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Abstract

Quantitative characterization of evolving tumor resistance under targeted treatment 
could help identify novel treatment schedules, which may improve the outcome of 
anti-cancer treatment. In this study, a mathematical model which considers various 
clonal populations and evolving treatment resistance was developed. With parameter 
values fitted to the data or informed by literature data, the model could capture 
previously reported tumor burden dynamics and mutant KRAS levels in circulating 
tumor DNA (ctDNA) of patients with metastatic colorectal cancer treated with 
panitumumab. Treatment schedules, including a continuous schedule, intermit-
tent schedules incorporating treatment holidays, and adaptive schedules guided 
by ctDNA measurements were evaluated using simulations. Compared with the 
continuous regimen, the simulated intermittent regimen which consisted of 8-week 
treatment and 4-week suspension prolonged median progression-free survival (PFS) 
of the simulated population from 36 weeks to 44 weeks. The median time period in 
which the tumor size stayed below the baseline level (TTS<TS0) was prolonged from 52 
weeks to 60 weeks. Extending the treatment holiday resulted in inferior outcomes. 
The simulated adaptive regimens showed to further prolong median PFS to 56–64 
weeks and TTS<TS0 to 114–132 weeks under different treatment designs. A prospec-
tive clinical study is required to validate the results and to confirm the added value 
of the suggested schedules.
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1. Introduction

Emerging treatment resistance during anti-cancer therapy is one of the major causes of 
cancer patients experiencing treatment failure [1, 2]. The occurrence of treatment resistance 
is mediated by a range of mechanisms [1, 2]. Evolutionary mechanisms driven by intra-
tumor heterogeneity and the evolving adaptation of tumor cells to the selection pressure 
of treatment are increasingly acknowledged as key factors related to the development of 
treatment resistance [3-7]. 

To improve the treatment outcome in cancer patients, it may be important to take the 
intra-tumor heterogeneity and evolutionary dynamics of tumors into consideration when 
designing treatment strategies. A clinical genetic biomarker that is useful to capture the 
tumor heterogeneity and to monitor the evolving treatment resistance in a quantitative way 
is circulating tumor DNA (ctDNA), i.e. tumor DNA fragments circulating in the blood-
stream [2, 8-10]. Different from tumor size, which is commonly used as an indicator of 
anti-cancer treatment effect [11], ctDNA can be detected from liquid biopsies and allows 
real-time monitoring with limited patient burden. It has been demonstrated that mutations 
present in multiple biopsies of primary tumor and metastasis can be detected in ctDNA 
including those being missed in certain biopsies[12]. In addition, the genetic alternations 
captured by ctDNA can also be quantified. The relative change of genetic alterations in 
serial ctDNA analysis could provide important insight into the molecular evolution of the 
tumor and reveal the mechanisms of resistance to targeted agents [8-10]. Previous studies 
of ctDNA in colorectal cancer patients have demonstrated a positive selection of mutant 
KRAS clones during epidermal growth factor receptor (EGFR) blockade [10, 13], and a 
decline in mutant KRAS clones upon the withdrawal of the therapy [9]. The concentration 
of ctDNA has also been shown to correlate with tumor burden and stage, and is associated 
with therapeutic response, such as disease progression and recurrence, in different kinds 
of cancers [8, 9, 14-18].

Monitoring tumor-specific genetic alternations can facilitate the selection and adjustment 
of drugs that target newly developed actionable mutations [2, 8]. Such adaptive treatment 
suppresses the proliferation of resistant tumor clones and thereby overcome or at least 
delay treatment resistance [2, 8]. 

Considering evolutionary dynamics, suppressing the emergence of resistance by applying 
intermittent treatment has also been previously proposed [19, 20]. Intermittent treatment 
allows sensitive cells to utilize their fitness advantage during the withdrawal of treatment 
to suppress the growth of the resistant population, so that the same treatment can remain 
effective when it is reinitiated, which is especially relevant in the metastatic setting when 
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cure is not possible [19, 21]. This principle was demonstrated in silico with game theory 
models and with a pilot study of abiraterone in prostate cancer patients [19]. For colorectal 
cancer, it has been shown that tumor genomes adapt dynamically to intermittent drug 
schedules and re-challenge of EGFR blockade can be efficient [9]. This strategy is also 
of emerging clinical interest and has been investigated in several clinical studies [22-27].

Mathematical modelling and simulation is a widely accepted tool in pharmaceutical 
research to characterize and understand the interaction among drug treatment, the human 
body, and disease [11, 28-30]. Various mathematical model structures have been used to 
characterize the tumor dynamics and drug resistance evolution for solid tumors [19, 31, 32]. 
Tumor proliferation, regression due to treatment, heterogeneity, and treatment resistance 
are key elements that are commonly considered in those models [32]. The dynamics of 
biomarkers can also be incorporated which enables better understanding and prediction 
of tumor progression [32]. A non-linear mixed-effect modeling approach is commonly 
applied to account for inter-individual variability (IIV) [32]. Studies developing models 
for tumor dynamics and evolving drug resistance are mostly aimed at optimizing and indi-
vidualizing current treatments. Furthermore, they are also aimed at better understanding 
of emerging drug resistance and identification of outcome predictors [32]. Connecting 
these models to patients’ survival and adverse effects with time-to-event modelling is 
also common to support the understanding of treatment efficacy and enables the explo-
ration of optimized dosing schedules [33]. These models could guide the interpretation 
and clinical decision making process based on observed tumor size dynamics and the 
associated evolution of tumor progression during treatment, and thereby supporting the 
identification of novel personalized strategies to optimize anti-cancer treatment schedules 
and overcome treatment resistance. 

The aim of the current study was to develop a mathematical model to quantitatively char-
acterize the dynamics of treatment response and evolving resistance, based on tumor sizes 
and mutant KRAS levels in ctDNA from metastatic colorectal cancer (mCRC) patients. 
We also aimed to evaluate anti-cancer treatment designs which consider cancer resistance 
evolution and demonstrate the use of ctDNA as a marker to guide adaptive treatment. These 
aspects might be beneficial to improve the treatment outcome, especially in the metastatic 
setting. Data identified from the literature were used for model development. Anti-cancer 
treatment schedules, including continuous, intermittent, and adaptive schedules guided by 
ctDNA measurements were designed to evaluate optimal treatment schedules. 
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2. Results

2.1 Data and model evaluation
A dataset containing longitudinal tumor burden measurements and mutant KRAS levels 
in ctDNA was identified from 28 mCRC patients treated with the anti-EGFR inhibitor 
panitumumab in a previous clinical study [13] (Figure 3.1). Among the 28 patients, 25 
were identified to be initially KRAS wild-type and 9 of those 25 developed KRAS mutation 
after 5–34 weeks’ (median 22 weeks’) treatment. The remaining 3 patients had detectable 
mutant KRAS at the start of treatment. The characteristics of the patients are summarized 
in Supplementary Table S3.1. 

Figure 3.1: Model evaluations results on the data of tumor burden (a, c) and mutant KRAS (b, d) collected 
from a previous clinical trial on patients with metastatic colorectal cancer who were identified to be initially 
KRAS wild-type (a, b) or had detectable mutant KRAS at the start of treatment (c, d); Model predicted mutant 
KRAS concentrations under a regimen of 20-week treatment and 20-week suspension (e).

The developed model consists of three clonal tumor populations, including Ts which was 
sensitive to anti-EGFR inhibitor (D1), TR1 which harbored KRAS mutation and was resistant 
to D1, and TR2 which was resistant to both D1 and a hypothetical second treatment targeting 
TR1 (D2), as well as two compartments for mutant KRAS (MctDNA1) and a hypothetical second 
mutation (MctDNA2) in ctDNA (Figure 3.2). MctDNA1 and MctDNA2 were assumed to emerge 
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during treatment. Shedding rates of ctDNA depended on the size of TR1 and TR2, and Hill 
equations with tumor size as independent variable were applied to describe the delayed 
emergence (or ability to detect) of mutant genes in ctDNA. Values of model parameters 
were obtained by fitting to the data or informed by literature (Table 3.1). Parameters 
describing tumor dynamics under D1 therapy were estimated based on the observed raw 
data and the results are shown in Supplementary Table S3.2. 

