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Abstract

Insight into the development of treatment resistance can support the optimization 
of anti-cancer treatments. This study aims to characterize the tumor dynamics and 
development of drug resistance in non-small cell lung cancer (NSCLC) patients 
treated with erlotinib, and investigate the relationship between baseline circulating 
tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis 
included 1) intensively sampled erlotinib concentrations from 29 patients from two 
previous pharmacokinetic (PK) studies, and 2) tumor sizes, ctDNA measurements, 
and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI 
study. A two-compartment population PK model was first developed which well 
described the PK data. The PK model was subsequently applied to investigate the 
exposure-tumor dynamics relationship. To characterize the tumor dynamics, models 
accounting for intra-tumor heterogeneity and acquired resistance with or without 
primary resistance were investigated. Eventually, the model assumed acquired 
resistance only resulted in an adequate fit. Additionally, models with or without 
exposure-dependent treatment effect were explored, and no significant exposure-
response relationship for erlotinib was identified within the observed exposure range. 
Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants 
with tumor dynamics parameters was explored. The analysis indicated that higher 
baseline plasma EGFR mutation levels correlated with increased tumor growth rates, 
and the inclusion of ctDNA measurements improved model fit. This result suggests 
that quantitative ctDNA measurements at baseline have the potential to be a predictor 
of anti-cancer treatment response. The developed model can potentially be applied 
to design optimal treatment regimens that better overcome resistance.  

Keywords: oncology, quantitative modeling, intra-tumor heterogeneity, tumor 
dynamics, resistance development, non-small cell lung cancer, circulating tumor 
DNA
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1.  Introduction

The occurrence of anticancer treatment resistance due to intra-tumor heterogeneity and 
evolving adaptation of tumor cells to the treatment can limit the long-lasting efficacy of 
targeted anticancer treatment [1, 2]. In order to improve the anti-cancer treatment outcome, 
it is important to have detailed insight into the tumor progression during treatment since 
it enables designing of alternative treatment strategies. 

In patients with non-small cell lung cancer (NSCLC), erlotinib, a tyrosine kinase inhibitor 
(TKI), is one of the effective treatment options especially for patients with EGFR exon 19 
deletions or exon 21 mutations [3-5]. However, the occurrence of acquired drug resistance, 
which is most frequently due to the acquisition of the EGFR p.T790M mutation, and the 
possible presence of drug-resistant component pre-treatment (primary resistance) can 
limit its efficacy and result in relapse [3-6]. Thus, understanding the evolving progression 
of NSCLC during the treatment and identifying predictive biomarkers would be beneficial 
to optimize the treatment of NSCLC. 

Pharmacometric modeling allows quantitative characterization and prediction of pharma-
cokinetic (PK) – pharmacodynamic (PD) profiles of drugs and thus facilitates treatment 
design [7-9]. With the help of a model-based approach, studies on evolving tumor progres-
sion can be conducted based on available data on tumor sizes and genetic biomarkers, and 
optimal treatment designs can be evaluated. Our previous study has proven such a concept 
based on data from metastatic colorectal cancer patients as well as from NSCLC patients 
[10]. Further incorporating the exposure of therapeutic agents in the model can support 
the investigation and understanding of exposure-tumor inhibition relationship and the 
evolutionary tumor dynamics in relation to drug exposure during anti-cancer treatment.   

Circulating tumor DNA (ctDNA), which are DNA fragments in the circulation (circulating 
free DNA (cfDNA)) that are of tumor origin, is a clinically available and emerging genetic 
biomarker [11]. It has shown to be able to provide detailed insight into the molecular 
alterations and evolving progression of tumor under treatment [4, 5, 11]. In patients with 
NSCLC, numerous studies have shown that a decrease in mutant gene levels in ctDNA 
correlates to the therapeutic response of TKIs [5]. In another model-based study, the relative 
change of concentrations of driver mutation in ctDNA from the estimated baseline was 
shown to be predictive to disease progression of NSCLC patients [12]. Further research 
on the correlation between ctDNA measurements and tumor size dynamics would be 
beneficial to understanding the evolutionary development of treatment resistance and 
the value of ctDNA. 
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In the current study, we aimed to develop a model to understand and characterize tumor 
dynamics and the development of drug resistance in NSCLC patients treated with erlotinib. 
First, a population PK model of erlotinib was developed and thereafter applied to inves-
tigate the exposure-tumor inhibition relationship of erlotinib. Tumor dynamics models 
accounting for tumor heterogeneity, with or without a pre-existing resistance component, 
and drug exposure-dependent treatment effects, were evaluated. Subsequently, we aimed 
to explore the correlation of the extent of somatic driver mutation in ctDNA at baseline 
with the tumor dynamics in NSCLC patients. 

2.  Method

2.1  Patients and data

2.1.1  Intensively sampled PK data 
The study included intensively sampled erlotinib concentration-time curves from two 
previous PK studies in patients with NSCLC who were treated with erlotinib for an 
activating EGFR mutation [13, 14]. Erlotinib was administrated orally once daily with a 
dosage of 50–150 mg. PK samples were collected before drug intake and at 0.5, 1, 1.5, 2, 
2.5, 3, 3.5, 4, 6, 8, 12, and 24 hours after drug administration at steady state. The studies 
were performed at the Erasmus MC Cancer Institute in Rotterdam, the Netherlands, and 
the details of the studies’ design can be found in previous publications [13, 14]. For the 
current study, only the data in the control arms that were sampled after receiving erlotinib 
with water and without concomitant esomeprazole were included, which aimed to be 
consistent with real world patients. 

