),

and alkaline phosphatase (ALP) were collected for covariate analysis.

2.1.2 PK-PD data

Longitudinal measured tumor sizes under standard clinical care conditions as well as
sparsely sampled intended trough erlotinib concentrations from real-world NSCLC
patients who participated in the START-TKI study (NCT05221372), which is a prospective,
observational multicenter study [6], were also included in this analysis. Erlotinib was

administrated orally once daily with a dosage of 75-150 mg. The tumor size measurements,
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i.e. the sum of the longest diameters (SLD, mm) of target lesions, were assessed by Response
Evaluation Criteria In Solid Tumors (RECIST version 1.1 [15]). Additional data of dosing
information, ctDNA data on variant allele frequency (VAF) of mutant genes over time, and
concentrations of cfDNA over time from these patients were also collected. The detailed
methods of cfDNA isolation and next-generation sequencing process have earlier been
described [6]. Patients demographic information and lab test results as above mentioned

were also collected for potential covariate analysis.

The studies from which the data were obtained were previously approved by local ethics
committee and were registered in the Dutch Trial Registry. Written informed consent
was obtained from all patients prior to these studies, including the use of data for further
studies. For the current study, the data were shared anonymously and all procedures were
performed in accordance with relevant guidelines and the Declaration of Helsinki, so no

additional informed consent had to be obtained.

2.2 Population PK model
Based on the collected PK data, a population PK model was developed to characterize
the erlotinib PK profiles of included patients. The intensively sampled PK data and the
sparsely sampled PK data from patients involved in the START-TKI study were combined
for the model development.

One- and two-compartment models with first-order absorption, with or without lag time,
and first-order elimination were explored as the structural model. A combined propor-
tional and additive model was applied to characterize the residual error. Parameters were
assumed to be log-normally distributed. To account for the inter-individual variability
(IIV) in bioavailability (F) which is shared by the estimated apparent PK parameters,
the IIV on F was estimated while the typical value of F was fixed to 1. The structural
model was selected based on biological plausibility and the objective function value
(OFV).

Patients’ demographic information and lab test results were then investigated as covari-
ates using the stepwise covariate modeling (SCM) function of Perl-speaks NONMEM
(version 4.9). The effect of all covariates on erlotinib clearance and that of weight, height,
and albumin on apparent distribution volume of the central compartment were investi-
gated. The relationship between F and dose level was not explored since the majority of
patients received the same dose level. Model selection was based on the reduction in OFV
(a likelihood ratio test) assuming a x* distribution, a reduction in IIV, and physiological

plausibility. The p values were set as 0.05 and 0.01 for the forward selection and backward
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elimination process, respectively. A more detailed description of the covariates analysis

can be found in Supplementary Material S4.1.

The final model was evaluated with goodness-of-fit (GOF) plots, visual predictive checks
(VPC) based on 1000 simulations, and bootstrap with 1000 resampled datasets. In addition,
the percentage where the predicted area under the curve (AUC) falls within 80-120% of
the corresponding observed AUC (estimated with trapezoidal rules method) was calculated
for the full concentration-time curves to evaluate the model. The percentage where the
predicted trough concentrations fall within 80-120% of the corresponding observations
was also estimated for the data from the START-TKI study.

2.3 Tumor dynamics model

The dynamics of tumor sizes during erlotinib treatment, which was represented by sum
of longest diameters (SLD, mm) of target lesions, was characterized accounting for tumor
heterogeneity. Tumor tissue was assumed to consist of a sensitive clonal population (T))
and a resistant clonal population (T,). Models considering 1) only acquired resistance
and no primary resistance (i.e. baseline T, (T} ) = 0), and 2) both primary and acquired
resistance (i.e. T, , # 0 and was estimated), with or without a drug exposure-dependent
decay, were exploged. Considering the amount of the available data, the baseline tumor sizes
were fixed to the observed values to ensure the stability of the model. The model structure
is shown in Figure 4.1 and Eqs. 4.1-4.4, where k_ represents the growth rates of T and
T, k, represents mutation rate, and k, represents tumor decay rate due to treatment. For
the models exploring the exposure-dependent treatment effect, the tumor decay rate was
assumed to depend on drug exposure and a simple linear relationship was assumed (Eq.
4.2). A non-linear relationship with Emax model was also explored. The drug exposure
was defined as the trough concentration, which is the exposure metrics of interest for
erlotinib exposure-response analysis and is relatively easy to measure in clinical practice.
The trough concentrations were predicted by the individual PK parameters obtained from
the PK model. The IIV of parameters were evaluated and parameters were assumed to be

log-normally distributed. The combined proportional and additive model was applied to

FOENO

I

Figure 4.1: Graphical structure of the tumor dynamics model.
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characterize the residual error. The model fit was evaluated by OFV and Akaike information
criterion (AIC). The best fitted model was evaluated with GOF plots and VPC considering
the censoring of data due to progression defined by RECIST version 1.1 [15].