Figure 3.2: The model that characterizes the dynamics of tumor size and mutation concentrations in 
ctDNA from metastatic colorectal cancer patients. Ts, TR1, and TR2 represent the sizes of three tumor clonal 
populations, respectively. MctDNA1 and MctDNA2 represent the concentration of mutant KRAS and a hypothetical 
mutation in ctDNA. kg1, kg2, kg3 represent the net growth rate constants of three clonal populations. ks1 and 
ks2 represent the tumor shrinkage rate due to treatments. kM1 and kM3 represent the mutation rate constant 
from drug susceptible clonal population to drug resistant clonal population during the course of anti-EGFR 
treatment (D1) and a hypothetical treatment (D2), respectively. kM2 and kM4 represent the transition rate 
constant from drug resistant clonal population to drug susceptible clonal population upon the withdrawal 
of treatments. k1 and k2 represent the shedding rate constant of ctDNA which carries mutations. ke represent 
the elimination rate constant of ctDNA.

ks1

kg1

MctDNA1

kM1, 
with anti-EGFR inhibitor

k1

kM3, 
with D2 which targets KRAS mutated 
colon cancer 

ke

k2

MctDNA2
ke

ks2

Ts

TR1kg2

kg3 TR2

kM2, without anti-
EGFR inhibitor

kM4, without D2 which 
targets KRAS mutated 
colon cancer 

The model evaluation results show that the 50th percentiles of the simulated time-courses 
of total tumor size (TS) and mutant KRAS (MctDNA1 ) concentrations were generally in line 
with the 50th percentiles of corresponding observations (Figure 3.1). The 50th percentiles 
of observations were also adequately covered by the 95% confidence intervals (CIs) of 
corresponding percentile obtained from the simulations. Upon a treatment suspension 
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after 20 weeks of treatment, a decay of KRAS levels that was observed in previous studies 
[9] could also be described by the model. The median and 90% prediction interval of 
corresponding simulations of 100 virtual patients were shown in Figure 3.1E. The predicted 
median half-life of KRAS levels was 4.98 months.

An available dataset on 16 non-small cell lung cancer (NSCLC) patients was utilized as an 
evaluation cohort (Supplementary Table S3.3) [14]. Patients included in this study had detect-
able EGFR L858R mutation / exon 19 deletion at the start of treatment and developed EGFR 
T790M mutation during treatment. The model used in the validation cohort was adjusted 
according to the findings of the study, the details of which can be found in Supplementary 
method and Supplementary Figure S3.1. Model evaluation results show that the distribu-
tion of the model simulations was also in line with the distribution of the tumor size and 
concentrations of mutant EGFR obtained from NSCLC patients (Supplementary Figure S3.2).

2.2 Treatment schedule evaluation 
Based on the developed model, multiple dosing schedules, including a continuous D1 
schedule, intermittent D1 schedules with different on- and off-dosing durations, and 
adaptive schedules where the use of D1 and D2 were guided by ctDNA measurements, were 
simulated and evaluated to identify optimal treatment designs (Table 3.2). For adaptive 
schedules, the treatment started with a continuous D1 and switched to a continuous D2 
when the ctDNA measurements increased to an upper limit for drug adjustment. When the 
mutation concentration decreased back to a lower limit for drug adjustment, the treatment 
was switched back to D1 and the loop continued.

Predicted median progression-free survival (PFS) and time until the tumor size had grown 
back to the baseline level (TTS<TS0) of the simulated population under all evaluated regimens 
are shown in Figure 3.3, the detailed results of which can be found in Supplementary 
Table S3.4. The median predicted PFS under continuous drug exposure was 36 weeks 
and median TTS<TS0 was 52 weeks. Five out of 9 designs of intermittent schedule prolonged 
median PFS and median TTS<TS0 compared with continuous treatment (Figure 3.3). Four- or 
8-week treatment suspension was introduced in these regimens. Extending the treatment 
holiday from 4 weeks to 4 weeks more than the treatment period mostly resulted in inferior 
results (Figure 3.3). A regimen consisting of 4-week treatment and 4-week suspension 
(Sinterm(4on_4off)) provided the longest median PFS (48 weeks), while a schedule consisting of 
8-week treatment and 4-week suspension (Sinterm(8on_4off)) provided the longest TTS<TS0 (60 
weeks). A survival prediction also illustrated a better clinical outcome provided by regimen 
Sinterm(8on_4off) than continuous regimen (Figure 3.4). 
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Table 3.2: Evaluated treatment schedules

Schedules Details

Continuous schedule (standard 
of care) 

D1 was continuously administered resulting in continuous drug 
exposure for 180 weeks

Intermittent schedules D1 was administered for N weeks and suspended for M weeks. Total 
treatment time was 180 weeks.

N (weeks) M (weeks)
4 4, 8 
8 4, 8, 12
12 4, 8, 12, 16

Adaptive schedules with a 
hypothetical second treatment

D1 was continuously given, and suspended and switched to 
D2 when the ctDNA measurement increased to higher than 
UP fragment/ml. Treatment switched back to D1 when ctDNA 
measurement decreased back to lower than LOW fragment/ml. 
Total treatment time was 180 weeks.

LOW (fragment/ml) UP (fragment/ml)
Monitoring frequency 
of ctDNA (weeks)

5 10, 15, 20, 25 4
10 15, 20, 25 4
5 10, 15, 20, 25 8
10 15, 20, 25 8
5 10, 15, 20, 25 12
10 15, 20, 25 12

D1, anti-EGFR inhibitor; D2, a hypothetical second treatment to which the newly acquired clone is suscep-
tible; ctDNA, circulating tumor DNA. Drug exposure variability was not considered in this study but only the 
presence (Dn = 1) or absence (Dn = 0) of a drug were considered.

Figure 3.3: The predicted median progression-free survival (PFS) (a) and the time until the tumor size had 
grown back to the baseline level (TTS<TS0) (b) of evaluated regimens.
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As for the adaptive regimen guided by ctDNA measurements, all designs further prolonged 
median PFS to 56–64 weeks and TTS<TS0 to 114–132 weeks (Figure 3.3). Comparable results 
were obtained when the monitoring frequency of ctDNA altered and slightly longer median 
PFSs were observed when the monitoring frequency of ctDNA was once every 12 weeks. 
Under the same monitoring frequency, the different upper and lower ctDNA limits for 
drug adjustment only resulted in small changes in median PFS and TTS<TS0, especially when 
the ctDNA was less frequently monitored. Overall, the longest median PFS and TTS<TS0 
were mostly observed when the upper and lower ctDNA limits for drug adjustment were 
5 fragments/ml and 10 fragments/ml, respectively (Figure 3.3). A regimen with 5 and 10 
fragments/ml as ctDNA limits for drug adjustment and a monitoring frequency of once 
every 12 weeks (Sadapt(5_10_Freq12)) provided the longest median PFS. The survival prediction 
of Sadapt(5_10_Freq12) also showed a better clinical outcome than the regimen Sinterm(8on_4off) and 
the continuous regimen (Figure 3.4). 

Figure 3.5 shows the simulated time-curves of each tumor clonal population and each 
mutation in ctDNA over time from a typical subject under the continuous schedule, the inter-
mittent schedule Sinterm(8on_4off), and the adaptive schedule Sadapt(5_10_Freq12). The corresponding 

Figure 3.4: The survival plot of 100 virtual patients under continuous treatment, intermittent treatment 
(8-week treatment and 4-week suspension), and adaptive treatment with the second hypothetical drug 
(ctDNA limits for drug adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks).
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results of the simulated population are shown in Supplementary Figure S3.3. It can be seen 
that the schedule Sinterm(8on_4off) and Sadapt(5_10_Freq12) suppressed the growth of resistant clonal 
population TR1. In addition, predicted time until detectable mutation (Tmutant_test) under 
each evaluated regimen was evaluated. It was shown that MctDNA1 under both continuous 
and intermittent regimens could become detectable before disease progression (Figure 3.5, 
Supplementary Table S3.4). In the setting of adaptive treatment, as the MctDNA1 level was 
applied as a biomarker to guide the treatment switching, the median Tmutant_test of MctDNA2 was 
evaluated. The results indicate that MctDNA2 would be observed after disease progression has 
occurred but before the tumor size grows back to baseline level (Figure 3.5).