Patients’ demographic information, including age, sex, weight, height, and additional 
laboratory test results, including creatinine, estimated glomerular filtration rate (eGFR), 
albumin, total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), 
and alkaline phosphatase (ALP) were collected for covariate analysis.

2.1.2  PK-PD data 
Longitudinal measured tumor sizes under standard clinical care conditions as well as 
sparsely sampled intended trough erlotinib concentrations from real-world NSCLC 
patients who participated in the START-TKI study (NCT05221372), which is a prospective, 
observational multicenter study [6], were also included in this analysis. Erlotinib was 
administrated orally once daily with a dosage of 75–150 mg. The tumor size measurements, 
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i.e. the sum of the longest diameters (SLD, mm) of target lesions, were assessed by Response 
Evaluation Criteria In Solid Tumors (RECIST version 1.1 [15]). Additional data of dosing 
information, ctDNA data on variant allele frequency (VAF) of mutant genes over time, and 
concentrations of cfDNA over time from these patients were also collected. The detailed 
methods of cfDNA isolation and next-generation sequencing process have earlier been 
described [6]. Patients demographic information and lab test results as above mentioned 
were also collected for potential covariate analysis. 

The studies from which the data were obtained were previously approved by local ethics 
committee and were registered in the Dutch Trial Registry. Written informed consent 
was obtained from all patients prior to these studies, including the use of data for further 
studies. For the current study, the data were shared anonymously and all procedures were 
performed in accordance with relevant guidelines and the Declaration of Helsinki, so no 
additional informed consent had to be obtained.

2.2  Population PK model
Based on the collected PK data, a population PK model was developed to characterize 
the erlotinib PK profiles of included patients. The intensively sampled PK data and the 
sparsely sampled PK data from patients involved in the START-TKI study were combined 
for the model development. 

One- and two-compartment models with first-order absorption, with or without lag time, 
and first-order elimination were explored as the structural model. A combined propor-
tional and additive model was applied to characterize the residual error. Parameters were 
assumed to be log-normally distributed. To account for the inter-individual variability 
(IIV) in bioavailability (F) which is shared by the estimated apparent PK parameters, 
the IIV on F was estimated while the typical value of F was fixed to 1. The structural 
model was selected based on biological plausibility and the objective function value  
(OFV). 

Patients’ demographic information and lab test results were then investigated as covari-
ates using the stepwise covariate modeling (SCM) function of Perl-speaks NONMEM 
(version 4.9). The effect of all covariates on erlotinib clearance and that of weight, height, 
and albumin on apparent distribution volume of the central compartment were investi-
gated. The relationship between F and dose level was not explored since the majority of 
patients received the same dose level. Model selection was based on the reduction in OFV 
(a likelihood ratio test) assuming a χ2 distribution, a reduction in IIV, and physiological 
plausibility. The p values were set as 0.05 and 0.01 for the forward selection and backward 
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elimination process, respectively. A more detailed description of the covariates analysis 
can be found in Supplementary Material S4.1.

The final model was evaluated with goodness-of-fit (GOF) plots, visual predictive checks 
(VPC) based on 1000 simulations, and bootstrap with 1000 resampled datasets. In addition, 
the percentage where the predicted area under the curve (AUC) falls within 80–120% of 
the corresponding observed AUC (estimated with trapezoidal rules method) was calculated 
for the full concentration-time curves to evaluate the model. The percentage where the 
predicted trough concentrations fall within 80–120% of the corresponding observations 
was also estimated for the data from the START-TKI study. 

2.3  Tumor dynamics model 
The dynamics of tumor sizes during erlotinib treatment, which was represented by sum 
of longest diameters (SLD, mm) of target lesions, was characterized accounting for tumor 
heterogeneity. Tumor tissue was assumed to consist of a sensitive clonal population (Ts) 
and a resistant clonal population (TR). Models considering 1) only acquired resistance 
and no primary resistance (i.e. baseline TR (TR_0) = 0), and 2) both primary and acquired 
resistance (i.e. TR_0 ≠ 0 and was estimated), with or without a drug exposure-dependent 
decay, were explored. Considering the amount of the available data, the baseline tumor sizes 
were fixed to the observed values to ensure the stability of the model. The model structure 
is shown in Figure 4.1 and Eqs. 4.1–4.4, where kg represents the growth rates of Ts and 
TR, km represents mutation rate, and kd represents tumor decay rate due to treatment. For 
the models exploring the exposure-dependent treatment effect, the tumor decay rate was 
assumed to depend on drug exposure and a simple linear relationship was assumed (Eq. 
4.2). A non-linear relationship with Emax model was also explored. The drug exposure 
was defined as the trough concentration, which is the exposure metrics of interest for 
erlotinib exposure-response analysis and is relatively easy to measure in clinical practice. 
The trough concentrations were predicted by the individual PK parameters obtained from 
the PK model. The IIV of parameters were evaluated and parameters were assumed to be 
log-normally distributed. The combined proportional and additive model was applied to 

Figure 4.1:  Graphical structure of the tumor dynamics model.
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characterize the residual error. The model fit was evaluated by OFV and Akaike information 
criterion (AIC). The best fitted model was evaluated with GOF plots and VPC considering 
the censoring of data due to progression defined by RECIST version 1.1 [15].

𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇� � �� ∙ 𝑇𝑇� � �� ∙ 𝑇𝑇�  Eq. 4.1 

𝑘𝑘� � � 𝑘𝑘�� ��� ��� ����� ������� �������� � ��������� �����
 𝑘𝑘� � ��������� ��� ��� ����� ���� �������� � ��������� �����   Eq. 4.2

𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇� � �� ∙ 𝑇𝑇�  Eq. 4.3

  Eq. 4.4

2.4  Genetic biomarkers and tumor dynamics 
The correlation of baseline ctDNA measurements, including EGFR mutation levels and the 
presence of TP53 mutations, with tumor dynamics parameters (kg , km, and kd) were explored 
graphically. Patients were separated into groups based on 1) whether their baseline mutant 
EGFR VAF was < or ≥ the median value, or the measurements were unavailable, or 2) 
whether patients had a TP53 mutation at baseline or not, or the results were unavailable. The 
correlation between baseline cfDNA concentrations and tumor dynamics parameters was 
also explored by separating patients into groups based on the median value to investigate 
informativeness of cfDNA compared to ctDNA. 

Furthermore, the influence of baseline ctDNA measurements and cfDNA concentrations 
on kg, km, and kd were evaluated as categorical covariates in the tumor dynamics model. 
The EGFR mutation levels and the cfDNA concentrations were categorized based on the 
corresponding median values as is described above. When a sample is missing, it was 
assigned to the third category and a sensitivity analysis was performed by evaluating models 
with and without the covariate for a dataset where the data from patients with missing 
covariates were removed. A significant correlation was defined as a decrease in OFV by 
more than 3.84 (p < 0.05, degree of freedom = 1, assuming χ2 distribution).   

2.5  Software and estimation methods
The population modeling analysis in this study was performed with NONMEM (version 
7.4.4, ICON Development Solutions, Ellicott City, MD, USA). Parameters were estimated 
using the first order conditional estimation method with interaction (FOCEI). Data 
management and plots generation were performed with R statistics software (version 4.2.1, 
R Foundation for Statistical Computing, Vienna, Austria). 
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3.  Results

3.1  Patients and data
The intensively sampled erlotinib concentration-time curves were obtained from 29 
patients (N = 377, 13 samples per patient). The SLD measurements (N = 155) as well as 
additionally sampled erlotinib concentrations (N = 146), ctDNA measurements (N = 50), 
and cfDNA concentrations (N = 50) were collected from 18 real-world NSCLC patients 
from the START-TKI study. For these 18 patients, the median time period when the SLD 
measurements were available is 264 days since the start of the treatment (range from 
20–1168 days), and all patients had an event of disease progression or death where data 
were censored afterwards. 

The obtained erlotinib concentration data over time are presented in Figure S4.1. None 
of the collected data was below the lower limit of quantification. The median baseline 
tumor size (SLD) of the included patients was 76.6 mm (range 29–116 mm). Out of the 146 
obtained concentrations, 125 were measured at ≥ 20 hours after last drug intake (trough 
concentrations) with a median of 842 ng/mL and range of 318–1834 ng/mL. Activating 
EGFR variants (including exon 19 deletions (N = 11) and EGFR p.L858R (N = 6) and 
p.K852R (N = 1) mutations) were detected in the tumor biopsies of all 18 patients [6]. The 
plasma cfDNA samples at the start of treatment were available from 12 out of 18 patients. 
The median baseline cfDNA concentration was 1.44 ng/µL (range from 0.77–3.65 ng/µL). 
The primary EGFR variants were detected from baseline cfDNA samples from 8 out of 12 
patients, which include exon 19 deletions (N = 6) and EGFR p.L858R (N = 1) and p.K852R 
(N = 1) mutations. The median baseline EGFR VAF was 1.74% (range from 0–62.74%). The 
obtained VAF of primary EGFR variants over time are shown in Figure S4.2. Furthermore, 
a TP53 mutation was detected in 4 patients at baseline and the EGFR p.T790M mutation 
was detected in 3 patients during erlotinib treatment. The baseline characteristics and the 
data contributed by each patient are summarized in Table 4.1. 

3.2  Population PK model
A two-compartment population PK model with first-order absorption with lag time 
and first-order elimination was developed and showed to best fit the obtained PK data. 
Compared to the one-compartment model, the OFV of the selected model decreased by 
27.5 (p < 0.01, degree of freedom = 3), indicating an improvement in the model fit. None 
of the tested covariates was identified to have significant effect on the PK parameters. The 
parameter estimates of the PK model are presented in Table 4.2. The relative standard 
errors (RSEs) were ≤ 25% for all parameters except for apparent distribution clearance 
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Table 4.1: Baseline characteristics of patients and the collected data 

Intensively sampled PK data
(N = 29)

PK/PD data
(N = 18)

Median Range Median Range

Age (years) 63 35–78 66 48–78
Sex (N (%))

Male 13 (44.8%) 5 (27.8%)
Female 16 (55.2%) 13 (72.2%)