%zkg'TS_kd'TS_km'TS Eq.4.1
o=k, Beposurer” for the modelwith xposare - dependent docay  £**7
%zkm'Ts+kg'TR Eq.4.3
TS =Ts+ Ty Eq.4.4

2.4 Genetic biomarkers and tumor dynamics

The correlation of baseline ct DNA measurements, including EGFR mutation levels and the
presence of TP53 mutations, with tumor dynamics parameters (k,, k, ,and k ) were explored
graphically. Patients were separated into groups based on 1) whether their baseline mutant
EGEFR VAF was < or > the median value, or the measurements were unavailable, or 2)
whether patients had a TP53 mutation at baseline or not, or the results were unavailable. The
correlation between baseline cfDNA concentrations and tumor dynamics parameters was
also explored by separating patients into groups based on the median value to investigate

informativeness of cfDNA compared to ctDNA.

Furthermore, the influence of baseline ctDNA measurements and cfDNA concentrations
on k, k , and k, were evaluated as categorical covariates in the tumor dynamics model.
The EGFR mutation levels and the cfDNA concentrations were categorized based on the
corresponding median values as is described above. When a sample is missing, it was
assigned to the third category and a sensitivity analysis was performed by evaluating models
with and without the covariate for a dataset where the data from patients with missing
covariates were removed. A significant correlation was defined as a decrease in OFV by

more than 3.84 (p < 0.05, degree of freedom = 1, assuming x* distribution).

2.5 Software and estimation methods

The population modeling analysis in this study was performed with NONMEM (version
7.4.4, ICON Development Solutions, Ellicott City, MD, USA). Parameters were estimated
using the first order conditional estimation method with interaction (FOCEI). Data
management and plots generation were performed with R statistics software (version 4.2.1,

R Foundation for Statistical Computing, Vienna, Austria).
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3. Results

3.1 Patients and data

The intensively sampled erlotinib concentration-time curves were obtained from 29
patients (N = 377, 13 samples per patient). The SLD measurements (N = 155) as well as
additionally sampled erlotinib concentrations (N = 146), ctDNA measurements (N = 50),
and cfDNA concentrations (N = 50) were collected from 18 real-world NSCLC patients
from the START-TKI study. For these 18 patients, the median time period when the SLD
measurements were available is 264 days since the start of the treatment (range from
20-1168 days), and all patients had an event of disease progression or death where data

were censored afterwards.

The obtained erlotinib concentration data over time are presented in Figure S4.1. None
of the collected data was below the lower limit of quantification. The median baseline
tumor size (SLD) of the included patients was 76.6 mm (range 29-116 mm). Out of the 146
obtained concentrations, 125 were measured at > 20 hours after last drug intake (trough
concentrations) with a median of 842 ng/mL and range of 318-1834 ng/mL. Activating
EGFR variants (including exon 19 deletions (N = 11) and EGFR p.L858R (N = 6) and
p-K852R (N = 1) mutations) were detected in the tumor biopsies of all 18 patients [6]. The
plasma cfDNA samples at the start of treatment were available from 12 out of 18 patients.
The median baseline cfDNA concentration was 1.44 ng/uL (range from 0.77-3.65 ng/uL).
The primary EGFR variants were detected from baseline cfDNA samples from 8 out of 12
patients, which include exon 19 deletions (N = 6) and EGFR p.L858R (N = 1) and p.K852R
(N =1) mutations. The median baseline EGFR VAF was 1.74% (range from 0-62.74%). The
obtained VAF of primary EGFR variants over time are shown in Figure $S4.2. Furthermore,
a TP53 mutation was detected in 4 patients at baseline and the EGFR p.T790M mutation
was detected in 3 patients during erlotinib treatment. The baseline characteristics and the

data contributed by each patient are summarized in Table 4.1.