Figure 3.5: The simulated time-curves of total tumor burden and each clonal population (a, d, g), 
mutation concentrations (b, e, h), and dosing strategies (c, f, i) of a typical subject with metastatic colorectal 
cancer undergoing continuous treatment (a, b, c), intermittent treatment (8-week treatment and 4-week 
suspension) (d, e, f ), and adaptive treatment with the second hypothetical drug (ctDNA limits for drug 
adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks) (g, h, i). Estimated PFS (black dashed 
vertical line), TTS<TS0 (red dashed vertical line), and Tmutant_test (blue dash vertical line) are also shown in the 
figure.
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2.3 Sensitivity analysis
While the value of the parameters describing tumor dynamics were estimated based on 
the data or adapted from literature, that of other parameters were set based on a visual 
fit to the data since the amount of data did not support estimation of parameters. These 
parameter values may however not be optimal, and therefore the parameter sensitivity to the 
simulated curves was assessed by increasing or decreasing parameters by 50% one at a time. 

The predicted PFS and Tmutant_test derived from each time of simulation, which represent 
the dynamics of tumor burden and mutation concentrations in ctDNA respectively, are 
shown in Figure 3.6 and Supplementary Table S3.5. Both simulated tumor sizes and 
mutation concentrations were affected when any of the parameters characterizing the 
tumor burden dynamics, including net growth rate constants (kg), tumor shrinkage rate 
due to treatments (ks), and mutation rate constants (kM) varied. In contrast, the change of 

Figure 3.6: Relative change (Δ) of predicted progression-free-survival (weeks) (a) and time until detectable 
mutation (weeks) (b) compared with using original parameters in the sensitivity analysis. No result, the 
mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by the end of simulation 
time (180 weeks).
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the parameters characterizing the mutation concentrations, including the Hill coefficient 
(H), max releasing rates (kmax), the tumor size that provide half-maximal releasing rate 
(KT50), and elimination rate constant of ctDNA (ke), only affected the simulated mutation 
concentrations but not the simulated tumor size except for KT50 and H under an adaptive 
treatment design. The predicted PFS was mainly sensitive to parameters kg2 and kM1, and 
the predicted Tmutant_test was mainly sensitive to parameters ks1, kM1, H and KT50. Nonethe-
less, the intermittent regimen and the adaptive regimen still resulted in better treatment 
outcomes (i.e. longer PFS) than the continuous regimen, no matter how the parameter 
values varied (Supplementary Table S3.5). More detailed simulated time-curves of 
tumor burden and MctDNA1 concentrations under each setting, and the relative changes of 
predicted total tumor sizes and MctDNA levels compared with original results are shown in 
Supplementary Figure S3.4 and Figure S3.5.

3. Discussion

In the current study, a mathematical model was developed to characterize the tumor size 
dynamics and tumor resistance development in response to treatment. The model was built 
based on findings from previously published studies and the collected raw data itself. The 
model well captured the reported time curves of tumor sizes and mutant KRAS levels in 
ctDNA from mCRC patients. A similar model could also characterize the time-curves of 
EGFR mutation and tumor sizes obtained from NSCLC patients. 

The current model assumed that for patients who had no detectable KRAS mutation pre-
treatment, there was no primary resistance, despite that the original study estimated that 
drug resistance is likely to be present prior to the initiation of treatment [13]. However, 
since the size of the resistant clonal population was estimated to only account for a small 
part of the total tumor cell population (2300 cells out of one billion cells) [13], the primary 
resistance was eventually not included in our model.  

During treatment interruption, a back transfer process from drug resistant clonal population 
to drug sensitive clonal population was incorporated to capture the recovery of sensitivity 
to the treatment. This assumption was supported by in vitro observations [9]. This process 
could also describe the phenomenon that in the absence of the drug, susceptible tumor cells 
have the benefit of growing back again at the expense of resistant tumor cells. When the back 
transfer process was removed (kM2 and kM4 fixed to 0), prolonged predicted median PFSs 
under the schedule Sinterm(4on_4off) and Sadapt(5_10_Freq12) compared with the continuous regimen 
were still observed, although not for schedule Sinterm(8on_4off) in contrast to when the back 
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transfer was allowed (Supplementary Figures S3.6, S3.7). However, the decline of ctDNA 
upon withdrawal of treatment, which has been observed in mCRC patients [9, 34], could 
not be captured when removing the back transfer process (Supplementary Figure S3.8). 
It was also observed that under this circumstance, the remaining susceptible cells had no 
growth advantage over the resistant cells during the withdrawal of treatment, hence tumor 
would not regain susceptibility (Supplementary Figures S3.7, S3.8). Therefore, the back 
transfer process is considered to be a reasonable assumption to describe the dynamics of 
and the competition among different clonal populations upon treatment withdrawal based 
on current available data. More data under intermittent therapy would be valuable to better 
characterize this dynamic process, and to better estimate parameters.

A delayed emergence of a mutation indicating treatment resistance in ctDNA was observed 
in both original studies on mCRC patients (after in median 22 weeks’ treatment) [13] 
and NSCLC patients (after in median 10.5 months’ treatment) [14]. This phenomenon 
was characterized by the Hill equations with tumor size as the independent variable (Eq. 
3.4 and 3.5) in the current study, assuming a delayed shedding of ctDNA from the tumor 
tissue. We also investigated a model where the delayed process was incorporated in the 
mutation from one clonal population to another by applying transit compartments. This 
model could also capture the delayed emergence of mutation in ctDNA. 

The designs of intermittent and adaptive regimens aim to prolong the duration of 
suppressing treatment resistance since they considered intra-tumor heterogeneity and 
evolving adaptation of tumor to treatment. In addition, the evaluated adaptive schedules 
also enabled the personalized design of therapy since the switch of drug was guided by 
individual ctDNA measurements. Here we focused explicitly on the use of ctDNA and 
therefore the change in tumor size was not considered as a criterion to switch therapy, 
despite the fact that tumor size is a common marker in clinical practice for the efficacy of 
anti-cancer treatment [11]. In the future, the help of tumor size could be further evaluated 
when data regarding ctDNA and tumor size dynamics under adaptive therapy are available 
to facilitate a better understanding of their relationship and refining the current model.

In the current study, the intermittent and adaptive regimens, with appropriate designs, 
were shown to outperform the conventional continuous treatment by simulations (i.e. 
median PFS was prolonged) (Figure 3.3). This is in line with the evolutionary principle of 
control and the findings from clinical observations. For example, an adaptive intermittent 
treatment of abiraterone based on prostate-specific antigen (PSA) levels was shown to result 
in a better clinical outcome than the typical continuous treatment [19], although the study 
design may need to be refined [35]. Another recent retrospective analysis demonstrated 
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that intermittent use of enzalutamide in metastatic castration-resistant prostate cancer 
patients prolonged the time to PSA failure and improved overall survival [20]. Traditional 
approaches to cancer therapy have not exploited these theoretical advantages. For example, 
current protocols typically apply a treatment agent or agents at the maximum tolerated 
dose (MTD) until there is unequivocal clinical evidence of progression [21]. 