Weight (kg) 74 50–102 69.5 46.1–109
Height (cm) 173 152–202 169 154–180
Serum creatinine (μmol/L) 82 47–138 66 59–192
eGFR (ml/(min.1.73 m2)) 71 46–100 84.5 23–103
AST (IU/L) 29 13–40 21.5 14–37
ALT (IU/L) 25 10–83 18 6–43
Albumin (g/L) 41 32–48 42.5 34–51
ALP (U/L) 85 53–157 87.5 3–798
Bilirubin (μmol/L) 8 3–58 6.5 3–14
Erlotinib starting dose (N (%))

150 mg 25 (86.2%) 18 (100%)
100 mg 3 (10.3%) 0
50 mg 1 (3.4%) 0

N of concentration per patient 13 13–13 8 (N = 2 no data ) 1–20
N of SLD per patient - - 7 2–18
N of ctDNA or cfDNA data per 
patient

- - 3 1–4

eGFR, estimated glomerular filtration rate; AST, aspartate aminotransferase; ALT, alanine aminotransferase; 
ALP, alkaline phosphatase; ctDNA, circulating tumor DNA; cfDNA, circulating free DNA; SLD, sum of longest 
diameters.

(Q/F) (40%), indicating acceptable estimation precision. High estimates for IIV on Q/F 
and absorption rate constant (Ka) were observed (coefficient of variation (CV%) > 100 
%), with shrinkages < 30%. The parameter estimates were also in good agreement with 
the bootstrap results (Table 4.2).

The GOF plots of the final PK model demonstrated a good concordance between the 
model predictions and observations (Figure S4.3). The conditional weighted residual 
errors (CWRES) randomly distributed around zero without obvious trends over popula-
tion predictions, but with a slight trend over time between 6–8h after last drug intake. The 
VPC plot (Figure 4.2) shows that the observed data can be adequately predicted by the 
developed model. Additionally, 100% of the model predicted AUC and 82.4% of the model 
predicted trough concentrations were within 80–120% of their corresponding observations.
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Table 4.2: Parameter estimates of the population pharmacokinetic model

Parameters Explanation
Estimate 
(RSE%)

IIV (CV%) (RSE%) 
[shrinkage%]

Bootstrap

Median 95% CI

CL/F (L/h) Apparent clearance 4.10 (5%) 15.7% (31%) [48%] 4.09 3.68– 4.47
Vc/F (L) Apparent distribution 

volume of the central 
compartment

142 (7%) 20.3% (31%) [43%] 142 125– 162

Vp/F (L) Apparent distribution 
volume of the periph-
eral compartment

2420 (12%) - 2462 1768– 8043

Q/F (L/h) Apparent distribution 
clearance

0.548 (40%) 194.4% (15%) [28%] 0.542 0.188–1.24

Ka (/h) Absorption rate 
constant

1.61 (23%) 124.5% (15%) [18%] 1.68 1.03–2.65

Tlag (h) Absorption lag time 0.400 (5%) - 0.400 0.358– 0.428
F Bioavailability 1 fixed 16.3% (31%) [37%] 1 fixed -
Residual errors

Prop. Err. 
(CV%)

proportional residual 
error

15.4 (6%) [10%]* 15.3 -

Add. Err. 
(SD, ng/ml)

additive residual error 44.5 (25%) [10%]*

43.4
-

RSE, relative standard error; IIV, inter-individual variability; CI, confidence interval; CV, coefficient of 
variation; SD, standard deviation.
* Epsilon shrinkage.

Figure 4.2:  Visual predictive check (VPC) of the developed population PK model. Blue dashed lines 
represent 95th and 5th percentiles of the observations, red dashed line represents the 50th percentile of the 
observations, blue shaded areas represent 95% confidence interval of the 95th and 5th percentiles based on 
the simulations respectively, and red shaded area represents 95% confidence interval of the 50th percentile 
based on the simulations.
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3.3  Tumor dynamics model
The tumor dynamics modeling results showed that the model accounting for acquired 
resistance only could adequately fit the data. The model that assumed the presence of 
primary resistance did not show an improved fit to the available data (p > 0.05, OFV 
decreased by 0.731 and AIC increased by 1.269, degree of freedom = 1). The typical estimate 
of TR_0 in this model was 4.51 mm which account for a small proportion (5.9%) of the 
median baseline tumor size (Table S4.1). Therefore, the pre-exiting resistance component 
was ultimately not included in the model. Furthermore, the OFV and AIC of the model 
incorporating an exposure-dependent decay increased by 1.441 compared with the base 
model, indicating no improvement in the model fit. Therefore, the exposure-dependent 
drug effect was not included in the final model.

The parameter estimates of the final tumor dynamics model are shown in Table 4.3 (model 
code in Supplementary Material S4.2). The RSEs of the parameter estimates were all < 
30%, indicating acceptable estimation precision. High estimates for IIV of the estimated 
tumor dynamics parameters were observed (CV% > 60 %). The GOF plots demonstrated 
a sufficient fit of the developed model to the data (Figure S4.4). The VPC considering the 
censoring of data due to progression showed that the model predicted intervals adequately 
captured the distribution of observations (Figure 4.3).