3.2 Population PK model

A two-compartment population PK model with first-order absorption with lag time
and first-order elimination was developed and showed to best fit the obtained PK data.
Compared to the one-compartment model, the OFV of the selected model decreased by
27.5 (p < 0.01, degree of freedom = 3), indicating an improvement in the model fit. None
of the tested covariates was identified to have significant effect on the PK parameters. The
parameter estimates of the PK model are presented in Table 4.2. The relative standard

errors (RSEs) were < 25% for all parameters except for apparent distribution clearance
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Table 4.1: Baseline characteristics of patients and the collected data

Intensively sampled PK data PK/PD data

(N=29) (N=18)
Median Range Median Range

Age (years) 63 35-78 66 48-78
Sex (N (%))

Male 13 (44.8%) 5 (27.8%)

Female 16 (55.2%) 13 (72.2%)
Weight (kg) 74 50-102 69.5 46.1-109
Height (cm) 173 152-202 169 154-180
Serum creatinine (umol/L) 82 47-138 66 59-192
eGFR (ml/(min.1.73 m?)) 71 46-100 84.5 23-103
AST (IU/L) 29 13-40 215 14-37
ALT (IU/L) 25 10-83 18 6-43
Albumin (g/L) 41 32-48 42.5 34-51
ALP (U/L) 85 53-157 87.5 3-798
Bilirubin (umol/L) 8 3-58 6.5 3-14
Erlotinib starting dose (N (%))

150 mg 25 (86.2%) 18 (100%)

100 mg 3(10.3%) 0

50 mg 1 (3.4%) 0
N of concentration per patient 13 13-13 8(N=2nodata) 1-20
N of SLD per patient - - 7 2-18
N of ctDNA or cfDNA data per - - 3 1-4
patient

eGFR, estimated glomerular filtration rate; AST, aspartate aminotransferase; ALT, alanine aminotransferase;
ALP, alkaline phosphatase; ctDNA, circulating tumor DNA; cfDNA, circulating free DNA; SLD, sum of longest
diameters.

(Q/F) (40%), indicating acceptable estimation precision. High estimates for IIV on Q/F
and absorption rate constant (Ka) were observed (coefficient of variation (CV%) > 100
%), with shrinkages < 30%. The parameter estimates were also in good agreement with
the bootstrap results (Table 4.2).

The GOF plots of the final PK model demonstrated a good concordance between the
model predictions and observations (Figure S4.3). The conditional weighted residual
errors (CWRES) randomly distributed around zero without obvious trends over popula-
tion predictions, but with a slight trend over time between 6-8h after last drug intake. The
VPC plot (Figure 4.2) shows that the observed data can be adequately predicted by the
developed model. Additionally, 100% of the model predicted AUC and 82.4% of the model

predicted trough concentrations were within 80-120% of their corresponding observations.
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Table 4.2: Parameter estimates of the population pharmacokinetic model

Bootstrap
Estimate 11V (CV%) (RSE%)
Parameters Explanation (RSE%) [shrinkage%] Median 95% Cl
CL/F (L/h) Apparent clearance 4.10 (5%) 15.7% (31%) [48%] 4.09 3.68-4.47
Vc/F (L) Apparent distribution 142 (7%) 20.3% (31%) [43%] 142 125-162
volume of the central
compartment
Vp/F (L) Apparent distribution 2420 (12%) - 2462 1768- 8043
volume of the periph-
eral compartment
Q/F (L/h) Apparent distribution  0.548 (40%) 194.4% (15%) [28%] 0.542 0.188-1.24
clearance
Ka (/h) Absorption rate 1.61 (23%) 124.5% (15%) [18%] 1.68 1.03-2.65
constant
T (h) Absorption lag time 0.400 (5%) - 0.400 0.358-0.428
F Bioavailability 1 fixed 16.3% (31%) [37%] 1fixed -
Residual errors
Prop. Err. proportional residual  15.4 (6%) [10%]" 15.3 -
(CV%) error
Add. Err. additive residual error  44.5 (25%) [10%]" -
(SD, ng/ml) 434

RSE, relative standard error; IlV, inter-individual variability; Cl, confidence interval; CV, coefficient of
variation; SD, standard deviation.
* Epsilon shrinkage.

Erlotinib concentration (ng/mL)

3000

2000

1000

T
10

20

Time after last dose (hrs)

Figure 4.2: Visual predictive check (VPC) of the developed population PK model. Blue dashed lines
represent 95" and 5% percentiles of the observations, red dashed line represents the 50™" percentile of the
observations, blue shaded areas represent 95% confidence interval of the 95% and 5% percentiles based on
the simulations respectively, and red shaded area represents 95% confidence interval of the 50* percentile
based on the simulations.
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3.3 Tumor dynamics model

The tumor dynamics modeling results showed that the model accounting for acquired
resistance only could adequately fit the data. The model that assumed the presence of
primary resistance did not show an improved fit to the available data (p > 0.05, OFV
decreased by 0.731 and AIC increased by 1.269, degree of freedom = 1). The typical estimate
of T, , in this model was 4.51 mm which account for a small proportion (5.9%) of the
median baseline tumor size (Table $4.1). Therefore, the pre-exiting resistance component
was ultimately not included in the model. Furthermore, the OFV and AIC of the model
incorporating an exposure-dependent decay increased by 1.441 compared with the base
model, indicating no improvement in the model fit. Therefore, the exposure-dependent

drug effect was not included in the final model.