The intermittent therapy has also been investigated in several clinical studies. In contrast to 
our simulation results and the clinical observations, these studies did not show improved 
outcomes in patients undergoing intermittent therapy [22-27]. One study on BRAF and 
MET inhibitors in melanoma patients even showed an inferior result under the intermit-
tent therapy compared to continuous therapy [22]. The underlined mechanism remains 
unclear. Nevertheless, in these cases, the developed mathematical model may be helpful 
for understanding these conflicting results. Further identification of optimal designs 
based on different resistance mechanisms and dynamics of cancers can be supported by 
the model-based approach. For example, a previous in silico study showed that an inter-
mittent abiraterone followed by a lead-in period was not beneficial for prostate cancer 
patients, and the adaptive intermittent treatment guided by PSA was demonstrated to 
be the best option [19]. Moreover, the simulation results derived from the current study 
suggest that although introducing a treatment holiday may improve the treatment outcome, 
the length of the treatment holiday still needs to be controlled. Extending the treatment 
holiday mostly resulted in inferior results, especially when the holiday was longer than the 
treatment period. This is in accordance with a previous finding that chemotherapy with 
shorter intervals (dose-dense therapy) resulted in better treatment outcome even though 
the total dose amounts were the same [36]. 

When evaluating the adaptive treatment, a second hypothetical treatment (D2) targeting 
TR1 was introduced. An example of this idea can be seen from the treatments of NSCLC 
patients. For NSCLC patients, acquisition of T790M mutation is the main mechanism of 
acquired resistance upon treatment of erlotinib/gefitinib, and osimertinib can be selected 
for T790M-positive patients [37]. Lately, the Food and Drug Administration (FDA) also 
granted accelerated approval to the first KRAS-blocking drug [38]. This indicates potential 
feasibility of the here suggested adaptive treatment design. Due to the use of D2, a hypo-
thetical newly acquired mutation (MctDNA2) was also considered in the model. Unlike MctDNA1 
(KRAS mutation), MctDNA2 only became detectable after disease progression in the current 
study. This brings on a question about the predictive value of mutations in ctDNA. Most 
likely the dynamics of the sensitive clones are also very important to predict emerging 
resistance at an earlier phase. However, to answer this question, more data is required to 
support the understanding of the dynamics of the hypothetical mutation. 
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With the sensitivity analysis, we showed that the choice of parameter values can affect the 
simulated curves. The predicted tumor sizes were mainly sensitive to the parameters kg2 and 
kM1 using the developed model, and the predicted mutation concentrations were mainly 
sensitive to the parameters ks1, kM1, H and KT50 (Figure 3.6). This suggests that an accurate 
estimation of these parameters is of importance for this model. However, the intermittent 
and adaptive treatment still provided better treatment outcome when parameter values 
varied, indicating that the value of the parameters didn’t affect the conclusion that the 
intermittent and adaptive regimens with a certain design outperform the conventional 
continuous treatment. 

To apply the novel treatment strategy, there are still some challenges. Firstly, for patients 
who had detectable KRAS mutation pre-treatment, the intermittent treatment provided 
similar treatment outcome compared to continuous treatment (Supplementary Figure 
S3.9). Therefore, for these patients, a better option will be to choose another treatment 
from start. In fact, in clinical practice panitumumab is contraindicated for patients with 
KRAS mutation. Secondly, to be able to monitor the development of resistance with 
ctDNA, the mutations that are associated with the resistance to a target treatment need 
to be acknowledged beforehand. If multiple mutations have been reported, a selection 
may be required based on the capability of the applied quantification technique, such as 
the selection of gene panel in the assay and the number of mutations that can be detected 
simultaneously. Thirdly, as can be seen from the previous study, only 9 out of 25 patients 
developed detectable KRAS mutations and the median disease progression time of the 9 
patients was the same as for the remaining 16 patients (23 weeks). It was also noticed when 
the individual results were compared, 4 out of 100 virtual patients were predicted to have 
longer PFS under a continuous schedule than under regimen Sinterm(8on_4off). Additionally, 
despite that adaptive regimens provided longer median PFS than intermittent regimens, 
31 out of 100 patients had longer PFS under regimen Sinterm(8on_4off) than under regimen 
Sadapt(5_10_Freq12). These results indicate that ctDNA guided treatment may not be feasible for 
all patients and variability between individuals can affect the choice of regimen. 

Our study has some limitations. First of all, the amount of data we obtained limited the 
ability to adequately estimate all parameters of the developed model. We were also not able 
to fully consider pre-treatment tumor heterogeneity and incorporate the eco-evolutionary 
dynamics in the model. Additionally, due to the lack of drug exposure records, dose- or 
exposure-response relationship was not incorporated in the model and was not investigated 
in this study. However, for panitumumab, it has been shown that with standard treatment 
regimens, even the trough concentrations are maintained above the 90% saturation levels, 
meaning almost maximum effect in all patients [39]. However, for other molecules such 
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as tyrosine kinase inhibitors (TKIs), drug levels are also important to be included in the 
analysis. In these cases, drug exposure measurements can be helpful for the understanding 
of exposure-response relationship under the evaluated regimens. Secondly, alternative 
mutations that are related to anti-EGFR treatment resistance in addition to the reported 
mutant genes were not considered in this study. However, KRAS mutation and EGFR 
mutation were the most commonly reported gene mutations that are associated with resist-
ance to anti-EGFR treatment in mCRC and NSCLC patients respectively [18]. Therefore, 
we mainly considered the most representative mutations. Thirdly, the idea of individual 
intermittent treatment could be further investigated. Because of the above limitations, an 
external dataset is needed to validate the results and a clinical pilot study is required to 
confirm the added value of the suggested schedules. 

In conclusion, a mathematical model incorporating evolving cancer resistance was 
developed to characterize tumor size dynamics and resistance development under 
treatment. The model well captured the clinical data from colorectal cancer patients as 
well as from NSCLC patients. Compared with a conventional continuous anti-cancer 
treatment schedule, intermittent and adaptive schedules were predicted to better suppress 
the evolving cancer resistance and suggested a potential improvement in clinical outcome. 
However, a prospective study is required to validate the results and to confirm the added 
value of the suggested approach. 

4. Methods

4.1 Dataset 
A dataset containing longitudinal tumor burden measurements and mutant KRAS levels in 
ctDNA was identified from a published study where patients diagnosed with mCRC were 
treated with the anti-EGFR inhibitor panitumumab [13]. Patient demographic information, 
time-courses of tumor burden that was reported as the aggregate cross-sectional diameter of 
all index lesions (mm2), and the time-courses of mutant KRAS concentrations (fragments/
ml) of 28 patients were collected from the supplementary tables of the paper [13]. When 
corresponding time of a data point was not shown in the table, the time information was 
digitized from the corresponding supplementary figures using WebplotDigitizer (https://
apps.automeris.io/wpd/). 

All data in this study were collected from publicly available materials (i.e. supplementary 
material or figures) in literature from which the studies were approved by corresponding 
ethical committees and all informed consents were obtained. Therefore, for this study, no 
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additional ethical approval or written informed consent was required. All procedures in 
this study were performed in accordance with relevant guidelines. 

4.2 Model structure    
A mathematical model was developed to describe the obtained time-courses of tumor 
burden and mutant KRAS concentrations under anti-EGFR therapy. The model structure 
is shown in Figure 3.2. 

Six assumptions were made when developing the model structure: 

1. The growth of the tumor was assumed to follow an exponential growth pattern 
[40, 41]. 

2. Tumor tissue was assumed to consist of multiple clonal sub populations which 
are defined as sets of cancer cells that share a common genotype [5]. One clonal 
population (Ts) was defined to be sensitive to the anti-EGFR inhibitor panitu-
mumab (D1). Another clonal population (TR1) harbored KRAS mutation (MctDNA1)  
and was consequently resistant to D1. This is based on previous evidence where 
patients harboring RAS variant in pre-treatment ctDNA did not benefit from 
EGFR blockade [13, 42]. The emergence of KRAS mutation was also suggested 
to be a mediator of acquired resistance to EGFR blockade [13, 42]. 
For patients who were initially identified as KRAS wild-type in ctDNA (WT-KRAS 
patients), Ts was assumed to form the whole tumor at the start of treatment. While 
for patients who had detectable mutant KRAS in ctDNA pre-treatment (M-KRAS 
patients), tumor tissue was assumed to consist of both Ts and TR1 at the start of 
treatment. In addition, given that the resistant clonal population may have fitness 
cost [43], the proliferation rate of resistant clones was assumed to be lower than 
that of the sensitive clones [44].