Figure 4.3:  Visual predictive check (VPC) considering drop out of the developed tumor dynamics model. 
Blue dashed lines represent 95th and 5th percentiles of the observations, red dashed line represents the 50th 
percentile of the observations, blue shaded areas represent 95% confidence interval of the 95th and 5th 
percentiles based on the simulations respectively, and red shaded area represents 95% confidence interval 
of the 50th percentile based on the simulations.
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3.4  Genetic biomarkers and tumor dynamics 
The baseline results regarding ctDNA measurements and cfDNA concentrations were 
available from 12 out of 18 patients and missing for 6 patients. No correlation was 
observed between baseline mutant EGFR VAF and cfDNA concentrations. According to 
the exploratory plots, patients with baseline mutant EGFR VAF ≥ 1.74% had relatively high 
kg and km estimates, and slightly higher kd estimates than patients with mutant EGFR VAF 
< 1.74% (Figure 4.4). In addition, for patients with a TP53 mutation at baseline, the kg 
and km estimates were relatively high compared to patients without TP53 mutations, and 
comparable kd estimates were observed (Figure 4.4). The association between baseline 
cfDNA concentrations and tumor dynamics parameters is shown in Figure S4.5. Patients 
with baseline cfDNA concentration ≥ 1.44 ng/µL showed to have higher kg and lower kd 

Table 4.3: Parameter estimates of the tumor dynamics models without or with baseline ctDNA data 
incorporated

Parameters Description

Model without covariate
Model with baseline ctDNA 
data as a covariate

Estimate 
(RSE%)

IIV (CV%) 
(RSE%) 
[shrinkage%]

Estimate 
(RSE%)

IIV (CV%) 
(RSE%) 
[shrinkage%]

kg (/day) Tumor growth rate 
constant 

0.000799 
(13%)

60.3% (27%) 
[26%]

0.00204 
(25%)

16.6% (152%) 
[57%]

f1 kg change fraction 
when mutant EGFR 
VAF < 1.74%

- - 0.334 
(28%)

-

f2 kg change fraction 
when baseline ctDNA 
data was unavailable

- - 0.281 
(28%)

-

kd (/day) Tumor decay rate 
constant 

0.0121 
(19%)

68.4% (26%) 
[8%]

0.0123 
(18%)

66.2% (22%) 
[7%]

km (/day) Mutation rate constant 0.00911 
(2%)

56.5% (25%) 
[19%]

0.00824 
(18%)

57.9% (32%) 
[15%]

TS_0 (mm) Baseline size of 
sensitive clonal 
population 

Observed 
baseline

- Observed 
baseline

-

TR_0 (mm) Baseline size of 
resistant clonal 
population

0 fixed - 0 fixed -

Residual errors
Prop. Err. 
(CV%)

Proportional residual 
error

7.54% 
(13%)

[12%]* 7.67% 
(14%)

[12%]*

Add. Err. 
(SD, mm)

Additive residual error 1.17 (38%) [12%]* 1.13 (9%) [12%]*

RSE, relative standard error; IIV, inter-individual variability; CV, coefficient of variation; SD, standard 
deviation, VAF, variant allele frequency.
* Epsilon shrinkage.
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estimate than patients with baseline cfDNA concentration < 1.44 ng/µL, and comparable 
km estimates were observed. 

When exploring the covariate effect of the baseline genetic biomarkers in the tumor 
dynamics model, the correlation between baseline mutant EGFR VAF and kg was iden-
tified to be most significant when assigning the missing values as a separate category 
(OFV decreased by 11.6, p < 0.01, degree of freedom = 2). This correlation remained 
to be significant when removing the data of patients with missing covariate from the 
dataset (OFV decreased by 4.6, p < 0.05 degree of freedom = 1). The differences in km or 
kd among patient groups with different baseline mutant EGFR VAF levels were shown to 
be not significant. Additionally, the correlations between the presence of a TP53 mutation 
and tumor dynamics parameters were also not significant in the covariate analysis. The 
parameter estimates of the model with baseline mutant EGFR VAF as the covariate are 
shown in Table 4.3. The typical kg estimate in patients with baseline EGFR VAF ≥ 1.74% 
was 0.00204 day-1, which is higher than the estimate for the whole population (0.000799 
day-1). The typical kg estimate in patients with baseline EGFR VAF < 1.74% was 33.4% of 
that in patients with baseline EGFR VAF ≥ 1.74%, while the difference between patients 
with baseline EGFR VAF < 1.74% and with unknown mutant EGFR level was not signifi-
cant. The inclusion of mutant EGFR VAF in the model decreased the CV% of IIV in kg 
from 60.3% to 16.6%, while the corresponding RSE increased. The population predictions 
of the model also improved according to the GOF plots (Figure S4.6).  

4.  Discussion

In this study, the tumor dynamics and the development of drug resistance in NSCLC 
patients undergoing erlotinib treatment was characterized with a mathematical model 
accounting for tumor heterogeneity. Incorporating the erlotinib exposure into the model 
was also explored. The potential correlation between baseline genetic biomarkers and 
parameters that characterize tumor dynamics was identified with exploratory plots and 
confirmed with the model. 