The parameter estimates of the final tumor dynamics model are shown in Table 4.3 (model
code in Supplementary Material S4.2). The RSEs of the parameter estimates were all <
30%, indicating acceptable estimation precision. High estimates for IV of the estimated
tumor dynamics parameters were observed (CV% > 60 %). The GOF plots demonstrated
a sufficient fit of the developed model to the data (Figure $4.4). The VPC considering the
censoring of data due to progression showed that the model predicted intervals adequately

captured the distribution of observations (Figure 4.3).
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Figure 4.3: Visual predictive check (VPC) considering drop out of the developed tumor dynamics model.
Blue dashed lines represent 95" and 5™ percentiles of the observations, red dashed line represents the 50®"
percentile of the observations, blue shaded areas represent 95% confidence interval of the 95" and 5%
percentiles based on the simulations respectively, and red shaded area represents 95% confidence interval
of the 50* percentile based on the simulations.
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Table 4.3: Parameter estimates of the tumor dynamics models without or with baseline ctDNA data
incorporated

Model with baseline ctDNA

Model without covariate data as a covariate
IV (CV%) IV (CV%)
Estimate (RSE%) Estimate (RSE%)
Parameters Description (RSE%) [shrinkage%)] (RSE%) [shrinkage%)]
kg (/day) Tumor growth rate 0.000799 60.3% (27%) 0.00204 16.6% (152%)
constant (13%) [26%] (25%) [57%]
f, kg change fraction - - 0.334 -
when mutant EGFR (28%)
VAF < 1.74%
f, kg change fraction - - 0.281 -
when baseline ctDNA (28%)
data was unavailable
k, (/day) Tumor decay rate 0.0121 68.4% (26%) 0.0123 66.2% (22%)
constant (19%) [8%] (18%) [7%]
k_ (/day) Mutation rate constant ~ 0.00911 56.5% (25%) 0.00824 57.9% (32%)
(2%) [19%)] (18%) [15%)]
T, , (mm) Baseline size of Observed - Observed -
sensitive clonal baseline baseline
population
T, , (mm) Baseline size of 0 fixed - 0 fixed -
resistant clonal
population
Residual errors
Prop. Err. Proportional residual 7.54% [12%)]" 7.67% [12%]"
(CV%) error (13%) (14%)
Add. Err. Additive residual error 1.17 (38%)  [12%]" 1.13 (9%) [12%]"

(SD, mm)

RSE, relative standard error; IV, inter-individual variability; CV, coefficient of variation; SD, standard
deviation, VAF, variant allele frequency.
* Epsilon shrinkage.

3.4 Genetic biomarkers and tumor dynamics

The baseline results regarding ctDNA measurements and cfDNA concentrations were
available from 12 out of 18 patients and missing for 6 patients. No correlation was
observed between baseline mutant EGFR VAF and ¢fDNA concentrations. According to
the exploratory plots, patients with baseline mutant EGFR VAF > 1.74% had relatively high
k,and k, estimates, and slightly higher k, estimates than patients with mutant EGFR VAF
< 1.74% (Figure 4.4). In addition, for patients with a TP53 mutation at baseline, the kg
and k estimates were relatively high compared to patients without TP53 mutations, and
comparable k, estimates were observed (Figure 4.4). The association between baseline
cfDNA concentrations and tumor dynamics parameters is shown in Figure $4.5. Patients

with baseline cfDNA concentration > 1.44 ng/uL showed to have higher k and lower k,
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estimate than patients with baseline cfDNA concentration < 1.44 ng/pL, and comparable

k _estimates were observed.