3. A KRAS mutation could be acquired during the treatment of D1, as WT-KRAS 
patients could develop detectable mutations [13]. 

4. A hypothetical treatment next to panitumumab (D2) was incorporated in the 
current study and assumed to target KRAS-mutated colorectal cancer and 
thereby inhibiting the growth of TR1. In the meantime, a second mutation 
(MctDNA2) was able to be acquired which resulted in a third clonal population 
(TR2) that was resistant to D2. The mutation rate was assumed to be the same as 
that of the acquiring KRAS mutation clonal population. 

5. During treatment interruption, a back transfer process from the drug resistant 
clonal population to drug sensitive clonal population was assumed to be present 
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and was incorporated in the model with a rate lower than the mutation rate. This 
assumption was supported by a previous in vitro study in colorectal cancer (CRC) 
cells [9], which showed that CRC cells that acquired resistance to cetuximab 
with amplification of KRAS gene regained partial sensitivity to cetuximab when 
cultured in the absence of the drug [9]. This process could also be understood 
as the competition between drug susceptible and resistant cells in the absence 
of the drug. When the pressure of the drug was gone, the susceptible cells have 
the benefit to grow back again at the expense of resistant cells in the tumor.

6. ctDNA which carries the target mutations was shed from resistant clonal popu-
lations and the shedding rate depends on the corresponding tumor tissue size. 

In order to be able to capture the following features observed from clinical studies, two 
features were incorporated in the model structure:

1. The mutant KRAS concentration became detectable after 5–34 weeks’ (median 
22 weeks) treatment for WT-KRAS patients who developed detectable mutant 
KRAS [13]. Therefore, the Hill equations (Eq. 3.4 and 3.5) were applied to 
describe this delayed emergence (or ability to detect) of MctDNA1 and MctDNA2.

2. Mutant KRAS levels in ctDNA increased when challenged with D1 and declined 
upon the withdrawal of treatment [9]. The elimination half-life of resistance 
mutations is approximately 4 months [34, 42]. Therefore, in addition to the 
back transfer process, a first-order ctDNA elimination was incorporated. The 
half-life of a typical patient was confirmed to be 4.15 months with the given 
parameter values. 

The ordinary differential equations of the model were as follows:

𝑑𝑑𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑 � �𝑔𝑔𝑔 ∙ 𝑑𝑑𝑠𝑠 � �𝑠𝑠𝑔 ∙ 𝐷𝐷𝑔 ∙ 𝑑𝑑𝑠𝑠 � �𝑀𝑀𝑔 ∙ 𝐷𝐷𝑔 ∙ 𝑑𝑑𝑠𝑠 � �𝑀𝑀𝑀 ∙ �𝑔 � 𝐷𝐷𝑔� ∙ 𝑑𝑑𝑅𝑅𝑔  (3.1)

𝑑𝑑𝑑𝑑𝑅𝑅𝑅
𝑑𝑑𝑑𝑑 � �𝑀𝑀𝑅 ∙ 𝐷𝐷𝑅 ∙ 𝑑𝑑𝑠𝑠 � �𝑔𝑔𝑔 ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑠𝑠𝑔 ∙ 𝐷𝐷𝑔 ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑀𝑀𝑔 ∙ �𝑅 � 𝐷𝐷𝑅� ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ 𝐷𝐷𝑔 ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ �𝑅 � 𝐷𝐷𝑔� ∙ 𝑑𝑑𝑅𝑅𝑔  (3.2)

𝑑𝑑𝑑𝑑𝑅𝑅𝑅
𝑑𝑑𝑑𝑑 � �𝑀𝑀𝑀 ∙ 𝐷𝐷𝑅 ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑔𝑔𝑀 ∙ 𝑑𝑑𝑅𝑅𝑅 � �𝑀𝑀𝑀 ∙ �𝑅 � 𝐷𝐷𝑅� ∙ 𝑑𝑑𝑅𝑅𝑅  (3.3)

𝑘𝑘1 � 𝑘𝑘max _1 ∙ 𝑇𝑇𝑅𝑅1𝐻𝐻� �𝑇𝑇𝑅𝑅1𝐻𝐻 � �𝑇𝑇50𝐻𝐻�  (3.4)

𝑘𝑘2 � 𝑘𝑘max _2 ∙ 𝑇𝑇𝑅𝑅2𝐻𝐻� �𝑇𝑇𝑅𝑅2𝐻𝐻 � �𝑇𝑇50𝐻𝐻�  (3.5)

𝑑𝑑𝑑𝑑������
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇�� � �� ∙ 𝑑𝑑������  (3.6)

𝑑𝑑𝑑𝑑������
𝑑𝑑𝑑𝑑 � �� ∙ 𝑇𝑇�� � �� ∙ 𝑑𝑑������  (3.7)

𝑇𝑇� � 𝑇𝑇𝑠𝑠 � 𝑇𝑇𝑅𝑅𝑅 � 𝑇𝑇𝑅𝑅𝑅  (3.8)
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TS represents the total tumor size as detected by CT scan. kg1, kg2, and kg3 represent the net 
growth rate constants of three clonal populations. ks1 and ks2 represent the tumor shrinkage 
rate due to treatments. Drug exposure variability was not considered in this study but only 
the presence (Dn = 1) or absence (Dn  = 0) of a drug were considered (n = 1 and 2 represent 
panitumumab and the hypothetical treatment, respectively). kM1 and kM3 represent the 
mutation rate constants governing the transfer from the drug susceptible clonal population 
to the drug resistant clonal population during D1 and D2 treatment, respectively. kM2 and 
kM4 represent the mutation rate constants from drug resistant clonal population to drug 
susceptible clonal population upon the withdrawal of treatments. k1 and k2 represent the 
shedding rate constants of ctDNA which carries mutations. Hill equations (Eq. 3.4 and 
3.5) was applied to capture the concentration change of MctDNA. kmax _1 and kmax _2 are max 
releasing rates, KT50 is the tumor size that provide half-maximal releasing rate, H is the 
Hill coefficient. ke represent the elimination rate constant of ctDNA.

When performing simulations, the baseline levels of TS (Eq. 3.8) and MctDNA1 were set to 
the median of the real observations in different patient groups (Supplementary Table 
S3.1). For WT-KRAS patients, the baseline TR1 (TR1_0) and TR2 (TR2_0) were both set to 0. 
For M-KRAS patients, TR2_0 were set to 0 while TR1_0 was set according to the median of 
observations.

4.3 Parameter values  
The values of all model parameters used in the simulation are shown in Table 3.1. 

To assist the setting of parameter values, the parameters describing tumor dynamics under 
D1 therapy (ks1  and kM1) were estimated by fitting the collected tumor sizes data using the 
first order conditional estimation method with interaction (FOCEI) implemented in the 
NONMEM software, version 7.4.1 (ICON Development Solutions). The detailed method 
on parameter estimates can be found from the Supplementary methods.

The estimated typical values of ks1 and kM1 were adopted to simulations. Assuming the 
tumor growth follows an exponential growth pattern, kg1 was fixed as 0.03/week (= ln2/
(6.8 months ⋅ 4 weeks/month)) according to a previously reported median placebo tumor 
doubling time of colorectal carcinomas, i.e. 6.8 months (range: 3–24 months) [40]. Accord-
ingly, kg2 was fixed as 0.021 /week (0.03⋅70%). kM2 was set to be lower than kM1 based on the 
5th assumption. The parameters that are related to the emergence of mutations (H, KT50, 
and kmax) were set by visually matching the slope of mutant KRAS time-courses and the 
detectable time of mutant KRAS. 
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Random IIV was incorporated on kg and baselines, which was assumed to be log-normally 
distributed, when performing the simulations (Table 3.1). It was due to the fact that patients 
in the dataset had different baseline tumor burden and mutant KRAS levels, and different 
growth rates of CRC were reported in different studies [13, 40]. If data from more patients 
can be included, the IIV on parameters will be able to be added to more parameters and 
be estimated. 