To facilitate the investigation on the exposure-tumor inhibition relationship, a population 
PK model of erlotinib was first developed. The estimated clearance is comparable to what 
has been reported previously (4.10 L/h vs 3.64–4.71 L/h) [16-19]. Due to lack of data, previ-
ously reported covariates on erlotinib PK, including the smoking status, co-medications, 
and alpha-1-acid glycoprotein, could not be investigated in our analysis [16, 19]. The CV% 
of IIV in Ka and Q/F was estimated to exceed 100%. For Ka, this high IIV estimate might 



Tumor dynamics and resistance development in NSCLC patients

123

4

because it covers the variability in the lag time of absorption. Considering the amount of 
available data, these IIV estimates may not be precise. However, this does not affect the 
predictive ability of the PK model for the intended use in this study. The performance of 
the model were confirmed by the model evaluation results. However, a trend in CWRES 
over time between 6–8h after last drug intake was observed. This is considered to be due to 
the double peaks that were observed in the obtained data: data from 18 out of 29 patients 
who provided intensively sampled PK data demonstrate increased drug concentrations 
at 6-8 hours. The possible explanation could be the delayed disintegration of the tablets, 
food intake [20, 21], or possible enterohepatic circulation, although the latter has not been 
reported in literature before. This observed double peaks could not be captured by the 
current PK model, nor by a model considering dual first-order absorption with different 
lag times. Nevertheless, the model showed to be able to adequately predict the AUC of 
individual concentration-time curves as well as the trough concentrations which are of 
interest to be linked to the tumor dynamics. Therefore, the developed PK model was 
considered to be valid to support our study.

For the tumor size dynamics, a model accounting for intra-tumor heterogeneity and 
acquired resistance showed to adequately fit the obtained data, and considering primary 
resistance was not favored based on the available data. This may indicate that for patients 
with NSCLC with an activating EGFR mutation, it is mainly the acquired resistance, 
which may be due to the acquisition of EGFR p.T790M mutation or other mechanisms, 
that limits the treatment response. Among previously reported model-based studies on 
tumor size dynamics in NSCLC patients undergoing erlotinib treatment, one study also 
considered tumor heterogeneity [22]. Their results also showed that the models with and 
without primary resistance could describe the data equally well even though erlotinib was 
used as a second-line treatment in their study [22]. However, it is worth noting that the 
model presented in the current study is empirical and simplifies the complex process of 
the emergence of treatment resistance. Previously, several mechanistic models have been 
proposed to provide quantitative insight into this process [23, 24]. The relatively limited 
amount of data in the current analysis prohibits the implementation of more mechanistic 
models and therefore may limit the mechanistic interpretation. In fact, the presence of 
TP53 mutations may indicate the presence of primary resistance [25, 26]. However, TP53 
mutations were only detected in 4 out of 18 patients which may be unable to provide 
significant impact to our model. Nonetheless, this more empirical approach does take into 
account the existence and interaction among multiple clonal populations which are crucial 
for understanding resistance development [24]. We do consider this approach relevant for 
exploring optimal guided drug treatment in real world clinical oncology practice where 
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extensive data is normally sparse. Furthermore the current approach can serve as a basis 
for building more mechanistic-based models when more extensive data is available [24]. 
The growth rates of treatment sensitive and resistant clonal populations were assumed to 
be the same in the model. This was because of the lack of identifiability of separate growth 
rates due to the limited amount of data.

The current study did not identify a clear exposure-tumor inhibition relationship within the 
current concentration range (the median predicted drug concentrations at the tumor size 
monitoring time points was 992 ng/ml (range of 284–1554 ng/mL)), neither when assuming 
a non-linear relationship with the Emax model. A dose-tumor inhibition relationship was 
also explored but no clear relationship was identified. This might be because the treatment 
effect has already been saturated. The dose level selected for erlotinib (i.e. 150 mg daily) 
is the maximum tolerated dose, under which the average trough concentration at steady 
state is well above what is required for the required erlotinib activity and considered to be 
sufficient to provide a high anti-neoplastic effect [27]. This lack of relationship is in line 
with previous clinical studies where no significant correlation between erlotinib exposure 
and response has been identified [28-30]. One study also showed that increased erlotinib 
exposure had less impact on the antitumor effects in EGFR mutation-positive patients 
[31]. As an exposure-response relationship was not identified, we could not investigate 
the influence of drug exposure on the evolving tumor progression in this case. However, 
this result suggests that there is a potential option to decrease the dose of erlotinib to 
target for a lower concentration range that still ensures sufficient efficacy but can be better 
tolerated, especially since a significant proportion of erlotinib-treated patients can have 
severe toxicity [6]. The U.S. Food and Drug Administration (FDA) has recently proposed 
the Project Optimus which also encourages to improve dose selection and optimization 
for oncology drugs by accounting for both efficacy and tolerability rather than automati-
cally selecting the maximum tolerated dose [32, 33]. A recent study has already suggested 
an optimized starting dose of 50–60 mg/day for erlotinib and a concentration range of 
150–310 ng/mL for personalized erlotinib treatment in NSCLC patients considering both 
efficacy and tolerability [34].

The correlation between baseline genetic biomarkers and parameters in tumor dynamics 
model was investigated in this study. The VAF’s of mutant EGFR and the presence of TP53 
mutations in ctDNA at baseline showed to have potential correlation with the estimated 
parameters in the tumor dynamics model (mainly kg and km), especially that higher 
baseline EGFR VAF was significantly correlated with increased growth rate constant kg. 
This indicates that patients with higher EGFR VAF at baseline may have a worse response 
to the treatment, which is in line with the clinical findings from a EGFR cohort in the 
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START-TKI study, i.e. patients without detectable ctDNA at baseline had a lower rate of 
radiological progression [6]. An explanation could be the association between ctDNA levels 
and tumor burden [11, 35]. Our result is also in line with previous findings that baseline 
concomitant TP53 mutations may relate to worse clinical outcome in patients with NSCLC 
[6]. After incorporating baseline ctDNA measurements, the developed tumor dynamics 
model could better predict the tumor sizes dynamics in response to erlotinib treatment in 
NSCLC patients. This finding also demonstrates the potential to use baseline ctDNA as 
an early biomarker to support decision making for the treatment of NSCLC patients [36]. 