When exploring the covariate effect of the baseline genetic biomarkers in the tumor
dynamics model, the correlation between baseline mutant EGFR VAF and k_ was iden-
tified to be most significant when assigning the missing values as a separate category
(OFV decreased by 11.6, p < 0.01, degree of freedom = 2). This correlation remained
to be significant when removing the data of patients with missing covariate from the
dataset (OFV decreased by 4.6, p < 0.05 degree of freedom = 1). The differences in k  or
k, among patient groups with different baseline mutant EGFR VAF levels were shown to
be not significant. Additionally, the correlations between the presence of a TP53 mutation
and tumor dynamics parameters were also not significant in the covariate analysis. The
parameter estimates of the model with baseline mutant EGFR VAF as the covariate are
shown in Table 4.3. The typical kg estimate in patients with baseline EGFR VAF > 1.74%
was 0.00204 day', which is higher than the estimate for the whole population (0.000799
day). The typical k estimate in patients with baseline EGFR VAF < 1.74% was 33.4% of
that in patients with baseline EGFR VAF > 1.74%, while the difference between patients
with baseline EGFR VAF < 1.74% and with unknown mutant EGFR level was not signifi-
cant. The inclusion of mutant EGFR VAF in the model decreased the CV% of IIV in k_
from 60.3% to 16.6%, while the corresponding RSE increased. The population predictions
of the model also improved according to the GOF plots (Figure $4.6).

4. Discussion

In this study, the tumor dynamics and the development of drug resistance in NSCLC
patients undergoing erlotinib treatment was characterized with a mathematical model
accounting for tumor heterogeneity. Incorporating the erlotinib exposure into the model
was also explored. The potential correlation between baseline genetic biomarkers and
parameters that characterize tumor dynamics was identified with exploratory plots and

confirmed with the model.

To facilitate the investigation on the exposure-tumor inhibition relationship, a population
PK model of erlotinib was first developed. The estimated clearance is comparable to what
has been reported previously (4.10 L/h vs 3.64-4.71 L/h) [16-19]. Due to lack of data, previ-
ously reported covariates on erlotinib PK, including the smoking status, co-medications,
and alpha-1-acid glycoprotein, could not be investigated in our analysis [16, 19]. The CV%
of ITV in Ka and Q/F was estimated to exceed 100%. For Ka, this high IIV estimate might
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because it covers the variability in the lag time of absorption. Considering the amount of
available data, these IIV estimates may not be precise. However, this does not affect the
predictive ability of the PK model for the intended use in this study. The performance of
the model were confirmed by the model evaluation results. However, a trend in CWRES
over time between 6-8h after last drug intake was observed. This is considered to be due to
the double peaks that were observed in the obtained data: data from 18 out of 29 patients
who provided intensively sampled PK data demonstrate increased drug concentrations
at 6-8 hours. The possible explanation could be the delayed disintegration of the tablets,
food intake [20, 21], or possible enterohepatic circulation, although the latter has not been
reported in literature before. This observed double peaks could not be captured by the
current PK model, nor by a model considering dual first-order absorption with different
lag times. Nevertheless, the model showed to be able to adequately predict the AUC of
individual concentration-time curves as well as the trough concentrations which are of
interest to be linked to the tumor dynamics. Therefore, the developed PK model was

considered to be valid to support our study.

For the tumor size dynamics, a model accounting for intra-tumor heterogeneity and
acquired resistance showed to adequately fit the obtained data, and considering primary
resistance was not favored based on the available data. This may indicate that for patients
with NSCLC with an activating EGFR mutation, it is mainly the acquired resistance,
which may be due to the acquisition of EGFR p.T790M mutation or other mechanisms,
that limits the treatment response. Among previously reported model-based studies on
tumor size dynamics in NSCLC patients undergoing erlotinib treatment, one study also
considered tumor heterogeneity [22]. Their results also showed that the models with and
without primary resistance could describe the data equally well even though erlotinib was
used as a second-line treatment in their study [22]. However, it is worth noting that the
model presented in the current study is empirical and simplifies the complex process of
the emergence of treatment resistance. Previously, several mechanistic models have been
proposed to provide quantitative insight into this process [23, 24]. The relatively limited
amount of data in the current analysis prohibits the implementation of more mechanistic
models and therefore may limit the mechanistic interpretation. In fact, the presence of
TP53 mutations may indicate the presence of primary resistance [25, 26]. However, TP53
mutations were only detected in 4 out of 18 patients which may be unable to provide
significant impact to our model. Nonetheless, this more empirical approach does take into
account the existence and interaction among multiple clonal populations which are crucial
for understanding resistance development [24]. We do consider this approach relevant for

exploring optimal guided drug treatment in real world clinical oncology practice where
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extensive data is normally sparse. Furthermore the current approach can serve as a basis
for building more mechanistic-based models when more extensive data is available [24].
The growth rates of treatment sensitive and resistant clonal populations were assumed to
be the same in the model. This was because of the lack of identifiability of separate growth

rates due to the limited amount of data.