4.4 Model evaluation
To evaluate the suitability of the model, five hundred times of simulations were performed 
for TS and MctDNA1 concentrations under continuous drug exposure. The 50th percentiles and 
the corresponding 95% CIs of simulations derived from the model were plotted along with 
the real observation points and the 50th percentiles of observations. In addition, assuming 
D1 was administered continuously for 20 weeks (leading to a continuous drug exposure) 
and then stopped for 20 weeks, the time-course of MctDNA1 concentrations were simulated 
for 100 virtual patients to demonstrate if the decay upon the withdrawal of treatment could 
be captured by this model. 

The performance of the model was also evaluated using another dataset from a study on 
NSCLC patients receiving EGFR inhibitors (icotinib/gefitinib) with the same method as 
above [14]. The time curves of tumor size which was reported as the longest diameter 
(mm) and that of EGFR mutation (L858R, exon 19 deletion, and T790M) concentrations 
(mutation copies/ml plasma) detected from ctDNA were digitized from published figures 
using WebplotDigitizer (https://apps.automeris.io/wpd/). The model used in the evaluation 
cohort was adjusted according to the findings of the study. More detailed introduction of 
the model and parameter values is shown in Supplementary methods. 

4.5 Treatment schedule evaluation
Treatment schedules that were considered in the current study are shown in Table 3.2. 
These schedules were evaluated on WT-KRAS patients. 

A continuous schedule with D1 was first considered. The continuous schedule is the conven-
tional treatment strategy in clinical practice where a therapy is administered continuously 
until disease progression (i.e. in schedules leading to continuous drug exposure) [19]. 
Monitoring frequency, i.e. the frequency of taking blood samples for ctDNA analysis and 
assessing tumor sizes, was set as once every 4 weeks according to the frequency of the 
obtained data. 
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To identify an optimized anti-cancer treatment schedule that suppresses the develop-
ment of treatment resistance, intermittent schedules with D1and adaptive schedules with 
D1 and D2 guided by ctDNA measurements, as proposed in previous studies [2, 8, 19, 
21], were considered. For the intermittent schedules, drug-exposure interruption was 
introduced and multiple combinations of on- and off-dosing durations were evaluated. 
For the adaptive schedules, the ctDNA measurements were monitored and applied as a 
biomarker to determine the time point of switching treatment between D1 and D2. The 
treatment started with D1 and continued till the ctDNA measurements increased to an 
upper limit for drug adjustment. Then D1 was suspended and switched to a continuous 
D2. When the mutation concentration decreased back to a lower limit for drug adjust-
ment, the treatment was switched back to D1 and the loop continued. In this case, multiple 
monitoring frequencies of ctDNA and multiple threshold of mutation concentrations for 
treatment switching were explored for comparison. The frequency of assessing tumor sizes 
was set as once every 4 weeks.

Simulations were performed with the package RxODE (version 1.0.8) implemented in R 
(version 4.0.2). One hundred virtual patients were simulated under each regimen. PFS 
of each virtual patient under each schedule was derived from the simulated total tumor 
size at every monitoring time point. PFS was defined based on WHO criteria (i.e. 25% 
increase in TS) as was applied in the original study [13, 45]. The TTS<TS0 was also estimated 
to compare the effect of different regimens. In addition, Tmutant_test was estimated assuming 
a lower limit of quantification for target mutant genes in ctDNA of 5 fragments/ml which 
was set based on the observed data. This aimed to determine if detectable mutation in 
ctDNA can be a predictor of disease progression.   

4.6 Sensitivity analysis
A sensitivity analysis was performed to evaluate the impact of all parameter values on 
the model predictions. Every parameter was set as 50% or 150% of the original typical 
values one at a time. The continuous schedule, one intermittent schedule Sinterm(8on_4off), and 
one adaptive schedule Sadapt(5_10_Freq12) were simulated. IIV was not incorporated here. The 
sensitivity to the parameters was assessed by comparing the newly simulated time-courses of 
total tumor size and mutation concentrations together with the original simulation results. 
Median PFS and Tmutant_test derived from each simulation were also estimated for comparison. 
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Supplementary Methods

Parameter estimate

To assist the setting of parameter values, the values of parameter describing tumor dynamics 
under anti-EGFR inhibitor (D1) therapy were estimated by fitting the collected tumor sizes 
data [1] using the first order conditional estimation method with interaction (FOCEI) 
implemented in NONMEM software, version 7.4.1 (ICON Development Solutions). 

A non-linear mixed-effect model was developed. Parameters were assumed to be log-
normally distributed and were expressed using Eq. S3.1. Pi represents the parameter of 
ith individual, Ppop represents typical value of the parameter, and ηi represents the random 
inter-individual variability (IIV) which was normally distributed with mean of 0 and 
variance of ω2. The residual error was characterized with a proportional error model as 
is shown in Eq. S3.2, where Obs represents observations, IPRED represents individual 
predictions, and ε1 represents the proportional residual error which was assumed to be 
normally distributed with mean of 0 and variance of σ1

2.

  Pi = Ppop ⋅ e
ηi     Eq. S3.1

  Obs = IPRED ⋅ (1 + ε1)    Eq. S3.2

Assuming the tumor growth follows an exponential growth pattern, kg1 was fixed as 0.03/
week (= ln2/(6.8 months ⋅ 4 weeks/month)) according to a previously reported median 
placebo tumor doubling time colorectal carcinomas, i.e. 6.8 months (range: 3–24 months) 
[2]. kg2, as was assumed, was fixed as 0.021 /week (0.03⋅70%). The baseline levels of TS 
and mutant KRAS (MctDNA1 ) were fixed according to real observations of each patient. For 
WT-KRAS patients, the baseline of TR1 were set to 0. For M-KRAS patients, the baseline 
of TR1 was estimated and the baseline of Ts equals the difference between the observed 
baseline and estimated baseline TR1. 

Model in an evaluation cohort
The model used in the evaluation cohort was adjusted according to the findings of the study: 

1. The detectable EGFR L858R mutation or exon 19 deletion in ctDNA at the start 
of treatment indicates the tumor is sensitive to anti-EGFR inhibitor. Therefore, 
the sensitive clonal population (Ts) was assumed to carry one of these two 
mutations (MctDNA1); 
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2. L858R mutation or exon 19 deletion became undetectable when EGFR inhibitor 
(D1) started and raised back again together with the newly developed EGFR 
T790M mutation (MctDNA2) during treatment [3], which indicates the emergence 
of treatment resistance. Therefore the acquired resistant clonal population under 
D1 (TR1) was assumed to carry both MctDNA1 and MctDNA2; 

3. A hypothetical treatment next to anti-EGFR inhibitor (D2) was incorporated 
and assumed to target T790M positive NSCLC cancer (TR1). In the meantime, a 
third mutation (MctDNA3) was able to be acquired which resulted in a third clonal 
population (TR2) that were resistant to D2.

More details of the model and the parameters are shown in Supplementary Figure S3.1 
and Supplementary Table S3.6.

The values of parameters regarding tumor dynamics were estimated using the collected 
time curves of tumor sizes as described above. The residual error was characterized with 
an additive error model as is shown in Eq. S3.3, where Obs represents observations, IPRED 
represents individual predictions, and ε2 represents the additive residual error which was 
assumed to be normally distributed with mean of 0 and variance of σ2

2. The parameter 
estimate results can be found in Supplementary Table S3.7. 

  Obs = IPRED + ε2     Eq. S3.3
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Supplementary Figures
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Figure S3.1: The model structure that characterize the dynamics of tumor size and mutation concentra-
tions in ctDNA from NSCLC patients. Ts, TR1, and TR2 represent the sizes of the three tumor clonal populations, 
respectively. kg1, kg2, kg3 represent the net growth rates of three clonal populations. ks1 and ks2 represent the 
tumor decay rate due to treatments. kM1 and kM3 represent the mutation rate constant from drug susceptible 
clonal population to drug resistant clonal population during the course of anti-EGFR inhibitor (D1) and the 
hypothetical treatment (D2), respectively. kM2 and kM4 represent the transition rate constant from drug resis-
tant clonal population to drug susceptible clonal population upon the withdrawal of treatments. k1, k2, k3, 
and k4 represent the shedding rate constant of ctDNA which carries mutations.