This study also has some limitations. The results found in the current study are based on 
limited data from a limited number of patients, especially for genetic biomarkers. The 
unavailability of baseline cfDNA samples in 6 out of 18 patients could also impact the 
interpretation of the results, as well as the determination of the threshold value of EGFR 
VAF which was associated with increased growth rates. However, this study is one of the 
first that investigated the relationships among PK, tumor dynamics, and ctDNA measure-
ments. Furthermore, since the data on detectable mutation levels in ctDNA are limited, 
development of a model for describing longitudinal ctDNA data was not feasible and 
only the baseline ctDNA measurements were included in the analysis, which however 
explored the value of ctDNA as an early biomarker. Additionally, the mutant EGFR VAF 
was only investigated as a categorical covariate while the data range from 0% to 62.74% 
and correspond to multiple variants. Therefore, further analysis with more extensive data 
is warranted to validate the current results and to explore the correlation between the 
longitudinal ctDNA measurements and tumor size dynamics with models. 

In conclusion, our study demonstrated that the model accounting for intra-tumor hetero-
geneity and acquired resistance can well characterize the tumor size dynamics in NSCLC 
patients during erlotinib treatment. No clear exposure-tumor inhibition relationship was 
identified within the current concentration range. A correlation between baseline ctDNA 
measurements and tumor growth rates was however identified which suggests that quan-
titative ctDNA measurements at baseline have potential to be predictive of anti-cancer 
treatment response, and further study on more extensive longitudinal data is warranted. 
The developed model can potentially be further applied to design optimal treatment 
regimens that better overcome resistance.  
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Study highlights 

What is the current knowledge on the topic?
Insight into the evolutionary development of treatment resistance can support 
optimization of anti-cancer treatments. This is also the case in non-small cell lung cancer 
(NSCLC) patients. A model-based approach can support such study based on data on 
pharmacokinetics, tumor sizes and genetic biomarkers

What question did this study address?
We aimed to quantitatively characterize the tumor dynamics and evolving resistance 
development in NSCLC patients treated with erlotinib, and investigate the relationship 
between baseline circulating tumor DNA (ctDNA) measurements and tumor dynamics.

What does this study add to our knowledge?
A model accounting for intra-tumor heterogeneity and acquired resistance well 
characterized the tumor size dynamics in NSCLC patients during erlotinib treatment. No 
exposure-tumor inhibition relationship was identified in the identified exposure range. 
Baseline ctDNA data on mutant EGFR levels correlate with tumor growth rate and the 
inclusion of ctDNA data improved model prediction.  

How might this change drug discovery, development, and/or therapeutics?
Our findings suggest that baseline ctDNA measurements have the potential to be a predictor 
of anti-cancer treatment response, which encouraged to use ctDNA as an early biomarker. 
The developed model can further be applied to design optimal treatment regimens to 
better overcome resistance. 
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Supplementary Material S4.1 

Population PK analysis - covariate analysis methods
In the population PK analysis, patients’ demographic information, including age, sex, 
weight, height, and laboratory test results, including creatinine, estimated glomerular 
filtration rate (eGFR), albumin, total bilirubin, aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), and alkaline phosphatase (ALP) were investigated as covariates. 
The stepwise covariate modeling (SCM) function of Perl-speaks NONMEM (version 
4.9) was applied to perform the covariate analysis. The effect of all covariates on erlotinib 
clearance and that of weight, height, and albumin on apparent distribution volume of 
the central compartment were investigated. Model selection was based on the reduction 
in objective function value (OFV) (a likelihood ratio test) assuming a χ2 distribution, a 
reduction in IIV, and physiological plausibility. The p values were set as 0.05 and 0.01 for 
the forward selection and backward elimination process, respectively. 

The effects of continuous covariates were investigated with both linear relation (Eq. 
S4.1) and power relation (Eq. S4.2), where Pi represents the parameter of ith individual, 
Pt represents typical value of the parameter, and ηi represents the individual variability, 
θCOV  represents the estimate of covariate effect, COVi represents the covariate value of ith 
individual, COVm is the median value of the covariate. Categorical covariates (e.g. sex) were 
analyzed with Eq. S4.3, where θCOV was set as 1 for reference category (e.g. males) and was 
estimated for other categories (e.g. females).