The current study did not identify a clear exposure-tumor inhibition relationship within the
current concentration range (the median predicted drug concentrations at the tumor size
monitoring time points was 992 ng/ml (range of 284-1554 ng/mL)), neither when assuming
anon-linear relationship with the Emax model. A dose-tumor inhibition relationship was
also explored but no clear relationship was identified. This might be because the treatment
effect has already been saturated. The dose level selected for erlotinib (i.e. 150 mg daily)
is the maximum tolerated dose, under which the average trough concentration at steady
state is well above what is required for the required erlotinib activity and considered to be
sufficient to provide a high anti-neoplastic effect [27]. This lack of relationship is in line
with previous clinical studies where no significant correlation between erlotinib exposure
and response has been identified [28-30]. One study also showed that increased erlotinib
exposure had less impact on the antitumor effects in EGFR mutation-positive patients
[31]. As an exposure-response relationship was not identified, we could not investigate
the influence of drug exposure on the evolving tumor progression in this case. However,
this result suggests that there is a potential option to decrease the dose of erlotinib to
target for a lower concentration range that still ensures sufficient efficacy but can be better
tolerated, especially since a significant proportion of erlotinib-treated patients can have
severe toxicity [6]. The U.S. Food and Drug Administration (FDA) has recently proposed
the Project Optimus which also encourages to improve dose selection and optimization
for oncology drugs by accounting for both efficacy and tolerability rather than automati-
cally selecting the maximum tolerated dose [32, 33]. A recent study has already suggested
an optimized starting dose of 50-60 mg/day for erlotinib and a concentration range of
150-310 ng/mL for personalized erlotinib treatment in NSCLC patients considering both
efficacy and tolerability [34].

The correlation between baseline genetic biomarkers and parameters in tumor dynamics
model was investigated in this study. The VAF’s of mutant EGFR and the presence of TP53
mutations in ctDNA at baseline showed to have potential correlation with the estimated
parameters in the tumor dynamics model (mainly k and k, ), especially that higher
baseline EGFR VAF was significantly correlated with increased growth rate constant k.
This indicates that patients with higher EGFR VAF at baseline may have a worse response

to the treatment, which is in line with the clinical findings from a EGFR cohort in the
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START-TKI study;, i.e. patients without detectable ctDNA at baseline had a lower rate of
radiological progression [6]. An explanation could be the association between ctDNA levels
and tumor burden [11, 35]. Our result is also in line with previous findings that baseline
concomitant TP53 mutations may relate to worse clinical outcome in patients with NSCLC
[6]. After incorporating baseline ctDNA measurements, the developed tumor dynamics
model could better predict the tumor sizes dynamics in response to erlotinib treatment in
NSCLC patients. This finding also demonstrates the potential to use baseline ctDNA as
an early biomarker to support decision making for the treatment of NSCLC patients [36].

This study also has some limitations. The results found in the current study are based on
limited data from a limited number of patients, especially for genetic biomarkers. The
unavailability of baseline cfDNA samples in 6 out of 18 patients could also impact the
interpretation of the results, as well as the determination of the threshold value of EGFR
VAF which was associated with increased growth rates. However, this study is one of the
first that investigated the relationships among PK, tumor dynamics, and ctDNA measure-
ments. Furthermore, since the data on detectable mutation levels in ctDNA are limited,
development of a model for describing longitudinal ctDNA data was not feasible and
only the baseline ctDNA measurements were included in the analysis, which however
explored the value of ctDNA as an early biomarker. Additionally, the mutant EGFR VAF
was only investigated as a categorical covariate while the data range from 0% to 62.74%
and correspond to multiple variants. Therefore, further analysis with more extensive data
is warranted to validate the current results and to explore the correlation between the

longitudinal ctDNA measurements and tumor size dynamics with models.

In conclusion, our study demonstrated that the model accounting for intra-tumor hetero-
geneity and acquired resistance can well characterize the tumor size dynamics in NSCLC
patients during erlotinib treatment. No clear exposure-tumor inhibition relationship was
identified within the current concentration range. A correlation between baseline ctDNA
measurements and tumor growth rates was however identified which suggests that quan-
titative ctDNA measurements at baseline have potential to be predictive of anti-cancer
treatment response, and further study on more extensive longitudinal data is warranted.
The developed model can potentially be further applied to design optimal treatment

regimens that better overcome resistance.
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Study highlights

What is the current knowledge on the topic?