Figure S3.2: Model evaluation results on the time-courses of tumor diameters (a) and EGFR mutation 
concentrations including L858R mutation/ exon 19 deletion (b) and T790M mutation (c) collected from a 
previous clinical study where patients with non-small cell lung cancer were treated with anti-EGFR inhibitor 
icotinib/gefitinib.

0

50

100

150

200

0 10 20
Time (months)

Tu
m

or
  d

ia
m

et
er

  (
m

m
)

a

0

5,000

10,000

0 10 20
Time (months)

EX
19

D
EL

/L
85

8R
 m

ut
at

io
n 

(c
op

ie
s/

m
L 

pl
as

m
a)

b

0

2,000

4,000

0 10 20
Time (months)

T7
90

M
 m

ut
at

io
n 

(c
op

ie
s/

m
L 

pl
as

m
a)

c

95% confidence interval 50th percentile of observations
50th percentile of simulations

Observations



Chapter 3

94

Figure S3.3: The simulated total tumor burden (a, c, e) and mutation concentrations (b, d, f ) under 
continuous treatment (a, b), intermittent treatment (8-week treatment and 4-week suspension) (c, d), 
and adaptive treatment with the second hypothetical drug (ctDNA limits for drug adjustment: 5 and 10 
fragments/ml, monitor frequency: 12 weeks) (e, f ) for 100 colorectal cancer patients. Median total tumor 
sizes (black lines), MctDNA1 (light sea green lines), and MctDNA2 (salmon lines) were plotted together with 
corresponding 90% prediction intervals. Median PFS (black dashed vertical line), TTS<TS0 (red dashed vertical 
line), and Tmutant_test (blue dash vertical line) were also shown in the figure.
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Figure S3.5: Relative change (Δ) of predicted minimum total tumor size (a), of total tumor size at the last 
simulated time point (180 weeks) (b), and of MctDNA1 or MctDNA2 concentrations at the last simulated time point 
(180 weeks) (c) compared with using original parameters in the sensitivity analysis.
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Figure S3.6: When fixing kM2 and kM4 to zero, the predicted median progression-free survival (PFS) (a) and 
the time until the tumor size had grown back to the baseline level (TTS<TS0) (b) of evaluated regimens.
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Figure S3.7: When fixing kM2 and kM4 to zero, the simulated time-curves of total tumor burden and each 
clonal population (a, d, g), mutation concentrations (b, e, h), and dosing strategies (c, f, i) of a typical subject 
with metastatic colorectal cancer undergoing continuous treatment (a, b, c), intermittent treatment (8-
week treatment and 4-week suspension) (d, e, f ), and adaptive treatment with the second hypothetical 
drug (ctDNA limits for drug adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks) (g, h, i). 
Estimated PFS (black dashed vertical line), TTS<TS0 (red dashed vertical line), and Tmutant_test (blue dash vertical 
line) are also shown in the figure.
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Figure S3.8: When fixing kM2 and kM4 to zero, model predicted total tumor burden and each clonal 
population (a) and mutant KRAS concentrations (b) under a regimen of 20-week treatment and 20-week 
suspension.
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Figure S3.9: The simulated total tumor burden under continuous treatment (a) and intermittent treatment 
(8-week treatment and 4-week suspension) (b) for 100 colorectal cancer patients with detectable KRAS 
mutation pre-treatment. Median total tumor sizes (black lines) were plotted along with 90% prediction 
intervals. Median PFS (black dashed vertical line) and TTS<TS0 (red dashed vertical line) were also shown in 
the figure.
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Supplementary Tables

Table S3.1: Characteristics of the dataset collected from patients with metastatic colorectal cancer 

WT-KRAS patients M-KRAS patients

Number of patients 25 3

Gender (Male (%)) 15 (60%) 0 (0%)

Age (years) (median (range)) 59 (42–78) 56 (48–78)

TS0 (mm2) (median (range)) 5649 (396–38006) 1714 (1312–1849)

Baseline mutant KRAS (fragments/ml) (median (range)) 0 411 (23–810)

PFS (week) (median (range)) 23 (7–52) 7 (7–11)

Mutant KRAS detectable time (week) (median (range)) 22 (5–34) (N = 9) 0

TS0, baseline tumor size; PFS, progression-free survival; WT-KRAS patients, patients who were identified to 
be initially KRAS wild-type; M-KRAS patients, patients who had detectable mutant KRAS pre-treatment.

Table S3.2: Parameter estimates of the tumor dynamics model based on the dataset collected from 
patients with metastatic colorectal cancer

Parameters Estimate (RSE) IIV (CV%) [shrinkage]

WT-KRAS patients -

TS_0 (mm2) TSObs (fixed) -

TR 1_0 (mm2) 0 (fixed) -

M-KRAS patients

TS_0 (mm2) TSObs  – TR 1_0_Est -

TR 1_0 (mm2) 1830 (17%) 0 (fixed)

kg1 (/week) 0.03 (fixed) 68.6% [14%]

kg2 (/week) 0.7 ⋅ kg1 (fixed) -

ks1 (/week) 0.127 (5%) -

kM1 (/week) 0.0459 (18%) -

Residual error -

Prop (CV%) 21.7% (11%)

TSObs, observed total tumor size, TR 1_0_Est, estimated baseline of TR 1, WT-KRAS patients, patients who were 
identified to be initially KRAS wild-type; M-KRAS patients, patients who had detectable mutant KRAS pre-
treatment. RSE, relative standard error, CV, coefficient of variation, IIV, inter-individual variability, Prop, 
proportional residual error. Relative standard errors (RSEs) of parameter estimates were all within an 
acceptable range (< 30%).
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Table S3.3: Characteristics of the dataset collected form patients with non-small cell lung cancer (NSCLC)

Values

Number of patients 16

TS0 (mm) (median (range)) 33.92 (16.97–87.96)

Baseline EGFR L858R mutation /exosome 19 deletion concentration  
(copies/ml) (median (range))

438.75 (42–9555.56)

PFS (months) (median (range)) 12 (4–25)

EGFR T790M mutation detectable time (months) (median (range)) 10.5 (3–27.5)

TS0, baseline tumor size; PFS, progression-free survival.
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Table S3.4: The results of each evaluated schedule in patients who were identified to be initially KRAS 
wild-type

Schedules

Median PFS* 
(90% interval) 
(weeks)

Median TTS<TS0 

(90% interval) 
(weeks)

Median Tmutant_test 
(90% interval)
(weeks)

Continuous schedule (standard of care) 36 (32–44) 52 (36–72) 18 (8–52.6)

Intermittent schedules  
D1 was administered for N weeks and suspended for M weeks. Total treatment time was 180 weeks.

N (weeks) M (weeks)

4 4 48 (24–80) 56 (24–112.8) 28 (8–92.8)

4 8 12 (12–72.6) 24 (12–96) 32 (8–112.4)

8 4 44 (32–60) 60 (36–104.2) 20 (8–80)

8 8 38 (16–64) 60 (32–113.2) 24 (8–93.2)

8 12 20 (16–20) 40 (20–116.4) 28 (8–108)

12 4 40 (32–56) 60 (36–92.2) 24 (8–68.4)

12 8 40 (20–60) 60 (36–112.2) 28 (8–88)

12 12 24 (20–49.0) 64 (24–116.2) 32 (8–100.4)

12 16 24 (20–28) 52 (24–108.4) 32 (8–96)

Adaptive schedules with a hypothetical second treatment 
D1 was continuously given, and suspended and switched to D2 when the ctDNA measurement increased 
to higher than UP fragment/ml. Treatment switched back to D2 when ctDNA measurement decreased 
back to lower than LOW fragment/ml. Total treatment time was 180 weeks.