𝑃𝑃� � 𝑃𝑃� ∙ �� � ���� ∙ �𝐶𝐶𝐶𝐶𝐶𝐶� � 𝐶𝐶𝐶𝐶𝐶𝐶��� ∙ ���   Eq. S4.1 

𝑃𝑃� � 𝑃𝑃� ∙ � 𝐶𝐶𝐶𝐶𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶��
���� ∙ e��   Eq. S4.2

𝑃𝑃� � 𝑃𝑃� ∙ 𝜃𝜃��� ∙ e��   Eq. S4.3
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Supplementary Material S4.2 

NONMEM code for the tumor dynamics model

$INPUT  
C ID DROP TIME TAD AMT ADDL II CMT EVID DV 
UNDERTREAT; if treatment started: 1, yes
DROP DROP Dose; dose
DROP AGE SEX HT WT DROP BMI 
baseTS;  baseline tumor size
T790M; T790M: 1, yes 
TP53_base; presence of TP53: 1, yes 
basecfDNA; baseline cfDNA concentration
baseVAF; baseline EGFR mutant levels
DROP DROP DROP DROP DROP DROP DROP
ICL IV2 IV3 IQ IKA IALAG1 IF1; individual PK parameters

$DATA START_all6.csv IGNORE=C IGNORE=(CMT.GT.4) IGNORE=(CMT.EQ.2); only 
data of tumor sizes

$SUBROUTINES ADVAN13 TOL=4

$MODEL
COMP = (DEPOT)
COMP = (CENTRAL,DEFOBS)
COMP = (PRIPH)
COMP = (TUMOR)
COMP = (TUMOR2)

$PK
KG1 = THETA(1)* EXP(ETA(1))/100
KD1 = THETA(2)* EXP(ETA(2))/100
KM1 = THETA(5)* EXP(ETA(3))/100
;IF(baseVAF.GE.0.AND.baseVAF.LT.1.74) KG1=THETA(6)*KG1
;IF(baseVAF.LT.0) KG1=THETA(7)*KG1; no sample group

CL = ICL*24; change unit from L/h to L/day
V2 = IV2 
V3 = IV3
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Q = IQ *24
ALAG1 = IALAG1 /24
KA = IKA*24
F1 = IF1
K=CL/V2
K23=Q/V2
K32=Q/V3

BASES = baseTS
A_0(4)=BASES
A_0(5)=0

$DES
DADT(1) = -KA*A(1); can simulate drug concentrations, if needed
DADT(2)= KA*A(1) - K*A(2) -K23*A(2) +K32*A(3); can simulate drug concentrations, 
if needed
DADT(3) = K23*A(2)- K32*A(3); can simulate drug concentrations, if needed 
DADT(4) = KG1*A(4)-KD1* UNDERTREAT *A(4) - KM1* UNDERTREAT *A(4)
DADT(5) = KM1* UNDERTREAT *A(4)+ KG1* UNDERTREAT *A(5)

$ERROR
TS=A(4)+A(5)
IPRED = TS
    W = SQRT(THETA(3)**2*IPRED**2 + THETA(4)**2)
    Y = IPRED + W*EPS(1)
 IRES = DV-IPRED
IWRES = IRES/W

$THETA  
(0.001,0.1,1); KG1
(0.1,1,5); KD
(0.01,0.1,1); Prop err
(0.1,1,10); Add err
(0.01,1, 5); KM1
;(0.05,0.5,2); VAF < 1.74
;(0.05,0.5,2); VAF not available

$OMEGA
0.1; IIV KG
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0.1; IIV KD
0.1; IIV KM1

$SIGMA  1  FIX; 
$ESTIMATION METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=10 
POSTHOC
$COV print=E

$TABLE ID TIME TAD MDV EVID UNDERTREAT Dose baseTS T790M TP53_base 
basecfDNA baseVAF baseTS KG1 KD1 KM1 TS IPRED IW
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Supplementary figures and table

Figure S4.1:  The collected data on erlotinib concentrations over time.
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Figure S4.2:  The collected variant allele frequency of primary EGFR variants detected from circulating free 
DNA (cfDNA) (ctDNA data) over time.
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Figure S4.3:  Goodness-of-fit plots of the developed population PK model, including observations versus 
individual predictions (a) and population predictions (b), and conditional weighted residual errors (CWRES) 
versus populations predictions (c) and versus time after last dose (d). The red dashed lines represent y = x 
(a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Figure S4.4:  Goodness-of-fit plots of the developed tumor dynamics model, including observations 
versus individual predictions (a) and population predictions (b), and conditional weighted residual errors 
(CWRES) versus populations predictions (c) and versus time (d). The red dashed lines represent y = x (a, b) 
and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Figure S4.6:  Goodness-of-fit plots of the tumor dynamics model with ctDNA as a covariate, including 
observations versus individual predictions (a) and population predictions (b), and conditional weighted 
residual errors (CWRES) versus populations predictions (c) and versus time (d). The red dashed lines 
represent y = x (a, b) and y = 0 (c, d). Black dashed lines represent corresponding loess regressions.
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Table S4.1: Parameter estimates of the tumor dynamics model considering pre-existing resistance 
component (primary resistance)

Parameters Description Estimate (RSE%)
IIV (CV%) (RSE%) 
[shrinkage%]

kg (/day) Tumor growth rate constant 0.000801 (22%) 60.4% (29%) [26%]
kd (/day) Tumor decay rate constant 0.0129 (21%) 73.6% (27%) [8%]
km (/day) Mutation rate constant 0.00756 (28%) 66.6% (34%) [19%]
TS_0 (mm) Baseline size of sensitive clonal 

population 
Observed baseline - TR_0 -

TR_0 (mm) Baseline size of resistant clonal 
population

4.51 (39%) 0 fixed

Residual errors
Prop. Err. (CV%) Proportional residual error 7.44% (18%) [12%]*

Add. Err. (SD, 
mm)

Additive residual error 1.19 (21%) [12%]*

Supplementary Table