Insight into the evolutionary development of treatment resistance can support
optimization of anti-cancer treatments. This is also the case in non-small cell lung cancer
(NSCLC) patients. A model-based approach can support such study based on data on

pharmacokinetics, tumor sizes and genetic biomarkers

What question did this study address?
We aimed to quantitatively characterize the tumor dynamics and evolving resistance
development in NSCLC patients treated with erlotinib, and investigate the relationship

between baseline circulating tumor DNA (ctDNA) measurements and tumor dynamics.

What does this study add to our knowledge?

A model accounting for intra-tumor heterogeneity and acquired resistance well
characterized the tumor size dynamics in NSCLC patients during erlotinib treatment. No
exposure-tumor inhibition relationship was identified in the identified exposure range.
Baseline ctDNA data on mutant EGFR levels correlate with tumor growth rate and the

inclusion of ctDNA data improved model prediction.

How might this change drug discovery, development, and/or therapeutics?

Our findings suggest that baseline ctDNA measurements have the potential to be a predictor
of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker.
The developed model can further be applied to design optimal treatment regimens to

better overcome resistance.
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Supplementary Material S4.1

Population PK analysis - covariate analysis methods

In the population PK analysis, patients’ demographic information, including age, sex,
weight, height, and laboratory test results, including creatinine, estimated glomerular
filtration rate (eGFR), albumin, total bilirubin, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and alkaline phosphatase (ALP) were investigated as covariates.
The stepwise covariate modeling (SCM) function of Perl-speaks NONMEM (version
4.9) was applied to perform the covariate analysis. The effect of all covariates on erlotinib
clearance and that of weight, height, and albumin on apparent distribution volume of
the central compartment were investigated. Model selection was based on the reduction
in objective function value (OFV) (a likelihood ratio test) assuming a x? distribution, a
reduction in IIV, and physiological plausibility. The p values were set as 0.05 and 0.01 for

the forward selection and backward elimination process, respectively.

The effects of continuous covariates were investigated with both linear relation (Eq.
§4.1) and power relation (Eq. $4.2), where P, represents the parameter of ith individual,
P, represents typical value of the parameter, and #, represents the individual variability,
0, represents the estimate of covariate effect, COV, represents the covariate value of ith
individual, COV _is the median value of the covariate. Categorical covariates (e.g. sex) were
analyzed with Eq. $4.3, where 6 was set as 1 for reference category (e.g. males) and was

estimated for other categories (e.g. females).

Py = P+ (1 8coy + (COV; — COVp)) - e Eq. 54.1

p. =P cov; Ocov . aMi Eq.S4.2
i = (COVm) € q. 54.

P; = P, B¢y - € Eq.54.3
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Supplementary Material $4.2

NONMEM code for the tumor dynamics model

$INPUT

CID DROP TIME TAD AMT ADDL II CMT EVID DV
UNDERTREAT; if treatment started: 1, yes

DROP DROP Dose; dose

DROP AGE SEXHT WT DROP BMI

baseTS; baseline tumor size

T790M; T790M: 1, yes

TP53_base; presence of TP53: 1, yes

basecfDNA; baseline cfDNA concentration

baseVAF; baseline EGFR mutant levels

DROP DROP DROP DROP DROP DROP DROP
ICLIV21V3IQ IKA TALAGI IF1; individual PK parameters

$DATA START _all6.csv IGNORE=C IGNORE=(CMT.GT.4) IGNORE=(CMT.EQ.2); only

data of tumor sizes
$SUBROUTINES ADVAN13 TOL=4

$MODEL

COMP = (DEPOT)

COMP = (CENTRAL,DEFOBS)
COMP = (PRIPH)

COMP = (TUMOR)

COMP = (TUMOR2)

$PK

KG1 = THETA(1)* EXP(ETA(1))/100

KD1 = THETA(2)* EXP(ETA(2))/100

KM1 = THETA(5)* EXP(ETA(3))/100
;IF(baseVAEGE.0.AND.baseVAELT.1.74) KG1=THETA(6)*KG1
;IF(baseVAELT.0) KG1=THETA(7)*KG1; no sample group

CL = ICL*24; change unit from L/h to L/day
V2=1V2
V3=1V3
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Q=1Q*24

ALAGI = IALAGI1 /24
KA = IKA*24

F1 =IF1

K=CL/V2

K23=Q/V2
K32=Q/V3

BASES = baseTS
A_0(4)=BASES
A_0(5)=0

$DES

DADT(1) = -KA*A(1); can simulate drug concentrations, if needed

DADT(2)= KA*A(1) - K*A(2) -K23*A(2) +K32*A(3); can simulate drug concentrations,
if needed