LOW 
(fragment/
ml)

UP  
(fragment/
ml)

Monitoring 
frequency of 
ctDNA (weeks)

5 10 4 62 (36–118.4)  124 (45.2–170.8)  100 (36–169.2) 

5 15 4 60 (32–116.4)  132 (45.8–176)  108 (36–172) 

5 20 4 60 (32–112.4)  124 (46.8–180)  102 (36–168) 

5 25 4 60 (32–112.4)  120 (44–172.4)  102 (36–168.2) 

10 15 4 56 (32–124)  124 (47.2–172.8)  108 (42.4–172.8) 

10 20 4 56 (32–108.4)  120 (47.8–172.2)  108 (44–176) 

10 25 4 56 (32–108.8)  114 (44–172.2)  110 (44–175.8) 

5 10 8 60 (32–112.4)  120 (44.8–163.2)  96 (40–163.2) 

5 15 8 60 (32–104.8)  120 (44–169)  96 (40–170.4) 

5 20 8 56 (32–100.4)  120 (44–168)  96 (40–168) 

5 25 8 56 (32–104.4)  116 (44.8–168)  96 (40–168) 

10 15 8 60 (32–104.4)  120 (44–168)  96 (45.61–70.4) 

10 20 8 56 (32–108.4)  120 (44–164.4)  96 (45.6–168) 

Table S3.4 continues on next page.
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Table S3.4: Continued

LOW 
(fragment/
ml)

UP  
(fragment/
ml)

Monitoring 
frequency of 
ctDNA (weeks)

10 25 8 56 (32–104.8)  118 (44.2–160)  104 (47.2–168) 

5 10 12 64 (32–108)  128 (44–164)  96 (48–180) 

5 15 12 60 (36–120)  124 (44–176)  102 (48–168) 

5 20 12 60 (32–104.2)  120 (44–157.6)  108 (48–180) 

5 25 12 60 (32–104)  120 (44–156)  108 (48–168) 

10 15 12 62 (32–108.2)  124 (44–176)  102 (48–168) 

10 20 12 60 (32–108)  120 (44–157.6)  108 (48–168) 

10 25 12 60 (36–104.2)  120 (44–156)  108 (48–168) 

*Disease progression was defined by WHO criteria. 
D1, anti-EGFR inhibitor; D2, a hypothetical second treatment to which the newly acquired clone is susceptible; 
PFS, Progression-free survival; Tmutant_test, time until detectable mutation; TTS<TS0, the time until the tumor size 
had grown back to the baseline level; ctDNA, circulating tumor DNA.
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Table S3.5: Predicted progression-free-survival and time until detectable mutation in the sensitivity analysis

Continuous schedule

Intermittent schedule
(8-week treatment and 
4-week suspension) 

Adaptive schedule
(ctDNA limits for drug 
adjustment: 5 and 10 
fragments/ml, monitor 
frequency 12 weeks)

PFS (weeks) (Relative change*)

Parameters
Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

kg1 - - 36 (-8) 48 (+4) 96 (+32) -
kg2 28 (-8) 52 (+16) 32 (-12) 84 (+40) 56 (-8) 76 (+12)
kg3 - - - - 60 (-4) -
ks1 - - - 32 (-12) 36 (-28) 60 (-4)
ks2 - - - - - 60 (-4)
kM1 32 (-4) 44 (+8) 36 (-8) 60 (+16) 84 (+20) 44 (-20)
kM2 - - 48 (+4) 40 (-4) - 60 (-4)
kM3, kM4 - - - - - -
ke - - - - - -
H - - - - - 96 (+32)
KT50 - - - - 36 (-28) 84 (+20)
kmax_1 - - - - - -
kmax_2 - - - - - -

Tmutant_test of MctDNA1 (weeks) 
(Relative change*)

Tmutant_test of MctDNA2 (weeks) 
(Relative change*)

Parameters
Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

Increase 
50%

Decrease 
50%

kg1 - 20 (+4) - 24 (+4) 120 (-48) 180 (+12)
kg2 - 20 (+4) - 28 (+8) 108 (-60) No result
kg3 - - - - 120 (-48) No result
ks1 24 (+8) 12 (-4) 32 (+12) 16 (-4) No result 72 (-96)
ks2 - - - - No result 108 (-60)
kM1 12 (-4) 32 (+16) 16 (-4) 44 (+24) 144 (-24) No result
kM2 - - - - - 132 (-36)
kM3 - - - - 120 (-48) No result
kM4 - - - - No result 132 (-36)
ke - - - - - 132 (-36)
H 20 (+4) 12 (-4) 28 (+8) 16 (-4) - 120 (-48)
KT50 28 (+12) 8 (-8) 32 (+12) 8 (-12) 180 (+12) 96 (-72)
kmax_1 - 20 (+4) - 24 (+4) - 180 (+12)
kmax_2 - - - - 132 (-36) -

PFS, Progression-free survival; Tmutant_test, time when mutation concentration became detectable; MctDNA1, 
KRAS mutation; MctDNA2, the second hypothesis mutation; -, result same as that under the original parameter 
setting; No result, the mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by 
the end of simulation time (180 week).
*With original parameters, the predicted PFS were 36, 44, and 64 weeks under continuous, intermittent, 
and adaptive schedule, respectively, and the predicted Tmutant_test were 16, 20, and 168 weeks, respectively.
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Table S3.6: Parameters values of the developed model characterizing the dynamics of tumor size and 
mutation concentrations in NSCLC patients 

Parameters Description Typical 
values 

Ref.

Ts _0 (mm) Baseline of Ts 35 Data
Mutation was 
assumed to be 
acquired during 
treatment

TR1_0 (mm) Baseline of TR1 0

TR2_0 (mm) Baseline of TR2 0

MctDNA1_0 (copies/ml) Baseline of EGFR L858R mutation or exon 19 
deletion (MctDNA1)

450

MctDNA2_0 (copies/ml) Baseline of EGFR T790M mutation (MctDNA2) 0

MctDNA3_0 (copies/ml) Baseline of a third hypothetical mutation (MctDNA3) 0

kg1 (/month) Growth rate constant of Ts 0.07 Estimated

kg2 (/month) Growth rate constant of TR1 0.049

kg3 (/month) Growth rate constant of TR2 0.035

ks1 (/month) Tumor shrinkage rate constant due to D1 (anti-
EGFR inhibitor)

0.8 Estimated

ks2 (/month) Tumor shrinkage rate constant due to D2 (the 
second hypothetical treatment)

0.8 ks1  

kM1 (/month) Mutation rate from Ts to TR1 when D1 = 1 0.6 Estimated

kM2 (/month) Mutation rate from TR1 to Ts when D1 = 0 0.4 Lower than kM1

kM3 (/month) Mutation rate from TR1 to TR2 when D2 = 1 0.6 kM1 

kM4 (/month) Mutation rate from TR2 to TR1 when D2 = 0 0.4 kM2 

H Hills coefficient 5 Visually 
matching the 
slope of T790M 
mutation time-
courses

KT50 (mm) The size of tumor that provide half-maximal 
shedding rate of ctDNA

30

kmax_1 (copies /ml/
(month*mm))

Maximum shedding rate of MctDNA1 120

kmax_2 (copies /ml/
(month*mm))

Maximum shedding rate of MctDNA2 50

kmax_3 (copies /ml/
(month*mm))

Maximum shedding rate of MctDNA3 50

ke  (/month) ctDNA eliminate rate constant 2

IIV_B (ω1) Standard deviation of IIV of baselines 0.6

IIV_kg (ω2) Standard deviation of IIV of kg 0.2

ctDNA, circulating tumor DNA; IIV, inter-individual variability.
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Table S3.7: Parameter estimates of the tumor dynamics model based on the dataset collected form 
patients with NSCLC

Parameters Estimate (RSE%) IIV (CV%) [shrinkage]

Ts_0 (mm) TS0_Obs (fixed)

TR1_0 (mm) 0 (fixed)

kg1 (/month) 0.0675 (45%) 105.4% [6%]

kg2 (/month) 0.7 ⋅  kg1 (fixed) -

ks1 (/month) 0.835 (23%) 74% [3%]

kM1 (/month) 0.553 (28%) -

Residual error -

Add (mm) 2.67 (34%)

RSE, relative standard error; CV, coefficient of variation; IIV, inter-individual variability; Add, additive residual 
error.
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