DADT(3) = K23*A(2)- K32*A(3); can simulate drug concentrations, if needed
DADT(4) = KG1*A(4)-KD1* UNDERTREAT *A(4) - KM1* UNDERTREAT *A(4)
DADT(5) = KM1* UNDERTREAT *A(4)+ KG1* UNDERTREAT *A(5)

$ERROR

TS=A(4)+A(5)

IPRED = TS
W = SQRT(THETA(3)**2*IPRED**2 + THETA(4)**2)
Y = IPRED + W*EPS(1)

IRES = DV-IPRED

TWRES = IRES/W

$THETA

(0.001,0.1,1); KG1

(0.1,1,5); KD

(0.01,0.1,1); Prop err
(0.1,1,10); Add err

(0.01,1, 5); KM1

;(0.05,0.5,2); VAF < 1.74
;(0.05,0.5,2); VAF not available

$OMEGA
0.1; IIV KG
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0.1; IIV KD
0.1; IIV KM1

$SIGMA 1 FIX;

$ESTIMATION METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=10
POSTHOC

$COV print=E

$TABLE ID TIME TAD MDV EVID UNDERTREAT Dose baseTS T790M TP53_base
basecfDNA baseVAF baseTS KG1 KD1 KM1 TS IPRED IW
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Supplementary figures and table

Supplementary Figures
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Figure S4.1: The collected data on erlotinib concentrations over time.
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Figure S4.3: Goodness-of-fit plots of the developed population PK model, including observations versus
individual predictions (a) and population predictions (b), and conditional weighted residual errors (CWRES)
versus populations predictions (c) and versus time after last dose (d). The red dashed lines represent y = x
(a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Figure S4.4: Goodness-of-fit plots of the developed tumor dynamics model, including observations
versus individual predictions (a) and population predictions (b), and conditional weighted residual errors

(CWRES) versus populations predictions (c) and versus time (d). The red dashed lines represent y = x (a, b)
and y =0 (c, d). Black dashed lines represent corresponding loess regressions.

136




Tumor dynamics and resistance development in NSCLC patients

"SUOIIRJIUIIUOD (YNGHP) YNQ 9944 BULIRINDIID SUIISSRY SNSISA [SPOW SIIWRUAP JOWN SY} WOJ) SSIRWIISS Jd}dweled 1§'t'S ainbig

(M/Bu) YNQyo eseq
ajdwes ou
1

124 %d <
_

r§00°0

0100

rS§L00

ajewyso Wy

(Mi/Bu) ¥NQyo eseq

ajdwes ou
1

124 %d
1

<

100

F¢00

€00

ajewnsa Py

(71/Bu) ¥NQJo eseq
sdwesou L > YL <
1 1 1
_|_|_ _

[ ] |
_ - 1000
2000
® - €000

ajewnse By

e

137



Chapter 4

a 80 ° b 80 - °
RS Add e® o °
Seo”e S e
__ 60 v e __ 60+ o oo
£ e o o ° £ o we | o®
£ @0 % £ ° =eF o =
- I - e
c c o/ %
£ 40+ e 2 40+ oot g0 °
g ° [ o 7 .
o} 'a':‘ I} .“{:  J
(7] (72}
8 ¥ 8 e
20 = 20 Lo
' d s %
= e
04 04
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
Individual predictions (mm) Population predictions (mm)

c d

CWRES

T
75
Population predictions (mm)

100

CWRES

T T i
500 750 1000

Time (days)

i
250

1250

Figure S4.6: Goodness-of-fit plots of the tumor dynamics model with ctDNA as a covariate, including
observations versus individual predictions (a) and population predictions (b), and conditional weighted
residual errors (CWRES) versus populations predictions (c) and versus time (d). The red dashed lines
representy =x (a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Supplementary Table

Table S4.1: Parameter estimates of the tumor dynamics model considering pre-existing resistance
component (primary resistance)

IV (CV%) (RSE%)

Parameters Description Estimate (RSE%) [shrinkage%]
kg (/day) Tumor growth rate constant 0.000801 (22%) 60.4% (29%) [26%]
k, (/day) Tumor decay rate constant 0.0129 (21%) 73.6% (27%) [8%]
k_ (/day) Mutation rate constant 0.00756 (28%) 66.6% (34%) [19%]
T, , (mm) Baseline size of sensitive clonal Observed baseline-T, =~ -
population
T o (Mm) Baseline size of resistant clonal 4.51 (39%) 0 fixed
population
Residual errors
Prop. Err. (CV%)  Proportional residual error 7.44% (18%) [12%]"
Add. Err. (SD, Additive residual error 1.19 (21%) [12%]"
mm)
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